专题6.1 导数中的构造函数 高考数学选填题压轴题突破讲义(解析版)

合集下载

导数的综合运用:同构、构造函数选择填空压轴题(解析版)

导数的综合运用:同构、构造函数选择填空压轴题(解析版)

2024届高考数学专题:同构、构造函数选择填空压轴题一、单选题1.若对∀x ∈12e ,12,不等式(ax -4)ln x <2ln a -ax ln2恒成立,则实数a 的取值范围是()A.(0,4e ]B.(4e ,+∞)C.[4e ,+∞)D.(4e ,+∞)【答案】C【分析】不等式(ax -4)ln x <2ln a -ax ln2变形为ln (2x )2x <ln (ax 2)ax 2,令f x =ln xx ,利用导数研究函数单调性,解不等式求实数a 的取值范围.【详解】由已知得:a >0,由ax -4 ln x <2ln a -ax ln2,得ax ln 2x <2ln a +2ln x 即ax ln (2x )2<ln (ax 2),可得ln (2x )2x <ln (ax 2)ax 2.令f x =ln xx,x ∈0,+∞ ,则f (2x )<f (ax 2),求导得f (x )=1-ln x x2,f(x )>0,解得0<x <e ;f (x )<0,解得x >e ,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,且当0<x <1时f (x )<0;当x >1时,f (x )>0,函数图像如图所示.∵x ∈12е,12,∴2x ∈1е,1,∴f (2x )<0,由f (2x )<f (ax 2)及f x =ln x x 的图像可知,2x <ax 2恒成立,即a >2x成立,而2x ∈(4,4e ),∴a ≥4е,实数a 的取值范围是[4e ,+∞).故选:C .2.对任意x ∈0,+∞ ,k e kx +1 -1+1xln x >0恒成立,则实数k 的可能取值为()A.-1B.13C.1eD.2e【答案】D【分析】将恒成立的不等式化为e kx +1 ln e kx >x +1 ln x ,构造函数f x =x +1 ln x ,利用导数可求得f x 单调性,从而得到e kx >x ,分离变量可得k >ln x x ;令h x =ln xx,利用导数可求得h x 最大值,由此可得k 的范围,从而确定k 可能的取值.【详解】当x >0时,由k e kx +1 -1+1xln x >0得:kx e kx +1 >x +1 ln x ,∴e kx +1 ln e kx >x +1 ln x ,令f x =x +1 ln x ,则f x =ln x +1+1x,令g x =f x ,则g x =1x -1x 2=x -1x 2,∴当x ∈0,1 时,g x <0;当x ∈1,+∞ 时,g x >0;∴f x 在0,1 上单调递减,在1,+∞ 上单调递增,∴f x ≥f 1 =2>0,∴f x 在0,+∞ 上单调递增,由e kx +1 ln e kx >x +1 ln x 得:f e kx >f x ,∴e kx >x ,即k >ln xx;令h x =ln x x ,则h x =1-ln xx 2,∴当x ∈0,e 时,h x >0;当x ∈e ,+∞ 时,h x <0;∴h x 在0,e 上单调递增,在e ,+∞ 上单调递减,∴h x ≤h e =1e,∴当x >0时,k >ln x x 恒成立,则k >1e,∴实数k 的可能取值为2e,ABC 错误,D 正确.故选:D .【点睛】关键点点睛:本题考查利用导数求解恒成立问题,解题关键是能够对于恒成立的不等式进行同构变化,将其转化为同一函数的两个函数值之间的大小关系的问题,从而利用函数的单调性来进行求解.3.已知对任意的x ∈0,+∞ ,不等式kx e kx +1 -x +1 ln x >0恒成立,则实数k 的取值范围是()A.e ,+∞B.1e ,eC.1e,+∞D.1e2,1e【答案】C【分析】对已知不等式进行变形,通过构造函数法,利用导数的性质、常变量分离法进行求解即可.【详解】因为kx e kx +1 >(x +1)ln x ,所以e kx +1 ln e kx >(x +1)ln x ①,令f (x )=(x +1)ln x ,则f (x )=1x +1+ln x ,设g (x )=f (x )=1x+1+ln x ,所以g (x )=-1x 2+1x =x -1x2,当0<x <1时,g(x )<0,当x >1时,g (x )>0,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f x ≥f 1 =2,所以f (x )在(0,+∞)单调递增,因为①式可化为f e kx >f (x ),所以e kx >x ,所以k >ln xx,令h (x )=ln x x ,则h (x )=1-ln xx 2,当x ∈(0,e )时,h (x )>0,当x ∈(e ,+∞)时,h (x )<0,所以h (x )在(0,e )单调递增,在(e ,+∞)单调递减,所以h (x )max =h (e )=1e ,所以k >1e,故选:C .4.设实数a >0,对任意的x ∈1e3,+∞,不等式e 2ax -ln x 2a ≥1a -e 2ax ax 恒成立,则实数a 的取值范围是()A.1e ,+∞B.12e,+∞ C.0,1eD.1e2,+∞【答案】B【分析】将e 2ax-ln x 2a ≥1a -e 2ax ax化简为e 2ax 2ax +2 ≥x ln x +2 ,再构造函数f x =x ln x +2 ,求导分析单调性可得e 2ax ≥x 在区间1e3,+∞上恒成立,再参变分离构造函数求最值解决恒成立问题即可.【详解】因为e 2ax-ln x 2a ≥1a -e 2ax ax恒成立即2axe 2ax -x ln x ≥2x -2e 2ax ,可得e 2ax 2ax +2 ≥x ln x +2 ,令f x =x ln x +2 ,则f e 2ax ≥f x 恒成立.又f x =ln x +3,故当x ∈1e 3,+∞时,fx >0,故f x =x ln x +2 在区间1e3,+∞上为增函数.又f e 2ax ≥f x 恒成立,则e 2ax ≥x 在区间1e3,+∞上恒成立,即2ax ≥ln x ,2a ≥ln xx .构造g x =ln x x ,x ∈1e 3,+∞,则g x =1-ln xx2,令g x =0有x =e ,故当x ∈1e3,e时g x >0,g x 为增函数;当x ∈e ,+∞ 时g x <0,g x 为减函数.故g x ≤g e =1e ,故2a ≥1e ,即a ≥12e.故选:B 【点睛】方法点睛:恒(能)成立问题的解法:若f (x )在区间D 上有最值,则(1)恒成立:∀x ∈D ,f x >0⇔f x min >0;∀x ∈D ,f x <0⇔f x max <0;(2)能成立:∃x ∈D ,f x >0⇔f x max >0;∃x ∈D ,f x <0⇔f x min <0.若能分离常数,即将问题转化为:a >f x (或a <f x ),则(1)恒成立:a >f x ⇔a >f x max ;a <f x ⇔a <f x min ;(2)能成立:a >f x ⇔a >f x min ;a <f x ⇔a <f x max .5.已知函数f x =ln x +ax 2,若对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是()A.14,+∞B.12,+∞C.14,+∞ D.12,+∞ 【答案】D【分析】构造函数g (x )=f (x )-2x =ln x +ax 2-2x (x >0),则转化得到g x 在(0,+∞)上单调递增,将题目转化为g (x )=1x+2ax -2≥0在(0,+∞)上恒成立,再利用分离参数法即可得到答案.【详解】由题意,不妨设x 1>x 2>0,因为对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,所以f x 1 -f x 2 >2x 1-2x 2,即f x 1 -2x 1>f x 2 -2x 2,构造函数g(x)=f(x)-2x=ln x+ax2-2x(x>0),则g x1>g x2,所以g(x)在(0,+∞)上单调递增,所以g (x)=1x+2ax-2≥0在(0,+∞)上恒成立,即a≥1x-12x2在(0,+∞)上恒成立,设m(x)=1x-12x2(x>0),则m (x)=-1x2+1x3=1-xx3,所以当x∈(0,1)时,m (x)>0,m(x)单调递增,x∈(1,+∞)时,m (x)<0,m(x)单调递减,所以m(x)max=m(1)=1-12=12,所以a≥1 2 .故选:D.6.已知f x 是定义在R上的函数f x 的导函数,且f x +xf x <0,则a=2f2 ,b=ef e ,c=3f3 的大小关系为()A.a>b>cB.c>a>bC.c>b>aD.b>a>c【答案】A【分析】构建g x =xf x ,求导,利用导数判断g x 的单调性,进而利用单调性比较大小.【详解】构建g x =xf x ,则g x =f x +xf x ,因为f x +xf x <0对于x∈R恒成立,所以g x <0,故g x 在R上单调递减,由于a=2f2 =g2 ,b=ef e =g e ,c=3f3 =g3 ,且2<e<3,所以g2 >g e >g3 ,即a>b>c.故选:A.【点睛】结论点睛:1.f x +xf x 的形式,常构建xf x ;f x -xf x 的形式,常构建f x x;2.f x +f x 的形式,常构建e x⋅f x ;f x -f x 的形式,常构建f x e x.7.若函数f x =e x2-2ln x-2a ln x+ax2有两个不同的零点,则实数a的取值范围是()A.-∞,-eB.-∞,-eC.-e,0D.-e,0【答案】A【分析】将问题转化为函数y=-a与y=e x2-2ln xx2-2ln x图象有两个不同的交点,根据换元法将函数y=e x2-2ln x x2-2ln x 转化为g t =e tt,利用导数讨论函数的单调性求出函数的值域,进而得出参数的取值范围.【详解】函数f(x)的定义域为(0,+∞),f x =e x2-2ln x-2a ln x+ax2=e x2-2ln x+a x2-2ln x,设h(x)=x2-2ln x(x>0),则h (x)=2x-2x=2(x+1)(x-1)x,令h (x)>0⇒x>1,令h (x)<0⇒0<x<1,所以函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且h (1)=1,所以h (x )min =h (1)=1,所以h (x )≥1,函数f (x )有两个不同的零点等价于方程f (x )=0有两个不同的解,则e x 2-2ln x+a x 2-2ln x =0⇒-a =e x 2-2ln x x 2-2ln x,等价于函数y =-a 与y =e x 2-2ln xx 2-2ln x 图象有两个不同的交点.令x 2-2ln x =t ,g t =e t t ,t >1,则函数y =-a 与g t =e tt ,t >1图象有一个交点,则g t =te t -et t 2=e t t -1 t2>0,所以函数g (t )在(1,+∞)上单调递增,所以g t >g 1 =e ,且t 趋向于正无穷时,g t =e tt趋向于正无穷,所以-a >e ,解得a <-e.故选:A .【点睛】方法点睛:与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.对于不适合分离参数的等式,常常将参数看作常数直接构造函数,常用分类讨论法,利用导数研究单调性、最值,从而得出参数范围.8.函数f x 是定义在0,+∞ 上的可导函数,其导函数为f x ,且满足f x +2xf x >0,若不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax在x ∈1,+∞ 上恒成立,则实数a 的取值范围是()A.0,1eB.1e ,+∞C.0,eD.1e,+∞【答案】B【分析】根据题目条件可构造函数g x =x 2f x ,利用导函数判断出函数单调性,将不等式转化成g ax≥g ln x ,即a ≥ln x x 在x ∈1,+∞ 上恒成立,求出函数ln xx在1,+∞ 上的最大值即可得a 的取值范围.【详解】设g x =x 2f x ,x >0,g x =x 2f x +2xf x =x 2fx +2x f x >0所以函数g x 在0,+∞ 上为增函数.由f x 的定义域为0,+∞ 可知ax >0,得a >0,将不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax整理得a 2x 2⋅f ax ≥f ln x ⋅ln 2x ,即g ax ≥g ln x ,可得ax ≥ln x 在x ∈1,+∞ 上恒成立,即a ≥ln xx在x ∈1,+∞ 上恒成立;令φx =ln xx ,其中x >1,所以a ≥φx maxφ x =1-ln xx2,令φ x =0,得x =e .当x ∈1,e 时,φ x >0,所以φx 在1,e 上单调递增;当x ∈e ,+∞ 时,φ x <0,所以φx 在e ,+∞ 上单调递减;所以φx max =φe =1e ,即a ≥1e故选:B .9.已知函数f (x )=xe x -a ln x +x -x a +1,若f (x )>0在定义域上恒成立,则实数a 的取值范围是()A.(-∞,e )B.0,eC.(-∞,1)D.0,1【答案】B【分析】构造函数g x =x +e x ,从而原不等式可转化为g x +ln x >g a ln x +ln x ,根据g x 的单调性可得x -a ln x >0,根据a 不同取值分类讨论求解即可.【详解】由f x >0得xe x +x >a ln x +x a +1,所以xe x +x +ln x >a ln x +ln x +x a +1,即e x +ln x +x +ln x >a ln x +ln x +x a +1,构造函数g x =x +e x ,则不等式转化为g x +ln x >g a ln x +ln x ,又易知g x 在R 上单调递增,故不等式等价于x +ln x >a ln x +ln x ,即x -a ln x >0.设h x =x -a ln x ,若a <0,h e1a=e1a-a lne 1a =e 1a-1<0,不符合题意;若a =0,则当x >0时,h x =x >0,符合题意;若a >0,则h x =1-ax,h x 在0,a 上单调递减,在a ,+∞ 上单调递增,所以h (x )min =h a ,要使h x >0恒成立,只需h a =a 1-ln a >0,所以0<a <e.综上可知a 的取值范围是0,e .故选:B .10.已知函数f (x )=xe x +e x ,g (x )=x ln x +x ,若f x 1 =g x 2 >0,则x 2x 1可取()A.-1 B.-1eC.1D.e【答案】A【分析】探讨函数g x 在1e 2,+∞上单调性,由已知可得x 2=e x 1(x 1>-1),再构造函数并求出其最小值即可判断作答.【详解】依题意,由g x 2 =x 2(ln x 2+1)>0得x 2>1e,令g x =2+ln x >0,函数g x 在1e 2,+∞上单调递增,由f x 1 =e x 1x 1+1 >0得x 1>-1,则f x =e x ln e x +1 =g (e x ),由f x 1 =g x 2 >0得:g (e x 1)=g (x 2),又e x 1>1e ,x 2>1e,于是得x 2=e x 1(x 1>-1),x 2x 1=ex1x 1,令h (x )=e x x (x >-1),求导得h(x )=e x (x -1)x 2,当-1<x <0,0<x <1时,h (x )<0,当x >1时,h (x )>0,即函数h (x )在(-1,0),(0,1)上单调递减,在(1,+∞)上单调递增,当x >0时,h (x )min =h (1)=e ,且x →+∞,h (x )→+∞,h (-1)=-1e ,且x →0-,h (x )→-∞,故h (x )∈-∞,-1e∪[e ,+∞)即x 2x 1∈-∞,-1e ∪[e ,+∞),显然选项A 符合要求,选项B ,C ,D 都不符合要求.故选:A 一、填空题11.设实数m >0,若对∀x ∈0,+∞ ,不等式e mx -ln xm≥0恒成立,则m 的取值范围为.【答案】m ≥1e【分析】构造函数f x =xe x 判定其单调性得mx ≥ln x ,分离参数根据恒成立求y =ln xx max即可.【详解】由e mx -ln xm≥0⇔mxe mx ≥x ln x =ln x ⋅e ln x ,构造函数f x =xe x x >0 ⇒f x =x +1 e x >0,∴f x 在0,+∞ 为增函数,则mx ⋅e mx ≥ln x ⋅e ln x ⇔mx ≥ln x 即对∀x ∈0,+∞ ,不等式mx ≥ln x 恒成立,则∀x ∈0,+∞ ,m ≥ln xx max,构造函数g x =ln x x ⇒g x =1-ln xx 2,令g x >0,得0<x <e ;令g x <0,得x >e ;∴g x =ln xx在0,e 上单调递增,在e ,+∞ 上单调递减,∴g x max =g e =1e ,即m ≥1e .故答案为:m ≥1e .12.已知函数f (x )=e x +1-a ln x ,若f (x )≥a (ln a -1)对x >0恒成立,则实数a 的取值范围是.【答案】0,e 2【分析】对不等式进行合理变形同构得e x +1-ln a +x +1-ln a ≥x +ln x ,构造函数利用函数的单调性计算即可.【详解】易知a >0,由e x +1-a ln x ≥a (ln a -1)可得e x +1a+1-ln a ≥ln x ,即e x +1-ln a +1-ln a ≥ln x ,则有e x +1-ln a +x +1-ln a ≥x +ln x ,设h (x )=e x +x ,易知h x 在R 上单调递增,故h (x +1-ln a )≥h (ln x ),所以x +1-ln a ≥ln x ,即x -ln x ≥ln a -1,设g (x )=x -ln x ⇒g x =x -1x,令g x >0⇒x >1,g x <0⇒0<x <1,故g x 在0,1 上单调递减,在1,+∞ 上单调递增,所以g x ≥g 1 =1,则有1≥ln a -1,解之得a ∈0,e 2 .故答案为:0,e 2 .13.已知a >1,若对于任意的x ∈13,+∞,不等式13x -2x +ln3x ≤1ae2x +ln a 恒成立,则a 的最小值为.【答案】32e【分析】根据题意可得13x +ln3x ≤1ae2x +ln ae 2x ,再构造f (x )=1x +ln x (x ≥1),利用导数研究该函数的单调性,从而利用函数的单调性,可得3x ≤ae 2x ,然后再参变量分离,将恒成立问题转为变量的最值,最后利用导数求出变量式的最值,从而得解.【详解】因为ln a +2x =ln a +ln e 2x =ln ae 2x ,所以13x -2x +ln3x ≤1ae 2x +ln a 可化为13x +ln3x ≤1ae2x +ln ae 2x ,设f (x )=1x +ln x (x ≥1),则f (x )=-1x 2+1x =x -1x 2≥0,∴f (x )在1,+∞ 上单调递增,因为a >1,x ∈13,+∞,所以3x ≥1,e 2x ≥e 23>1,ae 2x >1,所以13x +ln3x ≤1ae 2x +ln ae 2x 可化为f (3x )≤f (ae 2x ),所以3x ≤ae 2x ,∴a ≥3x e2x 在x ∈13,+∞ 上恒成立,∴a ≥3x e2xmax ,x ∈13,+∞ ,设g (x )=3x e 2x ,x ∈13,+∞ ,则g(x )=3(1-2x )e 2x,令g (x )>0,得13≤x <12;g (x )<0,得x >12,所以g (x )在13,12上单调递增,在12,+∞ 上单调递减,所以g x max =g 12 =32e ,所以a ≥32e ,即a 的最小值为32e .故答案为:32e.【点睛】关键点睛:本题的关键是将式子同构成13x +ln3x ≤1ae 2x +ln ae 2x ,再构造函数.14.若不等式ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,则实数a 的最小值为.【答案】13e【分析】将不等式变形为e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,构造函数g x =e x +x ,求导得单调性,进而问题进一步转化为ln a ≥ln x -3x 成立,构造h x =ln x -3x ,即可由导数求最值求解.【详解】因为ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,不等式可变形为:ae 3x +3x +ln a ≥ln x +x ,即e ln a e 3x +3x +ln a ≥ln x +e ln x ,即e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,记g x =e x +x ,则g x =e x +1>0,所以g x 在R 上单调递增,则e 3x +ln a +3x +ln a ≥e ln x +ln x 可写为g 3x +ln a ≥g ln x ,根据g x 单调性可知,只需3x +ln a ≥ln x 对任意x ∈0,+∞ 成立即可,即ln a ≥ln x -3x 成立,记h x =ln x -3x ,即只需ln a ≥h x max ,因为h x =1x -3=1-3x x ,故在x ∈0,13 上,h x >0,h x 单调递增,在x ∈13,+∞ 上,h x <0,h x 单调递减,所以h x max =h 13 =ln 13-1=ln 13e,所以只需ln a ≥ln 13e 即可,解得a ≥13e.故答案为:13e【点睛】方法点睛:利用导数求解不等式恒成立或者存在类问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.15.已知函数f x =ln x +ax 2,若对任意两个不相等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是【答案】12,+∞ 【分析】设x 2>x 1>0,令g x =f x -2x ,将问题转化为g x 在0,+∞ 上单调递增,即g x ≥0在0,+∞ 上恒成立,采用分离变量的方式可得2a ≥-1x 2+2x ,结合二次函数性质可确定2a ≥1,由此可得结果.【详解】不妨设x 2>x 1>0,由f x 1 -f x 2x 1-x 2>2得:f x 1 -2x 1<f x 2 -2x 2,令g x =f x -2x ,则g x 在0,+∞ 上单调递增,∴g x =1x +2ax -2≥0在0,+∞ 上恒成立,∴2a ≥-1x 2+2x ,当1x =1,即x =1时,y =-1x2+2x 取得最大值1,∴2a ≥1,解得:a ≥12,∴实数a 的取值范围为12,+∞ .故答案为:12,+∞ .16.已知函数f x =12x 2-a ln x +1,当-2≤a <0,对任意x 1,x 2∈1,2 ,不等式f x 1 -f x 2 ≤m1x 1-1x 2恒成立,则m 的取值范围为.【答案】12,+∞【分析】构造新函数,利用导数研究函数的单调性与最值,求m 的取值范围即可.【详解】因为-2≤a <0,函数f x 在1,2 上单调递增,不妨设1≤x 1≤x 2≤2,则f x 1 -f x 2 ≤m1x 1-1x 2,可化为f x 2 +m x 2≤f x 1 +mx 1,设h x =f x +mx=12x2-a ln x+1+mx,则h x1≥h x2,所以h x 为1,2上的减函数,即h x =x-ax-mx2≤0在1,2上恒成立,等价于m≥x3-ax在1,2上恒成立,设g x =x3-ax,所以m≥g(x)max,因-2≤a<0,所以g x =3x2-a>0,所以函数g x 在1,2上是增函数,所以g(x)max=g2 =8-2a≤12(当且仅当a=-2时等号成立).所以m≥12.故答案为:12,+∞.17.已知实数x,y满足e x=xy2ln x+ln y,则xy的取值范围为.【答案】[e,+∞)【分析】把e x=xy2ln x+ln y化为xe x=x2y⋅ln(x2y),构造函数f(x)=xe x(x>0),可得xy=e xx,再求出函数g(x)=e xx(x>0)的值域即可得答案.【详解】依题意有x>0,y>0,设f(x)=xe x(x>0),则f (x)=(x+1)e x>0,所以f(x)在(0,+∞)上单调递增,由e x=xy2ln x+ln y,得xe x=x2y⋅ln(x2y),即有f(x)=f(ln(x2y)),因为f(x)在(0,+∞)上单调递增,所以有x=ln(x2y),即x2y=e x,所以xy=e x x,设g(x)=e xx(x>0),则g (x)=(x-1)e xx2,令g (x)=0,得x=1,x∈(0,1)时,g (x)<0,g(x)单调递减,x∈(1,+∞)时,g (x)>0,g(x)单调递增,所以g(x)min=g(1)=e,所以x∈(0,+∞)时,g(x)∈[e,+∞),所以xy的取值范围为[e,+∞).故答案为:[e,+∞)18.已知x0是方程e3x-ln x+2x=0的一个根,则ln x0x0=.【答案】3【分析】依题意得e3x0+3x0=x0+ln x0,构造函数f(x)=e x+x,则有f(3x0)=f(ln x0),得出f(x)的单调性即可求解.【详解】因为x0是方程e3x-ln x+2x=0的一个根,则x0>0,所以e3x0-ln x0+2x0=0,即e3x0+3x0=x0+ln x0,令f(x)=e x+x,则f (x)=e x+1>0,所以f(x)在R单调递增,又e3x0+3x0=x0+ln x0,即f(3x0)=f(ln x0),所以3x0=ln x0,所以ln x0x0=3.故答案为:319.已知函数f x =e ax-2ln x-x2+ax,若f x >0恒成立,则实数a的取值范围为.【答案】2e,+∞ 【分析】根据f x >0恒成立,可得到含有x ,a 的不等式,再进行分离变量,将“恒成立”转化为求函数的最大值或最小值,最后得出a 的范围.【详解】已知函数f x =e ax -2ln x -x 2+ax ,若f x >0恒成立,则实数a 的取值范围为令g x =e x +x ,g x =e x +1>0,所以g x 单调递增,因为f x =e ax -2ln x -x 2+ax >0x >0 ,所以e ax +ax >ln x 2+e ln x 2,可得g ax >g ln x 2 ,所以ax >ln x 2,所以a >ln x 2xx >0 恒成立,即求ln x 2x max x >0 ,令F x =ln x 2x x >0 ,F x =ln x 2 x -x ln x 2x 2=21-ln x x 2,当x ∈0,e 时,F x >0,F x 单调递增,当x ∈e ,+∞ 时,F x <0,F x 单调递减,所以F x ≤F e =2e ,可得a <2e .故答案为:2e ,+∞ .【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得f x >a 恒成立,可得出f x min >a ;对于任意的x ,使得f x <a 恒成立,可得出f x max <a .20.若ln x +ln2a -1-2a x -e x ≤0,则实数a 的取值范围为.【答案】0<a ≤e 2【分析】利用同构法,构造函数f (x )=ln x +x ,将问题转化为f (2ax )≤f (e x),从而得到2a ≤e x x恒成立问题,再构造g (x )=e x x,利用导数求得其最小值,由此得解.【详解】因为ln x +ln2a -1-2a x -e x ≤0,a >0,x >0⇔ln (2ax )-x +2ax -e x ≤0,⇔ln (2ax )+2ax ≤x +e x =ln e x +e x ,令f (x )=ln x +x ,x >0,则原式等价于f (2ax )≤f (e x ),f (x )=1x +1=1+x x>0恒成立,所以f (x )在定义域内单调递增,所以2ax ≤e x ⇒2a ≤e x x,令g (x )=e x x (x >0),g (x )=e x (x -1)x 2,则x >1时,g (x )>0,g (x )在(1,+∞)单调递增,0<x <1时,g (x )<0,g (x )在(0,1)单调递减,所以g (x )min =g (1)=e ,则2a ≤e ,a ≤e 2.又a 为正数,故答案为:0<a ≤e 2.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.21.已知a <0,不等式xe x +a ln x x a ≥0对∀x ∈1,+∞ 恒成立,则实数a 的最小值为.【答案】-e 【分析】将不等式等价变形为xe x ≥-a ln x ⋅e -a ln x ,构造函数f x =xe x ,进而问题转化成x ≥-a ln x ,构造g (x )=x ln x ,利用导数求解单调性进而得最值.【详解】xe x ≥-a ln x x a =-a ln x ⋅e -a ln x ,构造函数f x =xe x ,f x =x +1 e x >0x >0 ,故f x 在0,+∞ 上单调递增,故f x ≥f -a ln x 等价于x ≥-a ln x ,即a ≥-x ln x 任意的实数x >1恒成立.令g (x )=x ln x ,x >1则g (x )=ln x -1ln 2x ,故g (x )在(1,e )上单调递减,在(e ,+∞)上单调递增,g (x )min =e ,得a ≥-x ln x max=-e .故答案为:-e【点睛】对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别22.关于x 的不等式a 2e 2x +1-ln x +x +1+2ln a ≥0在0,+∞ 上恒成立,则a 的最小值是.【答案】22e【分析】不等式转化为e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,构造函数f x =e x +x ,判断函数单调递增得到2x +1+ln a ≥ln x ,转化为2x +1-ln x +ln a ≥0,构造函数g x =2x +1-ln x +ln a ,根据函数的单调性计算最小值即得到答案.【详解】a 2e 2x +1-ln x +x +1+2ln a ≥0,即e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,设f x =e x +x ,f x =e x +1>0恒成立,故f x 单调递增.原不等式转化为f 2x +1+2ln a ≥f ln x ,即2x +1+2ln a ≥ln x ,即2x +1-ln x +2ln a ≥0在(0,+∞)上恒成立.设g x =2x +1-ln x +2ln a ,g x =2x -1x ,当x ∈12,+∞ 时,g x >0,函数单调递增;当x ∈0,12 时,g x <0,函数单调递减;故g x min =g 12=2+ln2+2ln a ≥0,即2ln a ≥-2-ln2=-ln2e 2,解得a ≥22e.所以a 的最小值是22e.故答案为:22e.【点睛】方法点睛:将不等式a 2e 2x +1-ln x +x +1+2ln a ≥0化为e 2x +1+2ln a +2x +1+2ln a ≥e ln x +ln x ,这种方法就是同构法,同构即结构形式相同,对于一个不等式,对其移项后通过各种手段将其变形,使其左右两边呈现结构形式完全一样的状态,接着就可以构造函数,结合函数单调性等来对式子进行处理了.。

