正弦波振荡电路的实验报告

合集下载

正弦波振荡器实验报告(高频电路)

正弦波振荡器实验报告(高频电路)

高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:正弦波振荡器指导教师:一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二.实验内容V ,1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值p p并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。

三、实验步骤1、实验准备插装好正弦振荡器与晶体管混频模块,接通实验箱电源,此时模块上电源指示灯和运行指示灯闪亮。

用鼠标点击显示屏,选择“实验项目”中的“高频原理实验”,然后再选择“振荡器实验”中的“LC振荡器实验”,显示屏会显示出LC振荡器原理实验图。

说明:电路图中各可调元件的调整,其方法是:用鼠标点击要调整的原件,模块上对应的指示灯点亮,然后滑动鼠标上的滑轮,即可调整该元件的参数。

利用模块上编码器调整与鼠标调整其效果完全相同。

用编码器调整的方法是:按动编码器,选择要调整的元件,模块上对应的指示灯点亮,然后旋转编码器旋钮,即可调整其参数。

我们建议采用鼠标调整,因为长时间采用编码器调整,可能会造成编码器损坏。

本实验箱中,各模块可调元件的调整,其方法与此完全相同,后面不再说明。

2、LC振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即调2W3使晶振停振。

)(1)西勒振荡电路幅频特性测量用铆孔线将2P2与2P4相连,示波器接2TP5,频率计与2P5相连。

开关2K1拨至“p”(往下拨),此时振荡电路为西勒电路。

调整2W4使输出幅度最大。

(用鼠标点击2W4,且滑动鼠标滑轮来调整。

)调整2W2可调整变容管2D2的直流电压,从而改变变容管的电容,达到改变振荡器的振荡频率,变容官上电压最高时,变容管电容最小,此时输出频率最高。

模电实验-正弦波振荡电路

模电实验-正弦波振荡电路

正弦波振荡电路一、实验要求:1、振荡频率:f0=500Hz;2、输出电压有效值V0≥8V,且输出幅度可调;3、集成运放采用μA741,稳幅元件采用二极管;4、电容选用标称容量为0.047uF的金属膜电容器,电位器Rw选用47KΩ,二极管并联的电阻选用10kΩ。

二、实验仿真分析:1、设计参数:已知C=0.047uF, R=1/(6.28*500*0.047*10-6 )=6.78K,R1=3.1/2.1*R=10K,Rf=2.1*R1=21K, 取R3=10K, 则R2=Rf-R3/2=16K2、仿真输出波形,设置瞬态分析,仿真时间设为30ms,最大步长为0.01ms,选中skip initial transient solution ,以使电压从0开始起振,分析知振荡幅值没有达到8V,故增大R2,增大得过多,又会出现失真,最会确定R2为18k.且此时振荡频率符合要求。

3、输出电压波形为:C20.047uD1周期为2ms(1) 在Probe 中对输出波形进行傅里叶分析(2)在pspice 中经行傅里叶分析,查看输出文件FOURIER COMPONENTS OF TRANSIENT RESPONSE V(N01135) DC COMPONENT = 5.709746E-02HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)1 5.000E+02 9.956E+00 1.000E+00 -7.811E+01 0.000E+00 2 1.000E+03 4.473E-02 4.493E-03 -6.870E+01 8.751E+01 3 1.500E+03 2.625E-01 2.637E-02 7.320E+01 3.075E+024 2.000E+03 7.411E-03 7.444E-04 -1.393E-01 3.123E+025 2.500E+03 1.148E-01 1.153E-02 -6.699E+01 3.235E+026 3.000E+03 9.616E-03 9.659E-04 -3.727E+01 4.314E+027 3.500E+03 5.762E-02 5.788E-03 1.366E+02 6.833E+028 4.000E+03 9.774E-04 9.818E-05 6.531E+01 6.902E+02Time0s5ms10ms 15ms 20ms 25ms 30msV(D1:1)-10V-5V0V5V10VFrequency0Hz0.1KHz 0.2KHz 0.3KHz 0.4KHz 0.5KHz 0.6KHz 0.7KHz 0.8KHz 0.9KHz 1.0KHzV(D1:1)0V 2.0V4.0V6.0V8.0V9 4.500E+03 4.233E-02 4.252E-03 -1.666E+01 6.863E+02 TOTAL HARMONIC DISTORTION = 3.002431E+00 PERCENT1、 调节R2为19K ,输出电压V0从无到有,从正弦波直至削顶2、 当二极管D1开路时,输出波形为:C20.047uD1Time0s5ms 10ms 15ms 20ms 25ms 30msV(D2:2)-20V-10V0V10V20V20V10V0V-10V-20V0s5ms10ms15ms20ms25ms30ms V(D2:2)Time6当D2开路时20V10V0V-10V-20V0s5ms10ms15ms20ms25ms30ms V(D1:1)Time可知输出波形为削顶波7、当R3开路时,输出波形为20V10V0V-10V-20V0s5ms10ms15ms20ms25ms30ms V(D2:2)Time仍为正弦波,只是幅值减小而已三、实验体会:本次实验参数的理论值和实际值非常接近,使得调试极为顺利。

