伺服驱动系统设计方案教学总结
伺服控制系统 总结 南阳理工学院
伺服总结机床分点位控制和轮廓控制。
轮廓控制:不仅实现位置点到另一位点的精确移动,而且在移动定位过程中仍需不断加工。
点位控制:只点到点移动,不移动中加工。
ASDA-AB系列伺服驱动器分:位置模式,速度模式和扭矩模式三种模式。
通过细分方式可进一步减小步进电机的步距角,从而提高精度。
交流伺服电机出电机本体外,常带有编码器来实现运行状态的检测。
Clarke 变换是将三相平面坐标系向两相平面直角坐标系进行的转换。
交流伺服驱动器的输入电源包括:主回路电源和控制回路电源。
连续控制的要求:精确定位,并随时控制进给轴伺服电机的转向和转速。
速度命名的来源分为两类,一是外部输入的模拟电压。
二是内部参数。
第一章伺服系统接受来自CNC装置经给的脉冲,经变换和放大,然后去驱动各加工坐标轴按指令脉冲进行进给。
可分为:主轴和进给。
伺服系统的主要研究内容是机械运动过程中涉及的力学,机械学,动力驱动,伺服参数检测盒控制等方面的理论和技术。
它是运动控制系统及现代电力电子技术相结合的交叉学科。
是力学,机械,电工,电子,计算机,信息和自动化等学科和技术领域的综合。
在自动控制系统中,使输出量能够以一定准确度跟随输入量的变化而变化的系统称为随动系统,也称为伺服系统。
数控机床的伺服系统是指以机床移动部件的位置和速度作为控制量的自动控制系统。
数控机床进给伺服系统的作用在于接受来自数控装置的指令信号了驱动机床移动部件跟随指令脉冲,并保证动作的快速和准确。
对伺服系统的基本要求:稳定性好。
精度高。
快速响应并无超调。
低速大转矩和调速范围宽。
伺服系统的特点:精确的检测装置。
多种反馈比较原理与方法。
高性能伺服电动机。
宽调速范围的速度调节系统。
系统检测装置的检测不是系统最终的输出量,而是与系统输出具有对应关系的量来构成反馈。
按驱动元件分类:步进伺服系统。
直流伺服系统。
交流伺服系统。
按进给驱动和主轴驱动:寄给伺服系统。
主轴伺服系统。
按反馈比较控制方式:脉冲、数字比较伺服系统。
伺服控制系统课程设计
伺服控制系统课程设计一、教学目标本节课的教学目标是使学生掌握伺服控制系统的基本原理、组成和应用,能够分析简单的伺服控制系统,并具备初步的设计和调试能力。
具体目标如下:1.知识目标:(1)了解伺服控制系统的定义、分类和基本原理;(2)掌握伺服控制系统的组成及其作用;(3)熟悉伺服控制系统的应用领域。
2.技能目标:(1)能够分析简单的伺服控制系统;(2)具备伺服控制系统的设计和调试能力;(3)学会使用相关仪器仪表和软件进行伺服控制系统的分析和设计。
3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对自动化领域的兴趣和责任感;(3)提高学生解决实际问题的能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.伺服控制系统的定义、分类和基本原理;2.伺服控制系统的组成及其作用;3.伺服控制系统的应用领域;4.伺服控制系统的设计和调试方法;5.相关仪器仪表和软件的使用。
三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:讲解伺服控制系统的基本原理、组成和应用;2.讨论法:引导学生讨论伺服控制系统的设计和调试方法;3.案例分析法:分析具体的伺服控制系统实例,加深学生对知识的理解;4.实验法:让学生动手进行伺服控制系统的设计和调试,提高实际操作能力。
四、教学资源为了支持本节课的教学内容和教学方法,将准备以下教学资源:1.教材:伺服控制系统相关教材;2.参考书:介绍伺服控制系统的相关书籍;3.多媒体资料:课件、视频、图片等;4.实验设备:伺服控制系统实验装置;5.软件:伺服控制系统分析和设计软件。
五、教学评估为了全面、客观地评估学生的学习成果,将采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2.作业:布置与课程内容相关的作业,检查学生对知识的理解和应用能力;3.考试:定期进行考试,检验学生对课程知识的掌握程度;4.实验报告:评估学生在实验过程中的操作能力和分析问题的能力;5.小组项目:评估学生在团队合作中的表现以及对知识的综合运用能力。
伺服驱动系统设计方案及对策
伺服驱动系统设计方案及对策一、硬件设计方案及对策:1.选用高性能的伺服电机和驱动器:根据具体需要选择适合的伺服电机和驱动器,确保其具备足够的功率和控制精度。
在选择过程中,需要对驱动器的技术参数进行充分了解,并评估其适用性和可靠性。
2.采用合适的编码器:编码器用于测量电机的位置和速度,对伺服驱动系统的控制精度至关重要。
选择合适的编码器,能够提供高分辨率和高精度的反馈数据,并且具备良好的抗干扰性能。
3.电源设计:伺服驱动系统对电源质量和稳定性要求较高,需要提供稳定的电源供应和电磁兼容性设计,避免电源波动对系统性能的影响。
4.散热设计:伺服电机和驱动器在运行时会产生较大的热量,必须进行有效的散热设计,以确保系统的稳定性和可靠性。
可采用风扇散热、散热片等方式来降低温度。
5.机械设计:在伺服驱动系统中,机械结构的设计对系统性能有很大影响。
需要针对具体应用场景选择合适的传动方式和结构设计,考虑到负载、速度、精度等因素。