导数选择压轴题之【构造函数】

导数选择压轴题之【构造函数】

导数小题——构造函数解不等式当有题目有下列表格左栏中的条件时,那么构造相应的右侧的函数,利用新函数的单调性、奇偶性来解决题目中的问题。

例1 已知定义在实数集R 上的函数f(x)满足f (1)=2,且f(x)的导数f′(x)在R 上恒有f ′(x )<1 (x ∈R),则不等式f (x )<x +1的解集为( )A.(1,+∞)B.(−∞,−1)C.(−1,1)D.(−∞,−1)∪(1,+∞)例2 已知定义在(−∞,0)∪(0,+∞)上的偶函数f(x)的导函数为f′(x),且f (1)=0,当x <0时,f ′(x )+f (x )x>0,则使得f (x )>0成立的x 的取值范围是例3 ()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,且()40f −=,则不等式()0xf x >的解集为 .例4 已知()f x 是定义在(),−∞+∞上的函数,导函数()f x '满足()()f x f x '<对于R x ∈恒成立,则( )A .()()220f e f >,()()201420140f e f >B .()()220f e f <,()()201420140f e f >C .()()220f e f >,()()201420140f e f <D .()()220f e f <,()()201420140f e f <例5 已知函数()y f x =对于任意,22x ππ⎛⎫∈− ⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( )A .34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 34f ππ⎛⎫⎛⎫−<− ⎪ ⎪⎝⎭⎝⎭C .()04f π⎛⎫< ⎪⎝⎭D .()023f fπ⎛⎫< ⎪⎝⎭例6 α,,22ππβ⎡⎤∈−⎢⎥⎣⎦,且sin sin 0ααββ−>,则下列结论正确的是( )A .αβ>B .22αβ>C .αβ<D .0αβ+>例7 设()f x 是定义在R 上的偶函数,且()10f =,当0x <时,有()()0xf x f x '−>恒成立,则不等式()0f x >的解集为 .例8 已知偶函数()f x (0x ≠)的导函数为()f x ',且满足()10f −=,当0x >时,()()2f x xf x '>,则使得()0f x >成立的x 的取值范围是 .例9 设()f x 是定义在R 上的奇函数,在(),0−∞上有()()2220xf x f x '+<,且()20f −=,则不等式()20xf x <的解集为例10若定义在R 上的函数()f x 满足()()20f x f x '−>,()01f =,则不等式()2x f x e >的解集为 .例11已知函数()f x 在R 上可导,其导函数()f x ',若()f x 满足:()()()10x f x f x '−−>⎡⎤⎣⎦,()()222xf x f x e−−=,则下列判断一定正确的是( )A .()()10f f <B .()()220f e f >C .()()330f e f >D .()()440f e f < 答案: 例1:A例2:(−1,0)∪(0,1)例3:(−∞,−4)∪(0,4) 例4:D 例5:A例6:A例7:(−∞,−1)∪(1,+∞) 例8:(−1,1) 例9:(−2,2)例10:(0,+∞)例11:C。

2022年高考数学基础题型+重难题型突破类型六导数中函数的构造问题(解析版)

2022年高考数学基础题型+重难题型突破类型六导数中函数的构造问题(解析版)

类型六导数中函数的构造问题【典例1】(1)f(x)是定义在R 上的偶函数,当x<0时,f(x)+xf ′(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为________________. 【答案】 (-∞,-4)∪(0,4)【解析】 构造F(x)=xf(x),则F ′(x)=f(x)+xf ′(x),当x<0时,f(x)+xf ′(x)<0,可以推出当x<0时,F ′(x)<0,F(x)在(-∞,0)上单调递减,∵f(x)为偶函数,∴F(x)=xf(x)为奇函数,∴F(x)在(0,+∞)上也单调递减.根据f(-4)=0可得F(-4)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知xf(x)>0的解集为(-∞,-4)∪(0,4).(2)已知偶函数f(x)(x ≠0)的导函数为f ′(x),且满足f(-1)=0,当x>0时,2f(x)>xf ′(x),则使得f(x)>0成立的x 的取值范围是________________. 【答案】 (-1,0)∪(0,1) 【解析】 构造F(x)=fx x2,则F ′(x)=f ′x ·x -2f xx3,当x>0时,xf ′(x)-2f(x)<0,可以推出当x>0时,F ′(x)<0,F(x)在(0,+∞)上单调递减,∵f(x)为偶函数,∴F(x)=f xx2为偶函数, ∴F(x)在(-∞,0)上单调递增.根据f(-1)=0可得F(-1)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知f(x)>0的解集为(-1,0)∪(0,1).【典例2】 (1)定义在R 上的函数f(x)满足f ′(x)>f(x)恒成立,若x 1<x 2,则1e xf(x 2)与2e x f(x 1)的大小关系为( )A .1e x f(x 2)>2e xf(x 1) B .1e x f(x 2)< 2e x f(x 1) C .1e xf(x 2)=2e xf(x 1)D .1e x f(x 2)与2e xf(x 1)的大小关系不确定 【答案】 A 【解析】 设g(x)=fxex, 则g ′(x)=f ′x e x-f x e xe x 2=f ′x -fxex .由题意得g ′(x)>0,所以g(x)在R 上单调递增, 当x 1<x 2时,g(x 1)<g(x 2),即()11e x f x <()22e x f x , 所以1e xf(x 2)> 2e xf(x 1).(2)已知定义在⎝⎛⎭⎪⎫0,π2上的函数f(x),f ′(x)是它的导函数,且恒有f(x)<f ′(x)tan x 成立,则( )A.3f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3B .f(1)<2f ⎝ ⎛⎭⎪⎫π6sin 1 C.2f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4 D.3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3 【答案】 D【解析】 构造函数g(x)=f xsin x, 则g ′(x)=f ′x sin x -f xcos xsin 2x,由已知可得,当x ∈⎝ ⎛⎭⎪⎫0,π2时,g ′(x)>0,g(x)为增函数,∴g ⎝ ⎛⎭⎪⎫π6<g ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫π6sin π6<f ⎝ ⎛⎭⎪⎫π3sinπ3, ∴3f ⎝ ⎛⎭⎪⎫π6<f⎝ ⎛⎭⎪⎫π3. 【方法总结】 (1)构造函数xf(x),fxx:当条件中含“+”时优先考虑xf(x);当条件中含“-”时优先考虑fx x. (2)构造函数fxxn:条件中含“xf ′(x)-nf(x)”的形式; 构造函数xf(nx):条件中含“nxf ′(nx)+f(nx)”的形式. (3)构造函数fxex:条件中含“f ′(x)-f(x)”的形式. (4)构造函数f xsin x :条件中含“f ′(x)sin x -f(x)cos x ”的形式.【典例3】若函数21()ln 2f x x x bx =+-存在单调递减区间,则实数b 的取值范围为 。

专题6.1 导数中的构造函数-2121届高考数学压轴题讲义(选填题)(解析版)

专题6.1 导数中的构造函数-2121届高考数学压轴题讲义(选填题)(解析版)


故选 A.
8.【河南省八市重点高中联盟“领军考试”2019 届高三第三次测评】若函数
上单调递增,则
的最小值是( )
A.-3
B.-4
C.-5
D.
【答案】B 【解析】
函数
在 上单调递增,
精品公众号:学起而飞
在区间
所以
在 上恒成立,

在 上恒成立,

,其对称轴为



时,
在 上恒成立等价于
由线性规划知识可知,此时
B.
C.
D.
【答案】A 【解析】 解:∵函数
的定义域是


∵ 是函数
的唯一一个极值点
,若 是函数
精品公众号:学起而飞
∴ 是导函数


的唯一根, 无变号零点,

在 上无变号零点,令

因为 所以 所以


上单调递减,在 上单调递增
的最小值为

所以必须

故选:A. 5. 【2019 届山西省太原市第五中学高三 4 月检测】已知函数

恒成立,则下列判断一定正确的是( )
A.
B.
C.
D.
【答案】B
【解析】
由题意设



所以函数 在 上单调递增,
所以
,即

故选 B.
3.【辽宁省抚顺市 2019 届高三一模】若函数
有三个零点,则实数 的取值范围是
()
A.
B.
C. 【答案】D 【解析】 由
D.


精品公众号:学起而飞
设 由 由 即当 当 当

2023届高考数学一轮复习导数中的构造函数

2023届高考数学一轮复习导数中的构造函数
,c=
,因此设函数 f(x)=
,则
e
e
3
5

-ln
-ln
f'(x)= 2 ,当 x>1 时,f'(x)= 2 <0,所以函数 f(x)在(1,+∞)上单调递减,又因为


1<e<3<5,所以 f(e)>f(3)>f(5),即 a>b>c,故选 A.
1
ln3
ln4
对点训练 1(2021 重庆二十九中高三月考)已知实数 a= ,b= ,c= ,则 a,b,c
()
③对于f'(x)cos x+f(x)sin x>0(或<0),构造函数F(x)= cos ;
④对于f'(x)cos x-f(x)sin x>0(或<0),构造函数F(x)=f(x)cos x.
π
例 6.(多选)(2021 广东惠州高三期中)已知定义在 0, 2 上的函数 f(x)的导函数
x>0 时,g'(x)<0,则函数
a>b,则必有
'()-()
g'(x)= 2 ,因为当
x>0 时,xf'(x)-f(x)<0,所以当
()
g(x)= 在(0,+∞)上单调递减,所以对任意正数
()
()
g(a)= <g(b)= ,即


bf(a)<af(b),故选 B.
a,b,若
A.(-∞,- 2)∪( 2,+∞) B.(- 2, 2)
C.(-∞,- 2) D.( 2,+∞)
解析 设F(x)=x2f(x),F'(x)=x2f'(x)+2xf(x)=x(xf'(x)+2f(x)),因为当x>0

高考数学导数中构造函数比大小问题题型总结(解析版)

高考数学导数中构造函数比大小问题题型总结(解析版)

