大学物理 气动及热学习题课共38页文档
《大学物理学》气体的动理论部分练习题(马解答)
《大学物理学》气体的动理论学习材料可能用到的数据:8.31/R J mol =; 231.3810/k J K -=⨯; 236.0210/A N mol =⨯。
一、选择题12-1.处于平衡状态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则它们( C )(A )温度,压强均不相同; (B )温度相同,但氦气的压强大于氮气的压强; (C )温度,压强都相同; (D )温度相同,但氦气的压强小于氮气的压强。
【分子的平均平动动能3/2ktkT ε=,仅与气体的温度有关,所以两瓶气体温度相同;又由公式P nkT =,n 为气体的分子数密度,知两瓶气体的压强也相同】2.容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为:(根据理想气体分子模型和统计假设讨论)( D )(A )x υB )x υC )x υ=m kT 23;(D )x υ=0。
【大量分子在做无规则的热运动,某一的分子的速度有任一可能的大小和方向,但对于大量分子在某一方向的平均值应为0】3.若理想气体的体积为V ,压强为P ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( B )(A )m PV /; (B ))/(kT PV ; (C ))/(RT PV ; (D ))/(mT PV 。
【由公式PnkT =判断,所以分子数密度为Pn k T=,而气体的分子数为N nV=】4.根据气体动理论,单原子理想气体的温度正比于( D ) (A )气体的体积; (B )气体分子的压强; (C )气体分子的平均动量;(D )气体分子的平均平动动能。
【见第1题提示】5.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( A )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。
(完整版)大学物理热学习题附答案
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学物理习题课答案课件
E
M M mol
CJ
根 据 根 据 热 力 学 定 律 Q =E+A 可 知 A=-E 623J
(负 号 表 示 外 界 做 功 )
练习十八 热力学基础(二)
1. 用公式 ECVT
(式中CV为定体摩尔热容量,视为常量,v为气体摩尔数)计算理想气体内能增量
时,此式
[(A) ]
所以Q2
1 n
Q1
4.已知1 mol的某种理想气体(其分子可视为刚性分子),在等压过程中温度上升1 K,内
能增加了20.78 J,则气体对外作功为_____8_._3__1_J_____, 气体吸收热量为_____2_9__.0__9_J_____.
等压过程:E=n i RT i R 20.78J ,
2
2
Cp
Cv
R
i 2
R
R
20.78
8.31
29.09
Qp nC pT 29.09J
Qp E A p
A p 8.31J
6.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A的温度为TA= 300 K,求
(1) 气体在状态B、C的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).
Q =A+ΔE =200 J.
1
2
B
V (m 3) 3
2. 热力学第二定律表明:
(A) 不可能从单一热源吸收热量使之全部变为有用的功.
(B) 在一个可逆过程中,工作物质净吸热等于对外作的功.
(C) 摩擦生热的过程是不可逆的.
(D) 热量不可能从温度低的物体传到温度高的物体.
[C ]
(完整版)大学物理热学习题附答案
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
(完整word版)大学物理学热力学基础练习题
大学物理学》热力学基础、选择题A)b1a 过程放热、作负功,B)b1a 过程吸热、作负功,C)b1a过程吸热、作正功,D)b1a 过程放热、作正功,【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b1a过程作的负功比b2a过程作的负功多,由Q W E知b2a过程放热,b1a过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B,且他们的压强相等,即P A P B。
问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然(A )对外作正功;(B )内能增加;(C)从外界吸热;(D )向外界放热。
【提示:由于TA T B,必有EA E B;而功、热量是过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为()A)6J ;(B)3J;(C)5J;(D)10J 。
13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是13-1 .如图所示,bca 为理想气体的绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是()b2a 过程放热、作负功;b2a 过程放热、作负b2a 过程吸热、作负功;b2a 过程吸热、作提示:等体过程不做功,有Q E ,而EMMmolR T,所以需传5 J 】2【提示: (A ) 绝热线应该比等温线陡,( B )和( C )两条绝热线不能相交】13-5.一台工作于温度分别为 327℃和 27℃的高温热源与低温热源之间的卡诺热机,一个循环吸热 2000J ,则对外做功( )( A ) 2000 J ; (B ) 1000 J ;(C ) 4000 J ;(D ) 500 J 。
【卡诺热机的效率为 1T 2,W,可求得 1300 50% ,则W Q 1000J 】T 1Q60013-6.根据热力学第二定律()A )自然界中的一切自发过程都是不可逆的;B )不可逆过程就是不能向相反方向进行的过程;C )热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体;D )任何过程总是沿熵增加的方向进行。
大学物理热学部分习题
热 学 习 题 课 (2006.3.10)Ⅰ 教学基本要求 气体动理论及热力学1.了解气体分子热运动的图象。
理解理想气体的压强公式和温度公式。
通过推导气体压强公式,了解从提出模型、进行统计平均、建立宏观量与微观量的联系到阐明宏观量的微观本质的思想和方法。
能从宏观和统计意义上理解压强、温度、内能等概念。
了解系统的宏观性质是微观运动的统计表现。
2.了解气体分子平均碰撞频率及平均自由程。
3.了解麦克斯韦速率分布率及速率分布函数和速率分布曲线的物理意义。
了解气体分子热运动的算术平均速率、方均根速率。
了解波耳兹曼能量分布律。
4.通过理想气体的刚性分子模型,理解气体分子平均能量按自由度均分定理,并会应用该定理计算理想气体的定压热容、定体热容和内能。
5.掌握功和热量的概念。
理解准静态过程。
掌握热力学过程中的功、热量、内能改变量及卡诺循环等简单循环的效率。
6.了解可逆过程和不可逆过程。
了解热力学第二定律及其统计意义。
了解熵的玻耳兹曼表达式。