6.停电保护设计:为了避免突发停电导致系统损坏,可以设计备用电池或超级电容器等储能装置,以保证在停电短时间内继续工作并正常停机。
二、软件设计方案及对策:1.控制算法设计:通过对伺服电机的位置、速度和加速度等参数进行精细控制,实现对运动轨迹的准确控制。
设计合理的控制算法,能够提高系统的控制精度和稳定性。
2.运动控制软件设计:根据伺服驱动系统的应用需求,设计合理的运动控制软件,包括运动插补算法、软件调速、位置校正等功能。
3.通信接口设计:伺服驱动系统通常需要与上位机或其他设备进行通信,需要设计合适的通信接口,以实现数据传输和控制。
4.用户界面设计:为了方便用户操作和监测系统运行状态,可以设计友好的用户界面,包括参数设置、故障诊断、实时监控等功能。
5.系统诊断与故障检测设计:通过设计合理的系统诊断和故障检测功能,可以检测和排除系统故障,提高系统的可靠性和稳定性。
三、通信网络设计方案及对策:1.选择适当的通信协议:根据伺服驱动系统所处的应用环境和通信要求,选择适当的通信协议,如CAN总线、以太网等。
数控机床的伺服驱动系统设计
数控机床的伺服驱动系统设计数控机床的伺服驱动系统设计概述数控机床的伺服驱动系统是机床运动过程中最重要的部分之一,它直接影响到机床加工的精度和速度。
伺服驱动系统通常由控制器、伺服电机和变频器组成,其中控制器控制运动轨迹和速度,伺服电机负责产生旋转矢量,变频器则将控制信号转化为直流电机所需的电压与电流。
本文将从伺服驱动系统的工作原理、设计流程、性能参数等方面详细介绍数控机床伺服驱动系统的设计。
一、伺服驱动系统的工作原理伺服驱动系统是一种控制精度高、调速范围广的电机控制系统。
其工作原理是,控制器通过控制电机提供给负载的转矩和速度,来控制运动轨迹和速度。
在伺服电机转动过程中,由于负载、摩擦和惯性的作用,电机会出现转速、转矩和角度等变化,而伺服系统通过控制电机的转矢量,使其保持稳定并按要求运动。
伺服驱动系统通常包括控制器、伺服电机、变频器和编码器等部分。
控制器负责处理数字信号,将控制信号转化为伺服电机所需的运动参数,控制伺服电机按照指定的速度和轨迹运动。
伺服电机通过转矢量的变化,将数字信号转化为机械能。
变频器则将控制信号转化为电压和电流,控制电机转速和转矩。
编码器则负责将电机转动所产生的角度信号转换为数字信号,供控制器参考,实现位置闭环控制。
二、伺服驱动系统的设计流程伺服驱动系统的设计流程主要包括三个步骤:系统分析与规划、硬件设计与调试、软件编程与调试。
设计过程的具体细节如下:1.系统分析与规划对数控机床伺服驱动系统进行需求分析,包括机床加工要求、使用环境、使用寿命、成本等因素。
同时,结合机床的结构和运动特点,确定伺服电机类型、编码器类型、控制卡和变频器性能参数等。
软件方面,确定程序样式、功能模块和通用接口等,编写使用手册和技术规格书。
2.硬件设计与调试伺服电机、编码器、变频器和控制器的硬件设计要符合系统规划,并尽可能提高系统稳定性和抗干扰能力。
在设计中,要考虑电路拓扑、元器件选型、线路连接、机械紧固等细节,确保系统正常工作。
《伺服控制系统课程设计》
《伺服控制系统课程设计》指导书⾃动化与电⼦⼯程学院⼆零⼀⼋年⼗⽉⼀、伺服控制系统课程设计的意义、⽬标和程序 (3)⼆、伺服控制系统课程设计内容及要求 (5)三、考核⽅式和报告要求 (11)⼀、伺服控制系统课程设计的意义、⽬标和程序(⼀)伺服控制系统程设计的意义伺服控制系统课程设计是⾃动化专业⼈才培养计划的重要组成部分,是实现培养⽬标的重要教学环节,是⼈才培养质量的重要体现。
通过伺服控制系统课程设计,可以培养考⽣⽤所学基础课及专业课知识和相关技能,解决具体的⼯程问题的综合能⼒。
本次课程设计要求考⽣在指导教师的指导下,独⽴地完成伺服控制系统的设计和仿真,解决与之相关的问题,熟悉伺服控制系统中控制器设计与整定、电机建模和仿真和其他检测装置的选型以及⼯程实践中常⽤的设计⽅法,具有实践性、综合性强的显著特点。
因⽽对培养考⽣的综合素质、增强⼯程意识和创新能⼒具有⾮常重要的作⽤。
伺服控制系统课程设计是考⽣在课程学习结束后的实践性教学环节;是学习、深化、拓宽、综合所学知识的重要过程;是考⽣学习、研究与实践成果的全⾯总结;是考⽣综合素质与⼯程实践能⼒培养效果的全⾯检验;也是⾯向⼯程教育认证⼯作的重要评价内容。
(⼆)课程设计的⽬标课程设计基本教学⽬标是培养考⽣综合运⽤所学知识和技能,分析与解决⼯程实际问题,在实践中实现知识与能⼒的深化与升华,同时培养考⽣严肃认真的科学态度和严谨求实的⼯作作风。
使考⽣通过综合课程设计在具备⼯程师素质⽅⾯更快地得到提⾼。
对本次课程设计有以下⼏⽅⾯的要求:1.主要任务本次任务在教师指导下,独⽴完成给定的设计任务,考⽣在完成任务后应编写提交课程设计报告。
2.专业知识考⽣应在课程设计⼯作中,综合运⽤各种学科的理论知识与技能,分析和解决⼯程实际问题。
通过学习、研究和实践,使理论深化、知识拓宽、专业技能提⾼。
3.⼯作能⼒考⽣应学会依据课程设计课题任务进⾏资料搜集、调查研究、⽅案论证、掌握有关⼯程设计程序、⽅法和技术规范。
伺服控制设计总结范文
随着现代工业自动化技术的飞速发展,伺服控制系统在各个领域的应用越来越广泛。
伺服控制系统作为一种高性能、高精度的自动化控制系统,其设计的好坏直接影响到系统的性能和可靠性。
以下是对伺服控制设计的一次总结。
