电磁场与电磁波答案(无填空答案).

合集下载

电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。

2.使得电体带有不同种类电荷的原子或分子是离子化。

3.在法拉弹规定空气是电介质。

4.电荷量的基本单位是库仑。

5.元电荷是正负电荷的最小电荷量。

6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。

7.电势能是标量。

8.空间中一点产生的电场是该点电荷所受电场的矢量和。

9.电场E的国际单位是NC−1。

10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。

1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。

2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。

3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。

4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。

5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。

1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。

2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。

第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。

2.电磁感应一定要在导电体内才能产生电流是错误的。

√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。

4.电磁感应现象是反过来实现的。

电磁场与电磁波 答案

电磁场与电磁波  答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。

电磁场与电磁波课后习题答案全-杨儒贵

电磁场与电磁波课后习题答案全-杨儒贵

第一章矢量分析第一章 题 解1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。

试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。

解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zyz yx z y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zyz y x z y xC C C A A A e e e e e e e e e C A x x x x x452102321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。

1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为,位置矢量B 与X 轴的夹角为,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅cos B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。

电磁场与电磁波_课后答案(冯恩信_著)

电磁场与电磁波_课后答案(冯恩信_著)

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=求:(a) A ; (b); (c); (d); (e)(f)解:(a) ; (b) 14132222222=++=++=z y x A A A A )ˆ2ˆˆ(61ˆz y x BB b -+==( c) ; (d) 7=⋅B A z y xC B ˆ4ˆ7ˆ---=⨯(e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯(f)19)(-=⋅⨯C B A1.2;求:(a) A ; (b) ; (c) ; (d) ; (e) BA+解:(a) ;(b) ;(c) 25π+=A )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ43-=⋅πB A (d)z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ(e)z B A ˆˆ)3(ˆ-++=+ϕπρ1.3; 求:(a) A ; (b); (c); (d); (e)解:(a) ; (b) ; (c) ;254π+=A )ˆˆ(11ˆ2θππ-+=rb22π-=⋅B A(d) ; (e) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ϕπˆ2ˆ3-=+rB A 1.4 ;当时,求。

解:当时,=0, 由此得 5-=α1.5将直角坐标系中的矢量场分别用圆柱和圆球坐标系中的坐标分量表示。

解:(1)圆柱坐标系由(1.2-7)式,;ϕϕϕρsin ˆcos ˆˆ1-==xF ϕϕϕρcos ˆsin ˆˆ2+==y F(2)圆球坐标系由(1.2-14)式, ϕϕϕθθϕθsin ˆcos cos ˆcos sin ˆˆ1-+==r xFϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆ2++==r yF1.6将圆柱坐标系中的矢量场用直角坐标系中的坐标分量表示。

解:由(1.2-9)式,)ˆˆ(2ˆsin 2ˆcos 2ˆ2221y y xx yx y x F ++=+==ϕϕρ)ˆˆ(3ˆcos 3ˆsin 3ˆ3222y x xy yx y x F +-+=+-==ϕϕϕ1.7将圆球坐标系中的矢量场用直角坐标系中的坐标分量表示。

《电磁场与电磁波》课后习题解答(全)

《电磁场与电磁波》课后习题解答(全)
(2)
(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay

3az
)
;②
A−B =
53 ;③ A • B = −11;

θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2

1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;

电磁场与电磁波试题答案

电磁场与电磁波试题答案

《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程为: 。

2.设线性各向同性的均匀媒质中,02=∇φ称为方程。

3.时变电磁场中,数学表达式H E S ⨯=称为 。

4.在理想导体的表面, 的切向分量等于零。

5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为: 。

6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。

7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。

8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。

9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。

二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。

12.试简述唯一性定理,并说明其意义。

13.什么是群速试写出群速与相速之间的关系式。

14.写出位移电流的表达式,它的提出有何意义三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz e y B ˆˆ2+-= 是否是某区域的磁通量密度(2)如果是,求相应的电流分布。