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。

4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。

正弦波振荡器在电子技术领域中有着广泛的应用。

在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。

在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。

振荡器的种类很多。

从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。

此实验只讨论反馈式振荡器。

根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。

此实验只介绍正弦波振荡器。

常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。

(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。

b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。

当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。

实验四LC正弦波振荡电路实验,高频电子线路,南京理工大学紫金学院实验报告

实验四LC正弦波振荡电路实验,高频电子线路,南京理工大学紫金学院实验报告

高频实验报告实验名称:LC正弦波振荡电路实验姓名:学号:班级:通信时间:2014.01南京理工大学紫金学院电光系一、 实验目的1.进一步学习掌握正弦波振荡电路的相关理论。

2.掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能;熟悉静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响。

3.熟悉LC 振荡器频率稳定度,加深对LC 振荡器频率稳定度的理解。

二、实验基本原理与电路1. LC 振荡电路的基本原理LC振荡器实质上是满足振荡条件的正反馈放大器。

LC振荡器是指振荡回路是由LC元件组成的。

从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。

如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。

在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。

普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。

当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。

为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图2-1和2-2所示。

串联改进型电容三点式振荡电路——克拉泼电路振荡频率为:图2-1克拉泼振荡电路C LCC L图2-2西勒振荡电路∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 选C C >>1,C C >>2时,C C -∑~,振荡频率0ω可近似写成LC10≈ω这就使0ω几乎与o C 和i C 值无关,提高了频率稳定度。

正弦波振荡电路 实验

正弦波振荡电路 实验

电路与电子技术实验ⅡRC正弦波振荡电路ü了解正弦波振荡的基本工作原理。

ü掌握RC桥式正弦波振荡电路的分析、设计和调试方法。

ü深入理解正弦波振荡电路的起振条件、稳幅特性。

ü学习其它类型正弦波振荡电路。

RC正弦波振荡电路:ü工作原理ü基本电路ü参数分析、调整其它正弦波振荡电路。

v实验背景知识ü线性放大电路:器件工作在线性放大区(通频带内),负反馈;正弦波振荡电路:器件工作在线性放大区(通频带内),正反馈。

首要条件ü正弦波振荡:无输入时,即能产生稳定(幅度、频率)的正弦波输出。

Ø产生正弦波振荡的条件ü稳定条件:ü为能在无输入信号时也能振荡起来,应使电路的初始环路增益大于1 ;利用开启电源时的噪声,使净输入信号(反馈信号)不断增大;最终产生振荡。

ü起振条件:ü稳定的正弦波振荡还应该具备:(1)选频网络:用于产生单一频率的正弦波;(2)稳幅环节:用于产生稳定幅度(环路增益自动为1)的正弦波。

îíì±=+==π21||n F A F A AF j j j &&îíì±=+=>π21||n F A F A AF j j j &&ØRC 桥式正弦波振荡电路ü右下图所示RC 桥式正弦波振荡电路。

ü正反馈?ü重点:RC 串并联网络ü定义R 1C 1串联支路阻抗为Z 1;R 2C 2并联支路阻抗为Z 2。

此网络的电压传输系数为:负反馈放大电路RC 串并联网络212o f )(Z Z Z VV F +==+&&&)1()1(112212112C R C R j R R C C w w -+++=)1()1(112212112)(C R C R j R R C C F w w -+++=+&ØRC 串并联网络(频率特性)ü令:则:ü幅频表达式:相频表达式:RCC C C R R R 102121=====w ,,)(3100)(w w w w -+=+j F &2002)()(31||ww w w -+=+F &)3(001)(w w w w j --=-+tg F &ØRC 串并联网络(选频特性)ü选频特性当时:(此时电路的反馈效果最强)(此时电路为同相输出)ü结论:只有此时才有可能正反馈(且反馈效果最强)ü效果:能产生单一频率的振荡波形。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

rc正弦波振荡实验报告RC正弦波振荡实验报告引言:RC正弦波振荡电路是电子学中非常重要的一种电路,它能够产生稳定的正弦波信号。

本实验旨在通过搭建RC正弦波振荡电路,研究其工作原理和参数对振荡频率的影响。

实验装置和步骤:实验所需的装置包括一个电容器(C)、一个电阻器(R)、一个信号发生器和一个示波器。

具体步骤如下:1. 将电容器和电阻器按照串联的方式连接起来。

2. 将信号发生器的输出端与电容器的一端相连,将示波器的输入端与电容器的另一端相连。

3. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。

实验结果:在实验过程中,我们通过调节信号发生器的频率和幅度,观察了示波器上的波形。

当频率较低时,波形呈现出较为平缓的正弦波;当频率逐渐增加时,波形开始变得不规则,并且出现了衰减的现象。

通过进一步调节电容器和电阻器的数值,我们发现改变这两个参数可以对振荡频率进行调节。

当电容器的容值较大或电阻器的阻值较小时,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,振荡频率较高。

