-2017年历届安徽省中考数学试卷(附答案)(最新整理)

合集下载

安徽省2002-2017年中考数学试卷及解析答案(收藏版)

安徽省2002-2017年中考数学试卷及解析答案(收藏版)
所以 这个一次函数为y=-x+1.……(7分)
22.解:由(1)得:y=3-x.(3)
把(3)代入(2)并整理得:x2-3x+2=0
解这个一元二次方程,得:
x1=1,x2=2.……(4分)
将x的值分别代入(3),得:
y1=2,y2=1.……(6分)
所以,原方程组的解为: ……(7分)
(华东版教材实验区试题)
【解】
四、(本题共2小题,每小题7分,共14分).
21.已知一次函数的图象与双曲线y=- 交于点(-1,m),且过点(0,1),求该一次函数的解析式.
【解】
22.解方程组
【解】
22.求直线y=3-x与圆x2+y2=5的交点的坐标.
(华东版教材实验区试题)
【解】
五、(本题共2小题,每小题8分,共16分)
销售额定为210件合适一些,因为210既是中位数,又是众数,是大部分人能达到的定额.(如果有同学提出其他方式确定定额,若理由恰当,就酌情给分). ……(10分)
七、(本题满分12分)
26.解:
(1)y=-0.1x2+2.6x+43
=-0.1(x-13)2+59.9. ……(4分)
所以,当0≤x≤13时,学生的接受能力逐步增强,
2、下列运算正确的是………………………………………………………………………………………()
A:a2·a3=a6B:a3÷a=a3C:(a2)3=a5D:(3a2)2=9a4
3、函数 中自变量x的取值范围是…………………………………………………………………()
A:x≠0 B:x≠1 C:x>1 D:x<1且x≠0
当13≤x≤30时,学生的接受能力逐步下降. ……(6分)
(2)当x=10时,y=-0.1(10-13)2+59.9=59.

最新整理安徽省2002-2017年中考数学试卷及解析答案(收藏版)

最新整理安徽省2002-2017年中考数学试卷及解析答案(收藏版)

x 在什么范围内,学生的接受能力
八、(本题满分 12 分) 27.某学习小组在探索 “各内角都相等的圆内接多边形是否为正多边形”
甲同学:这种多边形不一定是正多边形,如圆内接矩形;
时,进行如下讨论:
乙同学: 我发现边数是 6 时,它也不一定是正多边形, 如图一, △ ABC 是正三角形,
= = ,可以证明六边形 ADBECF 的各内角相等,但它未必是正六边形;
23.证明:
∵ BA⊥ AC, AD⊥ BC,
∴ ∠ B+∠ BAD=∠ BAD+∠ DAC= 90°.
……( 4 分) ……( 7 分)
…… ( 4 分) ……( 6 分) ……( 7 分)
……( 2 分)
…… ( 4 分) ……( 6 分)
……( 7 分)
9
∴ ∠ B=∠ DAC. 又∵ ED⊥ DF , ∴ ∠ BDE+∠ EDA=∠ EDA+∠ ADF= 90°. ∴ ∠ BDE+∠ ADF, ∴ △ BDE∽△ ADF, ∴ BD = BE ,即 AF = BE (这一步不写不扣分) .
x 2 y 2 5. ②
【解】
22.求直线 y= 3-x 与圆 x2+ y2= 5 的交点的坐标.
(华东版教材实验区试题) 【解】
五、(本题共 2 小题,每小题 8 分,共 16 分)
23.如图, AD 是直角△ ABC 斜边上的高, DE⊥ DF,且 DE 和 DF 分别交 AB、AC
4
于 E、 F.
19.解:当 a= 2 时,
2
a = a 2+ a+2
1a 1a
1- a 2
2

2 + 2+ 2
2
12
……( 3 分) ……( 4 分)

2017安徽中考数学试卷(含答案)

2017安徽中考数学试卷(含答案)

