发动机原理_轮盘强度
飞机发动机原理与结构—涡轮
二、典型发动机涡轮的维护及注意事项高 压涡轮 进口Fra bibliotek 向叶片 的检查
1 级高压涡轮导向叶片,腐蚀,涂层丢失
1 级高压涡轮罩环,刮磨痕迹,剥落;2级高 压涡轮导向叶片腐蚀,涂层丢失和烧蚀痕迹
二、典型发动机涡轮的维护及注意事项
4. 高压涡轮转子叶片的检查 ✓ 涡轮转子叶片的叶尖一般设计有磨损指示槽,可以用来判断叶片和环罩的 磨损情况。 ✓高压涡轮转子叶片的检查区域包括:叶片的前缘,后缘,叶尖等 。
铝化物涂层);
• 对叶片采取冷却措施(高压和中压需要冷却,低压不需要)。 • 叶片的冷却措施:对流,冲击,气膜。
导向器叶片的安装
• 注意事项:叶片受热要自由膨胀,叶片要承力。 • 常见安装方式:挂钩式,螺栓固定。
2. 涡轮导向器
涡轮的导向器叶片
2. 涡轮导向器
V2500的高压涡轮 第一级导向叶片
二、典型发动机涡轮的维护及注意事项
高压涡轮转子叶片的检查
1级高压涡轮转子叶片,腐蚀,涂层丢失 2级高压涡轮转子叶片腐蚀,涂层丢失和烧蚀痕迹
涡轮的分类和原理
涡轮功用:把高温、高压燃气的热 能和压力能转变成旋转的机械功,从
而带动压气机及其它附件工作。在涡扇发动机中,涡轮 还带动风扇;在涡 桨发动机中,它带动螺旋桨;在涡轴发动机中,它输出轴功带动旋翼。
2
涡轮的工作特点
3 燃气在涡轮中的流动
4
涡轮的主要参数
1. 涡轮叶片比压气机叶片要厚。
• 工作气体的温度高,涡轮叶片受热严重, 金属材料的强度随着温度的升 高而降低, 为了保证叶片的强度, 所以涡轮叶片较厚。
• 涡轮叶片需要冷却, 所以有的涡轮 叶片是空心的, 以便通冷却空气。 2. 涡轮叶片比压气机叶片弯曲的程度要大。其原因是单级功率大,气动力矩
涡轮增压发动机工作原理
涡轮增压发动机工作原理涡轮增压发动机工作原理中,涡轮增压是一种机械式增压方式,通过利用气体动力学的原理,从而增加气缸内的空气进气量,从而提高发动机的输出功率和扭矩。
通常,涡轮增压发动机在低于中高速范围,如从1000rpm到4000rpm,效果达到最佳状态。
涡轮增压器的原理是利用燃油中的能量释放出气体压力,从而驱动涡轮转子旋转,转动的涡轮将压缩空气送入发动机燃烧室,从而增加燃料燃烧的效率。
接下来,我们将会详细解析涡轮增压发动机的工作原理。
一、涡轮增压发动机的基本结构涡轮增压发动机包括涡轮增压器、进气歧管、燃烧室、排气管和涡轮悬吊组件,涡轮增压器可分为中央涡轮增压器和双涡轮增压器两种。
前者只有一个涡轮,随着汽车转速的上升,涡轮的旋转速度亦会增加,从而增加进气压力;后者则拥有两个涡轮,其中一个涡轮只负责低转速段的增压工作,而另一个涡轮主要承担高转速段的增压任务。
涡轮增压器通过涡轮组件和废气涡轮组件结合而成,其安装在汽车引擎进气歧管里面,因而发挥着增压的作用。
涡轮组件作为增压器的核心部件,由轮叶、轴和壳体三部分组成。
轮叶通过涡轮间隙与壳体相隔,而轮叶的切口则与涡轮增压器中的废气涡轮组件的叶片相交叠,从而利用排气气流带动涡轮转子的旋转。
废气涡轮组件则是协同工作的一部分,其利用吸气过程中的废气引导叶片旋转,从而带动涡轮组件的旋转工作。
涡轮增压器与汽车引擎的其他部件之间,则有一个压缩空气输入与燃油混合输出的进口和出口处相连。
经涡轮压缩后的新鲜空气将进入压缩空气之后的连通管道中,之后再进入汽车发动机的进气歧管,在这里与喷油器所喷射出的燃油混合并进入汽车发动机的燃烧室进行燃烧。
二、涡轮增压发动机增加功率的原理由于涡轮增压器向发动机提供的新鲜空气比常规进气系统中的空气更加稠密,因此涡轮增压发动机可以在相同的燃料供应条件下,产生更多的动力输出。