Ⅱ 内容提要一、气体动理论(主要讨论理想气体)1.状态方程 pV =( M/M mol )RTpV /T = 常量 p=nkT2.压强公式32 3 322//v /v nm p t ερ=== 3.平均平动动能与温度的关系232/2kT/v m w ==4.常温下分子的自由度 单原子 i=t=3双原子 i=t+r =3+2=5多原子 i=t+r =3+3=6 5.能均分定理每个分子每个自由度平均分得能量 kT /2 每个分子的平均动能()kT i k /2=ε理想气体的内能:E =( M/M mol ) (i /2)RT ; 6.麦克斯韦速率分律:2232)2(4d d v e kTmv N N )v (f kT mv -==ππmol 2rms 33RT/M kT/m v v ===()()mol 88M RT/m kT/v ππ==mol 22RT/M kT/m v p ==7.平均碰撞次数 v n d Z 22π= 8.平均自由程 ()n d 221πλ= 二、热力学基础 1.准静态过程(略)2.热力学第一定律Q= (E 2-E 1)+A d Q =d E +d A 准静态过程的情况下()⎰+-=21d 12V V V p E E Q d Q=d E +p d V3.热容 C =d Q /d T定体摩尔热容 C V ,=(d Q /d T )V /ν 定压摩尔热容 C p ,=(d Q /d T )p /ν比热容比 γ=C p ,/C V , 对于理想气体:C V ,=(i /2)R C p ,=[(i /2)+1]RC p ,-C V ,=R γ=(i +2)/i4.几个等值过程的∆E 、 A 、 Q 等体过程 ∆E = (M/M mol )C V ,∆T A =0 Q=(M/M mol )C V ,∆T等压过程 ∆E = (M/M mol )C V ,∆T A = p (V 2-V 1) Q=(M/M mol )C p ,∆T 等温过程 ∆E =0 A =(M/M mol )RT ln(V 2/V 1) Q =(M/M mol )RT ln(V 2/V 1) 绝热过程 pV γ=常量Q=0 ∆E= (M/M mol )C V ,∆TA = -(M/M mol )C V ,∆T =(p 1V 1-p 2V 2)/( γ-1) 5.循环过程的效率及致冷系数: η=A /Q 1=1-Q 2/Q 1 w=Q 2/A =Q 2/(Q 1-Q 2) 卡诺循环: ηc =1-T 2/T 1 w c =T 2/(T 1-T 2)6.可逆过程与不可逆过程(略)7.热力学第二定律两种表述及其等价性(略)8.熵 S=k ln Ω熵增原理 孤立系统中 ∆S >0Ⅳ 课堂例题一. 选择题1.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同. (B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同. (D) n 相同,(E K /V )相同,ρ 相同.2.下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线?3.容积恒定的容器内盛有一定量某种理想气体,其分子热运动的平均自由程为0λ,平均碰撞频率为0Z ,若气体的热力学温度降低为原来的1/4倍,则此时分子平均自由程和平均碰撞频率Z 分别为(A) λ=0λ,Z =0Z .v v(B) λ=0λ,Z =21Z . (C) λ=20λ,Z =20Z .(D) λ=20λ,Z =210Z .4.如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(注:=γC p /C V )(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ.5.1mol 理想气体从p -V 图上初态a 分别经历如图所示的(1) 或(2)过程到达末态b .已知T a <T b ,则这两过程中气体吸收的热量Q 1和Q 2的关系是(A) Q 1> Q 2>0. (B) Q 2> Q 1>0. (C) Q 2< Q 1<0. (D) Q 1< Q 2<0.6.一定量的理想气体,其状态在V -T 图上沿着一条直线从平衡态a 改变到平衡态b (如图).(A) 这是一个等压过程. (B) 这是一个升压过程. (C) 这是一个降压过程.(D) 数据不足,不能判断这是哪种过程 二. 填空题1.用绝热材料制成的一个容器,体积为2V 0,被绝热板隔成A 、B 两部分,A 内储有1 mol 单原子分子理想气体,B 内储有2 mol 刚性双原子分子理想气体,A 、B 两部分压强相等均为p 0,两部分体积均为V 0,则(1) 两种气体各自的内能分别为E A =________;E B =________; (2) 抽去绝热板,两种气体混合后处于平衡时的温度为T =______.2.有ν摩尔理想气体,作如图所示的循环过程acba ,其中acb 为半圆弧,b -a 为等压线,p c =2p a .令气体进行a -b 的等压过程时吸热Q ab ,则在此循环过程中气体净吸热量Q _______Q ab .(填入:>,<或=)3.由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度__________(升高、降低或不变),气体的熵__________(增加、减小或不变).VpOab(1)(2)Vab4.给定的理想气体(比热容比γ为已知),从标准状态(p 0、V 0、T 0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T =____________,压强p =__________. 三. 计算题1.一气缸内盛有1 mol 温度为27 ℃,压强为1 atm 的氮气(视作刚性双原子分子的理想气体).先使它等压膨胀到原来体积的两倍,再等体升压使其压强变为2 atm ,最后使它等温膨胀到压强为1 atm .求:氮气在全部过程中对外作的功,吸的热及其内能的变化.(普适气体常量R =8.31 J·mol -1·K -1)2.如图,一容器被一可移动、无摩擦且绝热的活塞分割成Ⅰ,Ⅱ两部分.活塞不漏气.容器左端封闭且导热,其他部分绝热.开始时在Ⅰ,Ⅱ中各有温度为0 ℃, 压强为1 atm 的刚性双原子分子的理想气体.Ⅰ,Ⅱ两部分的容积均为36 L .现从容器左端缓慢地对Ⅰ中气体加热,使活塞缓慢地向右移动,直到Ⅱ中气体的体积变为18 L 为止.求:(1) I中气体末态的压强和温度. (2) 外界传给Ⅰ中气体的热量.3.如图所示,一金属圆筒中盛有1 mol 刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态(活塞位置Ⅱ),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置Ⅰ,完成一次循环.(1) 试在p -V 图上画出相应的理想循环曲线;(2) 若作100 次循环放出的总热量全部用来熔解冰,则有多少冰被熔化?(已知冰的熔解热=λ 3.35×105 J·kg -1,普适气体常量 R =8.31J·mol -1·K -1)冰水混合物4.1mol 单原子分子的理想气体,经历如图所示的可逆循环,联结ac 两点的曲线Ⅲ的方程为2020/V V p p , a 点的温度为T 0(1) 试以T 0 , 普适气体常量R 表示Ⅰ、Ⅱ、Ⅲ过程中气体吸收的热量。
大学物理02气动2
vx vx Δvx
x x Δx
在速度间隔 vy vy Δvy 空间间隔 y y Δy
vz vz Δvz
z z Δz
内的分子数为
N
n0
(
m 2πkT
)3/
2
eE
/
kT Δvx Δv yΔvz ΔxΔyΔz
n0
(
m 2πkT
)3/
2
e( Ek
Ep
)/
kT
ΔvxΔvyΔvzΔxΔyΔz
混乱性和无序性
令间隔 h0 , fi f (h)
f(h)
分布函数 f (h) ,分布曲线
归一化分布函数 f (h) 满足
f (h)dh 1
0
O
dh
h
身高在h~h+dh 范围内的人数dN= N f (h)dh
平均身高 h
h dN i
i
1
hNf (h)dh hf (h)dh
N
N0
0
可将h 推广为任意物理量,例如理想气体系统中分子的速
率v.速率为v ~ v +d v间隔内的分子数为dN
dN f (v)dv N
归一化条件 f (v)dv 1
f(v)速率的分布函数(曲线)
0
伽尔顿板实验
粒子落入其中一 格是一个偶然事件, 大量粒子在空间的 分布服从统计规律。
.......................................................................................................................................