一、设计原则1. 系统稳定性:在设计伺服控制系统时,首先要保证系统的稳定性,避免系统出现自激振荡、超调等现象。
2. 系统响应速度:响应速度是伺服控制系统的重要性能指标之一,提高响应速度可以缩短系统动态过程,提高生产效率。
3. 系统精度:伺服控制系统的主要作用是实现高精度控制,因此在设计过程中要充分考虑系统精度。
4. 系统抗干扰能力:在工业现场,伺服控制系统会面临各种干扰,如电磁干扰、温度干扰等,设计时要提高系统的抗干扰能力。
5. 系统可靠性:提高系统的可靠性,降低故障率,确保系统长期稳定运行。
二、设计方法1. 硬件设计:根据系统需求,选择合适的伺服驱动器、伺服电机、传感器等硬件设备,并合理布局,确保系统性能。
2. 控制算法设计:根据系统特点,选择合适的控制算法,如PID控制、模糊控制、神经网络控制等,并对其进行优化。
3. 软件设计:编写控制程序,实现控制算法,并进行调试和优化,确保系统稳定运行。
4. 系统仿真:利用仿真软件对系统进行仿真,验证系统性能,发现问题并及时解决。
5. 系统测试:在实际运行环境下对系统进行测试,验证系统性能,确保系统满足设计要求。
三、设计要点1. 选择合适的伺服驱动器和伺服电机:根据系统负载、精度等要求,选择合适的伺服驱动器和伺服电机,确保系统性能。
2. 设计合理的控制算法:根据系统特点,选择合适的控制算法,并对其进行优化,提高系统性能。
3. 优化硬件布局:合理布局硬件设备,减少电磁干扰,提高系统稳定性。
4. 软件优化:优化控制程序,提高系统响应速度和精度。
5. 抗干扰设计:在设计过程中,充分考虑抗干扰措施,提高系统抗干扰能力。
四、总结伺服控制系统设计是一项复杂而重要的工作,需要综合考虑系统稳定性、响应速度、精度、抗干扰能力等因素。
机电一体化第六章伺服驱动控制系统设计
钟。 F.体积小、自定位和价格低是步进电动机驱动控制的三大优势。 G. 步进电机控制系统抗干扰性好
上一页 下一页
二、 伺服驱动控制系统设计的基本要求
1. 高精度控制 2. 3. 调速范围宽、低速稳定性好 4. 快速的应变能力和过载能力强 5. 6.
闭环调节系统。
(4) ①
② 调节方法。
(5) ① 使用仪器。用整定电流环的仪器记录或观察转速实际值波形,电
② 调节方法。
上一页 下一页
六、 晶体管脉宽(PWN)直流调速系统
晶体管脉宽直流调速系统与用频率信号作开关的晶闸管系统相比,具 (1) 由于系统主电源采用整流滤波,因而对电网波形影响小,几乎不 (2) 由于晶体管开关工作频率很高(在2 kHz左右),因此系统的 (3) 电枢电流的脉动量小,容易连续,不必外加滤波电抗器也可平稳 (4) 系统的调速范围很宽,并使传动装置具有较好的线性,采用Z2
上一页 下一页
(2) ① A. 步进电动机型号:130BYG3100D (其他型号干扰大) B. 静转矩15 N·m C. 步距角0.3°/0 6°
D. 空载工作频率40 kHz E. 负载工作频率16 kHz ② A. 驱动器型号ZD-HB30810 B. 输出功率500 W C. 工作电压85~110 V D. 工作电流8 A E. 控制信号,方波电压5~9 V,正弦信号6~15 V ③ 控制信号源。
(3) ① 标准信号控制系统(如图6-16) ②检测信号控制系统 (如图6-17)
③ 计算机控制系统(如图6-18)
上一页 返 回
图6-16 标准信号控制系统图 图6-17 检测信号控制系统图 图6-18 计算机控制系统图
伺服电机实训报告项目小结怎么写
伺服电机实训报告项目小结怎么写一、引言在本次实训项目中,我将深入探讨伺服电机的相关知识,并结合实际操作进行项目小结,以期加深对伺服电机的理解,并总结实训过程中的经验与教训。
二、项目背景伺服电机是一种能够根据控制系统的指令来精确地控制运动的装置,广泛应用于工业自动化、机床、精密加工设备等领域。
本次实训项目的目的在于通过操作实践,掌握伺服电机的基本原理、调试方法以及应用技巧,从而达到提高工程技术人员的实际操作能力和综合素质的目的。
三、实训内容1. 理论学习:通过课堂学习和相关资料阅读,深入理解伺服电机的基本原理和工作机理,包括PID控制、编码器反馈等核心概念。
2. 实际操作:在指导老师的带领下,进行伺服电机的调试、安装与维护等实际操作,了解伺服电机的常见故障及解决方法。
3. 项目实践:结合具体项目案例,对伺服电机在工业自动化控制系统中的应用进行案例分析,并进行实际操作演练。
四、项目小结1. 深度评估:在本次实训项目中,我通过系统学习和实际操作,对伺服电机的原理、调试方法以及应用技巧有了更深入的理解和认识。
在实际操作中,我深刻体会到了伺服电机的高精度、高可靠性和高灵活性,对其在工业自动化领域的重要性有了更清晰的认识。
2. 广度评估:通过实训项目的学习,我对伺服电机在不同行业的应用有了更为全面的了解,包括机床加工、食品包装、印刷设备等领域,从而使我能够更灵活地应对不同的使用场景和需求。
3. 总结回顾:本次实训项目使我对伺服电机的工作原理和应用领域有了更为深刻的认识,并通过操作实践提升了我的专业技能和综合素质。
在未来的工作中,我将能够更好地应用所学知识,为企业的自动化控制系统提供更专业的支持和服务。
五、个人观点和理解通过本次实训项目,我对伺服电机的重要性和广泛应用有了更加深刻的认识。