2017年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是( ) A .12- B .12- C .2D .-22.计算22()a -的结果是( ) A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯ D .120.1610⨯5.不等式320x ->的解集在数轴上表示为( )A .B . C. D .6.直角三角板和直尺如图放置.若120∠=︒,则2∠的度数为( )A.60︒ B .50︒ C.40︒ D.30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A .16(12)25x += B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A. B . C. D .10.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为( )A .29B .34 C.52 D .41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 .14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|cos60()3--⨯︒-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin750.97︒≈,cos750.26︒≈,2 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆(顶点为网格线的交点),以及过格点的直线l .(1)将ABC ∆向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF ∆关于直线l 对称的三角形; (3)填空:C E ∠+∠= ︒.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++= .【解决问题】根据以上发现,计算222212320171232017++++++++的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:平均数 中位数 方差 甲 8 8 乙 8 8 2.2 丙 63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表: 售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD 二、11、312、()22b a -13、p 14、40或8033三、15、解:原式12322=?=-. 16、解:设共有x 人,根据题意,得8374x x -=+, 解得7x =,所以物品价格为87353?=(元). 答:共有7人,物品的价格为53元. 四、17、解:在Rt BDF △中,由sin DFBDb =得, 2sin 600sin 4560030024232DF BD b=???°≈(m).在Rt ABC △中,由cos BCABa =可得, cos 600cos756000.26156BC AB a =???°(m). 所以423156579DE DF EF DF BC =+=+=+=(m). 18、(1)如图所示;(2)如图所示;(3)45五、19、21n +()()1212n n n ++?()()11216n n n ++ 134520、(1)证明:∵B D =∠∠,B E =∠∠,∴D E =∠∠, ∵CE AD ∥,∴180E DAE +=∠∠°.∴180D DAE +=∠∠°,∴AE CD ∥. ∴四边形AECD 是平行四边形.(2)证明:过点O 作OM EC ^,ON BC ^,垂足分别为M 、N . ∵四边形AECD 是平行四边形,∴AD EC =.又AD BC =,∴EC BC =,∴OM ON =,∴CO 平分BCE ∠.六、21、解:(1) 平均数 中位数 方差 甲 2 乙 丙6(2)因为2 2.23<<,所以222s s s <<甲乙丙,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P ==. 七、22.解:(1)设y kx b =+,由题意,得501006080k b k b ì+=ïí+=ïî,解得2200k b ì=-ïí=ïî,∴所求函数表达式为2200y x =-+.(2)()()240220022808000W x x x x =--+=-+-.(3)()22228080002701800W x x x =-+-=--+,其中4080x #,∵20-<,∴当4070x ?时,W 随x 的增大而增大,当7080x <?时,W 随x 的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC =,90ABC BCF ==∠∠°, 又90AGB =∠°,∴90BAE ABG +=∠∠°,又90ABG CBF +=∠∠°,∴BAE CBF =∠∠,∴ABE BCF △≌△(ASA),∴BE CF =.②证明:∵90AGB =∠°,点M 为AB 中点,∴MG MA MB ==,∴GAM AGM =∠∠, 又∵CGE AGM =∠∠,从而CGE CGB =∠∠,又ECG GCB =∠∠,∴CGE CBG △∽△, ∴CE CGCG CB=,即2CG BC CE =?,由CFG GBM CGF ==∠∠∠,得CF CG =.由①知,BE CF =,∴BE CG =,∴2BE BC CE =?.(2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥,∴N EAB =∠∠,又CEN BEA =∠∠,∴CEN BEA △∽△, 故CE CNBE BA=,即BE CN AB CE ??,∵AB BC =,2BE BC CE =?,∴CN BE =,由AB DN ∥知,CN CG CFAM GM MB==, 又AM MB =,∴FC CN BE ==,不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1512x -=,2512x --=(舍去),∴512BE BC -=,于是51tan 2FC BE CBF BC BC -===∠,(方法二)不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?, 解得1512x -=,2512x --=(舍去),即512BE -=,作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC ==,设MN y =,则2GN y =,5GM y =,∵GN ANBE AB =,即1221512y y +=-,解得125y =,∴12GM =,从而GM MA MB ==,此时点G 在以AB 为直径的圆上, ∴AGB △是直角三角形,且90AGB =∠°, 由(1)知BE CF =,于是51tan 2FC BE CBF BC BC -===∠.。