A d d d
大学物理热学习题课
dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:
Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)
大学物理第五版 热力学习题课
3 ,定
p,m=
5
2
R 。
9、一定量的理想气体,从相同状态开始分别经过等压、 、一定量的理想气体,从相同状态开始分别经过等压、
等体及等温过程, 等体及等温过程,若气体在上述各过程中吸收的热量 等温 相同,则气体对外界作功最多的过程为____________ 相同,则气体对外界作功最多的过程为____________。
热 力 学
习 题 课
第12章 提要
掌握两方面内容: 掌握两方面内容: 理想气体状态方程; 理想气体的压强、 一、理想气体状态方程;二、理想气体的压强、能量计算 1、气态方程; 、气态方程;
m′ pV = RT M R ( K=N A
)
N n= V
1 2 2 p = nmv = nεk 3 3
2、气体的压强 、
5 5 ∆E2 = R(T3 −T2 ) = ( pV3 − p2V2 ) 3 2 2 5 2 2 = ×(1.01×32×10 − 4.04×2×10 ) J 2 3 = 6.06×10 J
过程II气体吸热 过程II气体吸热 II
Ι
( p1 , V1 )
ΙΙ
p3 = p1
O
V
Q2 = W2 +∆E2 = 4.85×103 J+ 6.06×103 J =1.09×104 J
;
P = P =100Pa ; B c
VA =Vc =1m3
VB = 3m
3
(1)C—A为等容过程: A为等容过程:
PA TA PTA = ∴Tc = c =100K P Tc c P
A
C—B为等压过程: B为等压过程:
VB TB = Vc Tc
大学物理热学知识点和试题
大学物理热学知识点和试题热学知识点总结1.温度的概念与有关定义1)温度是表征系统热平衡时的宏观状态的物理量。
2)温标是温度的数值表示法。
常用的一种温标是摄氏温标,用t表示,其单位为摄氏度(℃)。
另一种是热力学温标,也叫开尔文温标,用T表示。
它的国际单位制中的名称为开尔文,简称K。
热力学温标与摄氏温标之间的换算关系为:T/K=273.15℃ + t温度没有上限,却有下限。
温度的下限是热力学温标的绝对零度。
温度可以无限接近于0 K,但永远不能到达0 K。
2.理想气体的微观模型与大量气体的统计模型。
速度分布的特征。
1)为了从气体动理论的观点出发,探讨理想气体的宏观现象,需要建立理想气体的微观结构模型。
可假设:a气体分子的大小与气体分子之间的平均距离相比要小得多,因此可以忽略不计。
可将理想气体分子看成质点。
b分子之间的相互作用力可以忽略。
c分子键的相互碰撞以及与器壁的碰撞可以看作完全弹性碰撞。
综上所述:理想气体分子可以被看作是自由的,无规则运动着的弹性质点群。
2)每个分子的运动遵从力学规律,而大量分子的热运动则遵从统计规律。
统计规律告诉我们,可以听过对围观物理量求平均值的方法得到宏观物理量。
气体的宏观参量(温度、压强等)是气体分子热运动的为管理的统计平均值。
3.理想气体状态方程与应用当质量一定的气体处于平衡态时,其三个状态参数P、V、T并不相互独立,二十存在一定的关系,其表达式称为气体的状态方程f(P,V,T)= 0最终得:T V p T pV '''=。
此式称为理想气体的状态方程。
标准状态:RT MmpV =。
R=8.31J ·mol -1·K -1,称为摩尔气体常量。
设一定理想气体的分子质量为m 0,分子数为N ,并以N A 表示阿伏伽德罗常数,可得:T N R V N V RT m N Nm V RT M m p AA ===00 得:nkT p =,为分子数密度,可谓玻耳玆曼常量,值为1.38×10-23J ·K -1.这也是理想气体的状态方程,多用于计算气体的分子数密度,以及与它相关的其它物理量。
大学物理 热学习题课
1
Va 1 Tb ( ) Ta 424 K Vb
VcTb Tc 848 K Vb
1
c
bc为等压过程,据等压过程方程 Tb / Vb = Tc / Vc 得
O
d a Vb Vc Va V
cd为绝热过程,据绝热过程方程
TcVc
TdVd , (Vd Va )
1
第10章
理想气体模型
气体分子运动论
统计假设
k
PV vRT
P P 2 n 3 kT k k 2 3 T E
M i E RT 2
dN f ( v ) dv N
麦克丝韦 分布率
v2
3RT
vp
2 RT
8RT
v
z 2d 2 v n
v 1 z 2d 2 n
Nf ( v )dv
v0
v0
f ( v )dv
v d N vNf (v) d v
v0—— ∞间的分子数 v0—— ∞间的分子的速率和
v0
dN Nf ( v )dv
v0
v0
vdN vNf ( v )dv
v0
(3) 多次观察一分子的速率,发现其速率大于v0 的 几率= ———。 dN N v v 所求为v0—— ∞间的分子 f (v)dv 数占总分子数的百分比 N N v
M i RT 2 M i RT 2
吸收热量Q
M i RT 2
摩尔热容C
CV i R 2
等容 等压 等温
p/T=C V/T=C pV=C
pVγ=C1 Vγ-1T=C2 pγ-1T-γ=C3
(完整版)大学物理习题集(气体动力论热力学基础)
气体的动理论 姓名学号一. 选择题1.关于温度的意义,有下列几种说法: [ ](1)气体的温度是分子平均平动动能的量度。
(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。
(3)温度的高低反映物质内部分子运动剧烈程度的不同。
(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是(A )(1)、(2)、(4); (B )(1)、(2)、(3); (C )(2)、(3)、(4); (D )(1)、(3)、(4);2.若室内生起炉子后温度从15︒C 升高到27︒C ,而室内气压不变,则此时室内的分子数减少了[ ]。