导数中构造函数比大小问题题型总结【典型例题】题型一:构造f x =ln xx比较大小此函数定义域为0,+∞,求导f x =1−ln xx2,当x∈0,e时,f x >0,故f x 为增函数,当x∈e,+∞时,f x <0,故f x 为减函数,当x=e时,f x 取得极大值为f e =1e,且f4 =ln44=2ln2 4=ln22=f2 ,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若a=1e,b=ln22,c=ln33,则a,b,c的大小关系为( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c 【答案】A【解析】通过对三个数的变形及观察,可以构造出函数f x =ln xx,通过求导分析其单调性即可得到答案【详解】解:a=1e=ln ee,b=ln22=ln44,c=ln33,设f x =ln xx,f x =1-ln xx2,则x>e时,fx <0,故f x 在e,+∞上单调递减,则f e >f3 >f4 ,即ln ee>ln33>ln44,所以a>c>b.故选:A.【例2】(2023·全国·高三专题练习)设a=4-ln4e2,b=ln22,c=1e,则( )A.a<c<bB.a<b<cC.b<a<cD.b<c<a 【答案】C【解析】结合已知要比较函数值的结构特点,可考虑构造函数f x =ln xx,然后结合导数与单调性关系分析出x=e时,函数取得最大值f e =1e,可得c最大,然后结合函数单调性即可比较大小.【详解】设f x =ln xx,则f x =1-ln xx2,当x>e时,f x <0,函数单调递减,当0<x<e时,f x >0,函数单调递增,故当x=e时,函数取得最大值f e =1 e,因为a=22-ln2e2=ln e22e22=f e22,b=ln22=ln44=f4 ,c=1e=f e ,∵e<e22<4,当x>e时,f x <0,函数单调递减,可得f4 <fe22<f e ,即b<a<c.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是( )①ln3<3ln2;②lnπ<πe;③215<15;④3e ln2>42.A.1B.2C.3D.4【答案】B【解析】本题首先可以构造函数f x =ln xx,然后通过导数计算出函数f x =ln xx的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数f x =ln xx的单调性即可比较出大小.【详解】解:构造函数f x =ln xx,则f x =1-ln xx2,当0<x<e时,f x >0,x>e时,f x <0,所以函数f x =ln xx在0,e上递增,在e,+∞上递减,所以当x=e时f x 取得最大值1 e,ln3<3ln2⇔2ln3<3ln2⇔ln33<ln22,由3<2<e可得f3<f2 ,故①正确;lnπ<πe⇔lnππ<ln ee,由e<π<e,可得f e<fπ,故②错误;215<15⇔15ln2<ln15⇔ln22<ln1515⇔ln44<ln1515,因为函数f x =ln xx在e,+∞上递减,所以f4 <f15,故③正确;因为22>e,所以f22<f e ,即ln2222<ln e e,即3ln222<1e,则3e ln2<22,即3e ln2<42,故④错误,综上所述,有2个正确.故选:B.【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a,b,c均为区间0,e内的实数,且a ln5=5ln a,b ln6= 6ln b,c ln7=7ln c,则a,b,c的大小关系为( )A.a>c>bB.a>b>cC.c>a>bD.c>b>a【答案】B【解析】构造函数f x =ln xx,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令f x =ln xx,则f x =1-ln xx2,当0<x<e时,f x >0,函数F(x)在0,e上单调递增,当x>e时,f x <0,函数f x 在e,+∞上单调递减,因为7>6>5>e,所以f7 <f6 <f5 ,因为a,b,c均为区间0,e内的实数,且ln55=ln aa,ln66=ln bb,ln77=ln cc,所以f a >f b >f c ,所以a>b>c,故选:B.【例5】(2022·江西·高三阶段练习(理))设a=ln28,b=1e2,c=ln612,则( )A.a<c<bB.a<b<cC.b<a<cD.c<a<b 【答案】B【解析】根据a、b、c算式特征构建函数f x =ln xx2,通过求导确定函数单调性即可比较a、b、c的大小关系.【详解】令f x =ln xx2,则fx =x-2x ln xx4=0⇒x=e,因此f x =ln xx2在[e,+∞)上单调递减,又因为a=ln28=ln416=f(4),b=1e2=ln ee2=f(e),c=ln612=ln66=f(6),因为4>e>6>e,所以a<b<c.故选:B.【题型专练】1.(2022·四川省资阳中学高二期末(理))若a=ln22,b=1e,c=2ln39,则( )A.b>a>cB.b>c>aC.a>b>cD.a>c>b【答案】A【解析】令f x =ln xx,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a、c,即可得解;【详解】解:令f x =ln xx,则f x =1-ln xx2,所以当0<x<e时fx >0,当x>e时f x <0,所以f x 在0,e上单调递增,在e,+∞上单调递减,所以f x max=f e =ln ee=1e,所以1e>ln22又ln22-2ln39=9ln2-4ln318=ln29-ln3418=ln512-ln9118>0所以ln22>2ln39,即b>a>c.故选:A2.(2022·浙江台州·高二期末)设a=4-ln4e2,b=ln22,c=ln33,则( )A.a<b<cB.b<a<cC.a<c<bD.b<c<a 【答案】B【解析】由题设a=ln e22e22,b=ln44,c=ln33,构造f(x)=ln xx并利用导数研究单调性,进而比较它们的大小.由题设,a =4-ln4e 2=ln e22e22,b =ln22=ln44,c =ln 33=ln33,令f (x )=ln x x 且x >0,可得f (x )=1-ln xx 2,所以f (x )>0有0<x <e ,则(0,e )上f (x )递增;f (x )<0有x >e ,则(e ,+∞)上f (x )递减;又4>e 22>3>e ,故c >a >b .故选:B3.(2022·四川广安·模拟预测(理))在给出的(1)e ⋅ln3>3(2)e 43ln3<4(3)e π>πe .三个不等式中,正确的个数为( )A.0个 B.1个C.2个D.3个【答案】C 【解析】根据题目特点,构造函数f x =ln x x ,则可根据函数f x =ln xx的单调性解决问题.【详解】首先,我们来考察一下函数f x =ln xx,则f x =1-ln xx 2,令f x >0,解得0<x <e ,令f x <0,解得x >e ,故f x =ln xx在区间0,e 上单调递增,在区间e ,+∞ 单调递减,所以,(1)f e <f 3 ,即ln e e <ln 33,即e ⋅ln3>3,则正确;(2)f e 43<f 3 ,即ln e43e 43<ln33,即e 43⋅ln3>4,则错误;(3)f e >f π ,即ln e e >lnππ⇒πln e >e lnπ⇒ln e π>lnπe ,所以,e π>πe ,则正确故选:C .4.(2022·四川资阳·高二期末(文))若a =ln33,b =1e ,c =3ln28,则( )A.b >a >cB.b >c >aC.c >b >aD.c >a >b【解析】设函数f(x)=ln xx,(x>0),求出其导数,判断函数的单调性,由此可判断出答案.【详解】设f(x)=ln xx,(x>0),则f (x)=1-ln xx2,当0<x<e时,f (x)>0,f(x)递增,当x>e时,f (x)<0,f(x)递减,当x=e时,函数取得最小值,由于e<3<8 ,故ln ee>ln33>ln88,即b>a>c,故选:A5.(2022·山东日照·高二期末)π是圆周率,e是自然对数的底数,在3e,e3,33,e e,eπ,π3,3π,πe八个数中,最小的数是___________,最大的数是___________.【答案】 e e 3π【解析】分别利用指数函数的单调性,判断出底数同为3,e以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数f x =ln xx的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e.∵函数y=3x是增函数,且e<3<π,∴3e<33<3π;函数y=e x是增函数,且e<3<π,e e<e3<eπ;函数y=πx是增函数,且e<3<π,πe<π3;函数y=x e在0,+∞是增函数,且e<3<π,e e<3e<πe,则八个数中最小的数是e e 函数y=xπ在0,+∞是增函数,且e<3,eπ<3π,八个数中最大的数为π3或3π,构造函数f x =ln x x,求导得f x =1-ln xx2,当x∈e,+∞时f x <0,函数f x 在e,+∞是减函数,f3 >fπ ,即ln33>lnππ,即πln3>3lnπ,即ln3π>lnπ3,∴3π>π3,则八个数中最大的数是3π.故答案为:e e;3π.6.(2022·安徽省宣城中学高二期末)设a=4-ln4e2,b=1e,c=ln2,则a,b,c的大小关系为( )A.a<b<cB.b<a<cC.a<c<bD.c<a<b【答案】D设f(x)=ln xx(x>0),利用导数求得f(x)的单调性和最值,化简可得a=fe22,b=f(e),c=f(2),根据函数解析式,可得f(4)=ln44=f(2)且e<e22<4,根据函数的单调性,分析比较,即可得答案.【详解】设f(x)=ln xx(x>0),则f (x)=1x⋅x-ln xx2=1-ln xx2,当x∈(0,e)时,f (x)>0,则f(x)为单调递增函数,当x∈(e,+∞)时,f (x)<0,则f(x)为单调递减函数,所以f(x)max=f(e)=1 e,又a=4-ln4e2=2(ln e2-ln2)e2=ln e22e22=f e22,b=1e=f(e),c=ln2=12ln2=f(2),又f(4)=ln44=ln224=ln22=f(2),e<e22<4,且f(x)在(e,+∞)上单调递减,所以f(2)=f(4)<fe22 ,所以b>a>c.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a,b,c满足ln ae a=ln b b=-ln c c<0,则a,b,c的大小关系为( )A.b<c<aB.c<b<aC.a<b<cD.b<a<c【答案】C【解析】判断出0<a<1,0<b<1,c>1,构造函数f(x)=ln xx,(x>0),判断0<x<1时的单调性,利用其单调性即可比较出a,b的大小,即可得答案.【详解】由ln ae a=ln b b=-ln c c<0,得0<a<1,0<b<1,c>1 ,设f(x)=ln xx,(x>0) ,则f (x)=1-ln xx2,当0<x<1时,f (x)>0,f(x)单调递增,因为0<a<1,所以e a>1>a,所以ln a e a >ln a a ,故ln a ea =lnb b >ln aa ,∴fb >f a ,则b >a ,即有0<a <b <1<c ,故a <b <c .故选:C .题型二:利用常见不等式关系比较大小1.常见的指数放缩:e x ≥x +1(x =0);e x ≥ex (x =1)证明:设f x =e x −x −1,所以f x =e x −1,所以当x ∈−∞,0 时,f x <0,所以f x 为减函数,当当x ∈0,+∞ 时,f x >0,所以f x 为增函数,所以当x =0时,f x 取得最小值为f 0 =0,所以f x ≥0,即e x ≥x +1 2.常见的对数放缩:1−1x ≤ln x ≤x −1(x =1);ln x ≤xe(x =e )3.常见三角函数的放缩:x ∈0,π2,sin x <x <tan x 【例1】(2022·湖北武汉·高二期末)设a =4104,b =ln1.04,c =e 0.04-1,则下列关系正确的是( )A.a >b >c B.b >a >cC.c >a >bD.c >b >a【答案】D 【解析】分别令f x =e x -1-x x >0 、g x =ln 1+x -x x >0 、h x =ln 1+x -x1+xx >0 ,利用导数可求得f x >0,g x <0,h x >0,由此可得大小关系.【详解】令f x =e x -1-x x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴f x >f 0 =0,即e x -1>x ,则e 0.04-1>0.04;令g x =ln 1+x -x x >0 ,则g x =11+x -1=-x1+x<0,∴g x 在0,+∞ 上单调递减,∴g x <g 0 =0,即ln 1+x <x ,则ln1.04<0.04;∴e 0.04-1>ln1.04,即c >b ;令h x =ln 1+x -x 1+x x >0 ,则h x =11+x -11+x 2=x 1+x2>0,∴h x 在0,+∞ 上的单调递增,∴h x >h 0 =0,即ln 1+x >x1+x,则ln1.04>0.041.04=4104,即b >a ;综上所述:c >b >a .故选:D .【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知a=910,b=e-19,c=1+ln1011,则a,b,c的大小关系为( )A.a<b<cB.b<a<cC.c<b<aD.c<a<b 【答案】B【解析】首先设f x =e x-x-1,利用导数得到e x>x+1x≠0,从而得到1b>1a,设g x =ln x-x+1,利用导数得到ln x<x-1x≠1,从而得到ln 1110<110和c>a,即可得到答案.【详解】解:设f x =e x-x-1,f x =e x-1,令f x =0,解得x=0. x∈-∞,0,f x <0,f x 单调递减,x∈0,+∞,f x >0,f x 单调递增.所以f x ≥f0 =0,即e x-x-1≥0,当且仅当x=0时取等号.所以e x>x+1x≠0.又1b=e19>19+1=109=1a,a>0,b>0,故1b>1a,所以b<a;设g x =ln x-x+1,g x =1x-1=1-xx,令g x =0,解得x=1.x∈0,1,g x >0,g x 单调递增,x∈1,+∞,g x <0,g x 单调递减.所以g x ≤g1 =0,即ln x-x+1≤0,当且仅当x=1时取等号.所以ln x<x-1x≠1,故ln 1110<1110-1=110,又c-a=ln 1011+110>ln1011+ln1110=ln1=0,所以c>a,故b<a<c.故选:B.【例3】(2022·四川凉山·高二期末(文))已知a=e0.01,b=1.01,c=1-ln 100101,则( ).A.c>a>bB.a>c>bC.a>b>cD.b>a>c 【答案】C【解析】构造函数f(x)=e x-1-x,由导数确定单调性,进而即得.【详解】设f(x)=e x-1-x,则f (x)=e x-1>0,在x>0时恒成立,所以f(x)在(0,+∞)上是增函数,所以e x-1-x>f(0)=0,即e x>1+x,x>0,∴e0.01>1.01,又ln1.01>0,∴e ln1.01>1+ln1.01,即1.01>1-ln100101,所以a>b>c.故选:C.【例4】(2022·四川绵阳·高二期末(理))若a=ln 87,b=18,c=ln76,则( )A.a<c<bB.c<a<bC.c<b<aD.b<a<c 【答案】D【解析】构造函数f x =ln x+1x-1,其中x>1,利用导数分析函数f x 的单调性,可比较得出a、b的大小关系,利用对数函数的单调性可得出c、a的大小关系,即可得出结论.【详解】构造函数f x =ln x+1x-1,其中x>1,则f x =1x-1x2=x-1x2>0,所以,函数f x 在1,+∞上为增函数,故f x >f1 =0,则f 87 =ln87+78-1=ln87-18>0,即a>b,∵ln76>ln87,因此,b<a<c.故选:D.【例5】(2022·全国·高考真题(理))已知a=3132,b=cos14,c=4sin14,则( )A.c>b>aB.b>a>cC.a>b>cD.a>c>b 【答案】A【解析】由cb=4tan14结合三角函数的性质可得c>b;构造函数f(x)=cos x+12x2-1,x∈(0,+∞),利用导数可得b>a,即可得解.【详解】因为cb=4tan14,因为当x∈0,π2,sin x<x<tan x所以tan 14>14,即cb>1,所以c>b;设f(x)=cos x+12x2-1,x∈(0,+∞),f (x)=-sin x+x>0,所以f(x)在(0,+∞)单调递增,则f 14 >f(0)=0,所以cos14-3132>0,所以b>a,所以c>b>a,故选:A【题型专练】1.(2022·福建·莆田一中高二期末)设a=ln1.01,b=1.0130e,c=1101,则( )A.a<b<cB.a<c<bC.c<b<aD.c<a<b【答案】D【解析】构造函数f x =ln x-x+1(x>0),证明ln x≤x-1,令x=1.01,排除选项A,B,再比较a,b大小,即得解.【详解】解:构造函数f x =ln x-x+1(x>0),f1 =0,f x =1x-1=1-xx,所以f x 在0,1上f x >0,f x 单调递增,f x 在1,+∞上f x <0,f x 单调递减,所以f (x)max=f(1)=0,∴ln x-x+1≤0,∴ln x≤x-1,令x=1.01,则 a=ln x,b=x30e,c=1-1x,考虑到ln x≤x-1,可得ln1x≤1x-1,-ln x≥1-1x等号当且仅当 x=1时取到,故x=1.01时a>c,排除选项A,B.下面比较a,b大小,由ln x≤x-1得ln1.01<1.01<1.0130e,故b>a,所以c<a<b.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知a=cos15,b=4950,c=5sin15,则( )A.b>a>cB.c>b>aC.b>c>aD.c>a>b 【答案】D【解析】构造函数f(x)=cos x+12x2-1,利用导数求解函数f(x)的单调性,利用单调性进行求解.【详解】解:设f(x)=cos x+12x2-1,(0<x<1),则f (x)=x-sin x,设g(x)=x-sin x,(0<x<1),则g (x)=1-cos x>0,故g(x)在区间(0,1)上单调递增,即g(x)>g(0)=0,即f (x)>0,故f(x)在区间(0,1)上单调递增,所以f 15 >f(0)=0,可得cos15>4950,故a>b,利用三角函数线可得x∈0,π2时,tan x>x,所以tan 15>15,即sin15cos15>15,所以5sin 15>cos15,故c>a综上,c>a>b故选:D.3.(2022·湖北武汉·高二期末)设a=4104,b=ln1.04,c=e0.04-1,则下列关系正确的是( )A.a>b>cB.b>a>cC.c>a>bD.c>b>a【答案】D【解析】分别令f x =e x-1-x x>0、g x =ln1+x-x x>0、h x =ln1+x-x1+x x>0,利用导数可求得f x >0,g x <0,h x >0,由此可得大小关系.【详解】令f x =e x-1-x x>0,则f x =e x-1>0,∴f x 在0,+∞上单调递增,∴f x >f0 =0,即e x-1>x,则e0.04-1>0.04;令g x =ln1+x-x x>0,则g x =11+x-1=-x1+x<0,∴g x 在0,+∞上单调递减,∴g x <g0 =0,即ln1+x<x,则ln1.04<0.04;∴e0.04-1>ln1.04,即c>b;令h x =ln1+x-x1+x x>0,则h x =11+x-11+x2=x1+x2>0,∴h x 在0,+∞上的单调递增,∴h x >h0 =0,即ln1+x>x1+x,则ln1.04>0.041.04=4104,即b>a;综上所述:c>b>a.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知a-12=ln2a,b-13=ln3b,c-e=lnce,其中a≠12,b≠13,c≠e,则a,b,c的大小关系为( ).A.c<a<bB.c<b<aC.a<b<cD.a<c<b【答案】A 【解析】构造函数f x =x -ln x x >0 ,并求f x ,利用函数f x 的图象去比较a 、b 、c 三者之间的大小顺序即可解决.【详解】将题目中等式整理,得a -ln a =12-ln 12,b -ln b =13-ln 13,c -ln c =e -ln e ,构造函数f x =x -ln x x >0 ,f x =1-1x =x -1x,令f x =0,得x =1,所以f x 在0,1 上单调递减,在1,+∞ 上单调递增,函数f x 的大致图象如图所示.因为f a =f 12,f b =f 13 ,f c =f e ,且a ≠12,b ≠13,c ≠e ,则由图可知b >a >1,0<c <1,所以c <a <b .故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设a =e 1.01,b =3e,c =ln3,其中e 为自然对数的底数,则a ,b ,c 的大小关系是( )A.b >a >c B.c >a >bC.a >c >bD.a >b >c【答案】D 【解析】可判断a =e 1.01>2,b =3e <2,c =ln3<2,再令f (x )=ln x -x e ,x ∈[e ,+∞),求导判断函数的单调性,从而比较大小.【详解】解:a =e 1.01>2,b =3e<2,c =ln3<2,令f (x )=ln x -x e,x ∈[e ,+∞),f (x )=1x -1e =e -xex <0,故f (x )在[e ,+∞)上是减函数,故f 3 <f e ,即ln3-3e <0,故ln3<3e <e 1.01,即c <b <a ,故选:D .【例3】(2022·全国·高三专题练习)已知a=ln32,b=1e-1,c=ln43,则a,b,c的大小关系是( )A.b>a>cB.b>c>aC.c>a>bD.c>b>a 【答案】A【解析】根据给定条件构造函数f(x)=ln xx-1(x≥e),再探讨其单调性并借助单调性判断作答.【详解】令函数f(x)=ln xx-1(x≥e),求导得f (x)=1-ln x-1xx-12,令g x =1-ln x-1x,则g x =1-xx2<0,(x≥e),故g x =1-ln x-1x,(x≥e)单调递减,又g1 =1-ln1-11=0,故g x <0,(x≥e),即f (x)<0,(x≥e),而e<3<4,则f(e)>f(3)>f(4),即1e-1>ln32>ln43,所以b>a>c,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设a=110,b=ln1.1,c=e-910,则( )A.a<b<cB.c<a<bC.b<c<aD.b<a<c【答案】D【解析】利用指数函数的性质可比较a,c的大小,再构造函数f(x)=x-ln(1+x),利用导数判断函数的单调性,再利用其单调性可比较出a,b,从而可比较出三个数的大小【详解】因为y=e x在R上为增函数,且-1<-9 10,所以e-1<e-910,因为110<e-1,所以110<e-910,即a<c,令f(x)=x-ln(1+x)(x>0),得f (x)=1-11+x=x1+x>0,所以f(x)在(0,+∞)上递增,所以f(x)>f(0)=0,所以x>ln(1+x),令x=0.1,则0.1>ln1.1,即110>ln1.1,即a>b,所以b<a<c,故选:D【例5】(2022·四川南充·高二期末(理))设a=0.01e0.01,b=199,c=-ln0.99,则( )A.c<a<bB.c<b<aC.a<b<cD.a<c<b 【答案】A【解析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数y=xe x,t=x1-x,u=-ln(1-x),x∈(0,2-1),显然y>0,t>0,则ln y-ln t=ln x+x-[ln x-ln(1-x)]=x+ln(1-x),令f(x)=x+ln(1-x),x∈(0,2-1),求导得f (x)=1+1x-1=xx-1<0,即f(x)在(0,2-1)上单调递减,∀x∈(0,2-1),f(x)<f(0)=0,即ln y<ln t⇔y<t,因此当x∈(0,2-1)时,xe x<x1-x,取x=0.01,则有a=0.01e0.01<0.011-0.01=199=b,令g(x)=y-u=xe x+ln(1-x),x∈(0,2-1),g (x)=(x+1)e x+1x-1=(x2-1)e x+1x-1,令h(x)=(x2-1)e x+1,x∈(0,2-1),h (x)=(x2+2x-1)e x<0,h(x)在(0,2-1)上单调递减,∀x∈(0,2-1),h(x)<h(0)=0,有g (x)>0,则g(x)在(0,2-1)上单调递增,∀x∈(0,2-1),g(x)>g(0)=0,因此当x∈(0,2-1)时,xe x>-ln(1-x),取x=0.01,则有a=0.01e0.01>-ln(1-0.01)=-ln0.99=c,所以c<a<b.故选:A【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知a=0.3π,b=0.9π2,c=sin0.1,则a,b,c的大小关系正确的是( )A.a>b>cB.c>a>bC.a>c>bD.b>a>c 【答案】B【解析】作差法比较出a>b,构造函数,利用函数单调性比较出c>a,从而得出c>a>b.【详解】a-b=0.3π-0.9π2=0.3π-0.9π2>0.3×3-0.9π2=0,所以a-b>0,故a>b,又f x =πsin x-3x,则f x =πcos x-3在x∈0,π6上单调递减,又f 0 =π-3>0,f π6 =3π2-3<0,所以存在x0∈0,π6,使得f x0 =0,且在x∈0,x0时,f x >0,在x∈x0,π6时,f x <0,即f x =πsin x-3x在x∈0,x0上单调递增,在x∈x0,π6单调递减,且f π12 =6+24π-3>0,所以x0>π12,又因为f0 =0,所以当x∈0,x0时,f x =πsin x-3x>0,其中因为110<π12,所以110∈0,x0,所以f110=πsin0.1-0.3>0,故sin0.1>0.3π,即c>a>b.故选:B【例7】(2022·河南洛阳·三模(理))已知a=810,b=99,c=108,则a,b,c的大小关系为( )A.b>c>aB.b>a>cC.a>c>bD.a>b>c【答案】D【解析】构造函数f x =18-xln x,x≥8,求其单调性,从而判断a,b,c的大小关系.【详解】构造f x =18-xln x,x≥8,f x =-ln x+18x-1,f x =-ln x+18x-1在8,+∞时为减函数,且f 8 =-ln8+94-1=54-ln8<54-ln e2=54-2<0,所以f x =-ln x+18x-1<0在8,+∞恒成立,故f x =18-xln x在8,+∞上单调递减,所以f8 >f9 >f10,即10ln8>9ln9>8ln10,所以810>99>108,即a>b>c.故选:D【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若a=e0.2,b= 1.2,c=ln3.2,则a,b,c的大小关系为( )A.a>b>cB.a>c>bC.b>a>cD.c>b>a【答案】B【解析】构造函数f x =e x-x-1x>0,利用导数可得a=e0.2>1.2>b,进而可得e1.2>3.2,可得a>c,再利用函数g x =ln x-2x-1x+1,可得ln3.2>1.1,即得.【详解】令f x =e x-x-1x>0,则f x =e x-1>0,∴f x 在0,+∞上单调递增,∴a=e0.2>0.2+1=1.2> 1.2=b,a=e0.2>1.2=ln e1.2,c=ln3.2,∵e1.25=e6> 2.76≈387.4,3.25≈335.5,∴e1.2>3.2,故a>c,设g x =ln x-2x-1x+1,则g x =1x-2x+1-2xx+12=x-12x x+12≥0,所以函数在0,+∞上单调递增,由g1 =0,所以x>1时,g x >0,即ln x>2x-1x+1,∴ln3.2=ln2+ln1.6>22-12+1+21.6-11.6+1=1539>1550=1.1,又1<1.2<1.21,1<b= 1.2<1.1,∴c>1.1>b,故a>c>b.故选:B.【点睛】本题解题关键是构造了两个不等式e x>x+1x>0与ln x>2x-1x+1(x>1)进行放缩,需要学生对一些重要不等式的积累.【题型专练】1.(2022·山东烟台·高二期末)设a=0.9,b=0.9,c=ln910e,则a,b,c的大小关系为( )A.b>c>aB.b>a>cC.c>b>aD.c>a>b【答案】B【解析】构造函数f(x)=x-ln x-1,g(x)=x-x,利用导数研究其单调性,再由单调性可比较大小.【详解】令f(x)=x-ln x-1,因为f (x)=1-1x=x-1x所以,当0<x<1时,f (x)<0,f(x)单调递减,所以f (0.9)=0.9-ln0.9-1>f (1)=0,即0.9>ln0.9+1=ln 910e,a >c ;令g (x )=x -x ,因为g (x )=1-12x=2x -12x所以,当14<x <1时,g (x )>0,g (x )单调递增,所以g (0.9)<g (1),即0.9-0.9<0,0.9<0.9,即a <b .综上,c <a <b .故选:B2.(2022·山东青岛·高二期末)已知a =ln π3,b =2π3-2,c =sin0.04-12π3-1,则a ,b ,c 的大小关系是( )A.c >b >a B.a >b >cC.b >a >cD.a >c >b【答案】C 【解析】构造函数得出a ,b 大小,又c <0即得出结论.【详解】构造函数f x =2ln x -2x -1 =2ln x -x +1 ,则a -b =f π3,f x =21x-1<0在1,+∞ 上恒成立,则y =f x 在1,+∞ 上单调递减,故a -b =f π3<f 1 =0,则b >a >0,π3=1+x x >0 ,则1+x -1=π-33>0.123=0.04,由对于函数g x =sin x -x 0<x <π2 ,g x =cos x -1<0,0<x <π2恒成立,所以, g x =sin x -x <g 0 =0即sin x <x 在0,π2上恒成立.所以,sin0.04-121+x -1<sin x -121+x -1=sin x -12x <x -12x =x x -12 <0(注:0.04<x <0.09,0.2<x <0.3<0.5)所以,b >a >c 故选:C3.(2022·湖北襄阳·高二期末)设a =34e 25,b =25e 34,c =35,则( )A.b <c <a B.a <b <cC.c <b <aD.c <a <b【答案】C 【解析】根据式子结构,构造函数f x =e x x ,0<x <1 ,利用导数判断单调性,得到f 25 >f 34,即可判断出a>b.记g x =e x-2x,0<x<1,推理判断出b>c.【详解】a b=34e2525e34=e2525e3434.记f x =e xx,0<x<1,则f x =e x x-1x2<0,所以f x =e x x在0,1上单调递减.所以f 25 >f34 ,所以a>b.b-c=25e34-35=25e34-2×34.记g x =e x-2x,0<x<1,则g x =e x-2.所以在x∈0,ln2上,g x <0,则g x 单调递减;在x∈ln2,1上,g x >0,则g x 单调递增;所以g x min=g ln2=e ln2-2×ln2=21-ln2>0,所以g 34 >g x min>0,即b-c=25e34-2×34>0.所以b>c.综上所述:c<b<a.故选:C4.(2022·福建宁德·高二期末)已知a,b∈R,且2a>2b>1,则( )A.e a-e b<ln a-ln bB.b ln a<a ln bC.b a>e a-bD.sin a-sin ba-b<1【答案】D【解析】由题设有a>b>0,分别构造y=e x-ln x、y=ln xx、y=xe x、y=x-sin x,利用导数研究在x∈(0,+∞)上的单调性,进而判断各项的正误.【详解】由2a>2b>1,即a>b>0,A:若y=e x-ln x且x∈(0,+∞),则y =e x-1x,故yx=12=e-2<0,yx=1=e-1>0,即y 在12,1上存在零点且y 在(0,+∞)上递增,所以y在(0,+∞)上不单调,则e a-ln a<e b-ln b不一定成立,排除;B:若y=ln x x且x∈(0,+∞),则y =1-ln xx2,所以(0,e)上y >0,y递增;(e,+∞)上y <0,y递减;故y在(0,+∞)上不单调,则ln aa<ln bb不一定成立,排除;C:若y=xe x且x∈(0,+∞),则y =e x(x+1)>0,即y在(0,+∞)上递增,所以ae a>be b,即ba<e a-b,排除;D:若y=x-sin x且x∈(0,+∞),则y =1-cos x≥0,即y在(0,+∞)上递增,所以a-sin a>b-sin b,即sin a-sin ba-b<1,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设a=e1.01,b=3e,c=ln3,则a,b,c的大小关系是( )A.b>a>cB.c>a>bC.a>c>bD.a>b>c【答案】D【解析】分析可得a>2,b∈(1,2),c∈(1,2),令f(x)=ln x-xe,x∈[e,+∞),利用导数可得f(x)的单调性,根据函数单调性,可比较ln3和3e的大小,即可得答案.【详解】由题意得a=e1.01>e1>2,b=3e∈(1,2),c=ln3∈(1,2),令f(x)=ln x-xe,x∈[e,+∞),则f (x)=1x-1e=e-xxe≤0,所以f(x)在[e,+∞)为减函数,所以f(3)<f(e),即ln3-3e<ln e-ee=0,所以ln3<3e,则e1.01>3e>ln3,即a>b>c.故选:D6.(2022·重庆南开中学高二期末)已知a=65ln1.2,b=0.2e0.2,c=13,则( )A.a<b<cB.c<b<aC.c<a<bD.a<c<b【答案】A【解析】b=0.2e0.2=e0.2ln e0.2,令f x =x ln x,利用导数求出函数f x 的单调区间,令g x =e x-x-1,利用导数求出函数g x 的单调区间,从而可得出e0.2和1.2的大小,从而可得出a,b的大小关系,将b,c两边同时取对数,然后作差,从而可得出b,c的大小关系,即可得出结论.【详解】解:b=0.2e0.2=e0.2ln e0.2,a=65ln1.2=1.2ln1.2,令f x =x ln x,则f x =ln x+1,当0<x<1e时,f x <0,当x>1e时,f x >0,所以函数f x 在0,1 e上递减,在1e,+∞上递增,令g x =e x-x-1,则g x =e x-1,当x<0时,g x <0,当x>0时,g x >0,所以函数g x 在-∞,0上递减,在0,+∞上递增,所以g0.2>g0 =0,即e0.2>1+0.2=1.2>1 e,所以f e0.2>f1.2,即e0.2ln e0.2>1.2ln1.2,所以b>a,由b=0.2e0.2,得ln b=ln0.2e0.2=15+ln15,由c=13,得ln c=ln13,ln c-ln b=ln13-ln15-15=ln53-15,因为535=625×5243>10>e,所以53>e15,所以ln53>15,所以ln c-ln b>0,即ln c>ln b,所以c>b,综上所述a<b<c.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知a2-14=2ln2a>0,b2-1e2-2=2ln b>0,c2-13=ln3c2> 0,则( )A.c<bB.b<aC.c<aD.b<c【答案】AC【解析】根据题意可将式子变形为a2-ln a2=14-ln14,b2-ln b2=1e2-ln1e2,c2-ln c2=13-ln13,构造函数f x =x-ln x,利用导数求解函数f x 的单调性,即可求解.【详解】解:由题意知,a>12,b>1,c2>13,对三个式子变形可得a2-ln a2=14-ln14,b2-ln b2=1e2-ln1e2,c2-ln c2=13-ln13,设函数f x =x-ln x,则f x =1-1x=x-1x.由f x >0,得x>1;由f x <0,得0<x<1,则f x 在0,1上单调递减,在1,+∞上单调递增,因为0<1e2<14<13<1,所以b2>a2>c2,所以c<a<b.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知x、y、z∈(0,1),且满足e2x=2e x,e3y=3e y,e4z=4e z,则( )A.x<y<zB.x<z<yC.z<y<xD.z<x<y【答案】C【解析】先对已知条件取对数后得到ln x-x=ln2-2,ln y-y=ln3-3,ln z-z=ln4-4.根据式子结构,构造函数m x =ln x-x,利用导数判断单调性,比较大小.【详解】由e2x=2e x得2+ln x=ln2+x,即ln x-x=ln2-2.同理得:ln y-y=ln3-3,ln z-z=ln4-4.令m x =ln x-x,则m x =1x-1=1-xx.故m x 在0,1上单调递增,(1,+∞)上单调递减.所以z<y<x.故选:C.。

导数中的构造函数-玩转压轴题(解析版)

导数中的构造函数-玩转压轴题(解析版)

近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结: 和与积联系:()()f x xf x '+,构造()xf x ; 22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=; ()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,……………… ()()f x nf x '-,构造()()e nxf x F x =, 奇偶性结论:奇乘除奇为偶;奇乘偶为奇。

(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。

给出导函数,构造原函数,本质上离不开积分知识。

【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是专题6.1 导数中的构造函数( ) A .1x y <<B .1y x <<C .1x y <<D .1y x <<【来源】广东省佛山市2021届高三下学期二模数学试题 【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =, 当1x >时,由()1f x >,则()1g y >,可得1y >, 当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x -=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减, 又()2110ln 2h '=-+>,()1230ln 2h '=-+<, 则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<, 又因为()()()()010,10,412480h h x h h =>==-+=-<, 所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<, 当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能. 故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性. 【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=( )A .2B C .2D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题 【答案】C 【解析】()ln 1g x x x =--,1()1g x x'=-, ()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈, ∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-2221a b -21a b =-, 221ln ln(2)ln a a a bb b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b+-=-,又21ab =(不等式取等条件),解得:a b ==,2a b ∴+=, 故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为( )A .11[,]22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞- D .1[,)2+∞【答案】D【解析】由()()1f m f m -- ()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为( )A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________. 【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x xx-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,. 类型二 巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是fx ,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为( )A .(1,1)-B .(),1-∞-C .1,D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟) 【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦, ∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<. ∴()()10xf x f ->的解集为(1,1)-. 故选:A. 【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是( )A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()xg x e f x = ,则()(()())0xg x e f x f x '+'=<, 所以(2)(3),g g > 即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等 3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( ) A .(0)02(1)f f << B .0(0)2(1)f f << C .02(1)(0)f f << D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B . 4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当 成立(是函数的导数),若,则的大小关系是( )A .B .C .D .【答案】A 【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+,,∞∞ B .()()2002-,,C .()()202-+,,∞D .()()202--,,∞【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减, ()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+,,∞.故选C . 点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<-,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001-,,B .()()11--+,,∞∞C .()()101-+,,∞D .()()101--,,∞ 【答案】D.【解析】设()ln ()g x x f x =,当0x >时,1()()ln ()0g x f x xf x x'=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->; 当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<, ∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->. 综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101--,,∞ 【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则( ) A .()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0xg x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]xg x xf x =。