2017年安徽省中考数学试卷

2017年安徽省中考数学试卷

2017年安徽省中考数学试卷一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.12的相反数是( ) A .12- B .12- C .2 D .-2 【答案】B .【解析】试题分析:只有符号不同的两个数称互为相反数.故选答案B.考点: 相反数的定义.2.计算32()a -的结果是( )A .6aB .6a -C .5a -D .5a 【答案】A【解析】试题分析:()()()2223361a a a -=-⋅=。

故答案选A 。

考点: 幂的乘方的计算法则.3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B. C. D .【答案】B.【解析】试题分析:俯视图是从上面得到的视图. 故选答案B.考点: 俯视图的观察方法.4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯D .120.1610⨯【答案】C【解析】试题分析:1600亿=811160010=1.610⨯⨯.故选答案C.考点: 科学记数法的书写规则.5.不等式420x ->的解集在数轴上表示为( )A .B . C. D .【答案】D【解析】试题分析:420242,x x x ->⇒<⇒<在数轴上表示为空心向左,故答案选D 。

考点: 解一元一次不等式及其解集在数轴上的表示方法.6.直角三角板和直尺如图放置.若120∠=︒,则2∠的度数为( )A.60︒ B .50︒ C.40︒ D.30︒【答案】C【解析】试题分析:由题意得:3=50∠︒43ba450240a b∴∠=︒∴∠=︒故选答案C考点:平行线的性质、外角的性质7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .260【答案】A【解析】 试题分析:10081024301000280,100----⨯=故答案选A 。

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .五、(每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD 交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8乙 8 8 2.2丙 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac 的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10.(4分)(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【解答】解:设△ABC中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故选D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(每题5分,共20分)11.(5分)(2017•安徽)27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a2b﹣4ab+4b= b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(每题8分,共16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D 处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD •sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= 45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8 2.2丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

2017年安徽省中考数学试卷及答案解析

2017年安徽省中考数学试卷及答案解析

2017年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是( ) A .12- B .12- C .2D .-22.计算22()a -的结果是( ) A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯ D .120.1610⨯5.不等式320x ->的解集在数轴上表示为( )A .B . C. D . 6.直角三角板和直尺如图放置.若120∠=︒,则2∠的度数为( )A.60︒ B .50︒ C.40︒ D.30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A .16(12)25x += B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A. B . C. D .10.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为( )A 2934241二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 .14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|cos60()3--⨯︒-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin750.97︒≈,cos750.26︒≈2 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆(顶点为网格线的交点),以及过格点的直线l .(1)将ABC ∆向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF ∆关于直线l 对称的三角形; (3)填空:C E ∠+∠= ︒.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++= .【解决问题】根据以上发现,计算222212320171232017++++++++的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:平均数 中位数 方差 甲 8 8 乙 8 8 2.2 丙 63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表: 售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD二、11、3 12、22b a13、14、40或803 3三、15、解:原式12322.16、解:设共有x人,根据题意,得8374x x,解得7x,所以物品价格为87353(元).答:共有7人,物品的价格为53元.四、17、解:在Rt BDF△中,由sinDFBD得,2sin600sin4560030024232DF BD°≈(m).在Rt ABC△中,由cos BCAB可得,cos600cos756000.26156BC AB°(m). 所以423156579 DE DF EF DF BC(m).18、(1)如图所示;(2)如图所示;(3)45五、19、21n1212n nn11216n n n134520、(1)证明:∵B D∠∠,B E∠∠,∴D E∠∠,∵CE AD∥,∴180E DAE∠∠°.∴180D DAE∠∠°,∴AE CD∥.∴四边形AECD是平行四边形.(2)证明:过点O作OM EC,ON BC,垂足分别为M、N. ∵四边形AECD是平行四边形,∴AD EC.又AD BC,∴EC BC,∴OM ON,∴CO平分BCE∠. 六、21、解:(1)(2)因为2 2.23,所以222s s s 甲乙丙,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P. 七、22.解:(1)设y kx b ,由题意,得501006080k b k b ,解得2200k b ,∴所求函数表达式为2200yx .(2)240220022808000W x x x x .(3)22228080002701800Wx x x ,其中4080x ,∵20,∴当4070x 时,W 随x 的增大而增大,当7080x 时,W 随x 的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC ,90ABC BCF ∠∠°, 又90AGB ∠°,∴90BAE ABG ∠∠°,又90ABG CBF ∠∠°,∴BAE CBF ∠∠, ∴ABE BCF △≌△(ASA),∴BE CF .②证明:∵90AGB ∠°,点M 为AB 中点,∴MG MA MB ,∴GAM AGM ∠∠, 又∵CGE AGM ∠∠,从而CGE CGB ∠∠,又ECG GCB ∠∠,∴CGE CBG △∽△, ∴CE CGCG CB,即2CG BC CE ,由CFG GBM CGF ∠∠∠,得CF CG .由①知,BE CF ,∴BE CG ,∴2BE BC CE . (2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥, ∴N EAB ∠∠,又CEN BEA ∠∠,∴CEN BEA △∽△, 故CE CNBE BA,即BE CN AB CE ,∵AB BC ,2BE BC CE ,∴CN BE ,由AB DN ∥知,CN CG CFAMGM MB, 又AM MB ,∴FC CN BE ,不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),∴512BEBC , 于是51tan 2FC BE CBFBCBC∠,(方法二)不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),即512BE , 作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC , 设MN y ,则2GN y ,5GM y ,∵GN ANBEAB ,即1221512y y ,解得125y,∴12GM,从而GM MA MB ,此时点G 在以AB 为直径的圆上,∴AGB △是直角三角形,且90AGB ∠°, 由(1)知BE CF ,于是51tan 2FC BE CBFBCBC∠.。

