中小学数学很重要的20种常见思想方法
小学数学思想方法

小学数学思想方法一、整体观念思想方法整体观念是指将问题看作一个整体,并从整体中进行思考和分析。
在学习数学知识和解决数学问题时,学生应该培养整体观念,即从整体去理解和把握问题。
比如,在学习分数的概念时,学生可以通过将一块糖分成几份来理解分数的含义,而不仅仅是记住分数的定义。
二、归纳和演绎思想方法归纳是从具体的事例中总结出一般规律,而演绎是根据一般规律推出具体的结论。
在学习数学知识时,学生应该培养归纳和演绎的思维方法,即从具体例子中归纳出一般规律,然后用这个规律去解决其他类似的问题。
比如,在学习加法运算时,学生可以通过多个具体的例子来总结出加法的规律,再用这个规律去解决其他的加法问题。
三、抽象思维方法抽象是指将事物的共同属性提炼出来,形成概念或规律。
在学习数学知识时,学生应该培养抽象思维方法,即将具体的问题抽象化为数学符号或概念,用符号或概念来表示并解决问题。
比如,在学习几何图形时,学生可以将具体的图形抽象成几何图形的概念,并用几何图形的属性来解决相关问题。
四、逻辑思维方法逻辑思维是指根据前提和推理规则,进行合乎逻辑的推理和判断。
在学习数学知识和解决数学问题时,学生应该培养逻辑思维方法,即根据已知条件和数学规则,进行逻辑推理和判断,得出正确的结论。
比如,在解决代数方程的问题时,学生可以根据方程的性质和运算规则,进行逻辑推理,得出方程的解。
五、实践思维方法实践思维是指通过实际操作和体验,来加深对数学知识的理解和掌握。
在学习数学知识时,学生应该注重实践思维,即通过实际的物体、实际的活动和实际的问题来引导学生进行数学思维和解决问题。
比如,在学习分数的概念时,学生可以通过将物体切割成几份,比较几份的大小,加深对分数大小关系的理解。
小学数学思想方法是数学学习的基础,也是培养学生数学思维能力和解决问题能力的关键。
学生在学习数学时,应该注重培养这些思想方法,并灵活运用到解决问题中,从而提高学习效果。
通过培养这些思想方法,可以使学生更好地理解和掌握数学知识,提高数学水平。
小学学习数学的17个思想方法

小学学习数学的17个思想方法小学学习数学的17个思想方法1对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式等。
5类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
总结小学数学思想方法有哪些

总结小学数学思想方法有哪些在小学数学中,有许多思想方法可以帮助孩子理解和解决问题。
下面总结了一些常见的思想方法,希望能够帮助你更好地理解小学数学。
1. 形象思维:小学生较善于通过观察和感受物体的形状、颜色、数量等特征来进行数学思维。
教师可以通过实物、图片、图表等方式引导学生进行形象思维,帮助他们理解和解决数学问题。
2. 分类思维:需要将不同的事物进行分类,帮助学生理清事物的特点和归纳规律。
通过类比、对比等方式,培养学生分类思维的能力。
3. 抽象思维:小学生逐渐开始接触抽象的概念和符号,如数字、字母等。
通过逐步引导学生,帮助他们建立和理解数学的符号系统和抽象概念。
4. 逻辑思维:逻辑思维是数学思维的核心,通过正确的推理和判断,解决问题。
教师可以引导学生从已知条件出发,运用逻辑推理和归纳思维,找到解决问题的方法。
5. 探究思维:鼓励学生主动思考和发现,引导他们通过观察和实践,尝试不同的解决办法。
通过探究的过程,培养学生的独立思考和解决问题的能力。
6. 创新思维:培养学生解决问题的创新能力,鼓励他们提出自己的独特观点和解决办法。
通过创造性的思维,激发学生对数学的兴趣和学习动力。
7. 反思思维:在解决数学问题的过程中,学生应该有反思、总结的习惯,找到解决问题的不足之处,并进行改进。
通过反思,帮助学生提高自己的数学思维能力。
8. 合作思维:在解决数学问题的过程中,鼓励学生进行小组合作,分享和交流彼此的思考和解决办法。
通过合作,让学生从不同的角度和思维方式中学习,并培养团队合作的能力。
9. 快速思维:快速思维是在时间限制下迅速解决问题的能力。
通过数学游戏、闯关等方式,培养学生在有限时间内迅速思考和解决问题的能力。
10. 多元思维:鼓励学生从多种角度思考和解决问题,不拘泥于一种思维方式。
通过学习多个方法和策略,帮助学生积累更多的解决问题的工具和能力。
以上是小学数学常见的思想方法总结,希望对你有所帮助。
要注意培养学生的数学思维方法,需要根据学生的年龄和认知水平进行选择和引导,并适当结合教学内容和实际情境。
数学小学数学常用的16种思想方法