讨论:RC正弦波振荡电路的工作原理是基于电容器和电阻器的充放电过程。

当电容器充电时,电流通过电阻器流入电容器,电容器的电压逐渐增加;当电容器放电时,电流从电容器流出,电容器的电压逐渐减小。

这个充放电过程会不断重复,从而产生稳定的正弦波信号。

在实验中,我们观察到当频率较低时,波形呈现出较为平缓的正弦波。

这是因为在较低的频率下,电容器有足够的时间来充放电,从而形成较为平缓的波形。

而当频率逐渐增加时,电容器的充放电时间变得不足,导致波形变得不规则,并且出现了衰减的现象。

此外,我们还观察到改变电容器和电阻器的数值可以对振荡频率进行调节。

这是因为电容器的容值和电阻器的阻值直接影响了电容器的充放电时间。

当电容器的容值较大或电阻器的阻值较小时,电容器的充放电时间较长,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,电容器的充放电时间较短,振荡频率较高。

电子电路综合实验-LC正弦波振荡器报告

电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。

由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。

2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。

按图1-1连接实验电路,输出端uo接示波器。

1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。

描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。

1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。

1.4.器振荡频率fo,并与理论值进行比较。

图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。

图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。

2.(1)二极管控制电路增益,实现稳幅。

二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。

稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。

负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。

也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。

(2)若断开二极管,波形会变得极不稳定。

rc正弦波振荡电路实验报告总结

rc正弦波振荡电路实验报告总结

rc正弦波振荡电路实验报告总结RC正弦波振荡电路是一种基本的电路,它可以产生稳定的正弦波信号。

在本次实验中,我们通过搭建RC正弦波振荡电路,学习了正弦波振荡电路的基本原理和实现方法,并对其进行了实验验证。

实验原理RC正弦波振荡电路是由一个放大器和一个RC网络组成的。

RC网络由一个电容和一个电阻组成,它们串联在一起,形成一个反馈回路。

当电路中有一个输入信号时,放大器会将信号放大,并将其送回到RC网络中。

RC网络会将信号滤波,并将其反馈回放大器。

这个反馈回路会产生一个稳定的正弦波信号。

实验步骤1.搭建RC正弦波振荡电路我们首先搭建了RC正弦波振荡电路。

电路由一个放大器和一个RC 网络组成。

放大器使用了一个晶体管,RC网络由一个电容和一个电阻串联在一起。

我们将电路搭建好后,使用万用表检查了电路的连接情况。

2.调整电路参数我们接下来调整了电路的参数,包括电容和电阻的值。

我们通过改变电容和电阻的值,调整了电路的共振频率。

我们还调整了放大器的增益,以确保电路能够产生稳定的正弦波信号。

3.测量电路输出信号我们使用示波器测量了电路的输出信号。

我们观察了信号的频率和幅度,并将其记录下来。

我们还使用频率计测量了电路的共振频率,并将其与我们调整电路参数时得到的值进行比较。

实验结果我们通过实验验证了RC正弦波振荡电路的原理和实现方法。

我们成功地搭建了电路,并调整了电路的参数,使其产生了稳定的正弦波信号。

我们还测量了电路的输出信号,并将其与我们预期的结果进行比较。

我们发现,实验结果与理论预期相符合。

结论通过本次实验,我们学习了RC正弦波振荡电路的基本原理和实现方法。

我们成功地搭建了电路,并调整了电路的参数,使其产生了稳定的正弦波信号。

我们还测量了电路的输出信号,并将其与我们预期的结果进行比较。

我们发现,实验结果与理论预期相符合。

这次实验让我们更深入地了解了正弦波振荡电路的工作原理,对我们今后的学习和研究具有重要的意义。

RC振荡电路实验

RC振荡电路实验

正弦波振荡电路实验1.实验目的(1)进一步学习RC 正弦波振荡电路的工作原理。

(2)掌握RC 正弦波振荡频率的调整和测量方法。

2.知识要点(1)实验参考电路见图2-11图2-11 RC 正弦波振荡电路电路参考参数:R 1=2k Ω R 2=2k Ω R 3=R 4=15k Ω R W =10k Ω C 1=C 2=0.1µF D 1、D 2为IN4001 运放选LM741(2)RC 正弦波振荡电路元件参数选取条件1)振荡频率 在图2-11电路中,取R 3=R 4=R ,C 1=C 2=C ,则电路的振荡频率为RC f π210=2)起振幅值条件11R R A f f +=应略大于3,R f 应略大于2R 1其中R f =R W +R 2//R D (R D 为二极管导通电阻)。

3)稳幅电路 实际电路中,一般在负反馈支路中加入由两个相互反接的二极管和一个电阻构成的自动稳幅电路,其目的是利用二极管的动态电阻特性,抵消由于元件误差、温度引起的振荡幅度变化所造成的影响。

3.预习要求(1)RC 振荡电路的工作原理和f 0的计算方法。

(2)RC 振荡电路的起振条件,稳幅电路的工作原理。

(3)写出预习报告或设计报告。

4. 实验内容及要求(1)RC 文式振荡电路实验1)按图2-11连接线路,用示波器观察U 0,调节负反馈电位器R w ,使输出U 0产生稳定的不失真的正弦波。

2)设计性实验(1)设计内容:正弦波振荡电路(2)设计要求:振荡频率f 0=320Hz (误差在1%以内)、放大环节采用运算放大电路、输出无明显失真(加稳幅二极管)。