2017年安徽省中考数学试卷(含答案详解)

2017年安徽省中考数学试卷(含答案详解)

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)的相反数是()A.B.﹣ C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5 D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b=.13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC 分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(本大题共2小题,每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=.五、(本大题共2小题,每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5 D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A .B .C .D .【分析】根据抛物线y=ax 2+bx +c 与反比例函数y=的图象在第一象限有一个公共点,可得b >0,根据交点横坐标为1,可得a +b +c=b ,可得a ,c 互为相反数,依此可得一次函数y=bx +ac 的图象.【解答】解:∵抛物线y=ax 2+bx +c 与反比例函数y=的图象在第一象限有一个公共点,∴b >0,∵交点横坐标为1,∴a +b +c=b ,∴a +c=0,∴ac <0,∴一次函数y=bx +ac 的图象经过第一、三、四象限.故选:B .【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b >0,ac <0.10.(4分)(2017•安徽)如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为( )A .B .C .5D .【分析】首先由S △PAB =S 矩形ABCD ,得出动点P 在与AB 平行且与AB 的距离是2的直线l 上,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA +PB的最小值.【解答】解:设△ABP 中AB 边上的高是h .∵S △PAB =S 矩形ABCD , ∴AB•h=AB•AD ,∴h=AD=2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.在Rt △ABE 中,∵AB=5,AE=2+2=4,∴BE===, 即PA +PB 的最小值为. 故选D .【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2017•安徽)27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a 2b ﹣4ab +4b= b (a ﹣2)2 .【分析】原式提取b ,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD (如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(本大题共2小题,每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD•sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(本大题共2小题,每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为1345.【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲882乙88 2.2丙663(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n 个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n ﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