微专题:构造函数法解选填压轴题.docx

微专题:构造函数法解选填压轴题.docx

微专题:构造函数法解选填压轴题高考中要取得高分,关键在于选准选好的解题方法,才能省时省力乂有效果。

近儿年各地髙考数学试卷屮,许多方面尤其涉及函数题目,采用构造函数法解答是一个不错的选择。

所谓构造函数法是指通过一定方式,设计并构造一个与有待解答问题相关函数,并对其进行观察分析,借助函数木身性质如单调性或利川运算结果,解决原问题方法,简而言Z就是构造函数解答问题。

怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方而问题。

几种导数的常见构造:1・对于广(x)>g*(x),构造/?(x) = /(x)-g(x)若遇到广(X)>Q(QH O),则可构h(x)= f(x)~ax2.对于广(Q+g'd)>(),构造/?(兀) = /(©+g(Q3.对于.厂(x) + /*(x) > 0,构造/?(%) = e v/(x)4.对于f\x)>f(x)[或/V)-/(x)>0],构造此)=理e5.对于xf\x)+ /(x)>0,构造h{x) = xf{x)6.对于xf'(x)- f(x)>Q ,构造力(兀)=/兀x一、构造函数法比较大小例1.已知函数y = /(x)的图象关于y轴对称,且当xe(-oo,0),/(x) + V,W<0成立,6/ = 202 /(2°-2), b = log"/(log"), c = log39/(log39),则d,仇c 的大小关系是()A. a >b> cB.a > c>bC.c >b> aD.b > a> c【解析】因为函数y = f(x)关于y轴对称,所以函数y = xf(x)为奇函数•因为[灯(兀)]' = /") +#*'(兀),所以当兀w (一8,0)时,[xf (x)Y = f (x)xf \x) < 0,函数y = xf(x)单调递减,当尢G (0,+8)时,函数y = xf(x)单调递减.因为1 <202<2, OvlogQvl, 1吸9 = 2,所以0 <1^3< 202 <1^39,所以b>a>c t选D. 变式:己知定义域为/?的奇函数/(兀)的导函数为厂(兀),当兀H0时,厂⑴+上凶>0,X 若a=- /(-),& = -2/(-2),c = In - /(In 2),则下列关于a,b,c的大小关系正确的是(D )2 2 2A.a > b> cB. a > c> bC. c >b> a Db> a> c例2.已知/(兀)为/?上的可导函数,且Vxe/?,均W /(x) > f(x),则有A. e2017(-2016)</(0), /(2016)>e2016/(0)B. ^20,6/(-2016) </(O), /(2016) < e20,6/(0)C. e2017(-2016)>/(0), /(2016)>e2016/(0)D. e20,6/(-2016) >/(O), /(2016) < e2O,6/(0)[解析]构造函数g(x)=半,则e x(e x y e x因为V XG R,均有/(x)>广(x),并且『>0,所以g'(x)vO,故函数g(x) = 4卫在R上单调递减, e x所以g(—20⑹ >g(0), g(20⑹ vg(O),即/(~^6)>/(0), /豐® </(0),e也就是严6/(-20⑹〉/(0), /(2016) v0H7(O),故选D.变式:已知函数/(兀)为定义在/?上的可导函数,且/(x)< f\x)对于任意XE R恒成立,0为自然対数的底数,则(C )A./(l) > e• /(0)> /(2016) < e2016・/(0)B.f ⑴ < e• /(0)、/(2016) > e2016• /(0)C")>e f(O). /(2016)>e2016./(0) D/⑴<£•/(())、/(2016)<^2016•/(O)例3.在数列仏}中,(%)m=n+lg M)・则数列{陽}中的最大项为().A. >/2B. V3C. V5D.不存在【解析】由LL知再=血,= V3 , a3 = V4 = A/2,a4=\/5易得q < a2,a2 >a3>a4> ....... 猜想当n > 2时,{色}是递减数列乂由a fl n+i = 〃 +1 知In % = ln(n + 1),令/(x) = —,〃 + l X—• x — In x i ]则八沪二上竺% %・••当x>3 R寸,lnx>l,贝)Jl-lnx<0,即f\x) < 0/. /(x)在[3,+oo)内为单调递减函数,:.n>2时,,{lna“}是递减数列,即{a“}是递减数列又坷<02,・•・数列{色}中的最大项为a2=V3 故选B・jr jr练习1.已知函数y - /(%)对任意的xw(——,一)满足/z(x)cosx + /(x)sinx > 0,则( )A /(0)>V2/(^) B. /(0)<2/(-y) C. V2/(|)</(^) D. V2/(-|) </(-^)捉示:构造函数g(x) = /("),选D.COSX二、构造函数法解恒成立问题例1.若函数y=f(x)在斤上可导且满足不等式xf(x) + f(x)>0恒成立,对任意正数a、b,若a<b, 则必冇()A. af(h)<hf(a)B. hf(a)<af(h)C. af(a)<bf(b)D. bf(b)<af(a)【解析】由已知y(x) + /(x)>0・••构造函数F(x) = xf(x),则F'(Q = xf(x) + /(x) > 0 ,从而F(x)在斤上为增函数。

导数难题秒杀技巧:构造函数【解析版】

导数难题秒杀技巧:构造函数【解析版】

高中数学专题突破:抽象函数的导函数构造类型一:)]'()([)(')()()('x g x f x g x f x g x f =+与'2)()()()(')()()('⎥⎦⎤⎢⎣⎡=-x g x f x g x g x f x g x f定理1:0)]'([0)()('>⇔>+x xf x f x xf ;0)(0)()(''>⎥⎦⎤⎢⎣⎡⇔>-x x f x f x xf 证明:)]'([)()('x xf x f x xf =+ ;'2)()()('⎥⎦⎤⎢⎣⎡=-x x f x x f x xf 0)()('>+∴x f x xf ,则函数)(x xf y =单调递增;0)()('>-x f x xf ,则x x f y )(=单调递减.定理2:当0>x 时,0)]'([0)()('>⇔>+x f x x nf x xf n;0)(0)()(''>⎥⎦⎤⎢⎣⎡⇔>-n x x f x nf x xf证明:)]'([)()('1x f x x f nxx f x nn n =+- ;'21)()()('⎥⎦⎤⎢⎣⎡=--n nn n x x f x x f nx x f x 0)()('>+∴x nf x xf ,则函数)(x f x y n =单调递增;0)()('>-x nf x xf ,则nx x f y )(=单调递减【例1】(2015•新课标II )设函数)('x f 是奇函数)(x f (R x ∈)的导函数,0)1(=-f ,当0>x 时,0)()('<-x f x xf ,则使得0)(>x f 成立的x 的取值范围是( )A .)1,0()1,( --∞B .),1()0,1(+∞-C .)0,1()1,(---∞D .),1()1,0(+∞【解析】由于当x >0时,()2()()0xf x f x f x x x ''-⎡⎤=<⎢⎥⎣⎦,则()f x x 为减函数;又()01=-f ,()x f 为奇函数,则()01=f ,当x >1时,()0<x f ,当0<x <1时,()0>x f ,根据奇函数的图像可得()0>x f 成立的x 的取值范围是)1,0()1,( --∞,故选A .【例2】(2018•东莞市期末)已知奇函数()f x 的导函数为()f x ',且(1)0f -=,当0x >时()()0f x xf x '+>恒成立,则使得()0f x >成立的x 的取值范围为( ) A .)1,0()0,1( -B .)1,0()1,( --∞C .),1()0,1(+∞-D .),1()1,(+∞--∞【解析】由题意可设()()g x xf x =,则()()()g x xf x f x '='+,当0x >时,有()()0xf x f x '+>,∴则当0x >时,()0g x '>,∴函数()()g x xf x =在(0,)+∞上为增函数,函数()f x 是奇函数,()()()()[()]()()g x x f x x f x xf x g x ∴-=--=--==,∴函数()g x 为定义域上的偶函数,由(1)0f -=得,(1)0g -=,函数()g x 的图象大致如图:由函数的图象得,10x -<<或1x >,∴使得()0f x >成立的x 的取值范围是:(1-,0)(1⋃,)+∞,故选C .【例3】(2018•福建期末)设函数()y f x =,(0,)x ∈+∞的导函数为()f x ',且满足()3()xf x f x '<,则( ) A .201820198(2)(2)f f < B .201820198(2)(2)f f >C .201820198(2)(2)f f =D .不能确定20188(2)f 与2019(2)f 的大小【解析】令3()()f x g x x=,则3264()3()()3()()f x x x f x xf x f x g x x x '-'-'==,()3()xf x f x '<,即()3()0xf x f x '-<, ()0g x ∴'<在(0,)+∞恒成立,故()g x 在(0,)+∞递减,即201820192018320193(2)(2)(2)(2)f f >,故201820198(2)(2)f f >,故选B .【例4】(2018•辽宁期末)函数()f x 是定义在区间(0,)+∞上可导函数,其导函数为()f x '且满足()2()0xf x f x '+>,则不等式(2019)(2019)5(5)52019x f x f x ++<+的解集为( ) A .{|2014}x x >- B .{|20192014}x x -<<- C .{|02014}x x <<D .{|2014}x x <-【解析】根据题意,设2()()g x x f x =,()[2()()]g x x f x xf x '=+';当0x >时,2()()0f x xf x +'>,则有()0g x '>,即()g x 在(0,)+∞上单调递增,2(2019)(2019)5(5)(2019)(2019)2552019x f x f x f x f x ++<⇒++<+(5)(2019)g x g ⇒+<(5),又由()g x 在(0,)+∞上单调递增,则有020195x <+<,解得:20192014x -<<-,故B .()f x e ⎡⎣)()>+x f :由于f 【例5】(2018•咸阳期末)已知()f x 是可导函数,且()()f x f x '<对于x R ∈恒成立,则( )A .2018(1)(2018)(0),(0)f f f f e e<> B .(1)(0)f f e >,2018(2018)(0)f f e >C .(1)(0)f f e >,2018(2018)(0)f f e < D .(1)(0)f f e <,2018(2018)(0)f f e < 【解析】由()()f x f x '<,得()()0f x f x '-<,令()()x f x g x e=, 则2()()()()()0x x x xe f x e f x f x f x g x e e'-'-'==<.()g x ∴在R 上单调递减, 即)0()1(g g <,(2018)(0)g g <∴(1)(0)f f e<,20180(2018)(0)(0)f f f e e <=.故选:D .【例6】(2018•长沙期末)已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足:当1x ≠时,(1)[()()]0x f x f x -'+>,22()(2)x f x e f x -=-,则下列判断一定正确的是( )A .)0()1(f f <B .)0()4(4f f e <C .)0()2(f ef >D .)0()3(3f f e > 【解析】令()()x g x e f x =,则()(()())x g x e f x f x '=+',()f x 满足:(1)[()()]0x f x f x -'+>,∴当1x <时,()()0f x f x '<<.()0g x ∴'<,此时函数()g x 单调递减.(1)(0)g g ∴->.即1(1)(0)f f e->.xe xf 22)(-= )2(x f -⋅,f ∴(3)4(1)(0)f e ef -=->,3e f ∴(3)(0)f >,故选D .【例7】(2018•南昌期末)已知函数()f x 是定义在R 上的增函数,()2()f x f x '+>,(0)1f =,则不等式[()2]3ln f x ln x +>+的解集为( )A .(,0)-∞B .(0,)+∞C .(,1)-∞D .(1,)+∞ 【解析】令()2()xf xg x e+=,()()2()x f x f x g x e '--'=,又()2()f x f x +>',则有()0g x '<,则函数()g x ↓,(0)1f =,则0(0)2(0)3f g e +==,函数()f x ↑,()2()0f x f x +>'>⇒()20f x +>在R 上恒成立;[()2]3ln f x ln x +>+()2()233x f x f x lnx e ++⇒>⇒>⇒()23xf x e +>()(0)g x g ⇒>,故()g x 为减函数,则有0x <,故选A .【例8】定义在R 上的函数)(x f 满足:1)(>x f 且1)(')(>+x f x f ,5)0(=f ,其中)('x f 是)(x f 的导函数,则不等式x x f ->-4ln ]1)(ln[的解集为( )A .),0(+∞B .),3()0,(+∞-∞C .),0()0,(+∞-∞D .)0,(-∞【解析】()()()+()11xf x f x e f x '⎡⎤'>⇒-↑⎣⎦,()()ln 4ln 1ln 1ln 4f x xe f x x e e -⎡⎤⎣⎦->-⇒>⎡⎤⎣⎦,又14f ()()()()014011014x x e f x f e f x e f ⇒->=-⇒->-=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,故0x >,故选A .【例9】(2018•玉林期末)已知()f x '为函数()y f x =的导函数,当((0,))2x x π∈是斜率为k 的直线的倾斜角时,若不等式()()0f x f x k -'<恒成立,则( )A()3()4f f ππ>B .(1)2()sin16f f π> C()()064f ππ->D()()063f ππ->【解析】tan k x =,()()0f x f x k -'<,(0,))2x π∈cos ()sin ()0x f x x f x ∴-'<,典型的正弦同号模型,设()()sin f x g x x =,2sin ()cos ()()x f x x f x g x sin x'-∴'=,不等式()()0f x f x k -'<恒成立,()0g x ∴>恒成立,()g x ∴在(0,)2π↑)6()4()1()3(πππg g g g >>>∴,∴()()()(1)364sin1sinsin sin 346ff f f ππππππ>>>,∴()()34ππ>,(1)2()sin16f f π>,()()46f ππ>,()()36f ππ>A ∴,C ,D 错误,B 正确,故选B .【例10】(2016•河南模拟)已知函数()y f x =对任意的(2x π∈-,)2π满足()cos ()sin 0f x xf x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( ) A ()()34f ππ-<- B ()()34f ππ< C .(0)2()3f f π> D .(0)()4f π>【解析】典型的余弦反号模型,构造函数()()cos f x g x x =,+=-=x x f xx x x f x x f x g cos )('(cos 1cos )')(cos (cos )(')('22)sin )(x x f ,对任意的(2x π∈-,)2π满足()cos ()sin 0f x x f x x '+>,()0g x ∴'>,即函数()g x 在(2x π∈-,)2π单调递增,则()()34g g ππ-<-,即()()34cos()cos()34f f ππππ--<--,∴()()3122f f ππ--<()()34f ππ-<-,故A 正确.()()34g g ππ>()()34f ππ>,B 错误;(0)()3g g π<,即()(0)3cos 0cos 3f f ππ<,(0)2()3f f π∴<,C 错误,4(0)()g g π<,即()(0)4cos 0cos 4f f ππ<,(0)2()4f f π∴<,D 错误,故选A .【例11】(2018•武汉月考)定义在(0,)+∞上的函数()f x 的导函数为()f x ',且对(0,)x ∀∈+∞都有1()()lnxf x lnx f x x-'<,则( ) A .)(2)()(4243e f e e f e e f ⋅>⋅> B .)(4)(2)(243e f e f e e f e >⋅>⋅ C .)(2)(4)(243e f e e f e f e ⋅>>⋅ D .)()(2)(4432e f e e f e e f ⋅>⋅>【解析】1()()lnx f x lnx f x x -'<,∴2()()(1)xf x f x lnx lnx ln x '-<,∴2()(1)()0xf x lnx f x lnx ln x '-+<,[()]0xf x lnx ∴'<设()()xg x f x lnx=⋅,()g x ∴'在(,)e +∞为减函数,42()()g e g e g ∴<<(e ),424242()()e e f e f e f lne lne ∴<<(e )e lne ,∴43211()()42f e e f e e f <<(e ),432()2()4f e e f e e f ∴<<(e ),故选D .【例12】(2019•九江一模)定义在(0,)+∞上的函数()f x 的导函数为()f x ',且对(0,)x ∀∈+∞都有1()()lnxf x lnx f x x+'>,则( ) A .)8()4(3)2(12f f f >> B .)8()2(12)4(3f f f >>C .)2(12)4(3)8(f f f >> D .)4(3)2(12)8(f f f >> 【解析】由1()()lnx f x lnx f x x +'>得,()(1)()f x xlnx lnx f x '>+,即()(1)()0f x xlnx lnx f x '-+>,令()()f x g x xlnx=, 则2()(1)()()()f x xlnx lnx f x g x xlnx '-+'=,由()(1)()0f x xlnx lnx f x '-+>,(0,1)x ∴∈,(1,)+∞时,()0g x '>,()g x ∴在区间(0.1)和(1,)+∞上单调递增,g ∴(2)g <(4)g <(8),即f (8)3f >(4)12f >(2), 故选:C .类型五:非对称的构造定理7:平移模型:()()()()()()()+()0+()0;+()00+f x x a f x f x x a f x x a f x f x x a '⎡⎤'''+>⇔>->⇔>⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦倍数模型:f '(x)+nf(x)>0↔[f(x)]'>0;:f '(x)-nf(x)>0↔[]'类型四:xlnx 与f(x)定理6:()[]()()ln ()0ln ()0;ln ()00ln f x f x x x f x xf x f x x x f x x '⎡⎤'''⋅+>⇔>⋅->⇔>⎢⎥⎣⎦()()[]()()()ln 1ln ()0ln ()0;ln 1ln ()00ln f x f x x x x f x x x f x f x x x x f x x x '⎡⎤'''⋅++>⇔⋅>⋅-+>⇔>⎢⎥⎣⎦()()()()ln ()ln 1ln ()0()0;ln 1ln ()00ln x xf x f x x x x f x f x f x x x x f x x x ''⎡⎤⎡⎤''⋅+->⇔⋅>⋅-->⇔>⎢⎥⎢⎥⎣⎦⎣⎦.奇偶模型:f(x)+f(-x)=g(x);h(x)=f(x)- 为奇函数;f(x)-f(-x)=g(x);h(x)=f(x)-为偶函数g x 为奇函数【例13】(2018•广州期末)定义在R 上的可导函数)(x f ,当),1(+∞∈x 时,)(')(')(x xf x f x f <+恒成立,)2(f a =,)(21x f b =,)2()12(f c +=,则a ,b ,c 的大小关系为( ) A .b a c <<B .a c b <<C .a c a <<D .a b c <<【解析】()()()()1()01f x x f x f x x '-->⇒-在区间()↑+∞,,1,故()()()(2)(2)(3)213121f f f <<---,即b a c <<,故选A .【例14】(2018•广东模拟)若定义在R 上的函数f x 满足f '(x)- 2f(x)>0,f(0)=1,则不等式2x f x e 的解集为 . 【解析】f '(x)- 2f(x)>0↔[]'>0↔单调递增,故22001x xf x f f xe ee,故答案为0x .【例15】(2018•成都期末)已知定义在R 上的可导函数()f x ,对于任意实数x 都有2()()f x f x x -+=成立,且当(0x ∈,)+∞时,都有()f x x '>成立,若12(1)()f a f a a -≥+-,则实数a 的取值范围为( )A .12,⎛⎤-∞ ⎥⎦⎝B .12,⎫⎡+∞⎪⎢⎣⎭C .](,2-∞D .[)+∞,2【解析】法一:令212F xf xx ,故F xF x ,又因为()f x x '>,则F '(x)=f '(x)-x>0,即F x在R 上单调递增,当f(1-a) -≧f(a) - ,即f(1-a)≧f(a)-a+恒成立时,一定有1-a ≧a ↔a ≦;法二:令212f xx x ,f(1-a)≧f(a)-a+↔,+(1-a)≧+a-a+↔a ≦故选A .