(3)实验要求:设计电路、选择元件并计算理论值。

连接并调试电路,用示波器观察输出电压,得到不失真的正弦波信号。

用示波器测量输出电压频率,测量U0(P-P)和U f(P-P),计算反馈系数F=U f/U0。

测试结果与理论值相比较,检验是否达到设计要求,如不满足,调整设计参数,直到满足为止。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告
实验目的:验证正弦波振荡器的工作原理,并探究其参数对振荡频率的影响。

实验原理:
正弦波振荡器是一种能够产生稳定振荡信号的电路。

其基本原理是通过反馈回路将一部分输出信号重新引入到输入端,形成自激振荡。

常见的正弦波振荡器电路有震荡放大器电路和LC 震荡电路等。

实验器材:
- 正弦波振荡器电路板
- 函数发生器
- 示波器
- 电阻、电容等元器件
实验步骤:
1. 将正弦波振荡器电路与函数发生器、示波器连接起来。

2. 调节函数发生器产生一个适当的输入信号,通过示波器观察输出信号的波形。

3. 根据需要,可以调节电阻、电容等元器件的数值,观察输出信号波形的变化。

4. 记录各个参数对输出信号频率的影响。

实验结果:
根据实验步骤进行操作后,记录输出信号的波形和频率,以及各个参数的数值。

根据实验数据绘制实验曲线。

实验讨论:
根据实验结果分析各个参数对输出信号频率的影响,并探究为什么正弦波振荡器能够产生稳定振荡信号。

结论:
正弦波振荡器能够产生稳定振荡信号,并且其频率可以通过控制元器件的数值来调节。

实验结果与原理相符合,说明正弦波振荡器的工作原理有效。

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告实验目的:本实验的目的是通过搭建一个RC正弦波振荡器电路,研究RC电路的振荡特性,并分析RC电路中电流和电压的变化规律。

实验设备:- 信号发生器- 电压表- 电流表- 电阻- 电容- 电源- 连接线- 示波器实验原理:RC正弦波振荡器电路由电容C和电阻R组成。

根据基尔霍夫定律,电路中的电压满足以下方程:V = VR + VC,其中VR为电阻上的电压,VC为电容上的电压。

在电容未充电时,电流通过电阻,而电容不导电。

当电压施加到电路上时,电容开始充电,电流开始减小。

随着时间的流逝,电容上的电压也在增加。

当电容经过一段时间充电后,电压达到最大值,电流达到最小值。

此时电容开始放电,电流再次增大。

随着电容的放电,电压逐渐减小。

电容和电阻的相互作用导致电流和电压的周期性变化,形成正弦波。

实验步骤:1. 将信号发生器的正负极分别连接到电阻R和电容C的一个端口。

2. 将电容的另一个端口连接到电阻的另一端,形成一个闭合的回路。

3. 将电流表连接到电阻上,以测量通过电阻的电流。

4. 将电压表连接到电容上,以测量电容上的电压。

实验结果:通过实验观察,我们可以看到电流和电压随着时间的变化呈现正弦波形。

当电流为最大值时,电压达到最小值,当电流为最小时,电压达到最大值。

电流和电压的变化是周期性的,证明了电路中存在振荡现象。

实验讨论:1. 实验中,我们可以通过调节信号发生器的频率来改变振荡的频率。

2. 通过改变电阻R和电容C的数值,我们可以观察到振荡的幅度和频率的变化。

3. RC振荡器电路还可以应用于实际电路中,例如通信信号源的产生、交流电源的输出等。

实验总结:通过本次实验,我们成功搭建了一个RC正弦波振荡器电路,并观察到了电流和电压的周期性变化。

实验结果验证了RC电路的振荡特性,并加深了对振荡器电路的理解。

实验中我们还发现,通过调节信号发生器的频率、改变电阻和电容的数值,可以对振荡的频率和幅度进行调节。

RC正弦波振荡电路-报告

RC正弦波振荡电路-报告

RC正弦波振荡电路-报告
正弦波振荡电路是一种广泛使用的振荡电路,可用于放大信号和稳定频率,并可以将外部信号调节为正弦波信号。

它是应用最为广泛的一种振荡电路,也是现代电子技术及各种微机系统中最基本的电路。

RC正弦波振荡电路是一种基本的正弦波振荡电路,由RC延迟网络组成,该振荡电路的构成由电源V、阻容网络(RC)、放大器和滤波电路组成,其中滤波电路的作用是使振荡信号的波形更接近正弦波。

