统计学之抽样与总体参数的估计(ppt 67页)
统计学 第 6 章 抽样与参数估计
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
统计学原理 抽样估计
(三)样本容量和样本个数
n
N样本代表性高
(四)抽样方法
1、重复抽样(回置抽样)
n
抽一个单位——登记结果——重新放回——样本需要单位
特点:N 不变,每一个单位有均等抽中的机会。
如,设总体有A、B、C、D4个商店,重复抽样随机抽取
2个商店组成样本。则共有 4 4 =16 样本
AA AB AC AD N N N N… = Nn
设:Q —— 表示不具有某种属性的单位数所占的比重。
P——表示总体中具有某种属性标志的单位数在总体
中所占的比重。
产品产量
N = N1 + N0
不具有某种属性
具有某种属性 合格产品 N1
不合格产品
N Q= 0 N 成数方差 = P Q =P(1-P)
P =
N P + Q = 1 Q = 1- P
例如: 某厂生产的电子元件 1000件中有50件不合格,则
DA DB DC
三、抽样误差
(一)抽样误差 (随机误差) P121 x - X
调查误差——调查过程中由于观察、登记、测量、计算上 系统偏差 引起的。 预防、杜绝 登记误差 抽样误差——样本结构与总体结构发生差异引起的误差, 加以控制。 影响抽样误差的因素 P121
标志值的变异程度
样本的单位数
抽样的方法 抽样调查的组织方式
4、抽样推断的误差可以事先计算并加以控制
二、抽样推断中常用概念 (一)全及总体和样本 P12
1、全及总体(母体、总体) N 一次性调查中全及总体唯一确定的 2、样本(子样) n
n1
n3
一次性调查中样本不是唯一的,可变的。 n2
例: 研究某市工业企业的生产经营情况,则该市所有 工业企业 1000家就构成全及总体(母体、总体),若以 1%抽样调查,那么抽选的 10 家工业企业则称为抽样总体 (样本、子样)
统计学基础ppt课件
4-4
统计学 参数估计在统计方法中的地位
基础
统计方法
描述统计
推断统计
参数估计
假设检验
4-5
第 4 章 抽样与参数估计
4.1 抽样与抽样分布
4 - 14
统计学 基础
有关抽样的几个基本概念
4、抽样比 抽样比是指在抽选样本时,所抽取的样本
单位数n与总体单位数N之比。一般地讲, n≥30为大样本,n<30为小样本。研究社会 经济现象时,通常采用大样本进行抽样调查。
对于给定的研究对象,全及总体是唯一确定 的,而样本总体不是唯一的,它是随机的。
有关抽样的几个基本概念
2、抽样框
目标总体规定了理论上的抽样范围,但是进行抽样 的总体单位与目标总体有时是不一致的,因而, 在抽样之前,还必须明确实际进行抽样的总体范 围和抽样单位。
抽样框是指用以代表总体,并从中抽选样本的一个
框架。
目标总体与抽样框有时是一致的;多数情 况下,目标总体的范围要率大于抽样框。
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其它辅助信息以提高估计的效率
4 - 17
统计学 基础
抽样方法和样本可能数目
1、重复抽样
重复抽样也叫重置抽样,是指每次抽取一个元素 后又放回,重新参加下一次的抽选,直到抽取n个 元素为止。全及总体单位数始终保持不变,每个总 体单位都有被重复抽中的可能。 重复抽样通常要考虑单位排列顺序,如电话号 码中的“8651”和“1568”不同。
其样本可能数目为 m重 N n
第六章抽样与参数估计
(1)验证 E(x) X
(2)计算重复抽样及不重复抽样的抽样平均误差。 24
第2节 参数估计的基本方法
参数估计——以实际观察的样本数据所计算的统计量作为未 知总体参数的估计值。
一、点估计(Point estimate) 点估计也称定值估计,就是直接以样本统计量作为总体参数
29
大样本(n≥30)下总体均值的区间估计
区间估计就是根据样本求出总体未知参数的估计区间,并使其 可靠程度达到预定要求。