【例16】(2018•太原期末)已知定义在R 上的可导函数()f x ,对于任意实数x 都有()()2f x f x x -=-成立,且当]0,(-∞∈x 时,都有()21f x x '<+成立,若(2)(1)3(1)f m f m m m <-++,则实数m 的取值范围为( )A .)31,1(-B .(1,0)-C .(,1)-∞-D .),31(+∞-【思路分析】构造g xf xx ,发现g x 为偶函数,但由于()21f x x '<+,故构造2g x f x x x【解析】法一:令2()()g x f x x x =--,则22()()()()0g x g x f x x x f x x x --=--+-++=,()()g x g x ∴-=,∴函数()g x 为R 上的偶函数.当(x ∈-∞,0]时,都有()21f x x '<+成立,()()210g x f x x '∴'=--<,∴函数()g x 在(x ∈-∞,0]上单调递减,在[0,)+∞上单调递增.即22(2)42(1)(1)(1)f m m m f m m m --<-----,(2)(1)g m g m ∴<- (2)(1)3(1)f m f m m m ⇒<-++,因此(|2|)(|1|)g m g m <-,|2||1|m m ∴<-,解得113m -<<. 故选A .法二:根据(x ∈-∞,0]时,都有()21f x x '<+成立,则构造f '(x)=4x+1,易知22f xx x 时,满足条件()()2,f x f x x -=-()()()22(2)(1)3(1)8221131,f m f m m m m m m m m m <-++⇔+<-+-++解得113m -<<.类型六:积分型F '(x)>g(x)↔f(x)>dx ↔[f(x)-dx]'为单增函数定理8:f '(x)+f(x)>a ↔[f(x)]'>(a )'↔[f(x)-a]单调递增 f '(x)-f(x)>a ↔[]'>(- )'↔[]单调递增nf '(x)+nf(x)>ax ↔[f(x)]'>a ↔f(x)>a dx=↔[f(x)-]单调递增nf '(x)-nf(x)>ax ↔[]'> ↔>dx=↔[-]单调递增在R 上恒成立的是( ) A .()0f x >B .()0f x <C .()3xf x >D .()3x f x <【思路分析】()()()3322222()()33x x f x xf x x x f x x x f x dx x f x ⎡⎤'⎡⎤+'>⇔>⇔>⇔-↑⎢⎥⎣⎦⎣⎦⎰【解析】构造函数231()()3g x x f x x =-,则22()2()()[2()()]g x xf x x f x x x f x xf x x '=+'-=+'-,2()()f x xf x x +'>则()0g x '>,231()()3g x x f x x ∴=-为实数集上的增函数,当0x >时,()(0)0g x g >=,∴当0x >时,2321()[()]033x x f x x x f x -=->,则()3xf x >.故选C .【例18】(2018•咸阳模拟)已知()f x '是函数()f x 的导函数,且对任意的实数x 都有)()22()('x f x e x f x +-=(e 是自然对数的底数),(0)1f =,则( ) A .()(1)x f x e x =+ B .()(1)x f x e x =-C .2()(1)x f x e x =+D .2()(1)x f x e x =-【思路分析】令()()x f x g x e=,可得()()()xf x f xg x e '-'=,()22g x x '=-,可得()2()22(1)g x x dx x c =-=-+⎰,利用(0)1f =,解得c 即可得出.【解析】令()()x f x g x e=,则()()()x f x f x g x e '-'=,对任意的实数x 都有()(22)()x f x e x f x '=-+,()22g x x ∴'=-,可得2()()(1)x f x g x x c e=-+=,(0)1f =,11c ∴+=,解得0c =.2()(1)x f x e x ∴=-.故选D .【例19】(2018•重庆期中)已知定义在R 上的函数()f x 的导函数为()f x ',f (1)2=,且对任意x R ∈,2()()2f x f x +'>恒成立,若2()1()ef lna a>+,则实数a 的取值范围是( )A .(,)e +∞B .),(2+∞eC .(0,)eD .2(0,)e【思路分析】根据2()()f x f x +'联想函数2()x e f x ,()()222222()()222x x x x xf x f x e f x e e f x e dx e '⎡⎤+'>⇔>⇔>=⎣⎦⎰,故构造22()()x xg x e f x e =-对函数求导可得()g x 在(,)-∞+∞单调递增,2()1()()(1)ef lnag lna g a>+⇔>.【解析】设:22()()x x g x e f x e =-,则2()(2()()2)0x g x e f x f x '=+'->恒成立:()g x ∴在(,)-∞+∞单调递增, 又222()1()[()1]ef lna a f lna e a >+⇔->22[()1][(lna e f lna e f ⇔->(1)1]-()g lna g ⇔>(1).1lna ∴>,a e ∴>.故选A .测试组11.(2018•黄冈期末)设函数()f x 是定义在R 上的偶函数,()f x '为其导函数,已知0)1(=f ,当0x >时()()0f x x f x +'<,则不等式()0x f x >的解集为( )A .)1,0()0,1( -B .),1()0,1(+∞-C .),1()1,(+∞--∞D .)1,0()1,( --∞2.(2019•咸阳一模)已知奇函数()f x 的导函数为()f x ',当0x ≠时,()()0xf x f x '+>,若11()a f e e=,()b ef e =--,)1(f c =,则a ,b ,c 的大小关系正确的是( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<3.(2018•张家界期末)已知函数()f x 的导函数为()f x ',对任意x R ∈,都有()()f x f x '>成立,则( ) A .)3()2(23f e f e >⋅B .)3()2(23f e f e ⋅=⋅C .)3()2(23f e f e ⋅<⋅D .)2(3f e ⋅与)3(2f e ⋅的大小不确定4.(2018•城关期末)定义在R 上的函数()f x 满足:()()0f x f x +'>,(0)4f =,则不等式()4x e f x >(其中e 为自然对数的底数)的解集为( ) A .(3,)+∞ B .),3()0,(+∞-∞C .),0()0,(+∞-∞D .(0,)+∞5.(2019•绵阳模拟)设()f x '是函数()f x 的导函数,且()()()f x f x x R '>∈,f (2)2(e e =为自然对数的底数),则不等式2(2)f lnx x <的解集为( )A .),(e eB .C .(0,)eD .(1,)e6.(2018•博望区月考)已知可导函数()f x 的定义域为(,0)-∞,其导函数()f x '满足()2()0xf x f x '->,则不等式2(2017)(2017)(1)0f x x f +-+-<的解集为( ) A .(,2018)-∞- B .(2018,2017)--C .(2018,0)-D .(2017,0)-7.(2018•福州期末)已知定义在R 上的函数()f x ,其导函数为()f x ',若()()4f x f x '-<-,(0)5f =,则不等式()4x f x e >+的解集是( ) A .]1,(-∞B .(,0)-∞C .(0,)+∞D .(1,)+∞8.(2018•南昌期中)已知函数(1)y f x =-的图象关于点(1,0)对称,函数()y f x =对于任意的(0,)x π∈满足()sin ()cos f x x f x x '>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .()()36f ππ->B 3()()42f ππ<--C ()2()23f ππ> D 53()()64f ππ<9.(2017•德州期末)设偶函数()f x 定义在⎪⎭⎫⎝⎛⋃⎪⎭⎫ ⎝⎛2,00,2-ππ上,其导函数为()f x ',当02x π<<时,()cos ()sin 0f x x f x x '+<,则不等式()2()cos 3f x f x π>的解集为( )A .)3,0()3,2(πππ - B .)2,3()0,3(πππ-C .)3,0()0,3(ππ-D .)2,3()3,2(ππππ --10.(2018•烟台期中)已知定义在(,0)-∞上的函数()f x ,其导函数记为()f x ',若2()()01f x xf x x '->+成立,则下列正确的是( ) A .2()(1)0f e e f ---> B .41()()0f e e f e --->C .2()(1)0e f e f --->D .41()()0e f e f e--->11.(2017•诸暨期末)已知()f x 的导函数()f x ',若满足2()()xf x f x x x '-=+,且f (1)1,则()f x 的解析式可能是( ) A .2x xlnx x -+ B .2x xlnx x --C .2x xlnx x ++D .22x xlnx x ++12.(2018•攀枝花期末)设函数()f x '是奇函数()()f x x R ∈的导函数,当0x >时,()()0f x xlnx f x '+<,则使得2(1)()0x f x -<成立的x 的取值范围是( ) A .),1()1,(+∞--∞ B .)1,0()1,( --∞C .)1,0()0,1( -D .),1()0,1(+∞-13.(2018•新余期末)定义在(0,)+∞上的可导函数()f x 的导数为()f x ',且()()()xlnx f x f x '<,则( ) A .)()(2e f e f > B .)1()(2e f e f ->C .)1(2)1(2e f e f >D .)1()(ef e f ->14.(2017•雁峰期末)设函数()f x 是定义在(0,)+∞上的可导函数,其导函数为()f x ',且有22()()f x xf x x +'>,则不等式2(2016)(2016)4(2)x f x f ---0>的解集为( ) A .(2014,)+∞ B .(0,2014)C .(0,2018)D .(2018,)+∞15.(2018•澧县一模)设函数()f x '是函数()()f x x R ∈的导函数,已知()()f x f x '<,且()(4)f x f x ''=-,0)4(=f ,1)2(=f ,则使得()20x f x e -<成立的x 的取值范围是( )A .(2,)-+∞B .(0,)+∞C .(1,)+∞D .(4,)+∞16.(2018•安徽二模)()y f x =的导函数满足:当2x ≠时,(2)(()2()())0x f x f x xf x ''-+->,则( )A .(4)4)2(3)f f f >+>B .(4)2(3)4)f f f >>C .4)2(3)(4)f f f >>D .2(3)(4)4)f f f >>17.已知函数)(x f 在R 上存在导函数)('x f ,若32)()(x x f x f =--,且0≥x 时03)('2≥-x x f ,则不等式1337)1()2(23+-+>--x x x x f x f 的解集为( )A .)1,(--∞B .)31,1(-C .),31()1,(+∞--∞D .),1()1,(+∞--∞18.(2019•广元模拟)设函数)(x f 在R 上存在导数)('x f ,对任意的R x ∈,有2)()(x x f x f =+-,且),0(+∞∈x 时,x x f >)('.若a a f a f 22)()2(-≥--,则实数a 的取值范围为( ) A .),1[+∞B .]1,(-∞C .]2,(-∞D .),2[+∞19.(2018•南岗期末)设函数)(x f 在R 上存在导函数)('x f ,对任意的实数x 都有x x f x f 2)()(+-=,当0>x 时,12)('+>x x f .若24)()1(++-≥+a a f a f ,则实数a 的取值范围是( )A .),21[+∞-B .),23[+∞-C .),1[+∞-D .),2[+∞-20.(2018•重庆期中)已知定义在R 上的函数()f x 的导函数为()f x ',2)1(=f ,且对任意x R ∈,2()()2f x f x +'>恒成立,若2()1()ef lna a>+,则实数a 的取值范围是( )A .(,)e +∞B .),(2+∞eC .(0,)eD .2(0,)e21.(2018•红河州二模)已知函数()f x 满足条件:当0x >时,1()()12f x xf x '+>,则下列不等式正确的是( )A .)2(43)1(f f >+B .)4(43)2(f f >+C .)3(98)1(f f <+D .)4(34)2(f f <+22.(2018•朝阳三模)已知()f x 是定义在区间),21(+∞上的函数,()f x '是()f x 的导函数,且)(2ln )('x f x x xf >)21(>x ,()12ef =,则不等式()2x e f x <的解集是( )A .(,1)-∞B .(1,)+∞C .1(,1)2D .(0,1)23.(2018•新罗期中)设函数()f x '是奇函数()()f x x R ∈的导函数,当0x >时,()()xlnx f x f x '<-,则使得2(4)()0x f x ->成立的x 的取值范围是( )A .)2,0()0,2( -B .),2()2,(+∞--∞C .),2()0,2(+∞-D .)2,0()2,( --∞24.(2018•德州期末)已知在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<,且(5)f x +为偶函数,(10)1f =,则不等式()x f x e <的解集为( ) A .(0,)+∞ B .(1,)+∞C .(5,)+∞D .(10,)+∞25.(2018•资阳期末)已知()f x 是定义在R 上的偶函数,且5(2)2f =,当0x >时,()()2xf x f x '+>(其中()f x '为()f x 的导函数).则不等式||()2||1x f x x ⋅>+的解集为( ) A .)2,0()0,2( - B .)2,0()2,( --∞C .),2()0,2(+∞-D .),2()2,(+∞--∞26.(2018•河西期末)设函数)(x f 在R 上存在导数)('x f ,R x ∈∀,有2)()(x x f x f =+-,在),0(+∞上,x x f <)(',若0618)()6(≥+---m m f m f ,则实数m 的取值范围是 .【答案】1.D2.C3.C4.D5.C6.B7.B8.C9.C10.A11.C12.D13.A14.D15.B 16.C17.C18.B19.A20.A21.C22.D23.D24.A25.D26.[3,+∞)测试组2【2019届高三第二次全国大联考(新课标Ⅲ卷)文科数学试题】设y=f(x)是定义在R 上的可导偶函数,若当x>0时,,则函数的零点个数为()A.0 B.1 C.2D.0或2【答案】A【解析】设,因为函数为偶函数,所以也是上的偶函数,所以.由已知,时,,可得当时,,故函数在上单调递减,由偶函数的性质可得函数在上单调递增.所以,所以方程,即无解,所以函数没有零点.【新疆乌鲁木齐2019届高三第二次质量检测文科数学试题】f(x)的定义域是(0,+ ),其导函数为,若,且(其中e是自然对数的底数),则A.B.C.当x=e时,f(x)取得极大值D.当时,【答案】C【解析】设,则则又得即,所以即,由得,得,此时函数为增函数由得,得,此时函数为减函数则,即,则,故错误,即,则,故错误当时,取得极小值即当,,即,即,故错误当时,取得极小值此时,则取得极大值【黑龙江省龙东南七校2018-2019学年高二上学期期末联考数学(文)试题】定义在(0,+∞)上的可导函数f(x)满足,且,则的解集为( )A.(3,+∞)B.(0,3)∪(3,+∞) C.(0,3)D.【答案】C【解析】令g(x),∵,∴<0.∴,∴g(x)在(0,+∞)上单调递减,∵f(3)=0,即g(3)=0.∴g(x)0的解是0<x<3.【辽宁省庄河市高级中学2018-2019学年高二下学期开学考试数学(文)试题】已知定义域为R的奇函数y=f(x)的导函数为,当时,,若,,,则a,b,c,的大小关系正确的是()A.B.C.D.【答案】B【解析】设,则,因为当时,,所以当时,,即;当时,,即;所以在上单调递增,在上单调递减;又函数为奇函数,所以,因此,故函数为偶函数,所以,,,因为在上单调递减,所以,故.【云南省玉溪市第一中学2019届高三下学期第五次调研考试数学(理)试题】设为函数f(x)的导函数,且满足,若恒成立,则实数b的取值范围是()A.B.C.D.【答案】A【解析】,由,可得的对称轴为,所以,所以,所以,由可得,变形可得,即,设,,易得函数在区间上单调递增,在区间上单调递减,所以,故实数b的取值范围为 .【安徽省黄山市2019届高三毕业班第二次质量检测数学(文)试题】已知函数f(x)是定义在R上的可导函数,对于任意的实数x,都有,当时f'(x)+f(x)>0,若,则实数a的取值范围是()A.B.C.D.【答案】B【解析】令,则当时,,又,所以为偶函数,从而等价于,因此【河南省洛阳市2018-2019学年第一学期期末考试高二数学试卷(文)】定义在R上的可导函数f(x)满足f'(x)+f(x)<0,则下列各式一定成立的是()A.B.C.D.【答案】A【解析】解:可导函数满足等价于故令所以在R上单调递减,所以即即【甘肃省武威第一中学2018-2019学年高二下学期第一次阶段测试数学(理)试题】已知函数的图象如图所示(其中是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是( )A. B.C.D.【答案】C【解析】由函数y=xf′(x)的图象可知:当x<﹣1时,xf′(x)<0,f′(x)>0,此时f(x)增当﹣1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.【海南省海口市2019届高三高考调研测试数学(文科)试题】已知函数f(x)的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.【答案】B【解析】由题意设,则,所以函数在上单调递增,所以,即.【内蒙古通辽实验中学2018-2019学年高二下学期第一次月考数学(理)试题】已知f(x)是定义在R上的可导函数,当x∈(1,+∞)时,(x−1)(x)−f(x)>0恒成立,若a=f(2),b=f(3),c=f(),则a,b,c的大小关系是( )A.c<a<b B.b<a<c C.a<b<c D.a<c<b【答案】C【解析】解:设g(x)=,当x>1时,g′(x)=,即此时函数单调递增.则a=f(2)=g(2),b=f(3)=g(3),c=()f()=g(),∵,∴g(2)<g(3)<g(),即,【甘肃省兰州第一中学2018-2019学年高二3月月考数学(理)试题】设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2019(x)=()A.sin x B.-sin x C.cos x D.-cos x【答案】D【解析】由题意可得:,,,,,据此可得的解析式周期为,注意到,故.【宁夏六盘山高级中学2019届高三下学期第二次模拟考试数学(理)试题】定义域为R的奇函数f(x),当时,恒成立,若,,则()A.B.C.D.【答案】D【解析】构造函数因为f(x)是奇函数,所以为偶函数当时,恒成立,即,所以在时为单调递减函数在时为单调递增函数根据偶函数的对称性可知,所以【黑龙江省大庆实验中学2018-2019学年高二下学期第二次月考数学(文)试题】已知f(x)的定义域为,为f(x)的导函数,且满足,则不等式的解集是()A.B.C.D.【答案】B【解析】解:构造函数则所以在上单调递减又因为所以所以解得或(舍)所以不等式的解集是【四川省教考联盟2019届高三第三次诊断性考试数学(理)试题】已知定义在R上的函数f(x)关于y轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数a的最大值为()A.B.C.D.【答案】B【解析】因为,所以,令,则,又因为f(x)是在R上的偶函数,所以F(x)是在R上的奇函数,所以是在上的单调递增函数,又因为,可化为,即,又因为是在上的单调递增函数,所以恒成立,令,则,因为,所以在单调递减,在上单调递增,所以,则,所以.所以正整数a的最大值为2.【2019届湘赣十四校高三联考第二次考试(文数)试题】已知函数为R上的偶函数,且当时函数f(x)满足,,则的解集是()A.B.C.D.【答案】A【解析】设,则,∴,化简可得.设,∴,∴时,,因此为减函数,∴时,,因此为增函数,∴,∴,∴在上为增函数.∵函数是偶函数,∴函数,∴函数关于对称,又∵,即,又在上为增函数,∴,由函数关于对称可得,,【河南省六市2019届高三第一次联考数学(理)试题】函数是定义在上的可导函数,为其导函数,若,且,则不等式的解集为A.B.C.D.【答案】C【解析】解:函数是定义在上的可导函数,为其导函数,令,则,可知当时,是单调减函数,并且,即,则,时,函数是单调增函数,,则,则不等式的解集就是的解集,即又x>1,所以,故不等式的解集为:.【北京师范大学附属实验中学2018-2019学年高二第二学期3月考数学试题】设函数f(x)在R 上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是()A.函数 f(x) 有极大值和极小值B.函数f(x)有极大值和极小值C.函数f(x) 有极大值和极小值D.函数f(x)有极大值和极小值【答案】D【解析】解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).【新疆乌鲁木齐市第七十中学2018-2019学年高二下学期第一次月考数学(理)试题】函数的图象关于点(1,0)对称,当时,成立,若,则的大小关系是()A.B.C.D.【答案】C【解析】函数的图象关于点(1,0)对称,所以函数是奇函数。

