传热几传质学答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 热量传递的基本概念

2.当铸件在砂型中冷却凝固时,由于铸件收缩导致铸件表面与砂型间产生气隙,气隙中的空气是停滞的,试问通过气隙有哪几种基本的热量传递方式? 答:热传导、辐射。 注:无对流换热

3.在你所了解的导热现象中,试列举一维、多维温度场实例。

答:工程上许多的导热现象,可以归结为温度仅沿一个方向变化,而且与时间无关的一维稳态导热现象。

例,大平板、长圆筒和球壁。此外还有半无限大物体,如铸造时砂型的受热升温(砂型外侧未被升温波及)

多维温度场:有限长度的圆柱体、平行六面体等,如钢锭加热,焊接厚平板时热源传热过程。

4.假设在两小时内,通过152mm ×152mm ×13mm (厚度)实验板传导的热量为 837J ,实验板两个平面的温度分别为19℃和26℃,求实验板热导率。

解:由傅里叶定律可知两小时内通过面积为152×152mm 2的平面的热量为

t x

T A t dx dT A

Q ∆∆-=-=λλ 873=-3600210

1326

1910152101523

33⨯⨯⨯-⨯⨯⨯⨯⨯---λ 得 C m W 03/1034.9*⨯=-λ

第九章 导 热

1. 对正在凝固的铸件来说,其凝固成固体部分的两侧分别为砂型(无气隙)及固液分界面,试列出两侧的边界条件。

解:有砂型的一侧热流密度为 常数,故为第二类边界条件, 即τ>0时),,,(n

t z y x q T

=∂∂λ

固液界面处的边界温度为常数, 故为第一类边界条件,即 τ>0时Τw =f(τ)

注:实际铸件凝固时有气隙形成,边界条件复杂,常采用第三类边界条件

3. 用一平底锅烧开水,锅底已有厚度为3mm 的水垢,其热导率λ为1W/(m · ℃)。已知

与水相接触的水垢层表面温度为111 ℃。通过锅底的热流密度q 为42400W/m 2,试求金属锅底的最高温度。

解:热量从金属锅底通过水垢向水传导的过程可看成单层壁导热,由公式(9-11)知

C q T 03

2.1271

10342400=⨯⨯==∆-λδ

=∆T -=-121t t t 111℃, 得 1t =238.2℃

4. 有一厚度为20mm 的平面墙,其热导率λ为1.3W/(m·℃)。为使墙的每平方米热损失不超

过1500W ,在外侧表面覆盖了一层λ为0.1 W/(m·℃)的隔热材料,已知复合壁两侧表面温 度分布750 ℃和55 ℃,试确定隔热层的厚度。

解:由多层壁平板导热热流密度计算公式(9-14)知每平方米墙的热损失为

15002

2

112

1≤--λδλδT T

15001

.03.102.055

7502

≤+-δ

得mm 8.442≥δ

6. 冲天炉热风管道的内/外直径分别为160mm 和170mm ,管外覆盖厚度为80mm 的石棉隔热层,管壁和石棉的热导率分别为λ1=58.2W/(m ℃),λ2=0.116W/(m ℃)。已知管道内表面温度为240 ℃ ,石棉层表面温度为40 ℃ ,求每米长管道的热损失。 解:由多层壁圆管道导热热流量公式(9-22)知

C T o

2401=,2.58,33.0,17.0,16.0,4013210

3=====λm d m d m d C T 116.02=λ

所以每米长管道的热损失为

m w l l d d l d d l T T l

n n n

n /6.219718

.5001.0200

14.32116.017.033.02.5816.017.0)40240(14.32)(22

2

31

1231=+⨯⨯=+-⨯⨯=+

-=

λ

λπφ

7.解:

查表,00019.01.2-

+=t λ已知C C C t m mm 000975)3001650(2

1

,37.0370=+=

==-

δ 2

/07.833837

.028525

.2)3001650(,285525.297500019.01.2m w T q =⨯-=∆==⨯+=δλλ

8. 外径为100mm 的蒸汽管道覆盖隔热层采有密度为20Kg/m 3的超细玻璃棉毡,已知蒸汽管外壁温度为400℃,要求隔热层外壁温度不超过50℃,而每米长管道散热量小于163W ,试确定隔热层的厚度。

解:已知.163,50,1.0,400211w L

C t m d C t o o <≤==θ

查附录C 知超细玻璃棉毡热导率

C t t o 225250

400,08475.000023.0033.0=+=

=+=λ 由圆筒壁热流量计算公式(9-20)知:

163)1

.0()50400(08475.014.32)(2212<-⨯⨯⨯=∆=d l d d l T l

Q n n πλ

得 314.02=d

而=2d δ21+d 得出 m d d 107.0)1.0314.0(2

1

)(2112=-=-=δ 9.

解:UI m mm w 0375.05.372

75

150,845.1123.015==-==⨯==δφ 356.0)

3.478.52(15.0075.01

4.30375

.0845.121=-⨯⨯⨯⨯=

∆=

T

d d πφδλ

10. 在如图9-5所示的三层平壁的稳态导热中,已测的t 1,t 2,t 3及t 4分别为600℃,500℃,200℃及100℃,试求各层热阻的比例 解:根据热阻定义可知

,q

T R t ∆==

λδ而稳态导热时各层热流量相同,由此可得各层热阻之比为 ∴ )(:)(:)(::433221321t t t t t t R R R t t t ---=

=100:300:100 =1:3:1

11.题略

解:(参考例9-6)4579.03600

*120*10

*69.025

.026

≈=

=

-at

x N

查表46622.0)(=N erf ,代入式得)()(0N erf T T T T w w -+=

[]46622.0*)1037293(1037-+=k 3.709≈k 12.液态纯铝和纯铜分别在熔点(铝660℃,铜1083℃)浇铸入同样材料构成的两个砂型中,砂型的密实度也相同。试问两个砂型的蓄热系数哪个大?为什么?

答:此题为讨论题,砂型的蓄热系数反映的是材料的蓄热能力,综合反映材料蓄热和导热能力的物理量,取决于材料的热物性ρλc b =

ρ

λc b =

相关文档
最新文档