(1) 总体方差σ 2已知时
由于 α ,有
z
x
/
n
N(0,1) ,所以对于给定的置信度1-
P {z 2
x/nz2}1
即
Px z/2
7
抽样法的特点:随机原则 部分估计总体 存在误差并可以控制
抽样法的应用:对某些不可能进行全面调查 而又需要了解其 全面情况的社会经济现象, 必须应用抽样法。(破坏性试验、总体过大、 单位过于分散,实际调查不可能的)
8
第1节 抽样与抽样分布
一、有关抽样的基本概念
总体(母体)(Population) 样本(子样)(Sample) 总体指标(总体参数)(Population parameter) 样本指标(样本统计量)(Sample statistic)
2、某工厂共生产新型聚光灯2000只,随机抽选400只进行耐 用时间调查,结果平均寿命为4800小时,标准差为300小时。 求抽样误差。
3、从某校学生中随机抽选400名,发现戴眼镜的有80人。计 算求抽样误差。
统计学(李荣平)2014-5
P{t>tα(n)}= h(t;n)dt
t (n)
的数tα(n)为t(n)分布的上α分为点。 例:查表求:t0.05(8), t0.95(8)
o
t (n)
第一节 抽样分布
(三)F 分布
设 U ~ 2(n1 ),V ~ 2(n2 ), 且设 U,V 独立,则称随机变量
F U / n1 V / n2
保证质量,规定σ≤0.6mm时,认为生产过程处于良好控制
状态。为此,每隔一定时间抽取20个零件作为一个样本,并
计算样本方差S2。若P{S2≥c } ≤0.01(此时σ=0.6mm),
则认为生产过程失去控制,必须停产检查,问:
(1)C为何值时,S2≥c的概率才小于或等于0.01? (2)若取得的一个样本的标准差S=0.84,生产过程是
第五章 抽样分布与参数估计
主
第一节 抽样分布
要 内
第二节 参数点估计
容
第三节 区间估计
第一节 抽样分布
一、随机样本
总体与个体:试验全部可能的观测值叫总体;试验的 每一个观测值叫个体。
样本容量与样本个数:样本中包含的单位数叫样本容 量;从一个总体中可能抽取多少个样本叫样本个数。
总体容量:总体中所包含的个体数。 有限总体和无限总体:总体容量可数的称有限总体, 不可数的称无限总体。 重置抽样(重复抽样)和无重置抽样(不重复抽样)
X
1 n
n i 1
Xi
为样本均值;称统计量
S 2
1 n1
n i1
(Xi
X )2
为 样本方差 ,称统计量 S
S2
1n
( X X ) 2 为样本标准差 ;统计量
n 1 i1 i
统计学课件05第5章抽样与参数估计
反映样本数据的集中趋势和平均水平。
样本方差
定义
样本方差是每个样本数据与样本均值差的平方和的平均值,即 $s^2 = frac{1}{n} sum_{i=1}^{n} (x_i - overline{x})^2$。
计算方法
先计算每个样本数据与样本均值的差,然后将差平方,最后求和平 均。
作用
反映样本数据的离散程度和波动情况。
样本量的确定
根据调查目的和精度要求确定样 本量:精度要求越高,需要的样
本量越大。
根据总体规模和抽样方法确定样 本量:总体规模越大,需要的样 本量越大;分层或整群抽样较简 单随机抽样需要的样本量更大。
根据调查资源确定样本量:资源 有限时,需要在满足调查目的和 精度要求的前提下,合理确定样
本量。
02 参数估计
大数定律的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布函数F(x),则对于任意正实数ε,有 lim(n->∞)P(|X1+X2+...+Xn/n-E(X))/ε)=0,其中E(X)是随机变量X的期望值。
大数定律的实例
在抛硬币实验中,随着实验次数的增加,正面朝上的频率将趋近于0.5。
中心极限定理
中心极限定理定义
中心极限定理是指在大量独立同分布的随机变量中,不论 这些随机变量的分布是什么,它们的平均值的分布总是趋 近于正态分布。