因为闵贺尔定理表明动力等于扭矩乘以发动机转速,因此涡轮增压系统可以增加扭矩产生,而这也意味着更多的动力输出。
汽车发动机工作原理详解
汽车发动机工作原理详解
汽车发动机是汽车的心脏,其工作原理非常复杂。
发动机的作用是将汽油或柴油等燃料转化为能量,驱动车辆行驶。
下面来具体了解汽车发动机的工作原理。
首先,发动机的关键部件是气缸、活塞、曲轴和燃烧室。
发动机的每个气缸都装有一个活塞,它在几个阶段内向上和向下运动。
曲轴作为发动机的主轴,接受气缸活塞的运动并将其转化为发动机的转速。
其次,了解汽车发动机的工作原理需要了解四个基本循环过程:进气、压缩、点火和排气。
这四个过程循环进行,驱动车辆运行。
其中,进气是指空气和燃料混合物进入气缸。
进气阀门打开,使气缸内的压力与大气压力相等,这样空气和混合物就可以通过进气门流入气缸。
然后,活塞向上运动,将进气混合物压缩。
接下来,是点火,点火塞会发出火花引燃混合物,形成爆炸,产生能量,推动活塞向下运动。
最后,活塞在排气阀门打开的情况下向上运动,将废气排出气缸。
另外,现代汽车发动机通常是内燃式发动机,利用燃料的化学能转化为热能和动能。
燃料和空气在地面的大气压力下相遇并混合,同时通过喷油器喷入气缸。
在气缸中,燃料混合物被压缩,并利用火花塞格外的火花点燃,产生爆炸并向下推动活塞。
因此,我们就可以看到汽车发动机是基于热力学原理进行工作的,同时还需要润滑、冷却等技术的保障,确保发动机的安全和稳定。
总之,了解汽车发动机的工作原理是关键,它们的复杂过程非常重要,可以直接影响汽车的性能。
可以把汽车发动机比喻为人体的心脏,细心呵护好它,才能让车辆在行驶中稳定轻松运行。
航空发动机强度复习题(参考答案)
航空发动机构造及强度复习题(参考答案)一、基本概念1.转子叶片的弯矩补偿适当地设计叶片各截面重心的连线,即改变离心力弯矩,使其与气体力弯矩方向相反,互相抵消,使合成弯矩适当减小,甚至为零,称为弯矩补偿。
2.罩量通常将叶片各截面的重心相对于 z 轴作适当的偏移,以达到弯矩补偿的目的,这个偏移量称为罩量。
3.轮盘的局部安全系数与总安全系数局部安全系数是在轮盘工作温度与工作时数下材料的持久强度极限T t,与计算轮盘应力中最大周向应力或径向应力之比值。
K T t / max 1.5 ~ 2.0 总安全系数是由轮盘在工作条件下达到破裂或变形达到不允许的程度时的转速n c ,与工作的最大转速 n m ax之比值。
K d n c/n max4.轮盘的破裂转速随着转速的提高,轮盘负荷不断增加,在高应力区首先产生塑性变形并逐渐扩大,使应力趋于均匀,直至整个轮盘都产生塑性变形,并导致轮盘破裂,此时对应的转速称为破裂转速。
5.转子叶片的静频与动频静止着的叶片的自振频率称为静频;旋转着的叶片的自振频率称为动频;由于离心力的作用,叶片弯曲刚度增加,自振频率较静频高。
6.尾流激振气流通过发动机内流道时,在内部障碍物后(如燃烧室后)造成气流周向不均匀,从而对后面转子叶片形成激振。
7.转子的自位作用转子在超临界状态下工作时,其挠度与偏心距是反向的,即轮盘质心位于轴挠曲线的内侧,不平衡离心力相应减小,使轴挠度急剧减小,并逐渐趋于偏心距 e ,称为“自位”作用。
8.静不平衡与静不平衡度由不平衡力引起的不平衡称为静不平衡;静不平衡度是指静不平衡的程度,用质量与偏心矩的乘积 me 表示,常用单位为g cm。
9.动不平衡与动不平衡度由不平衡力矩引起的不平衡称为动不平衡;动不平衡度是指动不平衡的程度,用 me 表示,常用单位是g cm 。
10.动平衡动平衡就是把转子放在动平衡机床上进行旋转,通过在指定位置上添加配重,以消除不平衡力矩。
发动机的原理是什么