一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)(解析版)高考数学高分必刷必过题

一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)(解析版)高考数学高分必刷必过题

专题04一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)构造函数法解决导数不等式问题①构造()()n F x x f x =或()()n f x F x x=(n Z ∈,且0n ≠)型②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型③构造()()sin F x f x x =或()()sin f x F x x =型④构造()()cos F x f x x =或()()cos f x F x x=型⑤根据不等式(求解目标)构造具体函数①构造()()n F x x f x =或()()nf x F x x =(n Z ∈,且0n ≠)型1.(2022·安徽师范大学附属中学高二期中)已知定义在R 上的函数()f x 满足()()0xf x f x '+>,且(2)3f =,则()e e 6xxf >的解集为()A .(ln 2,)+∞B .(0,)+∞C .(1,)+∞D .(0,1)【答案】A令()()F x xf x =,可得()()()0F x xf x f x ''=+>,所以()F x 在R 上是增函数,可得(e )e (e )x x x F f =,(2)3f =,(2)2(2)6F f ==,由(e )6ex x f >,可得(e )(2)xF F >,可得:e 2x >,所以ln 2x >,所以不等式的解集为:(ln 2,)+∞,故选:A .2.(2022·河北·沧县中学高二阶段练习)已知定义在()(),00,∞-+∞U 上的偶函数()f x ,在0x >时满足:()()0xf x f x '+>,且()10f =,则()0f x >的解集为()A .()(),11,-∞-⋃+∞B .()(),10,1-∞-⋃C .()0,1D .()1,+∞【答案】A 令()()F x xf x =,所以()()()()()F x x f x xf x F x -=--=-=-所以()F x 是奇函数,在0x >时,()()()0F x xf x f x ''+=>,则在0x >时,()F x 单调递增,由()10f =,可得(1)1(1)0F f =⨯=,(1)(1)0F F -=-=,所求()()0F x f x x =>,等价于()00F x x >⎧⎨>⎩或()00F x x <⎧⎨<⎩,解得1x >或1x <-,所以解集为:()(),11,-∞-⋃+∞.故选:A .3.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)已知()'f x 是偶函数()()R f x x ∈的导函数,(1)1f =.若0x >时,3()()0f x xf x '+>,则使得不等式3(2022)(2022)1x f x -->成立的x 的取值范围是()A .(2021,)+∞B .(,2021)-∞C .(2023,)+∞D .(,2023)-∞【答案】C构造函数()()3g x x f x =,其中R x ∈,则()()()()()33g x x f x x f x g x -=--=-=-,所以,函数()g x 为R 上的奇函数,当0x >时,()()()()()232330g x x f x x f x x f x xf x '''=+=>⎡⎤⎣⎦+,所以,函数()g x 在()0,∞+上为增函数,因为()11f =,则()()111g f ==,由()()3202220221x f x -->得()()20221g x g ->,可得20221x ->,解得2023x >.故选:C4.(2022·河北·邢台市第二中学高二阶段练习)定义在()0,8上的函数()f x 的导函数为()f x ¢,且()()2xf x f x '<,112f ⎛⎫= ⎪⎝⎭,则不等式()24f x x <的解集为()A .1,82⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭【答案】A 设()()2f xg x x=,08x <<,则()()()320xf x f x g x x '-'=<,则()g x 在()0,8上单调递减,由()24f x x <,得:()24f x x<,而21124212f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭,所以()12g x g ⎛⎫< ⎪⎝⎭,则182x <<.故不等式()24f x x <的解集为1,82⎛⎫ ⎪⎝⎭.故选:A5.(2022·福建省德化第一中学高二阶段练习)若()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,且()30f -=,则不等式()0xf x >的解集为()A .()()3,00,3-B .()(),33,-∞-+∞C .()(),30,3-∞-⋃D .()()3,03,-⋃+∞【答案】C设()()g x xf x =,则()g x 的定义域为R而()()()()g x xf x xf x g x -=--=-=-,故()g x 为R 上的奇函数,且()()()g x f x xf x ''=+,当0x <时,因为()()0f x xf x '+<,故()0g x ¢<,故()g x 在(),0-∞上为减函数,故()g x 为()0,+∞上的减函数,而()30f -=,故()30g -=,所以()30g =又()0xf x >即为()0g x >,故()00x g x <⎧⎪⎨>⎪⎩或()00x g x >⎧⎪⎨>⎪⎩,故()()03x g x g <⎧⎪⎨>-⎪⎩或()()03x g x g >⎧⎪⎨>⎪⎩,故3x <-或03x <<,故选:C.6.(2022·宁夏吴忠·高二期中(理))()f x 是定义在R 上的奇函数,且()20f =,当0x >时,有()()20xf x f x x '-<恒成立,则()0f x x>的解集为()A .()()2,02,-+∞B .()(),22,-∞+∞C .()()2,00,2-D .()(),20,2-∞- 【答案】C 设函数()()f x g x x=,则()()()2xf x f x g x x'-'=,由题知,当0x >时,()0g x ¢<,∴()()f x g x x=在()0,+∞上单调递减,∵函数()f x 是定义在R 上的奇函数,()()f x f x ∴-=-∴()()()()f x f x g x g x x x---===--,∴函数()g x 是定义在R 上的偶函数,∴()g x 的单调递增区间为(),0-∞,∵()20f =,∴()(2)202f g ==,()20g -=∴当2x <-或2x >时,()0g x <,当20x -<<或02x <<时,()0g x >,∴()()0f x g x x=>的解集为()()2,00,2- .故选:C.7.(2022·西藏·拉萨中学高三阶段练习(文))设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 设()()f x F x x =,则()()()2xf x f x F x x '-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.8.(2022·全国·高三专题练习)已知函数()f x 的定义域为()(),00,∞-+∞U ,图象关于y 轴对称,且当0x <时,()()f x f x x'>恒成立,设1a >,则()411af a a ++,(,()411a a f a ⎛⎫+⎪+⎝⎭的大小关系为()A .()(()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭B .()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭C .(()()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭D .(()()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭【答案】B解:∵当0x <时,()()f x f x x'>恒成立,∴()()xf x f x '<,∴()()0xf x f x '-<,令()()f x g x x =,∴()()()2xf x f x g x x'-'=,∴()0g x '<,∴()g x 在(),0∞-上单调递减,∵()()f x f x -=,∴()()g x g x -=-,∴()g x 为奇函数,在()0,∞+上单调递减.∵比较()411af a a ++,(,()411a a f a ⎛⎫+ ⎪+⎝⎭的大小,∴()()41411af a ag a a +=++,((4ag =,()441411a a a f ag a a ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭∵1a >,∴)2110a +->,∴1a +>4411a aa a <++.∴411a a a +>>+,∴()(411a g a g g a ⎛⎫+<< ⎪+⎝⎭,∴()(441441a ag a ag ag a ⎛⎫+<< ⎪+⎝⎭,即()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭.故选:B .9.(2022·四川雅安·三模(理))定义在R 上的偶函数()f x 的导函数为()'f x ,且当0x >时,()2()0xf x f x '+<.则()A .2(e)(2)4ef f >B .9(3)(1)>f f C .4(2)9(3)-<-f f D .2(e)(3)9e f f ->【答案】D令()()2g x x f x =,因为()f x 是偶函数,所以()g x 为偶函数,当0x >时,()()()()()2220g x xfx x f x x f x xf x '''=+=+<⎡⎤⎣⎦,所以()g x 在()0,+∞单调递减,在(),0-∞单调递增,则()()e 2g g <,即()()22e e 22f f <,则2(e)(2)4ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()23g g ->-,即4(2)9(3)f f ->-,故C 错误;()()()e 33g g g >=-,即()()2e e 93f f >-,则2(e)(3)9e f f ->,故D 正确.故选:D.②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型1.(2022·广东·深圳市南山外国语学校(集团)高级中学高二期中)设定义在R 上的函数()f x 的导函数为()f x ',已知()()f x f x '<,且()12e f =,则满足不等式()2e af a <的实数a 的取值范围为()A .()0,∞+B .(),0∞-C .()1,+∞D .(),1-∞【答案】C设()()e x f x g x =,则2()e ()e ()()()(e )e x x x xf x f x f x f xg x ''--'==,因为()()f x f x '<,e 0x >,所以()0g x '<,()g x 是减函数,(1)2e (1)2e ef g ===,不等式()2e af a <化为()2e af a <,即()(1)g a g <,所以1a >.故选:C .2.(2022·安徽省芜湖市教育局模拟预测(文))已知定义在R 上的函数()f x 满足()()20f x f x '->,则下列大小关系正确的是()A .()()2312e 1e 2f f f ⎛⎫>> ⎪⎝⎭B .()()231e 12e 2f f f ⎛⎫>> ⎪⎝⎭C .()()231e 1e 22f f f ⎛⎫>> ⎪⎝⎭D .()()3212e e 12f f f ⎛⎫>> ⎪⎝⎭【答案】A 构造函数()()2e x f x g x =,其中R x ∈,则()()()220e xf x f xg x '-'=>,所以,函数()g x 为R 上的增函数,所以,()()1122g g g ⎛⎫<< ⎪⎝⎭,即()()241122e e ef f f ⎛⎫⎪⎝⎭<<,因此,()()321e e 122ff f ⎛⎫<< ⎪⎝⎭.故选:A.3.(2022·江西·南昌市八一中学三模(文))记定义在R 上的可导函数()f x 的导函数为()f x ',且()()0f x f x '->,()11f =,则不等式()1e xf x ->的解集为______.【答案】()1,+∞设()()xf xg x =e,()()()()()()20x xxx f x f x f x f x g x ''--'==>e e e e ,所以函数()g x 单调递增,且()()111e ef g ==,不等式()()()()11>e 1e e x x f x f x g x g -⇔>⇔>,所以1x >.故答案为:()1,+∞.4.(2022·甘肃·玉门油田第一中学高二期中(理))已知定义在R 上的可导函数()f x 的导函数为()f x ¢,满足()()f x f x '<,且()3f x +为偶函数,()61f =,则不等式()e xf x >的解集为______.【答案】(),0-∞设()()exf xg x =,则()()()exf x f xg x '-'=,又()()f x f x '<,所以()0g x ¢<,即()g x 在R 上是减函数,因为()3f x +为偶函数,所以()3f x +图象关于y 轴对称,而()3f x +向右平移3个单位可得()f x ,所以()f x 对称轴为3x =,则()()061f f ==,所以()()0001e f g ==,不等式()e xf x >等价于()()()10e xf xg x g =>=,故0x <,所以不等式()e xf x >的解集为(),0-∞.故答案为:(),0-∞5.(2022·福建省龙岩第一中学高二阶段练习)已知函数()f x 的导函数为()f x ',()()3f x f x '+<,()03f =,则()3f x >的解集为___________.【答案】(),0∞-因为()()3f x f x '+<,所以()()3x xe f x f x e '+<⎡⎤⎣⎦,令()()3x F x e f x =-⎡⎤⎣⎦,则()()()3x x F x e f x e f x ''=-+⎡⎤⎣⎦,()()30x e f x f x '=+-<⎡⎤⎣⎦,所以()F x 是减函数,又()()00030F e f =-=⎡⎤⎣⎦,()3f x >即()30f x ->,()30x e f x ->⎡⎤⎣⎦,所以()()0F x F >,所以0x <,则()3f x >的解集为(),0∞-故答案为:(),0∞-6.(2022·全国·高三专题练习)若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________.【答案】1,3⎛+∞⎫⎪⎝⎭构造()3()x f x F e x =,则()3363()3()()3()x x x xe f x e f x F f x f x e x e ''-=-=',函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭,则不等式3()x f x e >⇔3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭,根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.故答案为:1,3⎛+∞⎫⎪⎝⎭③构造()()sin F x f x x =或()()sin f x F x x=型1.(2022·山西·临汾第一中学校高二期末)若函数()f x 的导函数为()f x ',对任意()0,x π∈,()()sin cos f x x f x x '<恒成立,则()A3546f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C3546f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【答案】B因为任意()()()0,,sin cos x f x x f x x <'∈π恒成立,即任意()()()0,,sin cos 0x f x x f x x '∈-<π恒成立,所以()()()()2sin cos 0sin sin f x f x x f x xx x ''⎡⎤-=<⎢⎥⎣⎦,()0,x π∈所以()sin f x x在()0,π上单调递减,因为56π34>π,所以536453sin sin 64f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ππππ,即536412f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭ππ5364f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ππ,故选:B2.(2022·江苏江苏·高二阶段练习)函数()f x 的定义域是()0,π,其导函数是()f x ',若()()sin cos f x x f x x <-',则关于x()πsin 4x x f ⎛⎫< ⎪⎝⎭的解集为______.【答案】π,π4⎛⎫⎪⎝⎭()()sin cos f x x f x x <-'变形为()()sin cos 0f x x f x x +<',()πsin 4x x f ⎛⎫< ⎪⎝⎭变形为()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭,故可令g (x )=f (x )sin x ,()0,πx ∈,则()()()sin cos 0g x f x x f x x =+''<,∴g (x )在()0,π单调递减,不等式()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭即为g (x )<g (π4),则π,π4x ⎛⎫∈ ⎪⎝⎭,故答案为:π,π4⎛⎫⎪⎝⎭.3.(2022·全国·高三专题练习)函数()f x 定义在0,2π⎛⎫ ⎪⎝⎭上,6f π⎛⎫= ⎪⎝⎭其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()f x >的解集为_____________.【答案】,62ππ⎛⎫⎪⎝⎭解:()()cos sin f x x f x x'< ()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x=,则()()()2sin cos f x x f x xg x sin x'-'=,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递增,∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>==即()6x g g π⎛>⎫⎪⎝⎭,26x ππ∴<<故不等式的解集为,62ππ⎛⎫⎪⎝⎭.故答案为:,62ππ⎛⎫⎪⎝⎭.4.(2022·全国·高三专题练习)设奇函数()f x 定义在(,0)(0,)ππ- 上,其导函数为()'f x ,且()02f π=,当0πx <<时,()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6f x f x π<的解集为.【答案】(,0)(,)66πππ- 设()()sin f x g x x =,∴2()sin ()cos ()sin f x x f x x g x x'='-,∵()f x 是定义在(,0)(0,)ππ- 上的奇函数,∴()()()()sin()sin f x f x g x g x x x--===-,∴()g x 是定义在(,0)(0,)ππ- 上的偶函数,∵当0πx <<时,()sin ()cos 0f x x f x x '-<,∴()0g x '<,∴()g x 在(0,)π上单调递减,()g x 在(,0)π-上单调递增,∵()02f π=,∴(2(02sin 2f g πππ==,∵()2()sin 6f x f x π<,∴()()6g x g π<,(0,)x π∈,或,(,0)x π∈-,∴6x ππ<<或06x π-<<.∴关于x 的不等式()2()sin 6f x f x π<的解集为(,0)(,)66πππ- .④构造()()cos F x f x x =或()()cos f x F x x=型1.(2022·重庆·高二阶段练习)已知定义在区间,22ππ⎛⎫- ⎪⎝⎭上的奇函数()y f x =,对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是()f x 的导函数),则下列不等式中成立的是()A.63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.63f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭C.43f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D64ππ⎛⎫⎛⎫> ⎪ ⎝⎭⎝⎭【答案】B 构造函数()()cos f x g x x =,其中,22x ππ⎛⎫∈- ⎪⎝⎭,则()()()()()cos cos f x f x g x g x x x --==-=--,所以,函数()()cos f x g x x=为奇函数,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()()2cos sin 0cos f x x f x x g x x'+'=>,所以,函数()g x 在0,2π⎡⎫⎪⎢⎣⎭上为增函数,故该函数在,02π⎛⎤- ⎥⎝⎦上也为增函数,由题意可知,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上连续,故函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上为增函数.对于A 选项,63g g ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭<,则63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,A 错;对于B 选项,63g g ππ⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫-- ⎪ ⎝⎭>,则63f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,B 对;对于C 选项,43g g ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭43122f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭>,则43f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,C 错;对于D 选项,64g g ππ⎫⎫⎛⎛< ⎪ ⎝⎝⎭⎭64f f ππ⎛⎫⎛⎫⎪ ⎪<64ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,D 错.故选:B.2.(2022·福建龙岩·高二期中)设函数()f x '是定义在()0,π上的函数()f x 的导函数,有()()cos sin 0f x x f x x '->,若π6a f ⎛⎫=⎪⎝⎭,1π23b f ⎛⎫=⎪⎝⎭,23π24c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c的大小关系是()A .a b c >>B .b c a>>C .c b a >>D .c a b>>【答案】C因为()()cos sin 0f x x f x x '->,所以设()()cos F x f x x =⋅,则()()()cos sin 0F x f x x f x x ''=⋅->,所以()()cos F x f x x =⋅在()0,π上为增函数,又因为ππ266a f F ⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,1ππ233b f F ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,23π3π244c f F ⎛⎫⎛⎫=-= ⎪ ⎝⎭⎝⎭,ππ3π634<<,所以ππ3π634F F F ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a b c <<故选:C3.(2022·广东·广州市第四中学高二阶段练习)设函数()f x '是定义在()0π,上的函数()f x的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫==⎪⎝⎭,,34c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c >>B .b c a >>C .c a b >>D .c b a>>【答案】C解:设()()cos g x f x x =,则()()cos ()sin g x f x x f x x ''=-,又因为()cos ()sin 0f x x f x x '->,所以()0g x '>,所以()g x 在(0,)π上单调递增,又0cos(22a f ππ==,1(cos (2333b f f πππ==,333()cos ()2444c f f πππ==,因为3324πππ<<,所以33cos()cos ()cos (332244f f f ππππππ<<,所以c a b >>.故选:C .4.(2022·广西玉林·高二期中(文))函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,()f x '是它的导函数,且()()tan x f x f x '⋅>在定义域内恒成立,则()A .43f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()cos116f f π⎛⎫⋅> ⎪⎝⎭D 46ππ⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭【答案】D因为0,2x π⎛⎫∈ ⎪⎝⎭,所以sin 0cos 0x x >>,,由()()tan x f x f x '⋅>可得()cos ()sin f x x f x x '<,即()cos ()sin 0f x x f x x '-<,令()cos (),0,2g x x f x x π⎛⎫=⋅∈ ⎪⎝⎭,则()()cos ()sin 0g x f x x f x x ''=-<,所以函数()g x 在0,2π⎛⎫ ⎪⎝⎭上为减函数,则(1)643g g g g πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则cos cos cos(1)(1)cos 664433f f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2cos(1)(1)643f f πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D5.(2022·全国·高三专题练习)定义域为,22ππ⎛⎫- ⎝⎭的函数()f x 满足()()0f x f x +-=,其导函数为()f x ',当02x π≤<时,有()()cos sin 0f x x f x x '+<成立,则关于x的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .,42ππ⎛⎫ ⎪⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B∵()()0f x f x +-=且,22x ππ⎛⎫∈- ⎪⎝⎭,∴()f x 是奇函数,设()()cos f x g x x =,则02x π≤<时,2()cos ()sin ()0cos f x x f x x g x x '+'=<,∴()g x 在0,2π⎡⎫⎪⎢⎣⎭是减函数.又()f x 是奇函数,∴()()cos f x g x x =也是奇函数,因此()g x 在(,0]2π-是递减,从而()g x 在,22ππ⎛⎫- ⎝⎭上是减函数,不等式()cos 4f x f x π⎛⎫<⋅ ⎪⎝⎭为()4cos cos 4f f x x ππ⎛⎫ ⎪⎝⎭<,即()4g x g π⎛⎫< ⎪⎝⎭,∴42x ππ<<.故选:B .6.(2022·全国·高三专题练习)已知奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,其图象是一段连续不断的曲线,当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,则关于x 的不等式()π2cos 3f x f x ⎛⎫< ⎪⎝⎭的解集为()A .ππ23⎛⎫- ⎪⎝⎭,B .ππ23⎛⎫-- ⎪⎝⎭,C .ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,D .πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,【答案】A 设()()cos f x g x x=,则()()()2cos sin cos f x x f x xg x x'+'=当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,此时()0g x '>所以()()cos f x g x x =在02π⎛⎫- ⎪⎝⎭上单调递增.又()f x 为奇函数,则()00f =,则()()cos f x g x x=为奇函数,又()00g =则()()cos f x g x x =在02π⎛⎫ ⎪⎝⎭,上单调递增,所以()g x 在ππ,22⎛⎫- ⎝⎭上单调递增.当ππ,22x ⎛⎫∈- ⎪⎝⎭,恒有cos 0x >()π2cos 3f x f x ⎛⎫< ⎪⎝⎭可化为()π3πcos cos 3f f x x ⎛⎫ ⎪⎝⎭<,即()3g x g π⎛⎫< ⎪⎝⎭,由()()cos f x g x x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以23x ππ-<<故选:A⑤根据不等式(求解目标)构造具体函数1.(2022·重庆·高二阶段练习)定义在R 上的函数()f x 满足()()260f x f x -'-<,且()21e 3=-f ,则满足不等式()2e 3>-x f x 的x 的取值有()A .1-B .0C .1D .2【答案】D 构造函数()()23e x f x F x +=,则()()()226e xf x f x F x '--'=,因为()()260f x f x -'-<,所以()0F x '<,所以()()23exf x F x +=单调递减,又()21e 3=-f ,所以()()21311e f F +==,不等式()2e 3>-xf x 变形为()231e xf x +>,即()()1F x F >,由函数单调性可得:1x >故选:D2.(2022·黑龙江·哈尔滨市第六中学校高二期中)已知()f x '是定义域为R 的函数()f x 的导函数.若对任意实数x 都有()()2f x f x '>-,且()13f =,则不等式()12e x f x -->的解集为()A .(),1-∞B .()1,+∞C .(),e -∞D .()e,+∞【答案】B解:不等式1()2e x f x -->,等价于不等式1()21e x f x -->,构造函数1()2()e x f x g x --=,则1()(()2)()e x f x f x g x -'--'=,若对任意实数x 都有()()2f x f x '>-,则()0g x '>,()g x 在R 上单调递增,又()0(1)211e f g -==,故1()21e x f x -->即()()1g x g >,故不等式的解集是(1,)+∞,故选:B .3.(2022·黑龙江·哈师大附中高二期中)已知定义在R 上的函数()f x 满足()2f x '>-,则不等式()()2122f x f x x -->--的解集为()A .(),1-∞-B .()1,0-C .()0,1D .()1,-+∞【答案】D设()()2g x f x x =+,则()()2g x f x ''=+.因为定义在R 上的函数()f x 满足()2f x '>-,所以()()20g x f x ''=+>,所以函数()g x 在R 上单调递增.又不等式()()2122f x f x x -->--可化为()()()24121f x x f x x +>-+-,即()()21g x g x >-,所以21x x >-,解得1x >-.所以不等式()()2122f x f x x -->--的解集为()1,-+∞.故选:D.4.(2022·江苏·海门中学高二阶段练习)已知R 上的函数()f x 满足()13f =,且()2f x '<,则不等式()21f x x <+的解集为()A .(,1)-∞B .()3,+∞C .()1,+∞D .(2,)+∞【答案】C解:令()()21F x f x x =--,则()()2F x f x ''=-,又()f x 的导数()'f x 在R 上恒有()2f x '<,()()20F x f x ''∴=-<恒成立,()()21F x f x x ∴=--是R 上的减函数,又()()11210F f =--= ,∴当1x >时,()()10F x F <=,即()210f x x --<,即不等式()21f x x <+的解集为(1,)+∞;故选:C .5.(2022·陕西渭南·二模(理))设函数()f x 的定义域为()0,∞+,()'f x 是函数()f x 的导函数,()(ln )()0f x x x f x '+>,则下列不等关系正确的是()A .2(3)log 3(2)f f >B .()ln 033f ππ<C .(3)2(9)f f >D .21(0e )f <【答案】A函数()f x 的定义域为()0,∞+,则1()(ln )()0()()ln 0f x x x f x f x f x x x''+>⇔+>,令()()ln g x f x x =,0x >,则1()()()ln 0g x f x f x x x'=+>,即()g x 在()0,∞+上单调递增,对于A ,(3)(2)g g >,即2(3)ln 3(2)ln 2(3)log 3(2)f f f f >⇔>,A 正确;对于B ,((1)3g g π>,即(3)ln (1)ln103f f π>=,B 不正确;对于C ,(3)(9)g g <,即(3)ln 3(9)ln 92(9)ln 3(3)2(9)f f f f f <=⇔<,C 不正确;对于D ,21()(1)e g g <,即2211()ln (1)ln10e e f f <=,有22112()0()0e e f f -<⇔>,D 不正确.故选:A6.(2022·安徽·南陵中学模拟预测(文))已知函数()2224ln f x x x x ax =++-,若当0m n >>时,()()n f m f m n ->-,则实数a 的取值范围是()A .()0,9B .(],9-∞C .(],8∞-D .[)8,+∞【答案】B()()n f m f m n ->-,即()()f m m f n n ->-,令224l (n )()x x x ax g x f x x -+==+-,由题意得()g x 在(0,)+∞上单调递增,即4()410g x x a x '=++-≥,即441a x x≤++在(0,)+∞上恒成立由基本不等式得44119x x++≥+=,当且仅当44x x =即1x =时等号成立,则9a ≤故选:B7.(2022·安徽·高二阶段练习)已知()()21lg 20221lg 20222n n -+>,求满足条件的最小正整数n的值为___________.【答案】3解:由()()21lg 20221lg 20222n n -+>,两边取对数得()()()21ln 1lg 2022lg 2022lg 2n n -⋅+>⋅,因为n 是正整数,所以()()()ln lg 20221ln 211lg 202221n n +-+>-,令()()()ln 11x f x x x +=>,则()()()2ln 111xx x f x x x -++'=>,令()()ln 11x h x x x =-++,则()()201x h x x -'=<+,所以()h x 在()1,+∞上递减,则()()11ln 202h x h <=-=<,即()0f x '<,所以()f x 在()1,+∞上递减,所以lg 202221n <-,解得()11lg 20222n >+,因为3lg 20224<<,所以最小正整数n 的值为3.故答案为:38.(2022·浙江·高二期中)已知定义在R 上的可导函数()f x 是奇函数,其导函数为()'f x ,当0x <时,(1)()()0x f x xf x '-+>,则不等式()0f x <的解集为_______________.【答案】(0,)+∞()2e e(1)()()()()()e e e e x xx x x x x x x x f x xf x f x f x f x '--+⎡⎤=+'='⎢⎥⎣⎦,因为(1)()()0x f x xf x '-+>,所以()0e x xf x '⎡⎤>⎢⎥⎣⎦,即函数()e x x y f x =在(,0)-∞时单调递增的.因为()f x 的定义域是R ,且e x x在R 上都有意义,所以()e xx y f x =的定义域也是R ,所以在(,0)-∞时00()(0)0e ex x f x f <=,而e xx在(,0)-∞小于0恒成立,即在(,0)-∞时()0f x >.因为()f x 是奇函数,所以在(0,)+∞时()0f x <恒成立.所以()0f x <的解集为(0,)+∞.故答案为:(0,)+∞.9.(2022·四川·成都实外高二阶段练习(理))已知定义在R 上的可导函数()f x 为偶函数,且满足()21f =,若当0x ≥时,()f x x '>,则不等式()2112f x x <-的解集为___________.【答案】(2,2)-设21()()2g x f x x =-,则()()0g x f x x ''=->,0x ≥时,()g x 是增函数,又()f x 是偶函数,所以2211()()()()()22g x f x x f x x g x -=---=-=,()g x 是偶函数,21(2)(2)212g f =-⨯=-,不等式()2112f x x <-即为()(2)g x g <,由()g x 是偶函数,得()(2)g x g <,又0x ≥时,()g x 递增,所以2x <,22x -<<.故答案为:(2,2)-.10.(2022·四川·成都实外高二阶段练习(文))已知定义在R 上的可导函数()f x 满足()21f =,且()f x 的导函数()f x '满足:()1f x x '>-,则不等式()2112f x x x <-+的解集为___________.【答案】(),2∞-因为()1f x x '>-,所以()10f x x '-+>构造()()212F x f x x x =-+,则()()10F x f x x ''=-+>,即()()212F x f x x x =-+在R 上单调递增,因为()21f =,所以()()22221F f =-+=()2112f x x x <-+变形为()2112f x x x -+<,即()()2F x F <,由()F x 的单调性可知:2x <.故答案为:(),2∞-。

导数构造函数解决问题类型总结(解析版)

导数构造函数解决问题类型总结(解析版)