伺服电机作为工业自动化的重要组成部分,其高精度、高可靠性和高灵活性的特点,为工业生产和制造提供了强大的动力支持。
在未来的工作中,我将不断加强对伺服电机技术的学习和掌握,努力提升自己的专业能力,为工业自动化控制系统的发展贡献自己的力量。
伺服控制实训总结
伺服控制实训总结第一篇:伺服控制实训总结《设备控制实训实训》实训总结设备控制实训是数控技术应用专业教学体系中重要的教学环节之一,是基于《设备控制系统》课程的学习基础并与之配套所进行的常见伺服控制系统原理掌握和操作的技能强化训练,是具备理解伺服控制系统原理,继而形成数控加工技术应用能力的必不可少的教学环节。
本实训的任务主要是对数控专业在校学生进行常见伺服控制系统原理掌握和操作的技能强化训练;同时,使学生具备常见伺服控制基本操作应用维修能力,做好数控操作加工方面的准备,打牢数控原理基础。
在实训前通过下达任务书,使学生明确实训目标、实训要求及注意事项、实训步骤及考核方式,克服畏难情绪。
根据学习心理学家的学习迁移及促进理论,考虑到高职学生在学习上可能的自卑、畏惧心里,本课程借鉴‘家庭教师式’和企业中‘师徒式’教学形式,以教师与学生面对面的“一对一”教学为基本思路,实践教学实现了上机操作——发现问题解决问题——上机操作——正迁移思路的单元式教学模式。
以教材为蓝本的同时,注意实践加工时编程处理;以FANUC 及华中数控编程指令系统为主体,辅以伺服控制原理的掌握同时说明其他数控指令在格式上的差别,开阔了学生的视野,使他们进去企业后能快速适应不同的数控系统和伺服系统。
在教学中通过加工大量的零件,总结经验教训,使学生做到举一反三、触类旁通;针对学生出现的问题,教师面对面引导解决,增强了学生的自信心、解问题的能力和成就感,激发了学生的学习热情;实训中在注重手工编程训练的同时,也注重伺服控制系统在数控加工中的应用,与企业中最新技术应用情况接轨,体现了现代制造技术的发展趋势。
在实训中,提倡学生根据自己的爱好、兴趣、机床的加工工艺范围和刀具、材料等情况,自行设计伺服控制系统,独立编程、选择加工的刀具、确定加工的工艺、独立加工处所构思的零件,体现了自主学习和个性化发展,同时,也巩固了学生的制图、工艺、装夹、刀具等方面的知识。
伺服器实训总结报告
一、前言随着信息技术的飞速发展,服务器作为企业信息化的核心基础设施,其稳定性和可靠性日益受到重视。
为了提高我国高校学生的实践能力,加强理论知识与实际操作的结合,我校特开设了伺服器实训课程。
通过本次实训,学生们不仅掌握了伺服器的安装、配置和维护等基本技能,还对服务器在信息化建设中的重要作用有了更深入的认识。
以下是本人对本次伺服器实训的总结报告。
二、实训目的1. 掌握伺服器的硬件安装与调试方法;2. 熟悉操作系统和服务器软件的安装与配置;3. 了解网络设备的配置与故障排除;4. 培养团队协作和问题解决能力。
三、实训内容1. 伺服器硬件安装与调试(1)了解伺服器的组成和功能;(2)掌握伺服器的安装步骤和注意事项;(3)调试伺服器硬件,确保其正常运行。
2. 操作系统与服务器软件的安装与配置(1)安装Windows Server操作系统;(2)配置DHCP、DNS、IIS等服务;(3)安装和配置SQL Server数据库。
3. 网络设备的配置与故障排除(1)了解网络设备的种类和功能;(2)配置交换机和路由器;(3)排除网络故障,保证网络畅通。
4. 项目实践(1)组建小型局域网;(2)配置虚拟服务器;(3)实现远程访问和资源共享。
四、实训过程1. 理论学习实训前,我们学习了伺服器硬件、操作系统、服务器软件和网络设备等相关理论知识,为实训奠定了基础。
2. 实操训练在实训过程中,我们按照实训指导书的要求,逐步完成各项实训任务。
以下为实训过程中的几个关键环节:(1)硬件安装:我们按照实训指导书的要求,将服务器硬件安装到机箱中,并连接好电源线和网络线。
(2)操作系统安装:在服务器上安装Windows Server操作系统,并对其进行初始化配置。
(3)服务器软件配置:安装和配置DHCP、DNS、IIS等服务,实现局域网内计算机的自动分配IP地址、域名解析和Web服务。
(4)网络设备配置:配置交换机和路由器,实现局域网与广域网的互联。
伺服控制系统的安装与调试的项目总结
伺服控制系统的安装与调试的项目总结
项目总结:伺服控制系统的安装与调试
在本次伺服控制系统的安装与调试项目中,我们成功地完成了以下任务:
1. 系统设计:在项目开始之前,我们进行了详细的系统设计和规划。
我们确定了系统的功能需求和性能要求,并选择了合适的伺服控制器和相关设备。
2. 设备采购与准备:根据系统设计要求,我们采购了伺服控制器、电机、传感器等必要设备,并进行了必要的测试和调试,确保设备的正常运行。
3. 系统安装:在安装过程中,我们按照设计方案和安装手册的要求,将伺服控制器和相关设备安装在系统中。
我们注意了设备的摆放位置、固定方式和线缆布置,确保系统的稳定性和可靠性。
4. 软件编程:为了实现系统的控制和监控功能,我们编写了相应的软件程序。
我们使用了伺服控制器自带的软件开发工具,并根据系统的需求进行了编程和调试。
5. 系统调试:在系统安装和软件编程完成后,我们进行了系统的调试测试。
我们逐步调试了各个设备之间的连接和通信,检查了系统的运行状态和控制效果。
通过调试,我们发现并解决了一些问题,确保了系统的正常运行。