2017年安徽省中考数学试卷及答案

2017年安徽省中考数学试卷及答案

A BCD E FGH A B C OCD 2017年安徽省中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.-2、0、2、-3这四个数中最大的是【 】A .2B .0C .-2D .-32.我省2017年末森林面积为3804.2千公顷,用科学记数法表示3804.2千.正确的是【 】 A .3804.2×103 B .380.42×104 C .3.8042×106 D .3.8042×107 3.下图是五个相同的小正方体搭成的几何体,其左视图是【 】4.设a =19-1,a 在两个相邻整数之间,则这两个整数是【 】A .1和2B .2和3C .3和4D .4和5 5.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为1 5 D .事件M 发生的概率为2 56.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是【 】A .7B .9C .10D .117.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠BAC =36°, 则劣弧BC 的长是【 】A .π51B .π52C .π53D .π548.一元二次方程x (x -2)=2-x 的根是【 】A .-1B .2C .1和2D .-1和2 9.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为23,则点P 的个数为【 】A .1B .2C .3D .410.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【 】A .B .C .D .ACDMNPAB C D E O二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:a 2b +2ab +b = .12.根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放出的相对能量是7级地震所释放出的相对能量的倍数是 . 13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD , CE =1,DE =3,则⊙O 的半径是 .14.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的四个结论: ①2⊗(-2)=6 ②a ⊗b =b ⊗a ③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ④若a ⊗b =0,则a =0. 其中正确结论的序号是 (填上你认为所有正确结论的序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:12112---x x ,其中x =-2. 【解】16.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 【解】四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2:(1)将△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 1( , )、A 3( , )、A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); 【解】(3)指出蚂蚁从点A 100到点A 101的移动方向. 【解】五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(3≈1.73).【解】20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:(1)(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不/分同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21.如图,函数y 1=k 1x +b 的图象与函数y 2=k 2x(x >0)的图象交于点A (2,1)、B ,与y 轴交于点C (0,3).(1)求函数y 1的表达式和点B 的坐标; 【解】(2)观察图象,比较当x >0时y 1与y 2的大小. 【解】七、(本题满分12分)22.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A 1B 1C .(1)如图1,当AB ∥CB 1时,设A 1B 1与BC 相交于点D .证明:△A 1CD 是等边三角形; 【证】A A C CA 1A 1BB11E P图1图2图3θl 1l 2l 3l 4(2)如图2,连接AA 1、BB 1,设△ACA 1和△BCB 1的面积分别为S 1、S 2.求证:S 1∶S 2=1∶3; 【证】(3)如图3,设AC 的中点为E ,A 1B 1的中点为P ,AC =a ,连接EP .当 = °时,EP 的长度最大,最大值为 .八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 2; 【证】(2)设正方形ABCD 的面积为S ,求证:S =(h 1+h 2)2+h 12; 【证】(3)若32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积S 随h 1的变化情况. 【解】2017年安徽省初中毕业学业考试数学参考答案1~10 ACACB DBDBC11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为xkg ,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000kg. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500,∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组。

2017年安徽省中考数学试卷(含答案)

2017年安徽省中考数学试卷(含答案)

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)的相反数是()A.B.﹣ C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5 D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P 到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b=.13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(本大题共2小题,每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=.五、(本大题共2小题,每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=,因此,12+22+32+…+n2=.【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD 交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5 D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b >0,ac<0.10.(4分)(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩,则点P到A、B两点距离之和PA+PB的最小值为()形ABCDA. B. C.5 D.=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l 【分析】首先由S△PAB上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【解答】解:设△ABP中AB边上的高是h.=S矩形ABCD,∵S△PAB∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故选D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2017•安徽)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a2b﹣4ab+4b=b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(本大题共2小题,每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD•sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(本大题共2小题,每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 2n +1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)= ,因此,12+22+32+…+n 2=.【解决问题】根据以上发现,计算:的结果为 1345 . 【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n ﹣1+2+n=2n +1, 由此可得,这三个三角形数阵所有圆圈中数的总和为: 3(12+22+32+…+n 2)=(2n +1)×(1+2+3+…+n )=(2n +1)×,因此,12+22+32+…+n 2=; 故答案为:2n +1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD 交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

