变桨

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电机变桨系统

所属分类:技术论文来源:电器工业杂志更新日期:2011-07-20

摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。

关键词:变桨系统;构成;作用;保护种类;故障分析

1 综述

变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。

变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。

风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。

风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。

变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。

由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。

每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。

风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。

2 变浆系统的作用

根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。

3 主要部件组成

4变桨系统各部件的连接框图

图 1:各部件间连接框图

变桨中央控制箱执行轮毂内的轴控箱和位于机舱内的机舱控制柜之间的连接工作。

变桨中央控制箱与机舱控制柜的连接通过滑环实现。通过滑环机舱控制柜向变桨中央控制柜提供电能和控制信号。另外风机控制系统和变桨控制器之间用于数据交换的 Profibus-DP 的连接也通过这个滑环实现。

变桨控制器位于变桨中央控制箱内,用于控制叶片的位置。另外,三个电池箱内的电池组的充电过程由安装在变桨中央控制箱内的中央充电单元控制。

4.1 中控箱

图 2:中控箱

4.2 轴控箱

在变桨系统内有三个轴控箱,每个叶片分配一个轴控箱。箱内的变流器控制变桨电机速度和方向。

图 3:轴控箱

4.3 电池箱

和轴控箱一样,每个叶片分配一个电池箱。在供电故障或 EFC 信号(紧急顺桨控制信号)复位的情况下,电池供电控制每个叶片转动到顺桨位置。

图 4:电池箱

4.4 变桨电机

变桨电机是直流电机,正常情况下电机受轴控箱变流器控制转动,紧急顺桨时电池供电电机动作。

图 5:变桨电机 4.5 冗余编码器

图 6:冗余编码器

4.6 限位开关

每个叶片对应两个限位开关:91度限位开关和96度限位开关。96度限位开关作为冗余开关使用。

图 7:限位开关

4.7 各部件间连接电缆

变桨中央控制箱、轴控箱、电池箱、变桨电机、冗余编码器和限位开关之间通过电缆进行连接。为了防止连接电缆时产生混乱,电缆有各自的编号。

5 变桨系统的保护种类

位置反馈故障保护:为了验证冗余编码器的可利用性及测量精度,将每个叶片配置的两个编码器采集到的桨距角信号进行实时比较,冗余编码器完好的条件是两者之间角度偏差小于2°;所有叶片在91°与95°位置各安装一个限位开关,在0°方向均不安装限位开关,叶片当前桨距角是否小于0°,由两个传感器测量结果经过换算确定。除系统掉电外,当下列任何一种故障情况发生时,所有轴柜的硬件系统应保证三个叶片以10°/s的速度向90°方向顺桨,与风向平行,风机停止转动:任意轴柜内的从站与PLC主站之间的通讯总线出现故障,由轮毂急停、塔基急停、机舱急停、震动检测、主轴超速、偏航限位开关串联组成的风机安全链以及与安全链串联的两个叶轮锁定信号断开(24V DC信号);无论任何一个编码器出现故障,还是同一叶片的两个编码器测量结果偏差超过规定的门限值;任何叶片桨距角在变桨过程中两两偏差超过2°;构成安全链、释放回路中的硬件系统出现故障;任意系统急停指令。变桨调节模式时,预防桨距角超过限位开关的措施:91°限位开关;到达限位开关时,变桨电机刹车抱闸;轴柜逆变器的释放信号及变桨速度命令无效,同样会使变桨电机静止。变桨电机刹车抱闸的条件:轴柜变桨调节方式处于自动模式下,桨距角超过91°限位开关位置;轴柜上控制开关断开;电网掉电且后备电电源输出电压低于其最低允许工作电压;控制电路器件损坏。

图8:变浆机构机械连接

电机变桨距控制机构可对每个桨叶采用一个伺服电机进行单独调节,如图8所示。伺服电机通过主动齿轮与桨叶轮毅内齿圈相啮合,直接对桨叶的节距角进行控制。位移传感器采集桨叶节距角的变化与电机形成闭环PID负反馈控制。在系统出现故障,控制电源断电时,桨叶控制电机由蓄电池供电,将桨叶调节为顺桨位置,实现叶轮停转。

6 变桨系统故障分析

6.1变桨控制系统常见故障原因及处理方法

6.1.1变桨角度有差异

叶片1变桨角度有差异

叶片2变桨角度有差异

叶片3变桨角度有差异

原因:变桨电机上的旋转编码器(A编码器)得到的叶片角度将与叶片角度计数器(B 编码器)得到的叶片角度作对比,两者不能相差太大,相差太大将报错。

处理方法:1.由于B编码器是机械凸轮结构,与叶片的变桨齿轮啮合,精度不高且会不断磨损,在有大晃动时有可能产生较大偏差,因此先复位,排除故障的偶然因素;2.如果反复报这个故障,进轮毂检查A、B编码器,检查的步骤是先看编码器接线与插头,若插头松动,拧紧后可以手动变桨观察编码器数值的变化是否一致,若有数值不变或无规律变化,检查线是否有断线的情况。编码器接线机械强度相对低,在轮毂旋转时,在离心力的作用下,有可能与插针松

相关文档
最新文档