总的来说,本次伺服控制系统的安装与调试项目取得了令人满意的成果。
通过我们的努力和团队合作,我们成功地完成了项目,并按照客户要求交付了可靠的伺服控制系统。
在项目过程中,我们积累了丰富的经验,提高了自己的技术水平,为今后类似项目的顺利进行奠定了坚实的基础。
同时,我们也意识到了项目管理和沟通协作的重要性,在今后的工作中将更加注重团队合作和项目管理的能力的提升。
伺服控制系统的优化设计和实现
伺服控制系统的优化设计和实现伺服控制系统是机械电子控制领域中非常重要的一种系统,它主要用于精密控制,如机械手臂、飞控系统、机车和机器人等方面的应用。
伺服控制系统的作用是实现对某种流量、力量、角度或位移等精密控制的实现。
本文将围绕着伺服控制系统的优化设计和实现,探讨其基本原理、优化方法及实现方案。
一、伺服控制系统的基本原理伺服控制系统是一种反馈控制系统,其基本结构如下图所示:其中,信号源发出期望信号S目,信号经过比较后,误差信号E输出给控制器,控制器对误差进行相应处理,然后将处理后的信号发送到执行机构,执行机构将机械运动转换为电信号,反馈给比较器,形成闭环控制。
伺服控制系统的关键在于:通过控制器对误差信号进行处理,使执行机构能够更快、更准确地进行控制。
伺服控制系统中最常见的控制器是PID控制器,即比例、积分、微分控制器。
二、伺服控制系统的优化方法伺服控制系统在应用中存在诸多问题,例如:机械结构的精确度、电器元件的性能、控制复杂度等。
因此,在实际应用中,需要对伺服控制系统进行优化。
(一)优化PID参数PID控制器是伺服控制系统中最常用的控制器,也是最容易进行优化的部分。
对于PID控制器的优化,有以下几个方面:1.比例系数Kp:增加Kp可增加系统的响应速度,但若Kp太大,可能会导致系统出现震荡和不稳定的情况。
2.积分时间Ti:增加Ti可使系统更快地消除偏差,但同样存在过度振荡的风险。
3.微分时间Td:增加Td可减少过度振荡,但可能会导致系统变得慢反应。
针对PID控制器的优化,可以根据实际情况,采取多种方法进行调整,建立数学模型并进行优化计算。
(二)优化机械结构伺服控制系统中的机械结构非常重要,其精度与机械运动的响应速度和准确度直接相关。
因此,在实际应用中,需要对机械结构进行优化,例如:1.改进传动系统,使用更精密的减速器和传感器;2.加强机械结构的稳定性,增加支撑和润滑;3.优化机械屏幕的设计,减少机械振动和误差;通过对机械结构的优化,可以提高伺服控制系统的精度和稳定性,从而更加准确地实现控制目标。
伺服定位控制课程总结(3篇)
《机器人技术》大作业(2015年秋季学期)题目消防机器人发展与应用姓名学号班级专业机械设计制造及其自动化报告提交日期哈尔滨工业大学内容及要求 1.以某种机器人(如搬运、焊接、喷漆、装配等工业机器人;服务机器人;仿生鱼、蛇等仿生机器人;军用及其它机器人等)为例,撰写一篇大作业,题目自拟,以下内容仅作参考: 1)机器人的机械结构设计(包括各部分名称、功能、传动等); 2)机器人的运动学及动力学分析; 3) 机器人的控制及轨迹规划; 4)驱动及伺服系统设计; 5) 电气控制电路图及部分控制子程序。
2.题目自拟,拒绝雷同和抄袭;3.参考文献不少于7篇,其中至少有2篇外文文献;4.报告统一用该模板撰写,字数不少于5000字,上限不限;5.正文为小四号宋体,倍行距;图表规范,标注为五号宋体;6.用A4纸单面打印;左侧装订,1枚钉;7.提交打印稿及03版word电子文档,由班长收齐。
8.此页不得删除。
评语:成绩(20分):教师签名:年月日消防机器人发展与应用一、我国消防机器人的市场需求近年来,我国石油化工等行业有了飞速的发展和进步,生产过程中的易燃易爆和剧毒化学制品急剧增长,由于设备以及管理等方面的原因,导致化学危险品和放射性物质泄漏以及燃烧、爆炸的事故隐患越来越多。
一旦事故发生,假如没有有效的方法、装备及设施,救援人员将无法进入事故现场要冒然采取行动,往往只会造成无辜生命的牺牲出惨重代价,结果仍不能达到预期目的,这方面各地消防及救援部门已有许多次血的教训。
深圳清水河大爆炸、南京金陵石化火灾、北京东方化工厂罐区火灾等事件发生后,全国各地要求配备消防机器人的呼声愈来愈高。
尤其是在明确公安消防部队作为处置各类化学危险品泄漏事故的主力军之后,在我国消防部门配备消防机器人的问题就显得更为迫切了。
二、国外消防机器人发展现状国际上较早开展消防机器人研究的是美国和苏联,稍后,英国、日本、法国、德国等国家也纷纷开始研究该类技术。
伺服控制培训小结与计划
伺服控制培训小结与计划小结:在过去的几周中,我参加了一场关于伺服控制的培训课程。
通过这期培训,我学到了许多关于伺服控制系统的知识和技能,这些知识对我在工作中的应用有着重要的意义。
接下来,我将对这次培训进行总结,并制定未来的学习计划,以更好地提高自己的技能水平。
培训内容回顾:在培训课程中,我们首先学习了伺服控制系统的基本原理和工作方式。
了解了伺服电机的基本结构和工作原理,理解了伺服控制系统与传统控制系统的区别和优势。
接着,我们学习了伺服控制系统的调试和维护技术,包括参数设置、故障排除等内容。
最后,我们还学习了伺服控制系统在工业自动化中的应用,例如在机器人、数控设备等领域的应用案例分析。
通过这期培训,我对伺服控制系统有了更深入的了解,掌握了一些实用的技术和方法。