中心极限定理的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布 函数F(x),则对于任意实数x,有lim(n->∞)P(∑Xi≤x)=∫(∞->x)F(t)dt。
样本分布的性质
无偏性
如果样本统计量的数学期 望等于总体参数,则该统 计量是无偏的。
统计学课件:抽样推断
3.当总体X~N(, 2),从中抽取容量为n的样本,则
n
2
(n 1)s2
2
~
(2 n-1); 2
(xi x)2
i 1
2
~
(2 n-1)
4. 2—分布的性质 (1)分布可加性 若X ~ 2(n1),Y~ 2(n2 ), X,Y独立,则 X +Y ~ 2(n1+n2 ) (2)期望与方差 若X~ 2(n),则 E(X)= n,D(X)=2n
3、进行产品质量检验 4、进行假设检验
(一)总体和样本 1、总体 总体也称全及总体,指所有认识的研究对象全体,它是
有所研究范围内具有某种共同性质的全体单位所组成的 集合体。 一般用英文字母大写N来表示总体的单位数。 2、样本 样本又称子样,它是从全及总体中随机抽取出来,作为 代表这一总体的那部分单位组成的集合体。 一般用英文小写字母n来表示样本的单位数。
5. 分位点 设X ~ 2(n),若对于:0<<1,
存在 2 (n) 0 满足
P{X 2 (n)} ,
则称 2 (n) 为 2 (n) 分布的上分位点。
2
(n
)
(二)t 分布
若X 服从N (0,1),Y 服从自由度为n的 2分布, 且X 和Y 独立,则 X
Y /n 服从自由度为n的 t分布。
1、全及指标 根据各单位的标志值或标志属性计算的,反映总体
数量特征的综合指标称为全及指标,又称为参数。
设总体变量 X 为: X1, X 2 ,X N 则有:
X X XF N F
2 X X 2 X X 2 F
N
F
设总体 N 个单位,有 N1 个单位具有某种性质, N0 个单位不具有某种性质,
第六章 抽样与总体参数的估计
两个结论 :
2 (1)设有两个总体X和Y, X ~ N( µ1 , σ 12 ), Y ~ N( µ 2 , σ 2 ), 且X和Y相互
独立。X 1 , X 2 ,..., X n1 是来自总体X的样本容量为n 1 , Y1 , Y2 ,..., Yn 2 是 来自总体Y样本容量为n 2的随机样本,
6.1 抽样与抽样分布 6.1.1 总体、个体和样本
总体(Population)--要研究的事物或现象的总体。 个体(Item unit)--组成总体的每个元素(成员)。 总体容量(Population size)--一个总体中所含个体的数量。 (Sample)-样本(Sample)--从总体中抽取的部分个体。 样本容量(Sample size)--样本中所含个体的数量。 抽样(Sampling)--为推断总体的某些重要特征,需要从总体 中按一定抽样技术抽取若干个体的过程。 统计量(Statistic)--由样本构造,用来估计总体参数的函数。统 计量是样本的函数,只依赖于样本;统计量不含任何参数。 样本均值、样本方差等都是统计量。
2)
4) E ( χ 2 ( n )) = n ,
D ( χ 2 ( n )) = 2 n
卡方分布表给出了卡方变 量在不同自由度下的临界 值. 2 2
P ( χ > χα (n)) = α
0
2 χα ( n)
当n很大时,
2 χ 2 ( n)
近似服从 N ( 2n − 1,1)
2 p
1 实用上,n>45时, χ (n) ≈ (u p + 2n − 1) 2 2
态变量的个数.
卡方分布的特点: 1)卡方分布是一个正偏态分布。随自由度n的不同,其分布曲 线的形状不同, n小,分布偏斜; n很大,接近于正态分布。 当自由度df=n +∞时,卡方分布即为正态分布。
第六章 抽样分布及总体平均数的估计
• 对总体参数的一种看法 总体参数包括总体均值、比例、方差等 分析之前必需陈述
三 假设检验的基本原理
2、什么是假设检验?