16.矢量z y x e e e A ˆ3ˆˆ2-+= ,z y x e e e B ˆˆ3ˆ5--= ,求(1)B A +(2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E e E --=004ˆ3ˆ(1) 试写出其时间表达式;(2)说明电磁波的传播方向; 四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。

试求(1) 球内任一点的电场强度(2)球外任一点的电位移矢量。

19.设无限长直导线与矩形回路共面,(如图1所示),(1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

电磁场与电磁波答案

电磁场与电磁波答案

=
1 r2
∂ ∂r
(r2 sinθ cosφ) +
1 r sinθ
∂ ∂θ
(sin θ
cosθ
cosφ) +
1 r sinθ
∂ ∂φ
(− sinφ) =
2 sinθ cosφ + cosφ − 2sinθ cosφ − cosφ = 0
r
r sinθ
r
r sinθ
er reθ r sinθ eφ
∇× A= 1 ∂ ∂ r2 sinθ ∂r ∂θ
等于零。

(1) ∇u
= ex
∂u ∂x
+ ey
∂u ∂y
+ ez
∂u ∂z
= ex (2x + 3) + ey (4 y − 2) + ez (6z − 6) ;
(2)由 ∇u = ex (2x + 3) + ey (4 y − 2) + ez (6z − 6) = 0 ,得
x = −3 2, y =1 2,z =1
量 ex
3 50
+
ey
4 50
+
ez
5 定出;求 (2, 3,1) 点的方向导数值。 50

∇Ψ
= ex
∂ ∂x
(
x
2
yz)
+
e
y
∂ ∂y
(
x
2
yz
)
+
ez
∂ (x2 yz) = ∂z
ex 2xyz + ey x2 z + ez x2 y
故沿方向 el = ex
3 50

电磁场与电磁波(第三版)课后答案第5章

电磁场与电磁波(第三版)课后答案第5章

第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。

解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。

将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。

由此可见,空腔内的磁场是均匀的。

5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。

dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。

电磁场与电磁波答案

电磁场与电磁波答案

电磁场与电磁波答案第7章导⾏电磁波1、求内外导体直径分别为0.25cm和0.75cm 空⽓同轴线的特性阻抗;在此同轴线内外导体之间填充聚四氟⼄烯( r 2.1),求其特性阻抗与300MHz时的波长。

解:空⽓同轴线的特性阻抗b 0.75Z0 601 n 601 n =65.917a 0.25聚四氟⼄烯同轴线:_60_ in 075=41.4041n3 45.487.2.1 0.252、在设计均匀传输线时,⽤聚⼄烯( & r = 2.25 )作电介质,忽略损耗⑴对于300Q的双线传输线,若导线的半径为0.6mm,线间距应选取为多少?⑵对于75Q的同轴线,若内导体的半径为0.6mm,外导体的内半径应选取为多少?解:⑴双线传输线,令d为导线半径,D为线间距,则D in 3.75, D 25.5mm d⑵同轴线,令a为内导体半径,b为外导体内半径,则波⽐VSWR及距负载0.15处的输⼊阻抗Z in。

3 108300 106..2.10.69mL1oi b2 ln a' C121 b inaZ O5丄I1---ln b75C12■ r ain b 1.875, b 3.91mma3、设⽆耗线的特性阻抗为100 ,负载阻抗为50 j50试求:终端反射系数解:Z L Z O 50 j50 100Z L Z O 50 j50 1001 2j51 I L|1⼩2.6181 .5 5Z043.55 +j 34.164、⼀特性阻抗为50Q 、长2m 的⽆耗线⼯作于频率 200MHz 终端阻抗为40 j30 , 求其输⼊阻抗Z in 。

解:输⼊阻抗:z in Z 0Z LjZ °tan z⼩ 8 8 / “ 1.5, z2 ,tan 1.732f33Z in 26.32 j9.875、在特性阻抗为200的⽆耗双导线上,测得负载处为电压驻波最⼩点,V min 为8V,距负载/4处为电压驻波最⼤点,V 为10V,试求负载阻抗 Z L 及负载吸收的功率maxP L 。