(A )0.5% (B )4% (C )9% (D )21%3.一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 [ ] )2523)(( (A)21kT kT N N ++ )2523)(( 21(B)21kT kT N N ++ kT N kT N 2523 (C)21+ kT N kT N 2325 (D)21+ 4.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几?(不计振动自由度)(A )66.7% (B )50% (C )25% (D )0 [ ]5.在标准状态下,体积比为1:2的的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的内能之比为 [ ]2:1 (A) 3:5 (B) 6:5 (C) 3:10 (D) 6.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系(A )ε和w 都相等。
(B )ε相等,而w 不相等。
[ ](C )w 相等,而ε不相等。
(D )ε和w 都不相等。
7.1mol 刚性双原子分子理想气体,当温度为T 时,其内能为 [ ] RT 23 (A) kT 23 (B) RT 25 (C) kT 25 (D) 8.在一容积不变的封闭容器内,理想气体分子的平均速率若提高为原来的2倍,则[ ](A )温度和压强都提高为原来的2倍。
《大学物理》气体动理论练习题及答案解析
《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。
对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。
当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。
由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。
换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。
2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。
3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。
答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。
(2)微观量:描述个别分子运动状态的物理量。
(3)宏观量:表示大量分子集体特征的物理量。
4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。
其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。
可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。
大学物理热力学基础习题课
答案:B 9、下列说法中,哪些是正确的
1、可逆过程一定是准静态过程;2、准静态过程一定是可逆的 4、不可逆过程一定是非准静态过程;4、非准静态过程一定是 不可逆的。
A、(1,4);B、(2,3);C、(1,3);D、(1,2,3,4)
答案:A
10、根据热力学第二定律,下列那种说法正确
A.功可一全部转换成热,但热不可以全部转换成功 B.热可以从高温物体传递到低温物体,反之则不行
Q QBC QAB 14.9 105 J 由图得, TA TC 全过程:
E 0
W Q E 14.9 105 J
3. 图所示,有一定量的理想气体,从初状态 a (P1,V1)开始,经过一个等容过程达到压强为 P1/4 的 b 态,再经过一个等压过程达到状态 c , 最后经过等温过程而完成一个循环。求该循环 过程中系统对外做的功 A 和吸收的热量 Q .
a
T2 300 1 1 25% T1 400
c
d
300 400
T(K)
8. 一卡诺热机在每次循环中都要从温度为 400 K 的高温热源吸热 418 J ,向低温热源放 热 334.4 J ,低温热源的温度为 320 K 。如 果将上述卡诺热机的每次循环都逆向地进行, 从原则上说,它就成了一部致冷机,则该逆向 4 卡诺循环的致冷系数为 。
解:设状态 c 的体积为V2 , 由于a , c 两状态的温度相同
故
p1 p1V1 V2 4 V2 4V1
循环过程 E 0 , Q W
而在 a b 等容过程中功 W1 0 在 b c 等压过程中功
p1 p1 3 W2 V2 V1 4V1 V1 p1V1 4 4 4
大学物理14-01气动1
该面所受压强
p F m S lxlylz
N
Vi vi2x
Nm ( 1 VN
N
v2 ix
)
nmv2x
i
分子向各方向运动机会均等
v
2 x
v
2 y
vz2
分子的平均速率
v2
1 N
N i 1
vi2x
vi2y
vi2z
1 N
N
vi2x
i 1
1 N
N
vi2y
i 1
1 N
N
vi2z
i 1
v2x v2y vz2
dV V
频繁碰撞、各方向运动 机会均等
vx vy vz 0 !
v
2 x
v
2 y
v
2 z
v2 v2x v2y vz2
v
2 x
v
2 y
vz2
1 3
v2
12-2-2 理想气体压强公
式 分子与器壁的碰急撞雨示中意撑图起雨伞的感觉
大量分子的碰撞造成对器壁的压力
设物理量: N, n, m, vi , vix . (0 ~ )
1032 K 108 K 6×107K 1.5×107K 4×103K 331K(58℃) 323K(50℃) 185K(–88℃)
4.2K
星际空间 实验室内已获得的最低温度
2.7K 2.4×10 -11K
热力学零度(绝对零度)是不能达到的! — 热力学第三定律
12-1-3 平衡态和准平衡过程
热力学平衡状态(热动平衡态), 用一组( p,V,T )表示
T :热力学温标
微观量?