该类正弦波振荡电路最重要的是精确控制由RC延迟网络产生的振荡频率,对于放大信号也有一定的要求,必须选择一个具有一定增益幅度的放大器,以满足系统的要求。

RC正弦波振荡电路,其用途主要是进行频率稳定,以实现整个系统的稳定振荡。

同时它也可以用于振荡电源的供应、有源滤波器、振荡调制器、滤波失真和信号放大,对于熔丝火焰周期控制也有很大的作用。

RC正弦波振荡电路操作简单、结构简单,成本低、可靠性高,并且可以经过一定调节而改变振荡频率,是现代电子技术和系统中最基本的电路之一。

正弦波振荡电路的实验报告

正弦波振荡电路的实验报告

新疆大学实训(实习)设计报告所属院系:机械工程学院专业:工业设计课程名称:电工电子学设计题目:正弦波振荡电路设计(RC)班级:机械10-5班学生姓名:盛晓亮学生学号:20102001007指导老师: 玛依拉完成日期:2012.7.5RCfnπ21=;(式4)图6 RC串并联电路这说明只有符合上述频率nf的反馈电压才能与0•U相位相同。

这时的反馈系数为31==••UUF f(式5)可见,RC串、并联电路既是反馈电路又是选频电路。

ωω•υF31ωωο90ο90-fϕο图7 幅频特性图8 相频特性2.自励振荡的幅度条件:反馈电压的大小必须与放大电路所需要的输入电压的大小相等,即必须有合适的反馈量。

用公式表示即ifUU=(式6)由于iUUA0=(式7)对于图6所示振荡电路,由于101R R A F+==3,故起振时o A >3, 即12R R F >, 因而要求F R 由起振时的大于12R 逐渐减小到稳定振荡时的等于12R 。

所以F R 采用了非线性电阻。

改变R 和C 即可改变输出电压的频率。

四、设计内容与步骤1.内容(1)根据设计结果连接电路。

(2)分析和观察不同时间段输出波形由小到达的起振过程和稳定到某一幅度的全过程。

(3)参数设置,若参数不能达到设计要求,按指标要求调试电路。

2.步骤(1)在Multisim 平台上建立如图9所示的实验电路,仪器参数按图8所示设置:nF C C 1.021==;电阻4R +5R >23R ;4R >5R .调节1R (即21,R R 同时改变)使振荡稳定时满足Ω==K R R 5.521。

图9 RC 正弦波振荡仿真电路图调节直至震荡稳定时的输出信号观测示波器显示(如图10、11)a. 起震:电位器8%图10 起震时的图形b. 振幅最大且不失真:电位器55%图11 震荡稳定时输出信号的图形(2)单击仿真开关运行动态分析,观测频率计数据(如图12所示)。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告引言:正弦波振荡器是一种很重要的电路,在电子工程中有着广泛的应用。

它是实现信号产生和调制的基础,因此学习正弦波振荡器是学习电子工程的基础。

在实验中,我们将会学习到如何制作一个简单的正弦波振荡器电路,以及探究它的参数和特性。

实验设计:1.电路连接正弦波振荡器的基本构成为反馈电容C和反馈电阻R,而共同作用下,振荡器能够自持续发生正弦振荡信号。

电路连接如下图所示。

2.器材准备我们需要以下器材:- 电阻R,可调范围0-22kohm;- 电容C,为470nF;- 操作放大器,使用的是UA741;- 示波器。

3.参数测量和分析首先,我们需要测量电路中的R和C值。

然后,通过调整电位器,我们可以改变电路中的R值,进而观察输出波形的变化。

利用示波器,我们可以测量电路的输出波形,并通过测量峰峰值、频率和相位等参数,从而对电路性能进行分析。

实验结果:通过测量,我们得到了以下结果:在电容值为470nF的情况下,电路的输出波形为正弦波,并且频率在1KHZ左右。

当调整电位器改变电路中的R值时,可以观察到波形振幅随着R值的增加而增大,同时频率也有所变化。

具体数据如下:R/kohm|频率/KHZ|峰-峰值/V|相位/°--|--|--|--4.7||||10|1.18|495mV||15|1.03|863mV||20|0.91|1.2V||22|0.84|1.38V||24|0.78|1.54V||从数据可以看出,随着R值的增加,频率变低,峰-峰值变大。

我们还可以发现,在较大的R值下,电路的频率变得稳定,同时峰-峰值也变得更加平稳。

结论:通过实验,我们探究了正弦波振荡器的参数和特性,并得到了如下结论:1.正弦波振荡器中,反馈电容和反馈电阻是关键构成部分,能够实现自持续发生正弦振荡信号。

2.在电容值不变的情况下,随着电阻R值的增加,电路中的正弦波的频率降低,同时峰-峰值增大。

3.当R值达到一定范围时,电路的频率和峰-峰值变得更加稳定。

rc正弦波振荡电路实验报告总结

rc正弦波振荡电路实验报告总结

rc正弦波振荡电路实验报告总结I. 实验目的II. 实验原理A. RC正弦波振荡电路的原理B. RC正弦波振荡电路的基本组成部分III. 实验器材和元器件IV. 实验步骤A. 搭建RC正弦波振荡电路B. 测量电路参数V. 实验结果与分析VI. 实验总结I. 实验目的本实验旨在通过搭建RC正弦波振荡电路,掌握RC正弦波振荡电路的工作原理,了解RC正弦波振荡电路的基本组成部分和测量方法,提高学生实际动手能力和实验操作技能。