电磁场与电磁波(第四版)课后答案_电科习题

电磁场与电磁波(第四版)课后答案_电科习题

3)
v C

evx
3y2 - 2x
+ evy x2 + evz 2z
问:1.哪些矢量可以由一个标量函数的梯度表示?哪些
矢量可以由一个矢量函数的旋度表示?
2.求出这些矢量的源分布。
1.28利用直角坐标,证明
v fA
vv f A Af
1.29: 矢量
在Av由 evρ=52, evzz验2=z0证和散z=度4围定成理的。圆柱形区域,
分量,根据边界条件可知,两种介质的
2
磁感应强度
uv B1
rr

uv B2

r B

er B
但磁场
强度 H1 H2
3.23一电荷量为 q 质量为 m 的小带电体,放置在无限长导体
平面下方,与平面距离h 。求 q 的值以使带电体上受到的
静电力恰好与重力相平衡(设 m 2103 kg, h 0.02m)。

第二章
2.1已知半径为a的导体球面上分布着电荷密度为 s s0 cos 的电荷,式中的 s0
为常数。试计算球面上的总电荷量。
2.6 一个平行板真空二极管内的电荷 体位密于度x=为0,阳 极94 板0U0位(d 于43 )xx23=,d,式极中间阴电极压板 为U0。如果U0 =40V,d=lcm,横截 面积s =10cm2。 求:

A
证散度定理
1.21 求矢量
v A

erx
x

ery
x2

erz
y
2
z
沿xy平面上的一个边长为2的正
形再回求路 的Av线对积此分回,路此所正包方围形的的表两面个积边分分,别验与证x斯轴托和克y轴斯相定重理合

电磁场与电磁波(第三版)课后答案第2章

电磁场与电磁波(第三版)课后答案第2章

电磁场与电磁波(第三版)课后答案第2章第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解质⼦的质量271.710kg m -=?、电量191.610C q -=?。

由21mv qU = 得 61.3710v ==? m s故 0.318J v ρ== 2A m26(2)10I J d π-== A⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。

解以球⼼为坐标原点,转轴(⼀直径)为z 轴。

设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a a φφωρωθθππ===J v e e ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。

解以球⼼为坐标原点,转轴(⼀直径)为z 轴。

设球⾯上任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin a φωθ=?=v r e ω球⾯的上电荷⾯密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

电磁场与电磁波答案(无填空答案)

电磁场与电磁波答案(无填空答案)

电磁场与电磁波复习材料简答2.试写出在理想导体表面电位所满足的边界条件。

一2•答:设理想导体内部电位対机,空气媒质中电位为观。

由于理想导1■本表面电场的切向分量等于零,或者说电场垂直于理想导体表面,因此有〔3分)3.试简述静电平衡状态下带电导体的性质。

答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分)导体内部电场强度等于零,在导体表面只有电场的法向分量。

(3分)4.什么是色散?色散将对信号产生什么影响?答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。

(3分)色散将使信号产生失真,从而影响通信质量。

(2分) aB dt ,试说明其物理意义,并写出方程的积分形式。

答:意义:随时间变化的磯场可以产生电场-其和分形式为:样•必=-[理廖C 右况6.试简述唯一性定理,并说明其意义。

答:在静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的「这一定理称为唯一性定理4(3分9它的意义:给岀了定解的充要条件:既满足方程区满足边界条件的解是正确的。

7. 什么是群速?试写出群速与相速之间的关系式。

〔写出微分形式也对)VxE=5.已知麦克斯韦第二方程为 1.简述恒定磁场的性质,并写出其两个基本方程。

1■答:恒定谢场是连续的场或无散场,即谢感应强度沿任一闭合曲面的积分等于恒定磁场的源是矢量两个基本方答:它表明时变场中的磁场是由传导电§盍丿和位移电渍该方程的积分形芒为答:电磁波包络或能量的传播速度称为群速。

群速叫与相速®的关系式为:耳=―気厂(2分)1片畑8. 写出位移电流的表达式,它的提出有何意义?告,位移电流,=®位移电流产生磁效应代表了变化的电场能够产生磁场,使麦克斯韦能够预言电磁场以波的形式传播,为现代通信打下理论基础。

9.简述亥姆霍兹定理,并说明其意义。

答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。

《电磁场与电磁波》习题参考标准答案..