1)概念 事先对总体参数或分布形式作出某种假设, 然后利用样本 信息来判断原假设是否成立。 2) 类型 参数假设检验 非参数假设检验 3)特点 采用逻辑上的反证法 依据统计上的小概率原理
二 总体平均数的估计
(3)区间估计(interval estimation)
根据估计量以一定可靠程度推断总体参数所在的区间 范围,用数轴上一段距离表示未知参数可能落入的范围, 虽不具体指出总体参数等于什么,但能指出未知总体参数 落入某一区间的概率有多大。
(4)置信区间(confidence interval)
一 抽样分布与平均数抽样分布
3、样本平均数与总体平均数离差的形态
(2)总体方差未知 总体正态,样本平均数与总体平均数的离差统 计量呈 t 分布; 总体非正态,但满足n>30这一条件,样本平均 数与总体平均数的离差统计量 近似t 分布。
t分布
t 分布(t-distribution)是统计分析中应用较多 的一种随机变量函数的分布,是统计学者高赛特 1908年以笔名“Student”发表的论文中推导出来 的一种分布,又叫学生氏分布。这种分布是一种 左右对称,峰态比较高狭,分布形状随样本容量 n-1的变化而变化的一组分布。
二 总体平均数的估计
4 总体方差σ2未知时,总体平均数μ的估计 用样本的无偏方差作为总体方差的估计值,样本 平均数的分布为t分布,应查t值表,包括以下两 种情况:
(1)总体的分布为正态时,可不管n值大小。 (2)总体分布为非正态,只有n>30,才能用概率对其样本 分布进行解释。
管理统计学课件_第06章
Beijing institute of technology
北京理工大学
两个样本均值差的抽样分布
例 某手机厂商对甲、乙两省份居民进行抽样调查后发现, 甲省消费者中有约18%的人使用过该品牌手机,而乙省 消费者中使用过该品牌手机的人数比例为14%。假设以 上调查结果是真实的,现在从甲省抽取1500人,乙省抽 取2000人组成两个独立随机样本,请分析甲省用过该品 牌手机的人数比例低于乙省用过该品牌手机人数比例的 可能性有多大?
Beijing institute of technology
北京理工大学
Management statistics
管理统计学
两个样本方差比的抽样分布
1 两个总体都为正态分布,即X1~N(μ1,σ12)的一个样本,Y1,
Y2,… ,Yn2是来自正态总体X2~N(μ2,σ22 )
2 从两个总体中分别抽取容量为n1和n2的独立样本 3
X ~ N ( ,
2
n
)
Beijing institute of technology
北京理工大学
Management statistics
管理统计学
示例
某高校在研究生入学体检后对所有结果进行统计分析,得 出其中某一项指标的均值是7,标准差2.2。从这个总体中 随机选取一个容量为31的样本。 (1)计算样本均值大于7.5的概率, (2)计算样本均值小于7.2的概率, (3)计算样本均值在7.2和7.5之间的概率。
2
2
~ ( n 1)
2
的抽样分布为自由度为 n 1 的卡方分布。即:
2
n
( n 1) S
2
2
概率与统计中的抽样与估计
概率与统计中的抽样与估计在数学领域中,概率与统计是两个密不可分的概念。
概率是通过数学方法来研究随机事件发生的可能性,而统计是通过收集、整理和分析数据来推断总体特征的学科。
在概率与统计的学习过程中,抽样与估计是其中重要的内容之一。
本文将深入讨论在概率与统计中的抽样与估计的概念与应用。
一、抽样方法在统计学中,抽样是指从总体中选择一部分个体进行研究或者数据收集的过程。
合理的抽样方法可以确保研究结果的可靠性和有效性。
常见的抽样方法包括随机抽样、系统抽样、分层抽样和群集抽样等。
1. 随机抽样随机抽样是指通过随机选择个体形成样本的方法。
随机抽样可以避免主观因素对样本的影响,保证样本的代表性。