数学基础打得好,对将来的升学也有较大协助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件实行推算,根据数量出现的矛盾,加以适当调整,最后找到准确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后能够使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促动学生思维发展的手段。
在教学分数应用题中,教师擅长引导学生比较题中已知和未知数量变化前后的情况,能够协助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描绘数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间实行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不但使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
分类思想方法不是数学独有的方法,数学的分类思想方法表达对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形能够按边分,也能够按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
小学数学常用的16种解题思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学数学最常用的16种思维方法

小学数学最常用的16种思维方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
数学思想方法有哪些

数学思想方法有哪些
1. 归纳法: 通过对少量特殊情况的验证,从而得到一般情况的结论。
2. 逆向思维: 从已知结果出发,逆向推导出问题的解决方法。
3. 等式变形: 使用代数运算法则,将方程或不等式中的项进行重组和移项,从而简化问题。
4. 反证法: 假设问题的反面而推导出矛盾的结论,从而得出原命题的正确性。
5. 分而治之: 将复杂的问题分解为若干个相对简单的子问题,然后逐个解决这些子问题。
6. 枚举法: 通过穷举所有可能的情况,找出满足条件的解。
7. 几何方法: 利用几何图形的性质和关系,进行推导和证明。
8. 求反函数: 通过求解原函数的反函数,得到问题的解。
9. 近似方法: 将复杂的问题简化为近似的计算方式,得到问题的近似解。
10. 统计分析: 利用统计学的方法对问题进行分析和推断,并得出相应的结论。
小学数学中常用的数学思想方法

小学数学中常用的数学思想方法在小学数学教学中,常用的数学思想方法有以下几种:1.查找规律法:通过观察一系列数的特点,总结出它们之间的规律和规则。
例如,观察一个数列的每个项与前一项之间的关系,推理出数列的通项公式。
2.分类讨论法:对于一个问题,将其分为几种情况进行讨论,然后分别解决。
例如,求解一个实际问题中的数字运算题,可以将问题中的数字进行分类,分别计算后再进行合并。
3.反证法:当问题较难解决时,可以通过假设结论不成立,再推导出矛盾的结论,证明原结论一定成立。
例如,证明一个数是素数时,可以先假设该数是合数,然后推导出矛盾的结论。
4.归纳法:通过寻找一个问题的基本情况和递推关系,进行逐步推导,从而得出结论。
例如,通过归纳法可以证明等差数列的通项公式。
5.求同法:将问题中的数学关系与其他几个问题中的数学关系进行对比,从而找出相似之处。
例如,解决一个数学问题时,可以将其与类似的已解决问题进行比较,找到解决问题的方法。
6.分析法:将一个复杂的问题拆解成多个简单的部分,然后逐个分析解决。
例如,解决一个几何问题时,可以将其分解成多个几何图形,逐个进行研究和解决。
7.探究法:鼓励学生自主探索,通过实际操作和观察,发现问题的规律和解决方法。
例如,通过实际测量和比较,学生可以探究出相似三角形的性质。
8.逆向思维法:从问题的目标出发,反向思考解决问题的方法。
例如,当一个问题无法直接求解时,可以考虑从目标得出的信息反向推导,从而找到解决问题的线索。
9.列出方程法:通过将问题中的数学关系用方程式表示,转化为代数问题进行求解。
例如,解决一个关于两个未知数的问题时,可以先列出方程组,然后求解方程组得出结果。
10.图形化表示法:通过绘制图形来表示问题,直观地观察和推理问题的特点。
例如,在解决一个几何问题时,可以先绘制出对应的图形,再进行推理和求解。
以上是小学数学教学中常用的一些数学思想方法,帮助学生更好地理解和解决数学问题。
小学数学中常见的数学思想方法有哪些