2017年安徽省中考数学试卷含答案

2017年安徽省中考数学试卷含答案

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前安徽省2017年初中毕业学业水平考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.12的相反数是( ) A .12 B .12- C .2 D .2- 2.计算32()a -的结果是( ) A .6aB .6a -C .5a -D .5a 3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A B C D4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为( ) A .101610⨯B .101.610⨯C .111.610⨯D .120.1610⨯ 5.不等式420x ->的解集在数轴上表示为( )A B CD 6.直角三角板和直尺如图放置.若120∠=,则2∠的度数为( )A .60B .50C .40D .307.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 ( ) A .280 B .240 C .300D .260 8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( )A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A B CD10.如图,在矩形ABCD 中,5AB =,3AD =,动点P 满足13PAB ABCD S S =△矩形.则点P 到,A B 两点距离之和PA PB +的最小值为( )ABC.D第Ⅱ卷(非选择题 共110分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC △的边长为6,以AB 为直径的O 与边,AC BC 分别交于,D E 两点,则劣弧DE 的长为 .14.在三角形纸片ABC 中,90A ∠=,30C ∠=,30cm AC =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过BDE △某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm .三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)计算:11|2|cos60()3--⨯-.16.(本小题满分8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.17.(本小题满分8分)如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600m AB BD ==,75α=,45β=,求DE 的长. (参考数据:sin 750.97,cos750.26,2 1.41≈≈≈)18.(本小题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC △和DEF △(顶点为网格线的交点),以及过格点的直线l .(1)将ABC △向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出DEF △关于直线l 对称的三角形; (3)填空:C E ∠+∠= .19.(本小题满分10分) 【阅读理解】我们知道,(1)1232n n n ++++⋅⋅⋅+=,那么2222123n +++⋅⋅⋅+结果等于多少呢? 在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n ++⋅⋅⋅+个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n +++⋅⋅⋅+.图1【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1,2,n n -),发现每个位置上三个圆圈中数的和均为.由此可得,这三个三角形数阵所有圆圈中数数学试卷 第5页(共16页) 数学试卷 第6页(共16页)的总和为:22223(123)n +++⋅⋅⋅+=.因此,2222123n +++⋅⋅⋅+= .【解决问题】根据以上发现,计算222212320171232017+++⋅⋅⋅++++⋅⋅⋅+的结果为 .20.(本小题满分10分)如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作CE AD ∥交ABC △的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.21.(本小题满分12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)(2依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.22.(本小题满分12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数(1)求y 与之间的函数表达式;(2)设商品每天的总利润为W元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?23.(本小题满分14分)已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=,延长,AG BG 分别与边,BC CD 交于点,E F .①求证:BE CF =;②求证:2BE BC CE =;-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共16页) 数学试卷 第8页(共16页)(2) 如图2,在边BC 上取一点E ,满足2BE BC CE =,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan CBF ∠的值.安徽省2017年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B 【解析】12的相反数是12-,添加一个负号即可,故选:B 。

2017年安徽省中考数学试卷(含答案)

2017年安徽省中考数学试卷(含答案)
A.280;B.240;C.300;D.260
8一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为 ,则 满足【】
A. ;B. ;C. ;D.
9.已知抛物线 与反比例函数 的图像在第一象限有一个公共点,其横坐标为1,则一次函数 的图像可能是【】
10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足 ,则点P到A,B两点距离之和PA+PB的最小值为【】
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
八、(本题满分14分)
23.已知正方形ABCD,点M为AB的中点.
(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.
①求证:BE=CF;②求证: =BC·CE.
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根据以上数据完成下表:
平均数
中位数
方差

8
8

8
8
2.2

6
3
(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.
七、(本题满分12分)
请解答上述问题。
四、(本大题共2小题,每小题8分,满分16分)
17.如图,游客在点A处坐缆车出发,沿 的路线可至山顶D处,假设AB和BD都是线段,且AB=BD=600m, , ,求DE的长。(参考数据: )
18.如图,在边长为1个单位长度的小正方形组成的பைடு நூலகம்格中给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线 .

2008-2017年历届安徽省中考数学试卷(附答案)

2008-2017年历届安徽省中考数学试卷(附答案)

2017年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,共40分)1.12的相反数是【 】 A .12; B .12-; C .2; D .-22.计算()23a-的结果是【 】A .6a ;B .6a -;C .5a -;D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为【 】4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为【 】A .101610⨯;B .101.610⨯;C .111.610⨯;D .120.1610⨯; 5.不等式420x ->的解集在数轴上表示为【 】 6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】A .60︒;B .50︒;C .40︒;D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是【 】 A .280; B .240; C .300; D .2608一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足【 】 A .()161225x +=; B .()251216x -=; C .()216125x +=; D .()225116x -=9.已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图像可能是【 】10.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足为13PAB ABCD S S =V 矩形,则点P 到A ,B 两点距离之和PA +PB 的最小值【 】A ;BC .D 二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________. 13.如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为___________.14、在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为___________cm 。

2017年安徽中考数学试题(word版-含答案)

2017年安徽中考数学试题(word版-含答案)