发动机的原理是什么
发动机的原理是将燃烧产生的能量转化为机械能的过程。
具体来说,发动机利用燃料和氧气的化学反应产生高温高压的燃烧气体,然后利用这些气体的膨胀作用来驱动活塞或涡轮,最终将热能转化为机械能。
在内燃机中,燃料通过喷射系统进入气缸,与空气混合后被点火着火,产生爆炸燃烧。
这个爆炸推动活塞运动,将热能转化为机械能。
在四冲程发动机中,活塞的上下运动完成四个阶段:进气、压缩、爆发和排出废气。
在外燃机中,燃烧过程发生在内燃机以外的燃烧室内。
燃料和氧气混合燃烧后产生高温高压的气体,通过喷射口喷出,并冲击涡轮叶片。
涡轮转动后将机械能传递给推进装置。
无论是内燃机还是外燃机,发动机的工作都需要燃料、氧气、点火系统和排气系统等基本组成部分。
通过连续反复进行燃烧、膨胀和排气等过程,发动机就能够持续地产生机械能,推动车辆或机械设备的工作。
不同类型的发动机(如汽油发动机、柴油发动机、火箭发动机等)在燃烧方式、工作原理和效率等方面存在差异,但基本的能量转换原理是相似的。
汽车发动机的工作原理图解
活塞
排气门关闭
作功终了:温度 1500~1700 K, 压 力300~500 kPa
4·排气行程
作用:
进气门关闭
排出膨胀做功后的废气
过程:
排气门开启,进气门仍然
关闭,活塞从下止点向上 止点运动,曲轴转动 180°。排气门开启时, 燃烧后的废气一方面在汽 缸内外压差作用下向缸外 排出,另一方面通过活塞 的排挤作用向缸外排气
3·作功行程
作用:
进气门关闭
燃烧高温高压气体膨胀做功
过程:
当活塞接近上止点时,由
火花塞点燃可燃混合气, 混合气燃烧释放出大量的 热能,使汽缸内气体的压 力和温度迅速提高高温高 压的燃气推动活塞从上止 点向下止点运动,并通过 曲柄连杆机构对外输出机 械能。
瞬时最高:温度 2200~2800 K, 压 力3~5MPa
排气门
吸气行程
压缩行程 作功行程
排气行程
瞬时:温度 1800~2200K压力
喷油泵
5~10 MPa
二·二冲程汽油机的工作原理
火花塞 换气孔
压缩混合 气
排气孔
点火燃烧
曲轴箱
进气孔
进气
排气
压缩
进气
燃烧
排气
过程: 活塞向上运动,将三排孔都关闭,活塞上部开始压缩,当活塞
继续上时,活塞下方打开了进气孔,可燃混合气进入曲轴箱,活塞接 近上止点时,火花塞点燃混合气,气体燃烧膨胀,推动活塞向下运动 ,进气孔关闭,曲轴箱内的混合气受到压缩,当活塞接近下止点时, 排气孔打开,排出废气,活塞再向下运动,换气孔打开,受到压缩的 混合气便从曲轴箱经进气孔流入气缸内,并扫除废气。
排气门打开
活塞
残余废气
航空发动机强度与振动--各章作业
三、计算题
1、某等截面、无扭向、根部固装的转子叶片长 l = 16cm , E = 5.0 ×105 cm / s , J = 0.8cm4 , A = 5cm2 , ρ
( 1 ) 请 求 出 前 三 阶 弯 曲 振 动 的 固 有 频 率 ( 固 有 频 率 的 单 位 为 Hz )。 计 算 公 式 已 经 给 出 :
4、旋转着叶片的自振频率称为
;静止叶片的自振频率称为
。
5、叶片的振动阻尼有
,
,
三类。
6、列举出一些常用的提高叶片抗振阻尼的结构措施。
7、从气动和结构两个方面分析下带冠叶片的优缺点。
8、燕尾形、枞树形、销钉式三种榫头榫槽的连接方式中,哪种叶片和轮盘的连接方式抗振阻尼最好?
9、如图,试解释双榫根构造的叶片,抗振阻尼较好的原因?
8、判断弹性元件的串联或者并联。
6
第一章 转子叶片强度计算
9、在图(a)中,两弹簧是并联还是串联?在图(b)中,若将弹簧的长度变为原来的一半,则此一半长度的弹簧 的刚度系数是多少?