II. 实验原理A. RC正弦波振荡电路的原理RC正弦波振荡电路是一种基于反馈原理的简单的谐振电路。

当一个信号经过放大后再反馈到输入端时,会产生自激振荡现象。

在RC正弦波振荡电路中,通过选择合适的元器件参数,可以使得输出信号呈现出稳定、周期性、幅值恒定、频率可调等特点。

B. RC正弦波振荡电路的基本组成部分RC正弦波振荡电路由放大器、反馈电路和谐振电路三部分组成。

其中,放大器用于放大输入信号,反馈电路将输出信号反馈到输入端,谐振电路则是产生稳定的振荡信号。

III. 实验器材和元器件实验器材:示波器、函数发生器、万用表、电源等。

元器件:电容、电阻等。

IV. 实验步骤A. 搭建RC正弦波振荡电路1. 根据实验原理和要求搭建RC正弦波振荡电路。

2. 将示波器接入输出端口,观察输出信号的波形和频率等参数。

B. 测量电路参数1. 使用万用表测量各个元件的参数,并记录下来。

2. 使用示波器测量输出信号的幅值、频率等参数,并记录下来。

V. 实验结果与分析通过实验,我们成功搭建了RC正弦波振荡电路,并观察到了稳定的输出信号。

在测量过程中,我们发现元件参数对于输出信号的稳定性和频率有着很大影响。

因此,在实际应用中需要根据具体要求选择合适的元器件参数,以达到最佳的效果。

VI. 实验总结通过本次实验,我们深入了解了RC正弦波振荡电路的原理和组成部分,掌握了搭建和测量方法,并对元器件参数的选择有了更深刻的认识。

RC正弦波振荡电路

RC正弦波振荡电路

实验7 RC 正弦波振荡电路1 实验目的:1.1 熟悉集成运算放大器构成的正弦波振荡电路的原理与设计方法。

1.2 掌握由运放构成的函数发生器。

2 预习要求:2.1分析图10-1电路工作原理,按照图中的元件参数,计算符合振荡条件的R W 值及振荡频率fo 。

2.2分析图10-4电路的工作原理,画出1o v 、2o v 的波形,推导1o v 、2o v 的波形的周期和幅度的计算公式。

2.3 按图10-4中给出的元件参数计算1o v 、2o v 的波形的周期和幅度,与实验实测值进行比较。

3 实验器材(1) 模拟实验箱 (2) 数字万用表 (3)示波器 (4) 集成运算放大器LM324/A 1片 (5)电子元件若干4 实验电路与原理及实验内容 4.1 RC 桥式正弦振荡电路RC 桥式正弦振荡电路如图10-1所示。

其中R 1、C 1、R 2、C 2是选频网络,接在集成运算放大器的输出与同相输入端之间。

构成正反馈,产生正弦自激振荡。

图中虚线框内的部分是带有负反馈的同相放大电路,其中R 3、R W 及R 4为负反馈网络,调节R W 即可改变负反馈的反馈系数,从而调节放大电路的电压增益,使之满足振荡的幅度条件。

二极管D 1、D 2起限制输出幅度,改善输出波形。

4.1.1 RC 串并联选频网络的选频特性一般取R 1=R 2=R ,C 1=C 2=C ,令R 1、C 1并联的阻抗为Z 1,R 2、C 2串联的阻抗为Z 2及ωo =RC 1,则Z 1=RC j R ω+1,Z 2=R Cj ω1+ 推出正反馈的反馈系数为)//(31211ωωωωo o o f J Z Z Z V V F -+=+==(10-1) 由此可得RC 串并联选频网络的幅频特性与相频特性分别是R 1 16K22)//(31ωωωωO O F -+=(10-2)3)//(ωωωωϕO O F arctg--= (10-3)由(10-2)、(10-3)两式可画出其幅频特性与相频特性的曲线,如图10-3所示由(10-2)、(10-3)两式可知,当ω=ωO =RC 1时,反馈系数的幅值为最大,即F=31,而相频响应的相角φF =0。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。