1.小学数学中常见的数学思想方法有哪些?答:小学数学中常见的数学思想方法有:转化思想、集合思想、数形结合思想、函数思想、符号化思想、对应思想、分类思想、归纳思想、模型思想、统计思想等。
2.小学生应该形成的基本活动经验有哪些?答:小学生应该形成的基本活动经验有操作、观察、实验、猜测、度量、验证、推理、交流。
(1)、基本数学活动经验。
我们大致把数学基本经验分为:日常生活中的数学经验,社会科学文化情境中的数学经验,以及纯粹数学活动累积的数学经验。
(2)、日常生活中的数学经验。
第一类:可以直接拿来促进学生数学学习的生活经验。
第二类;可以通过类比来促进学生数学学习的生活经验。
第三类:可能对学生的数学学习产生负面影响的生活经验。
第四类:包含着一搬规律的生活经验。
(3)、关注学生生活经验、积累生活中的数学活动经验。
(4)、围绕新课程下的数学教学,我们要帮助学生积累生活中数学活动经验,应该依据学生生活经验、利用学生生活经验、提升学生生活经验。
(一)依据学生生活经验(二)利用学生生活经验(三)提升学生生活经验3.简要谈谈学业评价具有哪些功能?答:(一)学业评价的基本功能:巩固功能、反馈功能、矫正功能。
(二)学业评价的新增功能:发展功能、激励功能、沟通功能另外,学业评价的功能还有选拔功能、自测功能、展美功能、育人功能等、这些功能不是单一的、孤立的,而是相互联系、相互促进的,有时还是相互转化的。
4、具体谈谈学业评价具有哪些特征?答:学业评价呈现以下基本特征:一、学业评价具有系统性(1)前测性的学业评价。
前测性的学业评价可以是一节课开始之初的评价,也可以是一个教学单元甚至一门课程开始之前的评价。
这种评价的主要目的是想弄清楚学生是否具备即将开始学习所必需的知识和技能,即确定学生的学习准备情况,它是进行教学活动的基础,直接关系到教学目标是否能够达成。
(2)形成性的学业评价。
形成性的学业评价可以是一节课之中的评价,也可以是一个教学单元之中甚至一门课程实施之中的评价。
学好小学数学常用的17种思想方法

学好小学数学常用的17种思想方法1.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5.类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6.转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7.分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
小学数学中常见的数学思想方法有哪些