《电磁场与电磁波》习题参考标准答案..

《电磁场与电磁波》习题参考标准答案..《电磁场与电磁波》知识点及参考答案第1章⽮量分析1、如果⽮量场F 的散度处处为0,即0F≡,则⽮量场是⽆散场,由旋涡源所产⽣,通过任何闭合曲⾯S 的通量等于0。

2、如果⽮量场F 的旋度处处为0,即0F ??≡,则⽮量场是⽆旋场,由散度源所产⽣,沿任何闭合路径C 的环流等于0。

3、⽮量分析中的两个重要定理分别是散度定理(⾼斯定理)和斯托克斯定理, 它们的表达式分别是:散度(⾼斯)定理:SVFdV F dS ??=??和斯托克斯定理:sCF dS F dl=。

4、在有限空间V 中,⽮量场的性质由其散度、旋度和V 边界上所满⾜的条件唯⼀的确定。

( √ )5、描绘物理状态空间分布的标量函数和⽮量函数,在时间为⼀定值的情况下,它们是唯⼀的。

( √ )6、标量场的梯度运算和⽮量场的旋度运算都是⽮量。

( √ )7、梯度的⽅向是等值⾯的切线⽅向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章电磁场的基本规律(电场部分)1、静⽌电荷所产⽣的电场,称之为静电场;电场强度的⽅向与正电荷在电场中受⼒的⽅向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/⽶)。

3、静电系统在真空中的基本⽅程的积分形式是:V V sD d S d V Q ρ?==?和0lE dl ?=?。

4、静电系统在真空中的基本⽅程的微分形式是:V D ρ??=和0E=。

5、电荷之间的相互作⽤⼒是通过电场发⽣的,电流与电流之间的相互作⽤⼒是通过磁场发⽣的。

6、在两种媒质分界⾯的两侧,电场→E 的切向分量E 1t -E 2t =0;⽽磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ?=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表⾯为等位⾯;在导体表⾯只有电场的法向分量。