这将有助于我在以后的工作中更好地应用伺服控制技术,提高设备的运行效率和精度。
学习收获:在这次培训中,我最大的收获是对伺服控制技术的深入理解。
我学会了如何调试伺服控制系统,如何分析和解决伺服电机的故障,以及如何优化伺服控制系统的参数设置。
这些知识和技能对我未来的工作将有着重要的帮助。
另外,通过培训课程中的案例分析,我还了解到了伺服控制系统在工业自动化中的广泛应用,对于未来的职业发展也有了更清晰的认识。
未来计划:基于这次培训的学习收获,我制定了以下几点未来学习计划:1. 深入学习伺服控制系统的原理和技术。
我计划通过阅读相关的专业书籍和参加相关的技术研讨会,深入学习伺服控制系统的原理和技术细节,努力成为一名专业的伺服控制技术人员。
2. 提高实践能力。
我将争取在工作中多接触伺服控制系统调试和维护的机会,不断提高自己的实践能力,积累更多的经验。
3. 关注最新技术发展。
伺服控制技术是一个不断发展的领域,我将持续关注最新的技术发展动态,不断更新自己的知识和技能,适应行业的发展变化。
4. 提升团队协作能力。
伺服控制系统通常是多个部件组成的复杂系统,需要多个领域的技术人员进行协作。
伺服器原理教学设计方案
一、教学目标1. 知识目标:(1)了解伺服器的定义、分类、工作原理和组成。
(2)掌握伺服系统的基本工作原理和结构。
(3)熟悉伺服电机、驱动器和控制器的性能特点。
2. 能力目标:(1)能够分析伺服系统的动态性能,确定系统的稳定性。
(2)能够根据实际需求,选择合适的伺服系统配置。
(3)具备一定的伺服系统调试和维护能力。
3. 情感目标:(1)激发学生对伺服器原理学习的兴趣。
(2)培养学生的创新意识和团队协作能力。
(3)提高学生的工程实践能力。
二、教学内容1. 伺服器概述1.1 伺服器的定义与分类1.2 伺服器的工作原理与组成1.3 伺服器的应用领域2. 伺服系统基本原理2.1 伺服系统的组成2.2 伺服系统的基本工作原理2.3 伺服系统的性能指标3. 伺服电机3.1 伺服电机的分类与特点3.2 伺服电机的驱动方式3.3 伺服电机的控制策略4. 驱动器与控制器4.1 驱动器的分类与特点4.2 控制器的功能与特点4.3 驱动器与控制器的配合5. 伺服系统应用案例分析5.1 伺服系统在数控机床中的应用5.2 伺服系统在机器人中的应用5.3 伺服系统在其他领域的应用三、教学方法与手段1. 讲授法:教师通过讲解、演示、举例等方式,使学生掌握伺服器原理的基本知识。
2. 案例分析法:通过实际案例分析,引导学生深入理解伺服系统的工作原理和应用。
3. 实验法:通过实验操作,使学生掌握伺服系统的调试和维护方法。
4. 讨论法:组织学生进行课堂讨论,激发学生的创新思维和团队协作能力。
5. 多媒体教学:利用多媒体课件、视频等资源,丰富教学内容,提高教学效果。
四、教学进度安排1. 课时分配:1.1 伺服器概述:2课时1.2 伺服系统基本原理:4课时1.3 伺服电机:2课时1.4 驱动器与控制器:2课时1.5 伺服系统应用案例分析:4课时2. 实验课时:4课时五、考核方式1. 期末考试:占总成绩的60%,主要考察学生对伺服器原理知识的掌握程度。
伺服系统工作总结
睿能全数字伺服系统工作总结一、项目背景全数字伺服系统一般采用位置控制、速度控制和力矩控制的三环结构。
系统硬件大致由以下几部分组成:电源单元;功率逆变和保护单元;检测器单元;数字控制器单元;接口单元。
相对应伺服系统由外到内的"位置"、"速度"、"转矩"三个闭环,伺服系统一般分为三种控制方式。
在使用位置控制方式时,伺服完成所有的三个闭环的控制。
在使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制。
一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。
二、伺服驱动器的原理1) 控制电路结构DSP是整个系统的核心,主要完成实时性要求较高的任务,如矢量控制、电流环、速度环、位置环控制以及PWM信号发生、各种故障保护处理等。
MCU完成实时性要求比较低的管理任务,如参数设定、按键处理、状态显示、串行通讯等。
FPGA实现DSP与MCU之间的数据交换、外部I/O信号处理、内部I/O信号处理、位置脉冲指令处理、第二编码器计数等。
2)功率电路结构整流:三相整流桥逆变:智能功率模块电源:开关电源。
其系统构造如图1所示:图1:伺服系统构框图三、伺服驱动器的接线:1、主回路接线1)R、S、T电源线的连接;2)伺服驱动器U、V、W与伺服电动机电源线U、V、W之间的接线;2、控制电源类接线1)I/O口控制电源接线;3、I/O接口与反馈检测类接线四、伺服系统调试接通伺服驱动器的电源,先进入测试调整模式,测试调整模式可以执行伺服驱动器的测试操作,报警复位和参数编辑等等.其数字操作器的按键说明如表1:表1 伺服器操作键说明1、衡量调试完好的正常系统的要素:1)、电机运行平稳安静、无振荡自激;2)、不过载;3)、连续运行60分钟,电机温热,不高于60°C4)、驱动器和电机不漏电5)、速度和位置精度符合工艺要求2、控制参数:位置环增益,速度环增益等PID控制参数是伺服调试的难点。
伺服驱动系统设计方案教学总结
伺服驱动系统设计方案伺服电机的原理:伺服的基本概念是准确、精确、快速定位。
与普通电机一样,交流伺服电机也由定子和转子构成。