2017 年安徽初中毕业水平考试数 学(试题卷)注意事项:1.你拿到的试卷为 150 分,考试时间为 120 分钟。

2.本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”分 4 页,“答 题卷”分 6 页。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(40 分)1 1、 的相反数是()A. 12B.‒1 2C. 2D.−22、计算( ‒ α ) 的结果是( )A.α 6B.‒ αC.αD.‒ α3、如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )AB CD4、截止 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过 1600 亿美元,其中 1600 亿用科学计数法表示为()A. 16×1010B. 1.6×1010C.1.6× 10 11D. 0.16×10125、不等式 4−2x >0 的解集在数轴上表示为( )2 3 2 6 55–2 –1 01 2–2 –1 01 2–2 –1 0 1 2–2 –1 01 2ABCD6、直角三角板和直尺如图放置,若∠1=20°,则 ∠2 的度数为( )A. 60°B. 50°C. 40°D. 30°人人人人人人30°30241210 82 4 6 81012 人 人/ 人人7、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 100 名学生进行统计,并绘成如图所示的频数直方图.已知该校共有 1000 名学生,据此估计,该校五一期间参加社团时间在 8 10 小时之间的学生数大约是( )A. 280B. 240C. 300D. 2608、一种药品原价每盒 25 元,经过两次降价后每盒 16 元,设两次降价的百分比 都为 x ,则 x 满足( )A. 16(1+2x )=25B. 25(1−2x )=16C. 16(1 + x ) = 2525 (1 ‒ x) = 16 9、已知抛物线y = αx + bx + c=bx 的图象在第一象限有一个公共点,其横坐标为 1,则一次函数 y=bx+ac 的图象可能是( )~ 2D.22与反比例函数 yy y y yO x O x O x O xA B C D10、如图,在矩形ABCD 中,AB=5,AD=3.动点P 满足S△PAB1= S3矩形ABCD.则点P 到A、B 两点距离之和PA+PB的最小值是()P29 34A.5 2 41C.二、填空题(20分)11、27的立方根是.A B12、因式分解:−4αb+4b=.13、如图,已知等边△ABC的边长为6,AB为直径的分别交于D、E 两点,则劣弧DE长为⊙O与边AC,BC.14、在三角形纸片ABC 中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1)剪去△CDE后得到双层△BDE(如图2)再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个平行四边形,则所得平行四边形的周长为cm.CAO DDEDEA B BD CB.D.2αb⌒o(DE,三、解答题(共 90 分:其中 15 每题 8 分共 32 分;19,20 每题 10 分共 20 分; 21,22 每题 12 分共 24 分;23 题 14 分)15、计算│−2│×cos60° −1( )3‒ 116、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三,人出七,不足四。

(完整版)2017年安徽省中考数学试卷(含答案解析版)

(完整版)2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .五、(每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD 交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8乙 8 8 2.2丙 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac 的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10.(4分)(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【解答】解:设△ABC中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故选D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(每题5分,共20分)11.(5分)(2017•安徽)27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a2b﹣4ab+4b= b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(每题8分,共16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D 处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD •sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= 45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8 2.2丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017 年安徽省初中学业水平考试数学
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)
1
1. 的相反数是【
2
1
A. ;
2

B. 1 ; 2
2.计算
a3
2
的结果是【

C.2;
D.-2
A. a6 ;
B. a6 ;
C. a5 ;
D. a5
3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为【
12 22 32 ... n2 )=_________________.因此,12 22 32 ... n2 =__________.
20.如图,在四边形 ABCD 中,AD=BC, B D ,AD 不平行于 BC,
过点 C 作 CE//AD,交△ABC 的外接圆 O 于点 E,连接 AE.(1)求证:
22;......;第
n

n
个圆圈中数的和为
n1444n42 4..4. 44n3;即
n个n
n
2
;这样,该三角形数阵中共有
n(n 2
1)
个圆圈,所有圆圈中数的和为12 22 32 ... n2 .
第 4 页 /共 46 页
[规律探究]将三角形数阵经两次旋转可得如图 2 所示的三角形数阵,观察这三个三角形数阵各行同 一位置圆圈中的数(如第 n-1 行的第一个圆圈中的数分别为 n-1,2,n)发现每个位置上三个圆圈中 的数的和均为______________.由此可得,这三个三角形数阵所有圆圈中数的总和为:3(