t : 摄氏温标
摄氏温标(ºC)与华氏温标(ºF)
大学物理07气动理论
气体分子运动理论一、单选题:1、(4003A10)在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 (A) 3 p 1. (B) 4 p 1.(C) 5 p 1. (D) 6 p 1. [ ] 2、(4056A10)若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为: (A) pV / m . (B) pV / (kT ).(C) pV / (RT ). (D) pV / (mT ). [ ] 3、(4057A10)有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为:(A) (1/16) kg . (B) 0.8 kg .(C) 1.6 kg . (D) 3.2 kg . [ ] 4、(4251B25)一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值(A) m kT x 32=v . (B) mkT x 3312=v . (C) m kT x /32=v . (D) m kT x /2=v . [ ] 5、(4252B25)一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) m kT π8=x v . (B) m kTπ831=x v .(C) mkTπ38=x v . (D) =x v 0 . [ ]6、(4256A15)在标准状态下,任何理想气体在1 m 3中含有的分子数都等于 (A) 6.02×1023. (B)6.02×1021. (C) 2.69×1025 (D)2.69×1023.(玻尔兹曼常量k =1.38×10-23 J ·K -1 ) [ ] 7、(4257B25)三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v=1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8.(C) 1∶4∶16.(D) 4∶2∶1.[]8、(4468A10)一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高.(B) 将降低.(C) 不变.(D)升高还是降低,不能确定.[]9、(4552B25)若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了(A)0.50.(B) 400.(C) 90.(D) 2100.[]10、(4554A15)中有一水银滴作活塞,大容器装有氧气,小容器装有氢气. 当温度相同时,水银滴静止于细管中央,则此时这两种气体中(A) 氧气的密度较大.(B) 氢气的密度较大.(C) 密度一样大.(D) 那种的密度较大是无法判断的.[]11、(4569A05)一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是:(A) p1> p2.(B) p1< p2.(C) p1=p2.(D)不确定的.[]12、(4011A20)已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.[]13、(4012B25)关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度.这些说法中正确的是(A) (1)、(2) 、(4).(B) (1)、(2) 、(3).(C) (2)、(3) 、(4).(D) (1)、(3) 、(4).[]14、(4013B35)一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同.(B) 温度、压强都不相同.(C) 温度相同,但氦气的压强大于氮气的压强.(D) 温度相同,但氦气的压强小于氮气的压强. [ ] 15、(4014A15)温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ ] 16、(4015A05)1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(A) RT 23. (B)kT 23. (C)RT 25. (D)kT 25. [ ] (式中R 为普适气体常量,k 为玻尔兹曼常量) 17、(4022B25)在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比 V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10. (B) 1 / 2.(C) 5 / 6. (D) 5 / 3. [ ] 18、(4023C60)水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7%. (B) 50%. (C) 25%. (D) 0. [ ] 19、(4058A20)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同. (B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. [ ] 20、(4060A20)有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B . (B) 为(E / V )A >(E / V )B . (C) 为(E / V )A =(E / V )B .(D) 不能确定. [ ] 21、(4304A10)两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量(A) 12 J . (B) 10 J .(C) 6 J . (D) 5 J . [ ] 22、(4452A10)压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为:(A) 25pV . (B) 23pV .(C) pV . (D) 21pV . [ ]23、(4453B25)在标准状态下体积比为1∶2的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的内能之比为(A) 1∶2. (B) 5∶6.(C) 5∶3. (D) 10∶3. [ ] 24、(4555B25)在容积V =4×10-3 m 3的容器中,装有压强P =5×102 Pa 的理想气体,则容器中气体分子的平动动能总和为(A) 2 J . (B) 3 J .(C) 5 J . (D) 9 J . [ ] 25、(4651A20) 下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A) pV M m 23. (B) pV M Mmol23. (C) npV 23. (D)pV N MM A 23mol . [ ] 26、(5055A10)两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等. [ ] 27、(5056B25) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线(其延长线过E ~V 图的原点),则此直线表示的过程为:(A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程. [ ] 28、(5335B25) 若在某个过程中,一定量的理想气体的内能E 随压强p 的变化关系为一直线(其延长线过E -p 图的原点),则该过程为(A) 等温过程. (B) 等压过程.(C) 等体过程. (D) 绝热过程.p[ ] 29、(5601A10)一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ).(B) 21(N 1+N 2) (23kT +25kT ).(C) N 123kT +N 225kT .(D) N 125kT + N 223kT . [ ]30、(4951B35)玻尔兹曼分布律表明:在某一温度的平衡态,(1) 分布在某一区间(坐标区间和速度区间)的分子数,与该区间粒子的能量成正比.(2) 在同样大小的各区间(坐标区间和速度区间)中,能量较大的分子数较少;能量较小的分子数较多.(3) 在大小相等的各区间(坐标区间和速度区间)中比较,分子总是处于低能态的概率大些.(4) 分布在某一坐标区间内、具有各种速度的分子总数只与坐标区间的间隔成正比,与粒子能量无关. 以上四种说法中,(A) 只有(1)、(2)是正确的. (B) 只有(2)、(3)是正确的.(C) 只有(1)、(2)、(3)是正确的.(D) 全部是正确的. [ ] 31、(4038C45) 温度为T 时,在方均根速率s /m 50)(212±v 的速率区间内,氢、氨两种气体分子数占总分子数的百分率相比较:则有(附:麦克斯韦速率分布定律:v v v ∆⋅⋅⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛π=∆222/32exp 24kT m kT m N N , 符号exp(a ),即e a .) (A) ()()22N H //N N N N ∆>∆ (B) ()()22N H //N N N N ∆=∆ (C) ()()22N H //N N N N ∆<∆(D) 温度较低时()()22N H //N N N N ∆>∆温度较高时()()22N H //N N N N ∆<∆ [ ] 32、(4039A10)设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为 (A) 1 . (B) 1/2 .(C) 1/3 . (D) 1/4 . [ ] 33、(4041B30) 设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a表示氧气分子的速率分布曲线; ()2O p v /()2H p v =4.