定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。
伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度{线数)。
伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。
交流伺服电机的工作原理和单相感应电动机无本质上的差异。
但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。
而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
图3 伺服电动机的转矩特性2、运行范围较宽如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。
3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性(图中T′-S曲线)不同。
伺服运动控制系统课程总结
问题66.1、对课程的教学方法、教学效果有何客观评价?伺服运动控制系统采用的是每节课一个专题的方式进行教学,在总体上是我们对电机以及伺服运动控制系统有一个整体的了解,由于本科学习过程中没有接触过电机以及相关的课程,这门课使我对电机有了相关的了解,课堂上的入门学习以及课后查阅相关资料的补充学习,让我觉得上了这门课之后受益匪浅。
我的建议是每一章学习后,都要给学生们进行知识点总结,一则让其掌握本章学习的知识框架,二是帮助我们回顾一些细节性的东西。
6.2、结合自身研究的课题,谈谈对《伺服运动控制系统》课程教学内容、授课方式的建议。
本人研究的课题是全自动麻将机的设计,其中涉及到图像处理的各种算法以及多电机的协调控制,目前正处于电机的选型阶段,这门课的对于各种电机的介绍让我了解了不同类型电机的优缺点以及应用场合,为课题中电机的选型提供了理论上的帮助。
6.3、请针对某一章节具体内容谈一下学习感受通过对步进电机伺服系统这一章的学习,我将伺服电机与步进电机的优缺点进行总结。
步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。
在目前国内的数字控制系统中,步进电机的应用十分广泛。
随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。
为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。
虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。
现就二者的使用性能作一比较。
一、控制精度不同两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。
也有一些高性能的步进电机通过细分后步距角更小。
如三洋公司(SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服驱动系统设计方案伺服电机的原理:伺服的基本概念是准确、精确、快速定位。
与普通电机一样,交流伺服电机也由定子和转子构成。
定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。
伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度{线数)。
伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。
交流伺服电机的工作原理和单相感应电动机无本质上的差异。
但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。
而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
图3 伺服电动机的转矩特性2、运行范围较宽如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。
3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性(图中T′-S曲线)不同。
这时的合成转矩T 是制动转矩,从而使电动机迅速停止运转。
图4 伺服电动机单相运行时的转矩特性图5是伺服电动机单相运行时的机械特性曲线。
负载一定时,控制电压Uc愈高,转速也愈高,在控制电压一定时,负载增加,转速下降。
图5 伺服电动机的机械特性交流伺服电动机的输出功率一般是0.1-100W。
当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。
交流伺服电动机运行平稳、噪音小。
但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W 的小功率控制系统。
***机器手伺服控制系统设计分析变频与伺服的关系:目前市场上变频控制器的用途要大大的大于伺服机构,有必要搞清伺服和变频两个系统之间的关系,以便提高可参考设计的途径,这样才能以最低的成本达到设计出自己的伺服控制的目的。
简单的说:变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果。