4.截止 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过 1600 亿美元,其中 1600
亿用科学计数法表示为【

A.16 1010 ;
B.1.6 1010 ;
C.1.6 1011 ;
5.不等式 4 2x 0 的解集在数轴上表示为【

D. 0.16 1012 ;
6.直角三角板和直尺如图放置,若 1 20 ,则 2 的度
第 5 页 /共 46 页
丙:7, 6, 8, 5, 4, 7, 6, 3, 9, 5. (1)根据以上数据完成下表:
数为【

A. 60 ;
C. 40 ;
B. 50 ; D. 30
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 100 名学生进行统计,
并绘制成如图所示的频数直方图,已知该校共有 1000 名学生,据此估计,该校五一期间参加社团活
第 1 页 /共 46 页
动时间在 8~10 小时之间的学生数大约是【
四边形 AECD 为平行四边形;(2)连接 CO,求证:CO 平分 BCE .
六、(本题满分12分) 21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9, 10, 8, 5, 7, 8, 10, 8, 8, 7; 乙:5, 7, 8, 7, 8, 9, 7, 9, 10, 10;
每人出 7 元,则还差 4 元,问共有多少人?这个物品的价格是多少?
请解答上述问题。
四、(本大题共 2 小题,每小题 8 分,满分 16 分) 17.如图,游客在点 A 处坐缆车出发,沿
A B D 的路线可至山顶 D 处,假设 AB 和 BD
都是线段,且 AB=BD=600m, 75 , 45
11.27 的立方根是_____________.
12.因式分解: a2b 4ab 4b =_________________.
第 2 页 /共 46 页
13.如图,已知等边△ABC 的边长为 6,以 AB 为直径的⊙O 与边 AC,BC 分别交于 D,E 两点,则劣弧 DE 的
长为___________.
,求 DE 的长。(参考数据:
sin 75 0.97,cos 75 0.26, 2 1.41)
第 3 页 /共 46 页
18.如图,在边长为 1 个单位长度的小正方形组成的网格中给出了格点△ABC 和△DEF(顶点为网格
线的交点),以及过格点的直线 l .
(1)将△ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;
14、在三角形纸片 ABC 中, A 90 , C 30 ,AC=30cm,将该纸片沿过点 B 的直线折叠,使
点 A 落在斜边 BC 上的一点 E 处,折痕记为 BD(如图 1),剪
去△CDE 后得到双层△BDE(如图 2),再沿着过△BDE 某顶点
的直线将双层三角形剪开,使得展开后的平面图形中有一个
是平行四边形,则所得平行四边形的周长为___________cm。
三、(本大题共 2 小题,每小题 8 分,满分 16 分)
15.计算:
2
cos
60
1 3
1 .
16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人
出七,不足四。问人数,物价几何?译文为:现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;
(2)画出△DEF 关于 l 对称的三角形;(3)填空: C E =___________.
五、(本大题共 2 小题,每小题 10 分,满分 20 分)
19.[阅读理解]我们知道,1 2 3 ... n n n 1 ,那么12 22 32 ... n2 的结果等于多少
2
呢?
在图 1 所示的三角形数阵中,第 1 行圆圈中的数为 1,即 12 ;第 2 行两个圆圈中数的和为 2+2,即

A.280;
B.240;
C.300;
D.260
8 一种药品原价每盒 25 元,经过两次降价后每盒 16 元,设两次降价的百分率都为 x ,则 x 满足


A. 161 2x 25 ;
B. 251 2x 16 ;
C. 161 x2 25 ; NhomakorabeaD.251 x2 16
9.已知抛物线 y ax2 bx c 与反比例函数 y b 的图像在第一象限有一个公共点,其横坐标为 1, x
则一次函数 y bx ac 的图像可能是【

10. 如 图 , 在 矩 形 ABCD 中 , AB= 5, AD= 3, 动 点 P 满 足
SV PAB
1 3 S矩形ABCD
,则点
P

A,B
两点距离之和
PA+PB
的最小值
为【

A. 29 ;
B. 34 ;
C. 5 2 ;
D.
41
二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)
相关文档
最新文档