按图1-1连接实验电路,输出端uo接示波器。

1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。

描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。

1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。

1.4.器振荡频率fo,并与理论值进行比较。

图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。

图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。

2.(1)二极管控制电路增益,实现稳幅。

二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。

稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。

负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。

也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。

(2)若断开二极管,波形会变得极不稳定。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

rc正弦波振荡实验报告RC正弦波振荡实验报告实验目的:本实验旨在通过搭建RC正弦波振荡电路,观察电路的振荡特性,并验证理论上的振荡频率和幅度。

实验原理:RC正弦波振荡电路由一个电阻R和一个电容C组成,通过连接一个交流信号源和一个运放构成一个反馈电路。

当输入信号通过运放放大后,输出信号又通过反馈回到输入端,形成一个闭环。

在一定条件下,该电路会产生稳定的正弦波振荡。

实验步骤:1. 准备实验仪器和元件,包括电阻R、电容C、运放、示波器等。

2. 按照电路图搭建RC正弦波振荡电路。

3. 调节电路参数,如电阻R和电容C的数值,以及交流信号源的频率和幅度。

4. 使用示波器观察输出波形,并记录振荡频率和幅度。

5. 对比实验结果与理论计算值,分析实验误差和可能的影响因素。

实验结果:经过实验观测和数据记录,我们得到了RC正弦波振荡电路的输出波形,并测得了振荡频率和幅度。

通过与理论计算值的对比,我们发现实验结果与理论值基本吻合,验证了RC正弦波振荡电路的振荡特性。

实验结论:通过本次实验,我们成功搭建了RC正弦波振荡电路,观察到了其振荡特性。

实验结果与理论计算值基本吻合,验证了该电路的振荡频率和幅度。

同时,我们也发现了一些可能的影响因素,为今后的实验和研究提供了参考。

这次实验为我们理解振荡电路的原理和特性提供了宝贵的实践经验。

总结:通过本次实验,我们深入了解了RC正弦波振荡电路的原理和特性,掌握了搭建和调试该电路的方法,提高了实验操作和数据处理的能力。

这次实验为我们打下了扎实的实验基础,为今后的学习和科研工作奠定了良好的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏大学
实训(实验)设计报告
所属院系:
专业:
课程名称:电工电子学
设计题目:正弦波振荡电路设计(RC)
班级:
学生姓名:
学生学号:
指导老师:
完成日期:2012.12.5
实训设计题目:正弦波振荡电路的设计(RC)
要求完成的内容:设计一个正弦波振荡器。指标条件如下:
振荡频率为fo=2kHz的,输出幅值为实测,输出端设置电压跟随器。使用的元器件
2.2.2正弦波振荡电路的组成判断及分类
图4正弦波振荡器原理电路
(1)放大电路:保证电路能够从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。
(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。
(3)正反馈网络;引入正反馈,使放大电路的输入信号等于其反馈信号。
图14函数发生器
(4)观察记录同相输入电压(如图15)、反相输入电压(如图16)、输出电压(如图17)。
图15同相输入电压图16反相输入电压
图17输出电压
(5)调试出的李萨如图形(图18):
图18李萨如图形
五、所用仪器设备
表1元件明细表
直流稳压电源
双踪示波器
运算放大器LM741
电阻111 Nhomakorabea若干
万用表
频率计
对于图6所示振荡电路,由于 =3,故起振时 >3,即 ,
因而要求 由起振时的大于 逐渐减小到稳定振荡时的等于 。所以 采用了非线性电阻。
改变R和C即可改变输出电压的频率。
四、设计内容与步骤
1.内容
(1)根据设计结果连接电路。
(2)分析和观察不同时间段输出波形由小到达的起振过程和稳定到某一幅度的全过程。
起振条件是 ;
电路的特点是:选频特性好,调频比较困难,适于产生单一频率的振荡。
2.2正弦波振荡电路的基本工作原理
2.2.1产生振荡的条件
正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生的首要条件,产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路各部分。
1.2设计的任务与要求
1.设计一个 的RC桥式正弦波振荡电路。
2.掌握RC桥式正弦波振荡电路的工作原理。
1.3设计的技术指标
1.示波器的调试。
2.输出波形:正弦波。
3.输出频率范围:在2000HZ( 100HZ)范围内可调。
4.输入电压:12V的对称电压。
二、设计方案与比较
2.1常见的RC正弦波振荡电路的设计方案与特点比较
这说明只有符合上述频率 的反馈电压才能与 相位相同。这时的反馈系数为
(式5)
可见,RC串、并联电路既是反馈电路又是选频电路。
图7幅频特性图8相频特性
2.自励振荡的幅度条件:
反馈电压的大小必须与放大电路所需要的输入电压的大小相等,即必须有合适的反馈量。用公式表示即
(式6)
由于
(式7)
(式8)
因此自励振荡的幅度条件也可以表示为
(4)满足设计要求后,认真按格式完成课程设计报告。
指导教师评语:
评定成绩为:
指导教师签名:年月日
一、设计目的与任务
1.1设计的目的
1.掌握集成运算放大器组成的RC桥式正弦波振荡电路的工作原理和电路结构。
2.研究RC振荡器的RC串、并联网络的选频特性。
3.掌握RC桥式振荡器的工作原理及调测技术。
4.进一步掌握用双踪示波器测相位差的方法。
电容
导线
3
1
若干
若干
函数信号发生器
1
六、小结
通过本次实验,我学会了集成运算放大器组成RC桥式正弦波振荡电路的工作原理和电路结构,了解了RC桥式振荡器中RC串并联的选频特性,熟悉了常用仪表,了解电路调试的基本方法,进一步掌握了用双踪示波器测相位差的方法;同时学会了Visio制图软件和Multisim电路仿真软件。总之,收获很大。
(2) ,则电路能够振荡,但是会出现明显的非线性失真,需要加强稳幅环节的作用;
(3) ,则电路能够振荡。
三、电路原理及分析
电路组成如图5所示:
图5 RC正弦波振荡器
图5是由集成运放组成的RC振荡器电路,集成运放和 、 组成一个同相放大电路,R和C组成的RC串并联电路作为反馈电路,因而该电路可简化成图所示的原理电路。可见,该电路是利用反馈电路的反馈电压作为放大电路的输入电压,从而可以在没有外加输入信号的情况下,将直流电源提供的直流电变换成一定频率的正弦交流电信号。像这种在没有外加输入信号的情况下,依靠电路自身的条件而产生一定频率和幅值的交流输出信号的现象称为自励振荡。建立起自励振荡,需满足以下三个条件:
2.1.2文氏电桥RC正弦波震荡电路
图2 RC串并联式振荡原理图
RC串并联网络振荡电路原理图如图2所示。
电路的振荡频率 ;
起振条件是 ;
电路的特点是:能连续改变振荡频率,便于加负反馈稳幅,振荡波形稳定不失真。
2.1.3双T选频网络振荡电路
图3双T型振荡器原理图
双T选频网络振荡电路原理如下图3所示。
电路的振荡频率是 ;
a.起震:电位器8%
图10起震时的图形
b.振幅最大且不失真:电位器55%
图11震荡稳定时输出信号的图形
(2)单击仿真开关运行动态分析,观测频率计数据(如图12所示)。
图12频率计
作输入输出信号分析(图13)
图13 RC正弦波振荡仿真电路
(3)参数扫描分析,设置函数发生器(如图14所示),再调试以获得李萨如图形。
(式13)
3.起振过程
当电路与电源接通的瞬间,输入端必然会产生微小的电压变化,它一般不是正弦量。但可以分解成许多不同频率的正弦分量,其中只有频率符合(式4)的正弦分量能满足自励振荡的相位条件,只有满足(式13), 就会大于原来的 ,因而该频率的信号被放大后又被反馈电路送回到输入端,使输入端的信号增加,输出信号便进一步增加,如此反复循环下去,输出电压就会逐渐增加起来。对于一般的放大电路来说, 较小时,晶体管工作在放大状态, 基本不变。 较大时,晶体管进入饱和状态, 开始减小。当 减小到正好满足自励振荡条件的幅度条件(式9)时,输出电压不再增加,振荡达到了稳定。
附录
仿真结果
正弦波:
李萨如图形:
要求为:运算放大器(LM741或LM353),电容(瓷片电容),电阻(0.25瓦)等。
要求:(1)根据设计要求,确定电路的设计方案,估算并初步选取电路的元件参数。
(2)选用熟悉的电路仿真软件,搭建电路模型进行仿真分析,由仿真结果进行参
数调试、修改,直至满足设计要求。
(3)由选取的元件参数,精确计算和复核技术指标要求。
(式9)
对于图6所示RC振荡电路来说,如前所述 ,故
(式10)
由于同相放大电路的电压放大倍数为
(式11)
因此
(式12)
可见,从自励振荡的上述条件来看,正弦波振荡器实质上是一个不需要外加输入信号的正反馈放大电路,其闭环电压放大倍数 。
3.自励振荡的起振条件:
起振时的 要大于稳定振荡时的 ,用公式表示即
(4)稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。
2.2.3判断电路是否振荡的方法
(1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产生振荡;
(2)放大电路的结构是否合理,有无放大能力,静态工作是否合适;
(3)是否满足幅度条件。
2.2.4正弦波振荡电路的检验
(1) ,则电路不可能振荡;
1.自励振荡的相位条件:
反馈电压 的相位必须与放大电路所需要的输入电压 的相位相同,即必须是正反馈。
由于放大电路采用了同相放大电路, 与 相位相同,因此, 与 也必须相位相同。如图6所示,由于
= = = (式1)
所以,要满足 和 相位相同的条件,分母中的虚步应等于零,即
(式2)
;(式3)
;(式4)
图6 RC串并联电路
注意:各器件参数使用要恰当,否则得不到完整的正弦波和李萨如图形。
七、参考文献
1、电工学(少学时)唐介主编高等教育出版社
2、电工及电子技术实验教程新疆教育出版社
3、电路分析基础与仿真测试张海燕、刘艳昌主编北京邮电大学出版社
4、电工与电子技术实验机械工业出版社
5、EDA操作实训李伟任风轩主编哈尔滨工业出版社
(3)参数设置,若参数不能达到设计要求,按指标要求调试电路。
2.步骤
(1)在Multisim平台上建立如图9所示的实验电路,仪器参数按图8所示设置: ;电阻 + >2 ; > .调节 (即 同时改变)使振荡稳定时满足 。
图9 RC正弦波振荡仿真电路图
调节直至震荡稳定时的输出信号观测示波器显示(如图10、11)
常见的RC正弦波振荡电路有文氏电桥、移相式和双T式三种振荡电路。
2.1.1 RC移相振荡电路
图1移相式振荡器原理图
RC移相振荡电路原理图如图1所示,电阻选择R>> ;
振荡频率 ;
起振条件是基本放大电路A的电压放大倍数 ;
电路特点:是结构简单,但是选频作用差,振幅不稳,频率调节不便,频率范围是几赫兹到几千赫兹,一般用于频率固定且稳定性要求不高的场合。
相关文档
最新文档