导数构造函数解决问题类型总结一、重点题型目录【题型一】构造函数x n f (x )型【题型二】构造函数e nx f (x )型【题型三】构造函数f (x )x n 型【题型四】构造函数f (x )e nx型【题型五】构造函数sin x 与函数f (x )型【题型六】构造函数cos x 与函数f (x )型【题型七】构造e n 与af (x )+bf (x )型【题型八】构造kx +b 与f (x )型【题型九】构造ln kx +b 型【题型十】构造综合型二、题型讲解总结【题型】一、构造函数x n f (x )型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在0,+∞ 上的函数f x 满足2xf x +x 2f x <0,f 2 =34,则关于x 的不等式f x >3x 2的解集为( )A.0,4B.2,+∞C.4,+∞D.0,2 【答案】D【分析】构造函数h x =x 2f x ,得到函数h x 的单调性,根据单调性解不等式即可.【详解】令h x =x 2f x ,则h x =2xf x +x 2f x <0,所以h x 在0,+∞ 单调递减,不等式f x >3x 2可以转化为x 2f x >4×34=22f 2 ,即h x >h 2 ,所以0<x <2.故选:D .例2.(2022·河北·高三阶段练习)已知奇函数f x 的定义域为R ,导函数为f x ,若对任意x ∈0,+∞ ,都有3f x +xf x >0恒成立,f 2 =2,则不等式x -1 3f x -1 <16的解集是__________.【答案】-1,3【分析】构造新函数g x =x 3f x ,根据f (x )的性质推出g (x )的性质,最后利用g (x )单调性解不等式.【详解】设g x =x 3f x ,x ∈R ,f x 为奇函数,∴g -x =-x 3f (-x )=x 3f (x )=g x ,即g x 是偶函数,有g (x )=g (-x )=g x ,∵∀x ∈0,+∞ ,3f x +xf x >0恒成立,故x ∈0,+∞ 时,g x =3x 2f x +x 3f x =x 23f x +xf x ≥0,∴函数g x 在0,+∞ 上为增函数,∵f 2 =2,∴g 2 =g -2 =16,x -1 3f x -1 <16等价于g x -1 <16=g (2),g (x -1)=g x -1 <g (2),且函数g x 在0,+∞ 上为增函数,∴x -1 <2,解得-1<x <3.故答案为:-1,3【题型】二、构造函数e nx f (x )型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R ,其函数图象连续不断,当x >0时,x +2 f x +xf x >0,则( )A.f 1 4e >f 2 B.f 2 <0 C.f -3 ⋅f 1 >0 D.f -1 e>4f -2 【答案】D【解析】令g x =x 2e x f x ,根据导数可知其在0,+∞ 上单调递增,由g 2 >g 1 >g 0 =0可知AB 错误,同时得到f 1 e<4f 2 ,f 1 >0,f 3 >0,结合奇偶性知C 错误,D 正确.【详解】对于AB ,令g x =x 2e x f x ,则g 0 =0,g x =x x +2 e x f x +x 2e x f x ,当x ≥0时,g x =xe x x +2 ⋅f x +xf x ≥0,∴g x 在0,+∞ 上单调递增,∴g 0 <g 1 <g 2 ,即0<ef 1 <4e 2f 2 ,∴f 2 >0,f 1 4e <f 2 ,AB 错误;对于C ,由A 的推理过程知:当x >0时,g x =x 2e x f x >0,则当x >0时,f x >0,∴f 1 >0,f 3 >0,又f x 为奇函数,∴f -3 =-f 3 <0,∴f -3 ⋅f 1 <0,C 错误.对于D ,由A 的推理过程知:f 1 e <4f 2 ,又f -1 =-f 1 ,f -2 =-f 2 ,∴-f -1 e <-4f -2 ,则f -1 e>4f -2 ,D 正确.故选:D .例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为f x ,且对于任意的x ∈R ,均有f x +f x >0,则( )A.e -2021f (-2021)>f (0),e 2021f (2021)<f (0)B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0)D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)【答案】D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数F x =e x⋅f x ,F x =f x +f x⋅e x>0,所以F x 在R上递增,所以F-2021<F0 ,F0 <F2021,即e-2021⋅f-2021<f0 ,f0 <e2021⋅f2021.故选:D例5.(2022·辽宁·大连二十四中模拟预测)已知函数y=f x ,若f x >0且f x +xf x >0,则有( )A.f x 可能是奇函数,也可能是偶函数B.f-1>f1C.π4<x<π2时,f(sin x)<e cos2x2f(cos x)D.f(0)<e f(1)【答案】D【解析】根据奇函数的定义结合f x >0即可判断A;令g x =e x22f x ,利用导数结合已知判断函数g x 的单调性,再根据函数g x 的单调性逐一判断BCD即可得解.【详解】解:若f x 是奇函数,则f-x=-f x ,又因为f x >0,与f-x=-f x 矛盾,所有函数y=f x 不可能时奇函数,故A错误;令g x =e x22f x ,则g x =xe x22f x +e x22f x =e x22xf x +f x,因为e x22>0,f x +xf x >0,所以g x >0,所以函数g x 为增函数,所以g-1<g1 ,即e 12f-1<e12f1 ,所以f-1<f1 ,故B错误;因为π4<x<π2,所以0<cos x<22,22<sin x<1,所以sin x>cos x,故g sin x>g cos x,即e sin2x2f sin x>e cos2x2f cos x,所以f sin x>e cos2x-sin2x2f cos x=e cos2x2f cos x,故C错误;有g0 <g1 ,即f0 <e f1 ,故D正确.故选:D.例6.(2022·黑龙江·哈尔滨三中高三阶段练习)f x 是定义在R上的函数,满足2f x +f x =xe x,f-1=-12e,则下列说法错误的是( )A.f x 在R上有极大值B.f x 在R上有极小值C.f x 在R上既有极大值又有极小值D.f x 在R上没有极值【答案】ABC【分析】先由题意得f -1=0,再构造g x =e2x f x ,得到g x =xe3x,进而再构造h x =e2x f x =xe3x-2g x ,判断出h x >0,即f x >0,由此得到选项.【详解】根据题意,2f x +f x =xe x,故2f-1+f -1=-e-1,又f-1=-12e,得2-12e+f -1 =-1e,故f -1 =0,令g x =e2x f x ,则g x =2e2x f x +e2x f x =e2x2f x +f x=e2x⋅xe x=xe3x,又2e2x f x +e2x f x =xe3x,记h x =e2x f x =xe3x-2e2x f x =xe3x-2g x ,所以h x =e3x+3xe3x-2g x =e3x+3xe3x-2xe3x=e3x x+1,当x<-1时,h x <0,h x 单调递减;当x>-1时,h x >0,h x 单调递增,所以h x >h-1=e-2f -1=0,即e2x f x >0,即f x >0,所以f x 在R上单调递增,故f x 在R上没有极值.故选项ABC说法错误,选项D说法正确.故选:ABC【题型】三、构造函数f(x)x n型例7.(2022·山东·潍坊一中高三期中)设函数f (x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x> 0时,xf (x)-f(x)>0,则使得f(x)>0成立的x取值范围是( )A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)【答案】D【分析】根据题意构造函数g(x)=f(x)x,由求导公式和法则求出g (x),结合条件判断出g (x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(-1)=0求出g(-1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.【详解】由题意设g(x)=f(x)x,则g (x)=xf (x)-f(x)x2∵当x>0时,有xf (x)-f(x)>0,∴当x>0时,g (x)>0,∴函数g(x)=f(x)x在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(-x)=g(x),∴函数g(x)为定义域上的偶函数,g(x)在(-∞,0)上递减,由f(-1)=0得,g(-1)=0,∵不等式f(x)>0⇔x∙g(x)>0,∴x>0g(x)>g(1)或x<0g(x)<g(-1),即有x>1或-1<x<0,∴使得f(x)>0成立的x的取值范围是:(-1,0)∪(1,+∞),故选:D例8.(2022·安徽·砀山中学高三阶段练习)已知a=ln24,b=1e2,c=lnπ2π则a,b,c的大小关系为( )A.a<c<bB.b<a<cC.a<b<cD.c<a<b 【答案】C【分析】构造函数,根据函数的单调性比较大小.【详解】令f x =ln xx2,则fx =x-2x ln xx4,令f x <0,解得x>e,因此f x =ln xx2在e,+∞上单调递减,又因为a=ln24=ln416=f4 ,b=1e2=ln ee2=f e ,c=lnπ2π=lnππ=fπ,因为4>e>π>e,所以a<b<c.故选:C.【题型】四、构造函数f(x)e nx型例9.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x <0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef 2 <f 1 ,f 2 <ef 1D.ef 2 <f 1 ,f 2 >ef 1【答案】D 【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g (x )=f (x )e x ⇒g (x )=f (x )-f (x )ex ,因为f x <f x ,所以g (x )>0,因此函数g (x )是增函数,于是有g (2)>g (1)⇒f (2)e 2>f (1)e ⇒f (2)>ef (1),构造函数h (x )=f (x )⋅e x ⇒h (x )=e x [f (x )+f (x )],因为f x <f x <0,所以h (x )<0,因此h (x )是单调递减函数,于是有h (2)<h (1)⇒e 2f (2)<ef (1)⇒ef (2)<f (1),故选:D例10.(2022·江苏·涟水县第一中学高三阶段练习)f x 是定义在R 上的函数,f x 是f x 的导函数,已知f x >f x ,且f (1)=e ,则不等式f 2x -5 -e 2x -5>0的解集为( )A.-∞,-3B.-∞,-2C.2,+∞D.3,+∞【答案】D【分析】根据已知条件构造函数,利用导数法求函数的单调性,结合函数的单调性即可求解.【详解】由f x >f x ,得f x -f x >0,设g x =f x e x ,则g x =f x -f x e x>0,所以函数g x 在-∞,+∞ 上单调递增,因为f 1 =e ,所以g 1 =f 1 e 1=1,所以不等式f 2x -5 -e 2x -5>0等价于f 2x -5 e 2x -5>1即g 2x -5 >g 1 ,所以2x -5>1,解得x >3,所以不等式f 2x -5 -e 2x -5>0的解集为3,+∞ .故选:D .例11.(2023·江西·赣州市赣县第三中学高三期中(理))设f x 是函数f x 的导函数,且f x >3f x x ∈R ,f 13=e (e 为自然对数的底数),则不等式f ln x <x 3的解集为( )A.0,e 3 B.1e ,e 3 C.0,3e D.e 3,3e【答案】C【分析】构造函数g x =f x e 3x ,由已知可得函数g x 在R 上为增函数,不等式f ln x <x 3即为g ln x <g 13,根据函数的单调性即可得解.【详解】解:令g x =f xe3x,则gx =f x -3f xe3x,因为f x >3f x x∈R,所以g x =f x -3f xe3x>0,所以函数g x 在R上为增函数,不等式f ln x<x3即不等式f ln xx3<1 x>0,又g ln x=f ln xe3ln x=f ln xx3,g13 =f13e=1,所以不等式f ln x<x3即为g ln x<g 13 ,即ln x<13,解得0<x<3e,所以不等式f ln x<x3的解集为0,3e.故选:C.例12.(2022·河北廊坊·高三开学考试)已知定义域为R的函数f x 的导函数为f x ,且f x -f x = 2xe x,f0 =0,则以下错误的有( )A.f x 有唯一的极值点B.f x 在-3,0上单调递增C.当关于x的方程f x =m有三个实数根时,实数m的取值范围为0,4e-1D.f x 的最小值为0【答案】ABC【分析】构造g(x)=f(x)e x,结合已知求g(x)的解析式,进而可得f(x)=x2e x,再利用导数研究f(x)的极值点、单调性,并判断其值域范围,即可判断各选项的正误.【详解】令g(x)=f(x)e x,则g(x)=f (x)-f(x)e x=2x,故g(x)=x2+C,(C为常数),所以f(x)=e x(x2+C),而f0 =e00+C=0,故C=0,所以f(x)=x2e x,则f (x)=(x2+2x)e x,令f (x)=0,可得x=-2或x=0,在(-∞,-2)、(0,+∞)上f (x)>0,f(x)递增;在(-2,0)上f (x)<0,f(x)递减;所以f(x)有2个极值点,在-3,0上不单调,A、B错误;由x趋于负无穷时f(x)趋向于0,f(-2)=4e2,f(0)=0,x趋于正无穷时f(x)趋向于正无穷,所以f x =m有三个实数根时m的范围为0,4e-2,f x 的最小值为0,C错误,D正确;故选:ABC【题型】五、构造函数sin x 与函数f (x )型例13.(2022·云南师大附中高三阶段练习)已知a =sin111,b =331,c =ln1.1,则( )A.a <b <cB.a <c <bC.c <a <bD.b <a <c 【答案】B【分析】根据结构构造函数f (x )=x -sin x ,x ∈0,π2 ,利用导数判断单调性,即可得到a <b ;根据结构构造函数g (x )=ln x +1-x ,利用导数判断单调性,即可得到a <c ;根据结构构造函数h (x )=ln(x +1)-3x 3+x ,利用导数判断单调性,即可得到c <b .【详解】构造函数f (x )=x -sin x ,x ∈0,π2 ,则f (x )=1-cos x ≥0,故函数y =f (x )在0,π2 上单调递增,故f 111 >f (0)=0,即111>sin 111,又331>111,故a <b .构造函数g (x )=ln x +1-x ,则g (x )=1x-1,易知函数y =g (x )在x =1处取得最大值g (1)=0,故g 1011 <0,即ln 1011+1-1011<0,即111<-ln 1011=ln 1110=ln1.1,由前面知sin 111<111,故a <c .构造函数h (x )=ln (x +1)-3x 3+x ,则h (x )=1x +1-9(3+x )2=(3+x )2-9(x +1)(x +1)(3+x )2=x (x -3)(x +1)(3+x )2,故知函数y =h (x )在(0,3)上单调递减,故h (0.1)<h (0)=0,即ln1.1<0.33.1=331,故c <b .综上,a <c <b .故选:B .例14.(2022·全国·高三阶段练习)已知函数f (x )及其导函数f (x )的定义域均为R ,且f (x )为偶函数,f π6 =-2,3f (x )cos x +f (x )sin x >0,则不等式f x +π2 cos 3x -14>0的解集为( )A.-π3,+∞ B.-2π3,+∞ C.-2π3,π3 D.π3,+∞ 【答案】B 【分析】令g x =f x sin 3x -14,结合题设条件可得g x 为R 上的增函数,而原不等式即为g x +π2>0,从而可求原不等式的解集.【详解】f x +π2 cos 3x -14>0可化为f x +π2 sin 3x +π2 -14>0,令g x =f x sin 3x -14,则g x =f x sin 3x +3f x sin 2x cos x =sin 2x f (x )sin x +3f x cos x ,因为3f (x )cos x +f (x )sin x >0,故g x ≥0(不恒为零),故g x 为R 上的增函数,故f x +π2 cos 3x -14>0即为g x +π2>0,而g -π6 =f -π6 sin 3-π6 -14=f π6 sin 3-π6 -14=0,故g x +π2 >0的解为x +π2>-π6,故x >-2π3即f x +π2 cos 3x -14>0的解为-2π3,+∞ .故选:B .【题型】六、构造函数cos x 与函数f (x )型例15.已知函数f x 的定义域为-π2,π2,其导函数是f (x ).有f (x )cos x +f (x )sin x <0,则关于x 的不等式3f (x )<2f π6cos x 的解集为()A.π3,π2 B.π6,π2 C.-π6,-π3 D.-π2,-π6【答案】B【分析】令F x =f x cos x ,根据题设条件,求得F 'x <0,得到函数F x =f x cos x 在-π2,π2内的单调递减函数,再把不等式化为f x cos x <f π6 cos π6,结合单调性和定义域,即可求解.【详解】由题意,函数f x 满足f 'x cos x +f x sin x <0,令F x =f x cos x ,则F 'x =f 'x cos x +f x sin x cos 2x<0函数F x =f x cos x 是定义域-π2,π2内的单调递减函数,由于cos x >0,关于x 的不等式3f (x )<2f π6 cos x 可化为f x cos x <f π6 cos π6,即F x <F π6 ,所以-π2<x <π2且x >π6,解得π2>x >π6,不等式3f (x )<2f π6 cos x 的解集为π6,π2 .故选:B 例16.(2021·重庆·高二期末)已知f x 的定义域为(0,+∞)且满足f x >0,f x 为f x 的导函数,f x -f x =e x (x +cos x ),则下列结论正确的是( )A.f x 有极大值无极小值B.f x 无极值C.f x 既有极大值也有极小值D.f x 有极小值无极大值【答案】B【解析】令F x =f xe x,根据题意得到Fx =x+cos x,设g x =x+cos x,x>0,利用导数求得g x 在区间(0,+∞)单调递增,得到F x >0,由f x =e x⋅F x ,得到f x >0,即函数f x 为单调递增函数,得到函数无极值.【详解】令F x =f xe x,x>0,可得F x =f x -f xe x,因为f x -f x =e x(x+cos x),可得F x =x+cos x,设g x =x+cos x,x>0,可得g x =1-sin x≥0,所以g x 在区间(0,+∞)单调递增,又由g0 =1,所以g x >g0 =1,所以F x >0,所以F x 单调递增,因为f x >0且e x>0 ,可得F x >0,因为F x =f xe x,可得f x =ex⋅F x ,x>0,则f x =e x F x +F x>0,所以函数f x 为单调递增函数,所以函数f x 无极值.故选:B.【题型】七、构造e n与af(x)+bf(x)型例17.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x < 0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef2 <f1 ,f2 <ef1D.ef2 <f1 ,f2 >ef1【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g(x)=f(x)e x⇒g (x)=f (x)-f(x)e x,因为f x <fx ,所以g (x)>0,因此函数g(x)是增函数,于是有g(2)>g(1)⇒f(2)e2>f(1)e⇒f(2)>ef(1),构造函数h(x)=f(x)⋅e x⇒h (x)=e x[f(x)+f (x)],因为f x <f x <0,所以h (x)<0,因此h(x)是单调递减函数,于是有h(2)<h(1)⇒e2f(2)<ef(1)⇒ef(2)<f(1),故选:D例18.(2022·河南·高三阶段练习(文))已知函数f x =ax-e x-k,其中e为自然对数的底数,若k∈-1,e2时,函数f x 有2个零点,则实数a的可能取值为( )A.eB.2eC.e 2D.3e【答案】D【分析】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,结合导数分析函数g (x )的单调性与极值情况即可解决问题.【详解】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,g (x )=a -e x .(1)若a ≤0,g (x )<0在R 上恒成立,所以g (x )在R 上单调递减,g (x )的图象与直线y =k ,k ∈-1,e 2 至多只有一个交点,不合题意;(2)若a >0,当x <ln a 时,g (x )>0,当x >ln a 时,g (x )<0,所以g (x )的单调递增区间是(-∞,ln a ),单调递减区间是(ln a ,+∞),所以当x =ln a 时,g (x )取得极大值,也是最大值,为a ln a -a .当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→-∞,所以要使g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,只需a ln a -a >e 2.a ln a -a =a (ln a -1),当0<a ≤e 时,a ln a -a ≤0,当a >e 时,a ln a -a >0,所以a ln a -a >e 2,a >e ,设h (a )=a ln a -a ,a >e ,则h (a )=ln a >0,所以h (a )在(e ,+∞)上单调递增,而h e 2 =e 2,所以a ln a -a >e 2的解为a >e 2,而3e >e 2,故选:D .例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数y =f (x )的导函数为y =f (x ),当x >0时,f (x )+f (x )x <0,且f (2)=-3,则不等式f (2x -1)<-62x -1的解集为( )A.-∞,12 ∪32,+∞ B.32,+∞C.12,32D.-12,12 ∪12,32【答案】A【分析】根据题干中的不等式,构造函数F x =xf x ,结合y =f (x )在在R 上为偶函数,得到F x =xf x 在R 上单调递减,其中F 2 =2f 2 =-6,分x >12与x <12,对f (2x -1)<-62x -1变形,利用函数单调性解不等式,求出解集.【详解】当x >0时,f(x )+f (x )x =xf (x )+f (x )x<0,所以当x >0时,xf (x )+f (x )<0,令F x =xf x ,则当x >0时,F x =xf (x )+f (x )<0,故F x =xf x 在x >0时,单调递减,又因为y=f(x)在在R上为偶函数,所以F x =xf x 在R上为奇函数,故F x =xf x 在R上单调递减,因为f(2)=-3,所以F2 =2f2 =-6,当x>12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)<-6,即F2x-1<F2 ,因为F x =xf x 在R上单调递减,所以2x-1>2,解得:x>3 2,与x>12取交集,结果为x>32;当x<12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)>-6,即F2x-1>F2 ,因为F x =xf x 在R上单调递减,所以2x-1<2,解得:x<3 2,与x<12取交集,结果为x<12;综上:不等式f(2x-1)<-62x-1的解集为-∞,12∪32,+∞.故选:A例20.(2022·全国·高三阶段练习(理))已知函数f x =x3-x+2+e x-e-x,其中e是自然对数的底数,若f a-2+f a2>4,则实数a的取值范围是( )A.-2,1B.-∞,-2C.1,+∞D.-∞,-2∪1,+∞【答案】D【分析】构造函数g(x)=f x -2,利用奇偶性的定义、导数的符号变化判定其奇偶性和单调性,再将f (a-2)+f(a2)>4变为g(a-2)>g(-a2),利用g(x)的单调性进行求解.【详解】构造函数g(x)=f x -2=x3-x+e x-e-x,因为g(x)的定义域为(-∞,+∞),且g-x= -x3--x+e-x-e x=-x3+x-e x+e-x=-(x3-x+e x-e-x)=-g(x),即g(x)是奇函数,又g x =3x2-1+e x+e-x≥3x2-1+2e x⋅e-x=3x2+1>0,所以g(x)在 (-∞,+∞)上单调递增;因为f(a-2)+f(a2)>4,所以f(a-2)-2>-[f(a2)-2],即g(a-2)>-g(a2),即g(a-2)>g(-a2),所以a-2>-a2,即a2+a-2>0,解得a>1或a<-2,即a∈(-∞,-2)∪(1,+∞).故选:D.【点睛】方法点睛:利用函数的性质解决不等式问题时,往往要利用题干中的表达式或不等式的结构特点合理构造函数,如本题中,构造函数g(x)=f x -2,将问题转化为利用函数的奇偶性和单调性求g(a-2)>-g(a2)的解集.【题型】八、构造kx+b与f(x)型例21.(2022·河南·高三阶段练习(文))已知定义在0,+∞上的函数f x 的导函数为f x ,若f x < 2,且f4 =5,则不等式f2x>2x+1-3的解集是( )A.0,2B.0,4C.-∞,2D.-∞,4【答案】C【分析】根据所求不等式f2x>2x+1-3的形式,构造函数g x =f x -2x+3,利用题目中的条件判断出g x 在0,+∞上单调递减,进而将所求转化为g2x>g4 ,再利用单调性求出解集.【详解】设g x =f x -2x+3,则g x =f x -2.因为f x <2,所以f x -2<0,即g x <0,所以g x 在0,+∞上单调递减.不等式f2x>2x+1-3等价于不等式f2x-2×2x+3>0,即g2x>0.因为f4 =5,所以g4 =f4 -2×4+3=0,所以g2x>g4 .因为g x 在0,+∞上单调递减,所以2x<4,解得x<2.故选:C.例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R,其函数图象连续不断,当x>0时,x+2f x +xf x >0,则( )A.f14e>f2 B.f2 <0 C.f-3⋅f1 >0 D.f-1e>4f-2【答案】D【解析】令g x =x2e x f x ,根据导数可知其在0,+∞上单调递增,由g2 >g1 >g0 =0可知AB错误,同时得到f1e<4f2 ,f1 >0,f3 >0,结合奇偶性知C错误,D正确.【详解】对于AB,令g x =x2e x f x ,则g0 =0,g x =x x+2e xf x +x2e x f x ,当x≥0时,g x =xe x x+2⋅f x +xf x≥0,∴g x 在0,+∞上单调递增,∴g0 <g1 <g2 ,即0<ef1 <4e2f2 ,∴f2 >0,f14e<f2 ,AB错误;对于C,由A的推理过程知:当x>0时,g x =x2e x f x >0,则当x>0时,f x >0,∴f1 >0,f3 >0,又f x 为奇函数,∴f-3=-f3 <0,∴f-3⋅f1 <0,C错误.对于D,由A的推理过程知:f1e<4f2 ,又f-1=-f1 ,f-2=-f2 ,∴-f-1e<-4f-2,则f-1e>4f-2,D正确.故选:D.【题型】九、构造ln kx+b型例23.(2023·全国·高三专题练习)定义在(0,+∞)上的函数f(x)满足xf x +1>0,f2 =ln 12,则不等式f(e x)+x>0的解集为( )A.(0,2ln2)B.(0,ln2)C.(ln2,1)D.(ln2,+∞)【答案】D【分析】构造新函数g(x)=f(x)+ln x,(x>0),利用导数说明其单调性,将f(e x)+x>0变形为g(e x) >g(2),利用函数的单调性即可求解.【详解】令g(x)=f(x)+ln x,(x>0) ,则g (x)=f (x)+1x=xf x +1x,由于xf x +1>0,故g (x)>0,故g(x)在(0,+∞)单调递增,而g(2)=f(2)+ln2=ln 12+ln2=0 ,由f(e x)+x>0,得g(e x)>g(2) ,∴e x>2 ,即x>ln2 ,∴不等式f(e x)+x>0的解集为(ln2,+∞),故选:D.例24.(2022·河南·高三阶段练习(理))设a=cos 12,b=78,c=ln158,则a,b,c之间的大小关系为( )A.c<b<aB.c<a<bC.b<c<aD.a<c<b 【答案】A【分析】构造函数g x =ln x+1-x,f x =cos x-1-x2 2,借助函数的单调性分别得出c<b与a>b,从而得出答案.【详解】构造函数g x =ln x+1-x,x>-1,则g x =1x+1-1=-xx+1,当-1<x<0时,g x >0,g x 单调递增,当x>0时,g x <0,g x 单调递减,∴g x ≤g 0 =0,∴ln x +1 ≤x (当x =0时等号成立),∴ln 158=ln 78+1 <78,则c <b ,构造函数f x =cos x -1-12x 2 ,0<x <1,则f x =x -sin x ,令φx =x -sin x ,0<x <1,∴φ x =1-cos x >0,φx 单调递增,∴φx >φ0 =0,∴f x >0,f x 单调递增,从而f x >f 0 =0,∴f 12 >0,即cos 12>1-12⋅122=78,则a >b .∴c <b <a .故选:A .例25.(2022·贵州·高三阶段练习(理))已知命题p :在△ABC 中,若A >π4,则sin A >22,命题q :∀x >-1,x ≥ln (x +1).下列复合命题正确的是( )A.p ∧q B.(¬p )∧(¬q )C.(¬p )∧qD.p ∧(¬q )【答案】C【分析】命题p 可举出反例,得到命题p 为假命题,构造函数证明出q :∀x >-1,x ≥ln (x +1)成立,从而判断出四个选项中的真命题.【详解】在△ABC 中,若A =5π6,此时满足A >π4,但sin A =12<22,故命题p 错误;令f x =x -ln x +1 ,x >-1,则f x =1-1x +1=xx +1,当x >0时,f x >0,当-1<x <0时,f x <0,所以f x 在x >0上单调递增,在-1<x <0上单调递减,所以f x 在x =0处取得极小值,也是最小值,f 0 =0-ln 0+1 =0,所以q :∀x >-1,x ≥ln (x +1)成立,为真命题;故p ∧q 为假命题,(¬p )∧(¬q )为假命题,(¬p )∧q 为真命题,p ∧(¬q )为假命题.故选:C【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )①log 32>23;②e lnπ<π;③sin 12>2348;④3e ln2<4 2.A.1 B.2C.3D.4【答案】C【分析】利用指数式与对数的互化、对数函数的单调性推得①错误;构造函数f x =ln xx,利用导数研究其单调性和最值,进而判定②④正确;构造函数h(x)=sin x-x+16x3,x∈0,π2,利用二次求导确定其单调性,利用h 12 >h(0)得到③正确.【详解】对于①:若log32>23,则2>323,即8>9,显然不成立,故①错误;对于②:将e lnπ<π变为lnππ<ln ee,构造f x =ln xx,则f x =1-ln xx2,则当0<x<e时,f x >0,x>e时,f x <0,所以f x =ln xx在(0,e)上单调递增,在(e,+∞)上单调递减,则x=e时,f x 取得最大值1 e,由fπ <f e 得lnππ<ln ee,即e lnπ<π成立,故②正确;对于③:令h(x)=sin x-x+16x3,x∈0,π2,则g x =h x =cos x-1+12x2,t x =g x =-sin x+1,因为t x =g x =-sin x+1>0在0,π2成立,所以g x =h x =cos x-1+12x2在0,π2上单调递增,又g(0)=cos0-1+0=0,所以g x =h x >0在0,π2上成立,即h(x)=sin x-x+16x3在在0,π2上单调递增,所以h 12 >h(0),即sin12-2348>0,即sin12>2348,故③正确;对于④:将3e ln2<42变为ln2222<ln e e,由②得f22<f e ,即ln2222<ln e e,即3e ln2<42成立,故④正确;综上所述,真命题的个数为3.故选:C.【点睛】方法点睛:利用函数的单调性解决不等式问题时,往往要利用题干中的不等式的结构特点合理构造函数,如本题中证明e lnπ<π、3e ln2<42构造函数f x =ln xx,证明sin12>2348构造h(x)=sin x -x +16x 3,x ∈0,π2,将问题转化为利用导数研究函数的单调性问题.例27.(2022·江苏·南京师大附中高三期中)已知函数f x =ln x -ax 2,则下列结论正确的有( )A.当a <12e 时,y =f x 有2个零点B.当a >12e 时,f x ≤0恒成立C.当a =12时,x =1是y =f x 的极值点D.若x 1,x 2是关于x 的方程f x =0的2个不等实数根,则x 1x 2>e 【答案】BCD【分析】对于A 和B ,由f x =0可得a =ln x x 2,令g x =ln xx 2,利用导数得到g x 的单调性和最值情况即可判断;对于C ,将a =12代入f x ,利用导数得到f x 的单调性即可判断;对于D ,问题转化为2at =ln t 有两个零点,证明t 1t 2>e 2,进而只需要证明ln t 1+ln t 2>2,也即是ln t 1t 2>2t1t 2-1 t 1t 2+1,从而令m =t 1t 2>1,构造函数s m =ln m -2m -1 m +1m >1 求出最值即可【详解】对于A ,令f x =ln x -ax 2=0即a =ln xx 2,令g x =ln x x 2,x >0,则g x =1x⋅x 2-ln x ⋅2x x 2 2=1-2ln x x 3,令g x =0,解得x =e ,故当x ∈0,e ,g x >0,g x 单调递增;当x ∈e ,+∞ ,g x <0,g x 单调递减;所以g x 的最大值为g e =12e,又因为当x <1时,g x =ln x x 2<0;当x >1时,g x =ln xx 2>0,故g x 如图所示,当0<a <12e时,函数y =a 与g x 有两个交点,此时y =f x 有2个零点,故A 错误;对于B ,由A 选项可得g x =ln x x2≤12e ,当a >12e 时,由a >ln xx 2,可整理得ln x -ax 2<0,即f x <0,故B 正确;对于C ,将a =12代入f x 得f x =ln x -12x 2,x >0,所以f x =1x -x =1-x 2x,令f x =0,解得x =1,故当x ∈0,1 ,f x >0,f x 单调递增;当x ∈1,+∞ ,f x <0,f x 单调递减;所以x=1是y=f x 的极大值点,故C正确;对于D,由f x =ln x-ax2=0即ax=ln x x,因为x1,x2是关于x的方程f x =0的2个不等实数根,所以ax1=ln x1x1ax2=ln x2x2,即2ax21=ln x212ax22=ln x22,所以等价于:2at=ln t有两个零点,证明t1t2>e2,不妨令t1>t2>0,由2at1=ln t12at2=ln t2⇒2a=ln t1-ln t2t1-t2,要证t1t2>e2,只需要证明ln t1+ln t2>2,即只需证明:ln t1+ln t2=2a t1+t2=t1+t2ln t1-ln t2t1-t2>2,只需证明:ln t1-ln t2>2t1-t2t1+t2,即lnt1t2>2t1t2-1t1t2+1,令m=t1t2>1,只需证明:ln m>2m-1m+1m>1,令s m=ln m-2m-1m+1m>1,则s m=m-12m m+12>0,即s m在1,+∞上为增函数,又s1 =0,所以s m>s1 =0.综上所述,原不等式成立,即x1x2>e成立,故D正确,故选:BCD【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.例28.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数f x 的定义域是0,+∞,f x 是f x 的导数,若f x =xf x -x,f 1 =1,则下列结论正确的是( )A.f x 在0,1e上单调递减 B.f x 的最大值为eC.f x 的最小值为-1eD.存在正数x0,使得f x0<ln x0【答案】AC【分析】构造g x =f xx,得到g x =1x,从而得到g x =ln x+c,结合f 1 =1,得到f x =x ln x,求导得到f x =ln x+1,从而得到函数的单调性和极值,最值情况,判断出ABC选项;解不等式x-1ln x<0得到解集为∅,故D错误.【详解】由f x =xf x -x得f x =f xx+1,设g x =f xx,则g x =xf x -f xx2=xf xx+1-f xx2=1x.设c为常数,则ln x+c=1 x,∴g x =ln x+c,∴f x =xg x =x ln x+cx.∵f 1 =1,∴f1 =0,∴c=0,所以f x =x ln x,∴f x =ln x+1.当0<x<1e时,f x <0,f x 单调递减,当x>1e时,f x >0,f x 单调递增.∵f 1e =0,∴f x 在x=1e时取得极小值,也是最小值-1e,f x 无最大值.∴A正确,B错误,C正确,由f x <ln x得x ln x<ln x,∴x-1ln x<0.当0<x<1时,x-1<0,ln x<0,x-1ln x>0.当x=1时,x-1ln x=0.当x>1时,x-1>0,ln x>0,x-1ln x>0.因此不等式x-1ln x<0即f x <ln x的解集是∅.所以D错误.故选:AC【点睛】当条件中出现类似f x =xf x -x的条件时,通常要构造函数来解决问题,本题中的难点是利用f x =f xx+1来构造g x =f xx,从而结合f 1 =1求出f x =x ln x.例29.(2023·全国·高三专题练习)已知函数f x =x e x+1,g x =x+1ln x,若f x1=g x2>0,则x2x1可取( )A.1B.2C.eD.e2【答案】CD【分析】由g x =x+1ln x=ln x e ln x+1,利用同构结合f x 在(0,+∞)上单调递增,即可得到x1=ln x2,则x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),求出h (x)即可判断h(x)在(0,+∞)上的单调性,即可得出x2x1≥e,由此即可选出答案.【详解】因为f x1=g x2>0,所以x1>0,x2>1,因为f x =e x+1+xe x=(x+1)e x+1>0恒成立,所以f x 在(0,+∞)上单调递增,又g x =x+1ln x=ln x e ln x+1,因为f x1=g x2,即x1e x1+1=ln x2e ln x2+1,所以x1=ln x2⇒x2=e x1,所以x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),所以h (x)=e x(x-1)x2当0<x<1时,h (x)<0,h(x)单调递减,当x>1时,h (x)>0,h(x)单调递增,所以h(x)≥h(1)=e,即x2x1≥e故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将g x =x+1ln x=ln x e ln x+1变形为f x =x e x+1的结构,是解本题的关键.。