常用的随机抽样方法包括简单随机抽样、整群抽样和系统抽样等。
2. 系统抽样系统抽样是指按照某种系统性的方法选择样本的过程。
例如,在调查问卷中,可以选择每隔一定间隔的受访者进行调查,这就是一种系统抽样。
系统抽样适用于总体有规律排列的情况下,可以简化样本的选择过程。
3. 分层抽样分层抽样是指将总体分为若干个不同层次的子总体,在每个子总体中进行随机抽样。
这种抽样方法可以更好地代表总体的特征。
分层抽样常用于大规模调查和研究中,比如根据地理位置、年龄、性别等进行层次划分,再在每个层次中进行抽样。
4. 群集抽样群集抽样是指将总体划分为若干个群集,然后随机选择若干个群集,再对每个群集进行全员调查或者抽样调查。
群集抽样适用于总体分布广泛,难以直接访问的情况下,例如对某个地区的农户进行调查。
二、点估计点估计是指通过样本数据推断总体参数的数值估计。
在概率与统计中,常用的点估计方法有最大似然估计和矩估计。
1. 最大似然估计最大似然估计是一种常用的点估计方法,它假设样本数据是从已知分布中独立抽取得到的。
通过构建似然函数,寻找使得似然函数最大化的参数值,从而对总体参数进行估计。
最大似然估计具有无偏性和一致性的性质。
2. 矩估计矩估计是另一种常用的点估计方法,它基于样本矩与总体矩之间的关系进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
P( X 7.9) 1 P( X 7.9) 1 P( X 7.9) 1 0.2033
0.7967
(3)
P(7.9 X 8.1) P(7.9 8 X 8 8.1 8) P(0.83 Z 0.83)
0.12 0.12 0.12
2P(0 Z 0.83) 2 0.2967 0.5934
6.1.3 样本均值的分布与中心极限定理
1、样本均值X分布的含义
采用随机抽样的方法,从总体中抽取大小为n的一个样本,计 算出它的平均值X1,然后将这些个体放回总体去,再抽取n个个 体,又可以计算出平均值X2,… 再将n个个体放回去,再抽取n个 个体,如此可以计算出无限个X,这些样本均值X所有可能值的 概率分布叫均值X的抽样分布.
例6.2 某厂声称生产的电池=54个月,=6个月的寿命 分布。某消费团体为检验该厂的说法是否准确,购买 了50个该厂生产的电池进行试验。
抽样方法分为两类:概率抽样和非概率抽样
1、概率抽样 •根据已知的概率选取被调查者; •最理想、最科学的抽样方法; •能保证样本数据对总体的代表性; •能有效控制抽样误差,将其限制在一定范围内; •缺点是:相对非概率抽样,花费较大。 概率抽样的几种形式:
(1)简单随机抽样(Simple random sampling)
假定总体均值为,方差为2
E X
E
n
Xi
i 1
n
1 n
EX1
X2
...
Xn
Hale Waihona Puke 1 nE( X1)
E( X 2 )
...
E(X n )
1 n
(
...
)
n
n
D( X )
D
n
Xi
i 1
n
1 n2
n
D(
i 1
Xi)
1 n2
D( X1)
D( X 2 ) ...
D(X n )
完全随机地选取样本,要求有一个完美的抽样框或有总体中每一个个 体的详尽名单。可以采取抽签或随机数字表的办法实现。
(2)分层抽样(Reduced sampling)
先将总体分成不同的“ 层”, 然后,在每一“ 层”内进行简单随机 抽样。可防止简单随机抽样造成的样本构成与总体构成不成比例的 现象。
(3)整群抽样(Cluster Sampling)
1 n2
( 2
2
... 2 )
n 2
n2
2
n
2 X
D(X )
n
中心极限定理(Central Limit theorem): 设从均值为,方差为2(有限)的任意一个总体中抽 取大小为n的样本,当n充分大时(n30),样本均值X 的抽样分布近似服从均值为,方差为2/n的正态分 布。
x
X
什么叫n充分大呢?