(B) 图中a表示氧气分子的速率分布曲线; ()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O pv /()2Hp v =1/4. (C) 图中b表示氧气分子的速率分布曲线;()2Op v /()2Hp v = 4.[ ] 34、(4289A10)设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为 (A) p v v v ==2/12)( (B) 2/12)(v v v <=p(C) 2/12)(v v v <<p (D)2/12)(v v v >>p [ ] 35、(4290A20)已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则 (A) v p 1 > v p 2, f (v p 1)> f (v p 2). (B) v p 1 > v p 2, f (v p 1)< f (v p 2). (C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ ] 36、(4559B25)下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线? [ ]37、(4562B25)在一容积不变的封闭容器内理想气体分子的平均速率若提高为原来的2倍,则 (A) 温度和压强都提高为原来的2倍.(B) 温度为原来的2倍,压强为原来的4倍.f (v )v v(C) 温度为原来的4倍,压强为原来的2倍.(D)温度和压强都为原来的4倍. [ ] 38、(4664A10)两种不同的理想气体,若它们的最概然速率相等,则它们的 (A) 平均速率相等,方均根速率相等. (B) 平均速率相等,方均根速率不相等. (C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ ] 39、(4665A15)假定氧气的热力学渭度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的(A) 4倍. (B) 2倍.(C) 2倍. (D) 21倍. [ ]40、(5051A15) 麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示 (A) 0v 为最概然速率. (B) 0v 为平均速率. (C) 0v 为方均根速率.(D) 速率大于和小于0v 的分子数各占一半.[ ] 41、(5052A15)速率分布函数f (v )的物理意义为:(A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比. (C) 具有速率v 的分子数.(D) 速率分布在v 附近的单位速率间隔中的分子数. [ ] 42、(5053B25)若氧分子[O 2]气体离解为氧原子[O]气后,其热力学温度提高一倍,则氧原子的平均速率是氧分子的平均速率的(A) 1 /2倍. (B) 2倍.(C) 2倍. (D) 4倍. [ ] 43、(5332C50)若f (v )为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 21d )(212v v v v v Nf m 的物理意义是(A) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差. (B) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和. (D) 速率处在速率间隔1v ~2v 之内的分子平动动能之和. [ ] 44、(5333A20)若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N . (C) N ,m . (D) N ,T .(E) N ,m ,T . [ ] 45、(5541B30)设某种气体的分子速率分布函数为f (v ),则速率在v 1─v 2区间内的分子的平均速率为 (A)()⎰21d v v v v v f .(B) ()⎰21d v v v v v v f .(C) ()⎰21d v v v v v f /()⎰21d v v v v f .(D)()⎰21d v v v v f /()⎰∞d v v f . [ ]46、(5603B35)已知分子总数为N ,它们的速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ⎰21d )(v v v v v f . (B) ⎰21d )(v v v v v f /⎰21d )(v v v v f .(C)⎰21d )(v v v v v f N . (D)⎰21d )(v v v v v f /N . [ ]47、(4047A15)气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大一倍.(B) Z 和λ都减为原来的一半.(C) Z 增大一倍而λ减为原来的一半.(D) Z 减为原来的一半而λ增大一倍. [ ] 48、(4048A15)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B)Z 减小而λ增大.(C) Z 增大而λ减小. (D)Z 不变而λ增大. [ ] 49、(4049A15)一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大. (B) Z 和λ都减小.(C) Z 增大而λ减小. (D) Z 减小而λ增大. [ ] 50、(4050A10)一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小,但λ不变. (B) Z 不变,但λ减小.(C) Z 和λ都减小. (D) Z 和λ都不变. [ ] 51、(4053A10)一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z 增大,λ不变. (B) Z 不变,λ增大.(C) Z 和λ都增大. (D) Z 和λ都不变. [ ] 52、(4054A20)在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为: (A) v =40v ,Z =40Z ,λ=40λ. (B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ ] 53、(4465A20)在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . [ ] 54、(4565A20)一定量的某种理想气体若体积保持不变,则其平均自由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升高,λ减少而Z 增大. (B) 温度升高,λ增大而Z 减少. (C) 温度升高,λ和Z 均增大.(D) 温度升高,λ保持不变而Z 增大. [ ] 55、(4668A10)一容器贮有某种理想气体,其分子平均自由程为0,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为 (A) 02λ. (B) 0λ.(C) 2/0λ. (D) 0λ/ 2. [ ] 56、(4955B25)容积恒定的容器内盛有一定量某种理想气体,其分子热运动的平均自由程为0λ,平均碰撞频率为0Z ,若气体的热力学温度降低为原来的1/4倍,则此时分子平均自由程λ和平均碰撞频率Z 分别为(A) λ=0,Z =0Z .(B) λ=0λ,Z =210Z .(C) λ=20λ,Z =20Z .(D) λ=20,Z =210Z . [ ]57、(5054B30)在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为(A) Z 与T 无关. (B) Z 与T 成正比.(C) Z 与T 成反比. (D) Z 与T 成正比. [ ]二、填空题:1、(4001A15)理想气体微观模型(分子模型)的主要内容是:(1)______________________________________________________; (2)______________________________________________________; (3)______________________________________________________. 2、(4002B30)某容器内分子数密度为10 26 m -3,每个分子的质量为 3×10-27 kg ,设其中 1/6分子数以速率v = 200 m / s 垂直地向容器的一壁运动,而其余 5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性的.则(1) 每个分子作用于器壁的冲量ΔP =_______________;(2) 每秒碰在器壁单位面积上的分子数0n =________________;(3) 作用在器壁上的压强p =___________________. 3、(4004A10)有一个电子管,其真空度(即电子管内气体压强)为 1.0×10-5 mmHg ,则27 ℃ 时管内单位体积的分子数为_________________ .(玻尔兹曼常量k =1.38×10-23 J/K , 1 atm=1.013×105 Pa =76 cmHg ) 4、(4006A20)在容积为10-2 m 3 的容器中,装有质量100 g 的气体,若气体分子的方均根速率为200 m • s -1,则气体的压强为________________. 5、(4007B30)氢分子的质量为 3.3×10-24 g ,如果每秒有1023 个氢分子沿着与容器器壁的法线成45°角的方向以105 cm / s 的速率撞击在 2.0 cm 2 面积上(碰撞是完全弹性的),则此氢气的压强为____________. 