数学-导数压轴题之构造函数和同构异构详述(解析版)

数学-导数压轴题之构造函数和同构异构详述(解析版)

导数章节知识全归纳导数压轴题之构造函数和同构异构(详述版)一.考试趋势分析:由于该内容在高考内容中考试频率相对比较低,然而它却在我们平时考试或是诊断型考试中出现又较高,并且该内容属于高中数学里面导数的基本考试题型之一,基本上尖子生里面的基础题,又是一般学生里面的压轴题,所以老师你觉得讲还是不讲呢?针对这个情况,作者进行了多年研究和分析,这个内容一定要详细讲述,并且结合技巧性让学生能够熟练掌握,优生几秒钟,一般学生几分钟就可以完成该题解答,是设计这个专题的核心目的! 二.所用知识内容: 1.导数八大基本求导公式:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x xe e '= ⑥()ln x xa a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'= 2.常见构造:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()ex f x F x =,()2()f x f x '-,构造2()()e xf x F x =,……………… ()()f x nf x '-,构造()()enxf x F x =, 3.同构异构方法:1.顺反同构:顺即为平移拉伸后的同构函数,反即为乘除导致的凹凸反转同构函数. 2.同位同构:①加减同构是指在同构的过程中“加减配凑”,从而完成同构;②局部同构是指在同构过程中,我们可以将函数的某两个或者多个部分构造出同构式,再构造同构体系中的亲戚函数即可;③差一同构是指指对跨阶以及指数幂和对数真数差1,我们往往可考虑用同构秒杀之.三.导数构造函数典型题型: 1.构造函数之和差构造:例:1.已知定义在R 上的函数()f x 满足()220f =,且()f x 的导函数()f x '满足()262f x x >'+,则不等式()322f x x x >+的解集为( )A .{2}xx >-∣ B .{2}xx >∣ C .{2}xx <∣ D .{2∣<-xx 或2}x > 【答案】B 【分析】令函数()()322g x f x x x =--,求导,结合题意,可得()g x 的单调性,又()20g =,则原不等式等价于()()2g x g >,根据()g x 的单调性,即可得答案. 【详解】令函数()()322g x f x x x =--,则()()2620g x f x x =--'>',所以()g x 在R 上单调递增.因为()2g =()3222220f -⨯-⨯=,所以原不等式等价于()()02g x g >=,所以所求不等式的解集为{2}.xx >∣ 故选:B2.定义在()0,∞+上的函数()f x 满足()()10,42ln 2xf x f '->=,则不等式()xf e x <的解集为( ) A .()0,2ln 2 B .(),2ln 2-∞ C .()2ln 2,+∞ D .()1,2ln 2【答案】B 【分析】构造函数()()ln g x f x x =-,()0,x ∈+∞,先判断其导函数的正负,来确定该函数的单调性,再化简不等式为()()4xg e g <,根据单调性解不等式即可.【详解】设()()ln g x f x x =-,()0,x ∈+∞,则()()()110xf x g x f x x x'-''=-=>, 故()g x 在()0,∞+上单调递增,()()2l 4n 22ln 2404ln g f -===-,不等式()xf ex <,即()ln 0xxf e e-<,即()()4x g e g <,根据单调性知04x e <<,即ln 44x e e <=,得ln 4x <,即2ln 2x <,故解集为(),2ln 2-∞. 故选:B. 【点睛】 思路点睛:利用导数解不等式时,常常要构造新函数,新函数一方面与已知不等式有关,一方面与待求不等式有关,再结合导数判断单调性,利用单调性解不等式.变式:1.已知奇函数()f x 在R 上的导函数为()'f x ,且当(],0x ∈-∞时,()'1f x <,则不等式()()2101110102021f x f x x --+≥-的解集为( ) A .()2021,+∞ B .[)2021,+∞ C .(],2021-∞ D .(),2021-∞【答案】C 【分析】利用()'1f x <构造函数g (x ),即可得到函数g (x )的单调性,再将所解不等式转化为用g (x )表达的抽象函数不等式而得解. 【详解】因()'1f x <,即()10f x '-<,令()()g x f x x =-,则()0g x '<,()g x 在(,0]-∞上递减, 又()f x 是R 上的奇函数,则()g x 也是R 上的奇函数,从而有()g x 在R 上单调递减, 显然()()f x g x x =+,则有()()2101110102021f x f x x --+≥-(21011)(21011)[(1010)(1010)]2021g x x g x x x ⇔-+--+++≥-(21011)21011(1010)10102021g x x g x x x ⇔-+--+--≥- (21011)(1010)g x g x ⇔-≥+由()g x 在R 上单调递减得2101110102021x x x -≤+⇔≤, 所以所求不等式的解集为(],2021-∞. 故选:C 【点睛】关键点睛:解给定导数值特征的抽象函数不等式,根据导数值特征构造对应函数是解题的关键.2.构造函数之乘积构造:例:1.()f x 在()0,∞+上的导函数为()f x ',()()2xf x f x '>,则下列不等式成立的是( ).A .()()222021202220222021f f >B .()()222021202220222021f f <C .()()2021202220222021f f >D .()()2202220222021021f f <【答案】A 【分析】构造()2()f x g x x =,求导得3()2()0()xf x g x f x x '-'=>,知()2()f x g x x=在()0,∞+上为增函数,进而由(2022)(20221)g g >即可判断.【详解】令()2()f x g x x =,则243()()2()()2()x f x xf x xf x g x f x x x''--'==, 因为在()0,∞+上的导函数为()()2xf x f x '>,所以在()0,∞+上()0g x '>,即()2()f x g x x=在()0,∞+上为增函数. 所以()()()()22202220212022202120222021f f g g >⇒>,即()()222021202220222021f f >.故选:A.2.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞-B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A 【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x =,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x =为偶函数, 所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===(); ()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃.故选:A 【点睛】需对题中的信息联想到构造函数利用单调性解不等式,特别是分为当0x > 时, 当0x < 时两种情况,因为两边同时除以x ,要考虑其正负.3.定义在R 上的连续函数()f x 的导函数为()'f x ,且cos ()(cos sin )()xf x x x f x '<+成立,则下列各式一定成立的是( ) A .(0)0f =B .(0)0f <C .()0f π>D .02f ⎛⎫=⎪⎝⎭π【答案】C 【分析】设cos () ()e xx f x g x ⋅=,由条件可得()0g x '<,即()g x 在R 上单调递减,且02g π⎛⎫= ⎪⎝⎭,由此卡判断选项A ,B , C , 将2x π=代入条件可得02f π⎛⎫>⎪⎝⎭,可判断选项D. 【详解】由题可得cos ()sin ()cos ()xf x xf x xf x '-<,所以(cos ())cos ()xf x xf x '<,设cos () ()e x x f x g x ⋅=则(cos ())cos ()()0e xxf x xf x g x '-'=<, 所以()g x 在R 上单调递减,且02g π⎛⎫=⎪⎝⎭由(0)()2g g g ππ⎛⎫>>⎪⎝⎭可得() (0)0e f f ππ>>-, 所以(0)0f >,()0f π>,所以选项A 、B 错误,选项C 正确.把2x π=代入cos ()(cos sin )()xf x x x f x '<+,可得02f π⎛⎫> ⎪⎝⎭,所以选项D 错误,故选:C . 【点睛】关键点睛:本题考查构造函数,判断函数单调性判断函数值的符号,解答本题的关键是根据题意构造函数cos () ()e xx f x g x ⋅=,由条件得出其单调性,根据02g π⎛⎫= ⎪⎝⎭,判断选项,属于难题.变式:1.已知定义在0,2π⎛⎫⎪⎝⎭的函数()f x 的导函数为()f x ',且满足()()sin cos 0f x x f x x '-<成立,则下列不等式成立的是( )A64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.36f ππ⎫⎫⎛⎛<⎪ ⎪⎝⎝⎭⎭C43ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.234f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】B 【分析】 构造函数()()sin f x g x x=,求导后可确定其单调性,利用单调性比较大小可判断各选项. 【详解】设()()sin f x g x x =,则2()sin ()cos ()0sin f x x f x x g x x -''=<,所以()g x 在0,2π⎛⎫⎪⎝⎭上是减函数, 所以()()64sin sin 64f f ππππ>()()64f ππ>,A 错;()()63sin sin 63f f ππππ>()()63f ππ>,B 正确; ()()34sin sin43f f ππππ>()()43ππ>,C 错;3f π⎛⎫ ⎪⎝⎭3π⎛⎫ ⎪⎝⎭与23f π⎛⎫ ⎪⎝⎭大小不确定,D 不能判断.故选:B . 【点睛】关键点点睛:本题考查比较大小问题,解题关键是构造新函数()()sin f x g x x=,由导数确定其单调性,从而可比较函数值大小.变式:2。

专题6.1 导数中的构造函数-2121届高考数学压轴题讲义(选填题)(原卷版)

专题6.1 导数中的构造函数-2121届高考数学压轴题讲义(选填题)(原卷版)

恒成立,则实数 a 的取值范围是______.
13.【山东省济南市山东师范大学附属中学 2019 届高三四模】定义在 R 上的奇函数 的导函数满足
,且
,若
,则不等式
的解集为______.
14.【广东省佛山市第一中学 2019 届高三上学期期中】已知定义在 R 上的奇函数 满足 f(1)=0,当 x
>0 时,
恒成立,
精品公众号:学起而飞
C.
D.
恒成立,则正
11.【2019 届高三第二次全国大联考】已知定义在 上的可导函数
的导函数为
时, A.0
,则函数 B.1
的零点个数为 C.2
D.0 或 2
,若当
精品公众号:学起而飞
二、填空题
12.【江苏省海安高级中学 2019 届高三上学期第二次月考】若关于 x 的不等式
对任意
的实数
及任意的实数
精品公众号:学起而飞
A.
B.
C.当 时, 取得极大值
D.当 时,
2.利用 f x 与 ex 构造
f x 与 ex 构造,一方面是对 u v , u 函数形式的考察,另外一方面是对 ex ex 的考察.所以对于 v
f
x
f x 类型,我们可以等同 xf
x ,
f
x
的类型处理,
“ ”法优先考虑构造 F x
1.【山西省 2019 届高三百日冲刺】已知函数
则 的取值范围为( )
A.
B.
C.
,若对任意的 D.

恒成立,
2.【海南省海口市 2019 届高三高考调研】已知函数 的导函数 满足

恒成立,则下列判断一定正确的是( )

专题导数中的构造函数解不等式高考数学总复习之典型例题突破压轴题系列解析

专题导数中的构造函数解不等式高考数学总复习之典型例题突破压轴题系列解析

专题导数中的构造函数解不等式高考数学总复习之典型例题突破压轴题系列解析专题0 6 导数中的构造函数解不等式导数中经常出现给出原函数与导函数的不等式,再去解一个不等式,初看起来难度很大, 其中这只是一种中等题型,只需根据原函数与。

导函数的关系式或者题目选项所给的提示构造函数,使得可根据原函数与导函数的关系式判断所构造函数的单调性,再将不等式化为两个函数值的形式,根据单调性解不等式即可。

【题型示例】1、定义在R上的函数/(x)满足:/(x) + r(.x)>l, /(0) = 4,则不等式e7Xx)>e" + 3(其中£为自然对数的底数)的解集为()A. (0,+oo)B. (-oo,02 (3,+00)C. (—8,0)5°,+如D. (3,+)【答案】A2、设函数/(x)在/?上的导函数为f何,对VxwR有/(.v)+/(-%) = x2,在(0,+co)上,/'(x)-xvO,若直线/(4-加)-/伽)》8-4〃?,则实数加的取值范围是( )A.. [2,-KX))B.(7,2]C. (-oo,-2] U[2,炖)D. [-2,2]【答案】A【解析】令g(x)=/(x)-|x2,则g(-X)+ g(X)= /(-A)-|A-2+/(X)-|x2 =0,所以函数g(x)为奇函数,当xw(O,~K?)时,g'(x)二/'(X)7VO,所以函数g(x)在(0,+oo)上是减函数,故函数g(x)在(0,0)上也是减函数,由/(0)=0,可得g(x)在/?上是减函数,/./(4_〃?)_/伽)=g(斗一〃J +丄(斗_加)= g(4_〃?)_g(〃?) + 8_4/n8_4? .\g(4-w)^g(w),/.4-w<w,解得加22,实数加的取值范围是< p=""> [2,4<?).3、己知定义在/?上的函数/⑴满足/(2) = 1,且/⑴的导函数f(x)>i 则不等式/(A)<1^2-X+I的解集为()■A. [x\-2<x<2]< p="">B. {x\x<2}c{x 卜>2} D. {x|.r<-2 或x>2}【答案】B【解析】令g(x) = /(x)-** + x, fflg,(x)=/(x)-x+l,因为f(x)>x-l,所以g'(x)>0,即g(x)在/?上为增函数,不等式/(A)<|J;2-.V+1可化为/(A)-|.V2+X<="" p="" 乂j="">g(x)单调递增得工v 2 ,所以不等式的解集为{x\x < 2} ?4、定义在[0,+oo)的函数f(rr)的导函数为严&),对于任意的> 0,恒有> /(r), 仇=绰,^=埠,贝临上的大。

高考数学总复习重点知识专题讲解与训练6---导数构造辅导助函数问题(解析版)

高考数学总复习重点知识专题讲解与训练6---导数构造辅导助函数问题(解析版)

C. a = b
D.无法确定
【答案】B
【解析】构造函数 F (x) =
f (x) ex
,因
F
/ ex
f (x) > 0 ,故 F (x) =
f (x) ex

[0,+∞)
上单调递增,则 F (2) < F (3) ,即
f (2) < e2
f (3) e3
,也即
e3
f
(2)
<
f (x)
是 x
单调递减函数,因为 m ≤ n ,所以 F (m) ≥ F (n) ,即 f (m) ≥ f (n) ,也即 nf (m) ≥ mf (n) ,因
m
n
此应选 D.
12.已知定义在 R 上的函数 f (x) 的导函数为 f ′(x) ,且满足 f ′(x) > f (x) ,则下列结论
【答案】D[来源:学_科_网 Z_X_X_K]
【解析】令 t = ln x ,则; f (ln x) > 3ln x +1, f (t) > 3t +1, f (t) − 3t −1 > 0 ,
可构造函数, g(t)=f(t)-3t-1,g′(t)=f ′(t)-3,f ′(t)<3,g′(t) < 0 ,为减函数.
3 / 15
8 . 定 义 在 [0,+∞) 的 函 数 f ( x) 的 导 函 数 为 f '( x) , 对 于 任 意 的 x ≥ 0 , 恒 有 f '( x) > f ( x), a = e3 f (2),b = e2 f (3) ,则 a,b 的大小关系是( )
A. a > b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin2 x
F x f xcos x , Fx f xcos x f xsin x ;
Fx
f x , F x
cos x
f x cos x f xsin x

cos2 x
4

3、已知函数
y
f
x
对于任意
x
2
,
2
满足
f
xcos x
f
x sin
x
0
(其中
f
x
是函数
f x 的导函数),则下列不等式不成立的是( )
是定义在 上的可导偶函数,若当 时,
,则函数
的零点个数为
A.0 C.2 【答案】A 【解析】 设
B.1 D.0 或 2
,因为函数 为偶函数,所以 也是 上的偶函数,所以
故函数
.由已知, 时,
,可得当 时,


上单调递减,由偶函数的性质可得函数 在
上单调递增.所以
1
,所以方程
,即
无解,所以函数
没有零点.故
, 选 B.
3.利用 f x 与 sin x , cos x 构造
sin x , cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.
Fx f xsin x , Fx f xsin x f xcos x ;
Fx
f x , F x
sin x
f xsin x f x cos x ;
【方法综述】 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是
这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现 nf x xf x 形
式,构造函数 F x xn f
x;出现 xf x nf
x 形式,构造函数 F x
x
v
u 的导函数观察可得知, u v 型导函数中体现的是“ ”法, u 型导函数中体现的是“ ”法,由此,我们可
v
v
以猜测,当导函数形式出现的是“ ”法形式时,优先考虑构造 u v 型,当导函数形式出现的是“ ” 法形式时,
优先考虑构造 u . v
例 1.【2019 届高三第二次全国大联考】设
,利用导数研究其单调性极值与最值并且画出图象即可得出.
【举一反三】【安徽省黄山市 2019 届高三第二次检测】已知函数 是定义在 上的可导函数,对于任意的
实数 x,都有 ()
,当 时
,若
,则实数 a 的取值范围是
A.
B.
C.
D.
【答案】B 【解析】 令 又 从而 因此
,则当 时,

等价于
,所以
为偶函数,






,得 ,得
,此时函数 为增函数 ,此时函数 为减函数

,即
,则
,故 错误
,即
,则
,故 错误
当 时, 取得极小值
即当 ,
,即
,即
,故 错误
当 时, 取得极小值
此时
,则 取得极大值
2
本题正确选项:
2.利用 f x 与 ex 构造
f x 与 ex 构造,一方面是对 u v , u 函数形式的考察,另外一方面是对 ex ex 的考察.所以对于 v
A.
2f
3
f
4
B.
2f
3
f
4
C. f 0
2
f
4
【答案】B
D.
f
0
2
f
3
【指点迷津】满足“ f xcos x f xsin x 0 ”形式,优先构造 F x f x ,然后利用函数的单调性
cos x
和数形结合求解即可.注意选项的转化. 类型二 构造具体函数关系式 这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题. 1.直接法:直接根据题设条件构造函数
,若
恒成立,则实数 的取值范围是( )
A.
B.
C.
D.
【答案】A
f x ;出现
xn
f x nf
x形
式,构造函数 F x enx f
x ;出现
f x nf
x 形式,构造函数 F x
f x .
enx
【解答策略】
类型一、利用 f x 进行抽象函数构造
1.利用 f x 与 x ( xn )构造
常用构造形式有 xf x , f x ;这类形式是对 u v , u 型函数导数计算的推广及应用,我们对 u v ,

4、

2
, 2
,且
sin
sin
0
,则下列结论 正确的是(

A.
B. 2 2
C.
D. 0
【答案】B
【解析】构造
f
x
x sin
x
形式,则
f
x
sin
x
x cos
x

x
0,
2
时导函数
f
x
0,
f
x单
调递增;
x
2
,
0
时导函数
f
x
0,
f
x 单调递减.又
f x 为偶函数,根据单调性和图象可
,若不等式
的解集中恰有两个整
数,则实数 的取值范围是( )
A.
B.
C.
D.
【答案】C 【解析】

可设 ∵ ∴ ∴ 可得:
,则
பைடு நூலகம்

, ,∴ .

时,函数 取得极大值,
. 时,
3
函数 取得极小值.





时,不等式
的解集中恰有两个整数 , .
故 的取值范围是
,故选 C.
【指点迷津】令
,可得
,可设

,解得 ,
f x f x 类型,我们可以等同 xf x , f x 的类型处理, “ ”法优先考虑构造 F x f xex ,
x
“ ”法优先考虑构造 F x
f x .
ex
例 2、【湖南省长郡中学 2019 届高三下学期第六次月考】已知 是函数 的导函数,且对任意的实数 都

是自然对数的底数),
选 A. 【指点迷津】设
,当 时,
,可得当 时,
,故函数

上单调递减,从而求出函数的零点的个数.
【举一反三】【新疆乌鲁木齐 2019 届高三第二次质量检测】
的定义域是
,其导函数为 ,若
,且
(其中 是自然对数的底数),则
A.
B.
C.当 时, 取得极大值
D.当 时,
【答案】C 【解析】

,则




,所以
知选 B.
【指点迷津】根据题目中不等式的构成,构造函数 f x xsin x ,然后利用函数的单调性和数形结合求
5
解即可.
【举一反三】【福建省 2019 届备考关键问题指导适应性练习(四)】已知函数

于 的方程
在区间 内有两个实数解,则实数 的取值范围是( )
A.
B.
C.
D.
【答案】A
【解析】
易知当 ≤0 时,方程只有一个解,
所以 >0.令





为函数的极小值点,
又关于 的方程 = 在区间 内有两个实数解,
,若关
所以
,解得

故选 A.
【指点迷津】根据题目中方程的构成,构造函数
,然后利用函数的单调性和数形结合求解
即可.
2. 参变分离,构造函数
例 5.【云南省玉溪市第一中学 2019 届高三下学期第五次调研】 设 为函数 的导函数,且满足
相关文档
最新文档