我们的目标和步骤要在变频系统的基础上,首先解决电机的驱动问题,达到调速目的,然后加入对反馈的采样,设计自己的PID算法,最终完成闭环控制。
当然,这种系统的设计是有难度的,因为简单的看如果系统完成仅仅做一个单独的伺服电机的控制系统就已经能有一定的市场,如果系统简单的话,伺服系统的价格应该不是现在的价位!所以正确的分析系统难度是保证系统的正确完成的基础。
首先控制部分的算法是各厂家保密的技术环节,如果仅仅使用传统的调节电容移相的控制方式不适合于高精度定位控制的需要。
那么我们必然要选择AC-DC-AC的过程,这中间的DC-AC的三相逆变技术是必须要攻克的。
如果简单的PWM电机调速使用通常的技术手段可以实现,但是相对高频的(400HZ)三相逆变需要系统处理要有很高的速度。
其次DSP技术的应用需要比较高的理论基础,这对我们是一种挑战,合理的算法和处理机制是实现最终控制的必然途径,要克服理论上的差距,必要的学习和钻研过程是不可避免的。
这中间和熟悉的技术开发产品的差异是时间的损耗!PID的控制算法是销售伺服控制系统公司的技术命脉,PID算法的好坏直接决定下一步机械手系统的运转的平稳和系统精度的保证。
对任何公司来说,设计专用的PID 算法都是公司技术含量最高的部分。
这部分包含自动控制算法、错误的处理和动作判断以及控制方式的选择。
伺服电机的选择:目前定型为松下400HZ36V三相交流伺服电机?(原因)伺服电机的驱动原理:交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/2p ,n转速,f频率,p极对数)。
交流伺服系统根据其处理信号的方式不同,可以分为模拟式伺服、数字模拟混合式伺服和全数字式伺服;如果按照使用的伺服电动机的种类不同,又可分为两种:一种是用永磁同步伺服电动机构成的伺服系统,包括方波永磁同步电动机(无刷直流机)伺服系统和正弦波永磁同步电动机伺服系统;另一种是用鼠笼型异步电动机构成的伺服系统。
二者的不同之处在于永磁同步电动机伺服系统中需要采用磁极位置传感器而感应电动机伺服系统中含有滑差频率计算部分。
若采用微处理器软件实现伺服控制,可以使永磁同步伺服电动机和鼠笼型异步伺服电动机使用同一套伺服放大器。
1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。
可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。
应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
应用领域如数控机床、印刷机械等等。
3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。
位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。
交流伺服电动机有以下三种转速控制方式:◆幅值控制控制电流与励磁电流的相位差保持90°不变,改变控制电压的大小。
◆相位控制控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位。
◆幅值—相位控制同时改变控制电压幅值和相位。
交流伺服电动机转轴的转向随控制电压相位的反相而改变。
一般伺服电机驱动系统框图伺服电机控制部分框图系统的设计步骤:(1)制定控制方案的技术路线,确定驱动电机转动的控制电路:a)首先确认使用DSP的厂家型号;b)找出使用该信号控制器驱动伺服电机的模型;(最好可以演示)c)绘制控制部分原理图和PCB图通过试验手段,试验各种控制模式下电机的运转;d)封装硬件及软件模块;(2)本阶段总结上一阶段的试验成果,吸收并进一步测试各种控制的适用范围,制定电机控制模块的通讯协议、控制模式和PID控制的指导方案:a)测试反馈信号和处理速度之间的匹配;b)封装模块的适用范围测试;c)论证机械手系统适用的伺服电机控制方式;d)确认系统整体功能需求。
(3)整体系统方案确认阶段:a)机械手综合控制单元的功能确认;b)人机界面:按键和显示单元的模块试验;c)通讯方式的测试和联机调试;d)逐次增加电机的数量,测试电机的协调性动作和模块封装;e)电路安装的结构方案设计。
(4)综合设计阶段:a)全部硬件的综合性能调试;b)不同控制模式和不同动作下,细致动作的准确性测试;c)复杂动作的压力测试和快速反应的数据流量测试;d)整体功耗测试和烤机测试。
(5)联机调试阶段:a)脱机操作的各种动作的稳定性测试;b)待机状态的EMC测试和硬件电路的抗干扰设计验证;c)联机状态下的综合动作测试及到位反馈;d)模拟实际现场的烤机测试。
第一阶段所涉及到技术细节及难点分析如上图首先要通过数学手段,模拟出三相逆变的交流400HZ控制电源;数学模型和6路3对上下臂的PWM输出方式是这一阶段的两个难点。
上图为三相逆变电路的原理图,但是根据此原理图对功率模块的测试和对称性选择会严重的阻碍项目的进度。
根据,目前掌握的情况,建议我们直接选择IPM模块。
下图为IPM模块的功能图。
根据前期进度要求,同时建议使用单电源的IPM模块。
图1 hvic内部结构示意图图2 单电源ipm 内部电路附录:伺服马达编码器工作原理。