1.小学数学中常见的数学思想方法有哪些?答:小学数学中常见的数学思想方法有:转化思想、集合思想、数形结合思想、函数思想、符号化思想、对应思想、分类思想、归纳思想、模型思想、统计思想等。
2 •小学生应该形成的基本活动经验有哪些?答:小学生应该形成的基本活动经验有操作、观察、实验、猜测、度量、验证、推理、交流。
(1)、基本数学活动经验。
我们大致把数学基本经验分为:日常生活中的数学经验,社会科学文化情境中的数学经验,以及纯粹数学活动累积的数学经验。
(2)、日常生活中的数学经验。
第一类:可以直接拿来促进学生数学学习的生活经验。
第二类;可以通过类比来促进学生数学学习的生活经验。
第三类:可能对学生的数学学习产生负面影响的生活经验。
第四类:包含着一搬规律的生活经验。
(3)、关注学生生活经验、积累生活中的数学活动经验。
(4)、围绕新课程下的数学教学,我们要帮助学生积累生活中数学活动经验,应该依据学生生活经验、利用学生生活经验、提升学生生活经验。
(-)依据学生生活经验(二)利用学生生活经验(三)提升学生生活经验3 •简要谈谈学业评价具有哪些功能?答:(一)学业评价的基本功能:巩固功能、反馈功能、矫正功能。
(-)学业评价的新增功能:发展功能、激励功能、沟通功能另外,学业评价的功能还有选拔功能、自测功能、展美功能、育人功能等、这些功能不是单一的、孤立的,而是相互联系、相互促进的,有时还是相互转化的。
4s具体谈谈学业评价具有哪些特征?答:学业评价呈现以下基本特征:—、学业评价具有系统性⑴前测性的学业评价。
前测性的学业评价可以是一节课开始之初的评价,也可以是一个教学单元甚至一门课程开始之前的评价。
这种评价的主要目的是想弄清楚学生是否具备即将开始学习所必需的知识和技能,即确定学生的学习准备情况,它是进行教学活动的基础,直接关系到教学目标是否能够达成。
⑵形成性的学业评价。
形成性的学业评价可以是一节课之中的评价,也可以是一个教学单元之中甚至一门课程实施之中的评价。
小学数学解题技巧:数学小学数学常用的16种思想方法

集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题 或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思 想。在讲述公约数和公倍数时采用了交集象,数离不开形,形离不开数,一方面抽 象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另 一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图 的直观帮助分析数量关系。
14、化归思维方法
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可 较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识 往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题, 对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、 化繁为简、化难为易、化未知为已知。
15、变中抓不变的思想方法
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了 就迎刃而解。如:科技书和文艺书共 630 本,其中科技书 20%,后来又买来一 些科技书,这时科技书占 30%,又买来科技书多少本?
16、数学模型思想方法
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原 型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到 简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培 养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是 学生高数学素养所追求的目标。
形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学 知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是 不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也 常用到甲÷乙=甲×1/乙。
常用的小学数学思想方法

常用的小学数学思想方法1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一样是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,依照数量显现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,把握之后能够使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维进展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情形,能够关心学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这确实是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,差不多上用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易明白得,而且使公式的经历变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在运算中也常用到甲÷乙=甲×1/乙。
[page]-->7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法表达对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形能够按边分,也能够按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
数学小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
数学小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中小学数学很重要的20种常见思想方法
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。
小学采用直观手段,利用图形和实物渗透集合思想。
在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。
另一方面复杂的形体可以用简单的数量关系表示。
在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。
在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法
它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。
如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。
而数学知识联系紧密,新知识往往是旧知识的引申和扩展。
让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。
15、变中抓不变的思想方法
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。
如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。
培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
18、方程思想
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
19、优化思想方法
优化思想就是在有限种或无限种可行方案(决策)中挑选最优的方案(决策)的思想,是一个很重要的数学思想。
20、推理思想
推理是从一个或几个已有的判断得出另一个新判断的思维形式。
推理所根据的判断叫前提,根据前提所得到的判断叫结论。
推理分为两种形式:演绎推理和合情推理。
演绎推理是根据一般性的真命题(或逻辑规则)推出特殊性命题的推理。
演绎推理的特征是:当前题为真时,结论必然为真。
演绎推理的常用形式有:三段论、选言推理、假言推理、关系推理等。
合情推理是从有的事实出发,凭借经验和直觉,通过归纳和类化等推测某些结果。
合情推理的常用形式有:归纳推理和类比推理。
当前提为真是,合情推理所得的结论可能为真也可能为假。