设X1,X2,…,Xn为某总体中抽取的随机样本, X1,X2,…,Xn为相 互独立,且与总体有相同分布的随机变量.
(1)当总体为正态分布N(, 2)时,X的抽样分布仍为正态分
布,
E(X
)
X
,
D( X ) 2
2
,
X
n
X
~
N
,
2
n
当n越来越大时,X的 离散程度越来越小, 即用X估计越准确。
(2)当总体的分布不是正态分布时,只要样本容量n足 够大时,样本均值的分布总是近似正态分布,此时要 求总体方差2有限。
在整群抽样中,总体首先被分成称作群的独立的元素组,总体中的每一 元素属于且仅属于某一群。抽取一个以群为元素的简单随机样本, 样本中的所有元素组成样本。在理想状态下,每一群是整个总体小
范围内的代表。
(4)系统抽样(Systematic sampling)
又称等距抽样。从前k个元素中随机选一个,然后在样本框中每隔一 定距离抽取一个。
中按一定抽样技术抽取若干个体的过程。 统计量(Statistic)--由样本构造,用来估计总体参数的函数。统
计量是样本的函数,只依赖于样本;统计量不含任何参数。 样本均值、样本方差等都是统计量。
6.1.2 抽样方法 抽样设计与全面调查相比有如下特点:
(1)节省人力及费用; (2) 节省时间,提高调查研究的时效性; (3)保证研究结果的准确性。
8, X
0.6 0.12,
X n 25
X ~ N ( , 2 ) N (8,0.122 ), XX
(1)
P( X 7.9) P( X 8 7.9 8) P(Z 0.83)
0.12 0.12
P(Z 0.83) 0.5 P(0 Z 0.83) 0.5 0.2967 0.2033
总体偏离正态越远,则要求n就越 大。在实际应用中常要求n30。
例6.1 从一个均值=8,=0.6的总体中随机选取容 量为n=25的样本。假定该总体不是很偏的,
求:(1) 样本均值 X 小于7.9的近似概率;
(2) X 超过7.9的近似概率; (3) X 在总体均值=8附近0.1范围内的概率.
解: 根据中心极限定理,在总体不很偏的情况下,
第六章 抽样与总体参数的估计
统计推断是统计学研究的重要内容。抽样是进行统计 统计推断的基础工作。参数估计是统计推断的重要内 容之一。 6.1 抽样与抽样分布 6.2 参数的估计方法 6.3 总体均值和总体比例的区间估计 6.4 两个总体均值及两个总体比例之差的估计 6.5 正态总体方差及两个正态总体方差比的区间估计 6.6 相关系数的区间估计
2、非概率抽样
不是完全按随机原则选取样本。
(1)方便抽样(Convenience sampling)
由调查人员自由、方便地选择被调查者的非 随机选样。
(2)判断抽样(Judgement sampling)
通过某些条件过滤选择某些被调查者参与调 查的判断抽样法。
建议使用概率抽样方法:简单随机抽样、分层抽样、整群抽样或系统 抽样。从所估总体特征与样本结果的接近程度上讲,公式可用于估计 抽样结果的“ 优良性”。而用方便抽样和判断抽样方法不能对该“ 优 良性”进行估计。因而,当解释由非概率抽样方法得到的结果时,要 特别小心。
6.1 抽样与抽样分布
6.1.1 总体、个体和样本
总体(Population)--要研究的事物或现象的总体。 个体(Item unit)--组成总体的每个元素(成员)。 总体容量(Population size)--一个总体中所含个体的数量。 样本(Sample)--从总体中抽取的部分个体。 样本容量(Sample size)--样本中所含个体的数量。 抽样(Sampling)--为推断总体的某些重要特征,需要从总体