电磁场与电磁波答案(高等教育出版社)陈抗生 第2版

电磁场与电磁波答案(高等教育出版社)陈抗生 第2版

第一章1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度 m /V 10E E 3y -==。

s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--―――1.2 写出下列时谐变量的复数表示(如果可能的话))3sin()6sin()()6(sin 1)()5()21000cos(10)()4(sin 2cos 3)()3(sin 10)()2()6sin(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解: 3/2/6/)(πππϕ-=-=z vj j e V j 3333sin 63cos 66)3(-=-==-∴πππ(2)解:)2cos(10)(πω--=t t I2)(πϕν-=zj eI j 10102=-=-∴π(3)解:)t t t A ωωsin 132cos 133(13)(-=j eA j 2313)2(+==-πθ则(4)解:)21000cos(10)(ππ-=t t CjeC j 10102-==∴π(5)(6)两个分量频率不同,不可用复数表示―――1.3由以下复数写出相应的时谐变量)8.0exp(4)2exp(3)3()2.1exp(4)2(43)1(j jC j C jC +=-=+=π(1)解:tt j t j t t j t j e j t j ωωωωωωωsin 4cos 4sin 3cos 3)sin )(cos 43()43(-++=++=+t t Ce RE t C t j ωωωsin 4cos 3)()(-==∴(2)解:)2.1cos(4)4()()(2.1-===-t e e RE Ce RE t C t j j t j ωωω(3)解:)8.0t (j )2t (j t j 8.0j j t j e 4e3e )e 4e3(Ce 2+ωπ+ωωω+=+=π得:)sin(3)8.0cos(4)8.0cos(4)2cos(3)()(t t t t Ce RE t C tj ωωωπωω-+=+++==―――1.4 写出以下时谐矢量的复矢量表示00000)cos(5.0)3()sin (cos 8)sin 4cos 3()()2()2cos(sin 4cos 3)()1(x t kz H z t t x t t t E z t y t x t t V t ωωωωωπωωω-=-++=+++=(1)解:00043)(z i y j x r V+-=(2)解:00)43cos(28)cos(5)(z t x t t V πωϕω--+=00430)88()43(285)(54arcsinz j x j z e x e r V++-=-==-πϕϕ其中 (3)解:00)]sin()[cos(5.05.0)(x kz j kz x e r H kz-==-―――1.6 ]Re[,)22(,)21(000000**⨯⋅⨯⋅-+-=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:j B A B A B A B A z z y y x x 35-=++=⋅0000000000000025)()22(12113)22()32()31()61(z y x B A RE jj j j z y x B A jB A z j y j x B z j y j x j B B B A A A z y x B A zyxz y x-+=⨯--+=⨯--=⋅+--=--++++-==⨯****得到:则:――――1.7计算下列标量场的梯度xyzu xyy x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z zz y x y y z y x x x z y x ++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)( 000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4) 解:u u grad ∇=)(00)22()22(y x y x y x+++=(5) 解:u u grad ∇=)(000z xy y xz x yz ++=第二章――2.1.市话用的平行双导线,测得其分布电路参数为: R ’=0.042Ωm -1; L ’=5×10-7Hm -1; G ’=5×10-10Sm -1; C ’=30.5PFm -1. 求传播常数k 与特征阻抗Z c .答:))((C j G L j R jk '+''+'=ωω)()(C j G L j R Z c '+''+'=ωω代入数据可得:k =(1.385-1.453i) ×10-5; Z c = (1.52 -1.44i) ×103Ω ――2.2.传输线的特征阻抗Z c = 50Ω,负载阻抗Z L = 75 +75j Ω,用公式和圆图分别求:(1)与负载阻抗对应的负载导纳; (2)负载处的反射系数;(3)驻波系数与离开负载第一驻波最小点的位置Z L解:(1)Y L =Z L1=1501j -(2)ΓL=Z ZZ Z C LCL+-=j j 751257525++=171(7+6j) (3)70863.0)7/6arctan()0(==ψ rad离开负载第一驻波最小点的位置 d min =))0(1(4πψλ+=0.3064λ -- 2.3min1max min max min 80,50,5/,/4,/2,3/8,,I ,I L C L Z Z Z V d l V V ρλλλλ===参看图,负载电压,求驻波系数,驻波最小点位置传输线长度处的输入阻抗以及。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波复习材料 简答
1. 简述恒定磁场的性质,并写出其两个基本方程。

2. 试写出在理想导体表面电位所满足的边界条件。

3. 试简述静电平衡状态下带电导体的性质。

答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。

(3分) 4. 什么是色散?色散将对信号产生什么影响?
答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。

(3分) 色散将使信号产生失真,从而影响通信质量。

(2分)
5.已知麦克斯韦第二方程为t B E ∂∂-
=⨯∇ ,试说明其物理意义,并写出方程的积分形式。

6.试简述唯一性定理,并说明其意义。

7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义?
9.简述亥姆霍兹定理,并说明其意义。

答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。

(3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究
10.已知麦克斯韦第二方程为S d t B l d E S C
⋅∂∂-=⋅⎰⎰,试说明其物理意义,并写出方程的微
分形式。

答:其物理意义:随时间变化的磁场可以产生电场。

(3分)
方程的微分形式:
11.什么是电磁波的极化?极化分为哪三种?
答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。