6、(4008B25)若某种理想气体分子的方均根速率()4502/12=v m / s ,气体压强为p =7×104 Pa ,则该气体的密度为ρ=_______________. 7、(4059A20)两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温度差为 30K ,当水银滴在正中不动时,N 2和O 2的温度为2N T = _____________,2O T =______________.(N 2气的摩尔质量M mol =28×10-3 kg ·mol -1)8、(4061A10)质量一定的某种理想气体,(1) 对等压过程来说,气体的密度随温度的增加而______________,并绘出曲线.(2) 对等温过程来说,气体的密度随压强的增加而______________,并绘出曲线.O T Tρ9、(4153A15)下面给出理想气体的几种状态变化的关系,指出它们各表示什么过程.(1) p d V = (M / M mol )R d T 表示____________________过程.(2) V d p = (M / M mol )R d T 表示____________________过程.(3) p d V +V d p = 0 表示____________________过程.10、(4253B25)一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的下列平均值x v =____________________,2x v =____________________.11、(4300A10)对一定质量的理想气体进行等温压缩.若初始时每立方米体积内气体分子数为1.96×1024,则当压强升高到初始值的两倍时,每立方米体积内气体分子数应 为_____________.12、(4307A05)分子物理学是研究______________________________________________________ __________的学科.它应用的基本方法是_________________方法.13、(4451A05)从分子动理论导出的压强公式来看, 气体作用在器壁上的压强, 决定于______________________和_______________________.14、(4551A10)在推导理想气体压强公式中,体现统计意义的两条假设是(1) ______________________________________________________;(2) ______________________________________________________.15、(4573A10)解释下列分子动理论与热力学名词:(1) 状态参量:_________________________________________________________________________________________________;(2) 微观量:____________________________________________________________________________________________________;(3) 宏观量:____________________________________________________________________________________________________.16、(5060B30) 气体分子间的平均距离与压强p 、温度T 的关系为________________,在压强为1atm 、温度为0℃的情况下,气体分子间的平均距离l =________________m .(玻尔兹曼常量k =1.38×10-23 J ·K -1)17、(5336B25)A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4∶2∶1,而分子的平均平动动能之比为A w ∶B w ∶C w =1∶2∶4,则它们的压强之比A p ∶B p ∶C p =__________.18、(5544A10)某理想气体在温度为27℃和压强为1.0×10-2 atm 情况下,密度为 11.3 g/m 3,则这气体的摩尔质量M mol =____________.(普适气体常量R =8.31 J ·mol -1·K -1)19、(4016A10)三个容器内分别贮有1 mol 氦(He)、 1 mol 氢(H 2)和1 mol 氨(NH 3)(均视为刚性分子的理想气体).若它们的温度都升高1 K ,则三种气体的内能的增加值分别为:(普适气体常量R =8.31 J ·mol -1·K -1)氦:△E =_______________________;氢:△E =_______________________;氨:△E =_______________________.20、(4017A10)1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为________________J ;分子的平均平动动能为____________J;分子的平均总动能为_____________________J.(摩尔气体常量 R = 8.31 J ·mol -1·K -1 玻尔兹曼常量 k = 1.38×10-23J·K -1)21、(4018A10)有一瓶质量为M 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均平动动能为________________,氢分子的平均动能为________________,该瓶氢气的内能为____________________.22、(4019B30) 分子的平均动能公式ikT 21=ε (i 是分子的自由度)的适用条件是______________ _____________________________________________.室温下1 mol 双原子分子理想气体的压强为p ,体积为V ,则此气体分子的平均动能为_________________.23、(4024A15)一能量为1012 eV 的宇宙射线粒子,射入一氖管中,氖管内充有 0.1 mol 的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_______________K .(1 eV =1.60×10-19J ,普适气体常量R =8.31 J/(mol ·K))24、(4025C45)一气体分子的质量可以根据该气体的定体比热来计算.氩气的定体比 热c V =0.314 k J ·kg -1·K -1,则氩原子的质量m =__________.(波尔兹曼常量k =1.38×10-23 J / K)25、(4064A20)容器中储有1 mol 的氮气,压强为1.33 Pa ,温度为 7 ℃,则(1) 1 m 3中氮气的分子数为_________________;(2) 容器中的氮气的密度为_________________;(3) 1 m 3中氮分子的总平动动能为_______________.(玻尔兹曼常量k =1.38×10-23 J ·K -1 , N 2气的摩尔质量M mol =28×10-3 kg ·mol -1 , 普适气体常量R =8.31 J ·mol -1·K -1 )26、(4066A15)一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比热c = 501.6 J ·kg -1·K -1)27、(4067B35)储有氢气的容器以某速度v 作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升 0.7 K ,则容器作定向运动的速度v =______________________m/s ,容器中气体分子的平均动能增加了_______________________J .(普适气体常量R = 8.31 J ·mol -1·K -1 ,玻尔兹曼常量k = 1.38×10-23 J ·K -1,氢气分子可视为刚性分子.)28、(4068B30)储有某种刚性双原子分子理想气体的容器以速度v =100 m/s 运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升 6.74K,由此可知容器中气体的摩尔质量M mol =__________. (普适气体常量R =8.31 J ·mol -1·K -1)29、(4069B35)容积为10 L(升)的盒子以速率v =200 m / s 匀速运动,容器中充有质量为50 g ,温度为18℃的氢气,设盒子突然停止,气体的全部定向运动的动能都变为气体分子热运动的动能,容器与外界没有热量交换,则达到热平衡后;氢气的温度将增加 ____________K ;氢气的压强将增加__________Pa .(普适气体常量R =8.31 J ·mol -1·K -1,氢气分子可视为刚性分子.)30、(4072A15)2 g 氢气与2 g 氦气分别装在两个容积相同的封闭容器内,温度也相同.(氢气分子视为刚性双原子分子)(1) 氢气分子与氦气分子的平均平动动能之比He H /2w w =______________.(2) 氢气与氦气压强之比 He H 2p p == ______________________.(3) 氢气与氦气内能之比 He H /2E E = ______________________.31、(4075B30)已知一容器内的理想气体在温度为273 K 、压强为 1.0×10-2 atm 时,其密度为1.24×10-2 kg/m 3,则该气体的摩尔质量M mol =____________________;容器单________________.(普适气体常量R =8.31 J ·mol -1·K -1)32、(4264A10)T 的关系式是________________, 此式所揭示的气体温度的统计意义是____________________________________.33、(4265A10)若气体分子的平均平动动能等于1.06×10-19 J ,则该气体的温度T =__________________K .(玻尔兹曼常量k =1.38×10-23 J ·K -1 )34、(4270A10)对于单原子分子理想气体,下面各式分别代表什么物理意义?(1) 23RT :________________________________, (2) 23R :___________________________________, (3) 25R :___________________________________. (式中R 为普适气体常量,T 为气体的温度)35、(4271A15)若某容器内温度为 300 K 的二氧化碳气体(视为刚性分子理想气体)的内能为3.74×103 J ,则该容器内气体分子总数为___________________.(玻尔兹曼常量k =1.38×10-23 J ·K -1,阿伏伽德罗常量N A =6.022×1023 mol -1)36、(4273A15)一定量H 2气(视为刚性分子的理想气体),若温度每升高1 K ,其内能增加41.6J ,则该H 2气的质量为________________.(普适气体常量R =8.31 J ·mol -1·K -1)37、(4454A10)1 mol 的单原子分子理想气体,在1 atm 的恒定压强下,从0℃加热到100℃,则气体的内能改变了_______________J .(普适气体常量R =8.31 J ·mol -1·K -1 )38、(4455B25)体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T 下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为 _____________________.39、(4556B25)体积为10- 3 m 3、压强为1.013 ×105 Pa 的气体分子的平动动能的总和为_____________________J .40、(4574A15)1大气压、27 ℃时,一立方米体积中理想气体的分子数n =______________, 分子热运动的平均平动动能=________________.(玻尔兹曼常量k =1.38×10-23 J ·K -1)41、(4653A15)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度数为i ,则当温度为T 时,(1) 一个分子的平均动能为____________.(2) 一摩尔氧气分子的转动动能总和为____________.42、(4654A15)1 mol 氮气,由状态A (p 1,V )变到状态B (p 2,V ),气体内能的增量为__________.43、(4655A15)有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的________倍.44、(4656B30)用绝热材料制成的一个容器,体积为2V 0,被绝热板隔成A 、B 两部分,A 内储有1 mol 单原子分子理想气体,B 内储有2 mol 刚性双原子分子理想气体,A 、B 两部分压强相等均为p 0,两部分体积均为V 0,则(1) 两种气体各自的内能分别为E A =__________;E B =__________;(2) 抽去绝热板,两种气体混合后处于平衡时的温度为T =____________.45、(5057A10)在温度为127 ℃时,1 mol 氧气(其分子可视为刚性分子)的内能为__________J ,其中分子转动的总动能为______________J.(普适气体常量R =8.31J ·mol -1·K -1 )46、(5058A10)对于处在平衡态下温度为T 的理想气体,kT 23的物理意义是________________ ____________________________.(k 为玻尔兹曼常量)47、(5059A10)对于处在平衡态下温度为T 的理想气体,kT 21的物理意义是_______________ _________________________________.(k 为玻尔兹曼常量)48、(5061A15)分子热运动自由度为i 的一定量刚性分子理想气体,当其体积为V 、压强为p 时,其内能E =______________________.49、(5331A20)若i 是气体刚性分子的运动自由度数,则21ikT 所表示的是_________________ ______________________________________________________.50、(5337B25)在一个以匀速度u 运动的容器中,盛有分子质量为m 的某种单原子理想气体.若使容器突然停止运动,则气体状态达到平衡后,其温度的增量T ∆=_________________.51、(5545B35)在相同的温度和压强下,氢气(视为刚性双原子分子气体)与氦气的单位体积内能之比为____________,氢气与氦气的单位质量内能之比为________________.52、(5602B35)一氧气瓶的容积为V ,充入氧气的压强为p 1,用了一段时间后压强降为p 2,则瓶中剩下的氧气的内能与未用前氧气的内能之比为__________.53、(0192B40)处于重力场中的某种气体,在高度z 处单位体积内的分子数即分子数密度为n .若f (v )是分子的速率分布函数,则坐标介于x ~x +d x 、y ~y +d y 、z ~z +d z 区间内,速率介于v ~ v + d v 区间内的分子数d N =____________________.54、(4028B30)重力场中大气压强随高度h 的变化规律为⎪⎭⎫ ⎝⎛-=RT gh M p p mol 0exp 当随着高度增加,大气压强p 减至为地面压强p 0的75%时,该处距离地面的高度h =______________________. (设空气的温度为0℃,普适气体常量R =8.31 J ·mol -1·K -1,空气的摩尔质量为29×10 -3 kg / mol ,符号exp(a ),即e a )55、(4029B25)已知大气中分子数密度n 随高度h 的变化规律⎪⎭⎫ ⎝⎛-=RT gh M n n mol 0exp 式中n 0为h =0处的分子数密度.若大气中空气的摩尔质量为M mol ,温度为T ,且处处相同,并设重力场是均匀的,则空气分子数密度减少到地面的一半时的高度为________________________.(符号exp(a ),即e a )56、(4030B25)已知大气压强随高度h 变化的规律为⎪⎭⎫ ⎝⎛-=RT gh M p p mol 0exp 拉萨海拔约为 3600 m ,设大气温度t =27℃,而且处处相同,则拉萨的气压p = ________________. (空气的摩尔质量M mol = 29×10-3 kg/mol , 普适气体常量R =8.31 J ·mol -1·K -1 , 海平面处的压强p =1 atm ,符号exp(a ) ,即e a )57、(4031B30)已知大气压强随高度h 的变化规律为⎪⎭⎫ ⎝⎛-=RT gh M p p mol 0exp 设气温t =5 ℃,同时测得海平面的气压和山顶的气压分别为 750 mmHg 和 590mmHg ,则山顶的海拔h =__________m. (普适气体常量R =8.31 J ·mol -1·K -1,空气的摩尔质量M mol =29×10-3 kg / mol ,p 0为h =0处的压强.符号exp(a ),即e a )58、(4277A10)分子质量为m 、温度为T 的气体,其分子数密度按高度h 分布的规律是__________________________________________.(已知h =0时,分子数密度为n 0 )59、(4952A10)在无外力场作用的条件下,处于平衡态的气体分子按速度分布的规律,可用 ________________分布律来描述.如果气体处于外力场中,气体分子在空间的分布规律,可用______________分布律来描述.60、(4953A15)由玻尔兹曼分布律可知,在温度为T 的平衡态中,分布在某一状态区间的分子数d N 与该区间粒子的能量ε有关,其关系为d N ∝________________.61、(4032A15)图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
2019-大学物理(热学篇)-文档资料
伽尔顿板 实验
大量小球一个一个投入 或一次投入,分布情况 大致相同
二、
三、理想气体的压强和温度
理想气体压强公式的推导
设边长为x,y,z的长方体容器中,有N个同类气体 分子(质量m). 研究A1受的压强:
第一步 某个分子与A1面 碰撞y
对于分子,质量m,
碰撞瞬时速度v1
x方向分子受到冲量
如某种分子有t个平动自由度,r个转动自由度v振动 自由度,则分子具有:
平均平动动能 平均转动动能 平均振动动能
t kT
r kT
v kT
2
2
2
为什么均分到各自由度所对应的运动能量都 是二分之一KT呢?
主要是分子不断碰撞以达到平衡态的结果。
注意
1、 一般温度下(T <10 3 K)振
动能量交换不起来, ——振动自由
32
2
1 2
___
m vx2
1 2
___
m
v
2 y
1 2
__
m
v
2 z
1 2
kT
1 2
___
m vx2
1 2
m
___
v
2 y
1 2
__
m vz2
1 2
kT
这说明,分子的平均平动动能 3 kT 是均匀地分 配在对应每一个自由度的运动上2的。即对应每
一个自由度,就有对应的一份能量 1 kT 2
● 基本形式: 平动(t) + 转动(r) +振动(v)
随某点平动 t = 3 过该点轴的转动 r = 3 其余为振动 v = 3N-6
总结: 分子的自由度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
大学物理 气动及热学习题 课
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
ቤተ መጻሕፍቲ ባይዱ