(2分) 极化可以分为:线极化、圆极化、椭圆极化。

12.已知麦克斯韦第一方程为
t D J H ∂∂+
=⨯∇
,试说明其物理意义,并写出方程的积分形式。

13.试简述什么是均匀平面波。

答:与传播方向垂直的平面称为横向平面;(1分)
电磁场HE 和的分量都在横向平面中,则称这种波称为平面波;(2分)
在其横向平面中场值的大小和方向都不变的平面波为均匀平面波。

(2分) 14.试简述静电场的性质,并写出静电场的两个基本方程。

15.试写出泊松方程的表达式,并说明其意义。

计算
1.按要求完成下列题目 (1)判断矢量函数
y x e xz e
y B ˆˆ2+-=
是否是某区域的磁通量密度?
(2)如果是,求相应的电流分布。

2.矢量
z y x e e e
A ˆ3ˆˆ2-+=

z y x e e e
B ˆˆ3ˆ5--=
,求
(1)B A
+
(2)B A ⋅
3.在无源的自由空间中,电场强度复矢量的表达式为
()jkz y x e E e E e
E --=004ˆ3ˆ
(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;
4.矢量函数z x e yz e yx A ˆˆ2
+-= ,试求 (1)A
⋅∇
(2)A
⨯∇
5.矢量z x e e A ˆ2ˆ2-=
,y x e e B ˆˆ-= ,求
(1)B A
-
(2)求出两矢量的夹角
6.方程
2
2
2
)
,
,
(z
y
x
z
y
x
u+
+
=给出一球族,求
(1)求该标量场的梯度;
(2)求出通过点()0,2,1
处的单位法向矢量。

7.标量场
()z e
y
x
z
y
x+
=3
2
,
,
ψ,在点()0,1,1-
P处
(1)求出其梯度的大小(2)求梯度的方向
8.矢量
y x e e
A ˆ2ˆ+=
,z x e e B ˆ3ˆ-=
,求
(1)B A

(2)B A +
9.矢量场A 的表达式为
2ˆ4ˆy e x e
A y x -=
(1)求矢量场A
的散度。

(2)在点()1,1处计算矢量场A
的大小。

应用题
1.在无源的自由空间中,电场强度复矢量的表达式为
jkz
x
e
E
e
E-=
3
ˆ
(3)试写出其时间表达式;(4)判断其属于什么极化。

2.两点电荷
C
4
1
-
=
q,位于x轴上4
=
x处,C
4
2
=
q位于轴上4
=
y处,求空间点()4,0,0
处的
(1)电位;
(2)求出该点处的电场强度矢量。

3.如图1所示的二维区域,上部保持电位为
0U ,其余三面电位为零,
(1) 写出电位满足的方程和电位函数的边界条件 (2) 求槽内的电位分布
b
a
4.均匀带电导体球,半径为a,带电量为Q。

试求(1)球内任一点的电场强度
(2) 球外任一点的电位移矢量。

5.设无限长直导线与矩形回路共面,(如图1所示),
(1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。

(2)
6.如图2所示的导体槽,底部保持电位为
0U ,其余两面电位为零,
(1) 写出电位满足的方程;
(2) 求槽内的电位分布
解:(1)由于所求区域无源,电位函数必然满足拉普拉斯方程
7.放在坐标原点的点电荷在空间任一点r
处产生的电场强度表达式为 r e
r q E ˆ420πε=
(1) 求出电力线方程;(2)画出电力线。

8.设点电荷位于金属直角劈上方,如图1所示,求(1)画出镜像电荷所在的位置
(2)直角劈内任意一点
)
,
,
(z
y
x处的电位表达式
9.设时变电磁场的电场强度和磁场强度分别为:
)cos(0e t E E φω-=
(1) 写出电场强度和磁场强度的复数表达式
(2)证明其坡印廷矢量的平均值为: )cos(2100m e av H E S φφ-⨯= )cos(0m t H H φω-=。

相关文档
最新文档