10、系统受外界激励作用而产生的振动称为( )振动。激励根据其来源可分为两类:一类是( ),
另一类是(
)。
7
第一章 转子叶片强度计算
5、不管是实心盘还是空心盘,热应力σθ 在轮盘外缘处呈压应力状态。
汽车发动机的工作原理及总体构造
汽车发动机的工作原理及总体构造
一、汽车发动机的工作原理
1.吸气:发动机的活塞下行时,活塞腔内的气门打开,通过气门进入
汽缸的混合气。
2.压缩:活塞上行时,活塞腔内的气门关闭,活塞将混合气压缩成高
压气体。
3.爆燃:在活塞接近顶死点时,火花塞产生火花,将混合气点燃爆炸,释放出能量。
4.排气:活塞下行时,废气通过排气门排出汽缸,为新的混合气提供
空间。
通过这四个基本过程循环运作,汽车发动机可以持续地产生动力,驱
动汽车运行。
二、汽车发动机的总体构造
1.气缸体系:汽缸是发动机燃烧的主要部分,通常由铁合金或铝合金
制成。
汽缸体内设置有活塞和气门,通过这些部件的运动来实现吸气、压缩、爆燃和排气的过程。
2.曲轴与连杆机构:曲轴是将活塞运动转化为有用功的装置,具有一
定的几何结构,可以将来自活塞的线性运动转化为旋转运动。
连杆连接活
塞与曲轴,将活塞的线性运动转化为曲轴的旋转运动。
3.气门机构:气门控制气缸内的进气和排气。
气门通过气门杆与凸轮
轴相连接,由凸轮轴的转动带动气门的开闭。
4.燃油供给系统:燃油供给系统包括燃油箱、燃油泵、喷油器等。
燃油从燃油箱经过燃油泵被送入汽缸,与空气混合后形成可燃气体。
此外,还有点火系统、冷却系统、润滑系统等辅助系统,保证发动机正常运行。
总之,汽车发动机通过吸气、压缩、爆燃和排气这四个基本过程,不断地将化学能转化为机械能,从而驱动汽车运行。
其总体构造包括气缸体系、曲轴与连杆机构、气门机构和燃油供给系统等。
这些构造相互配合,共同完成发动机的工作。
某航空发动机涡轮盘和叶片的强度分析与寿命计算
西北工业人学硕士学位论文第三章(2)采用大枞树形榫头榫槽;(3)涡轮盘的前后端面还有轴向凸边,凸边外缘车有封严蓖齿,在涡轮盘的前面有加装平衡块的径向凸缘,凸缘上钻有小孔。
3.3.2涡轮盘的有限元计算模型1.实体模型的建立为了减少计算时间,提高效率,切去封严蓖齿及凸缘上的小孔。
涡轮盘在结构上呈现旋转周期性(捌,即绕其转轴转动口=2n,/N(N为叶片数)角度后,结构的几何形状和转动前完全一样。
取5.29。
的扇形对称体进行三维有限元计算,这样在该扇区沿周向拷贝68份之后,恰好为整个涡轮盘。
涡轮盘的计算模型在UG中建立,整体轮盘模型如图3.1所示;取其1/68扇形区域如图3.2所示。
计算坐标系采用柱坐标系,其中x轴表示涡轮盘的径向,Y轴表示周向,z轴表示轴向,坐标原点位于轮盘形心。
图3.1整体涡轮盘模型图3.21/68扇形区模型2.有限元网格的划分由于涡轮盘的形状不规则,因而使得对模型进行的有限元划分变得十分困难。
在圆角过渡等区域经常出现包含奇异角的单元,在计算过程中会在造成刚度矩阵奇异.使计算失败,这就需要手工划分来避免奇异单元的产生。
而且,在划分时,容易产生应力集中的区域采用较密的网格,同时为了减少单元的数量,需要进行疏密过渡。
在模型划分好后,仔细检查模型是否有缺陷存在,若塑!!三些查兰堡主兰堡堕塞堑三童模型中包含了不为人知的单元空洞、重合节点等缺陷,会造成计算结果不准确,严重的还会使计算根本偏离了预期方向,甚至使计算进行不下去。
对于涡轮盘的有限元网格均采用六面体八节点单元。
考虑到轮盘比较复杂,为了能够划分六面体单元,对涡轮盘的实体几何模型进行了分割,其中涡轮盘轮缘以E榫槽部分分割为18个体,划分为546个单元,1143个节点,如图3.3所示;轮缘以下部分分割为20个体,划分了1070个单元,1603个节点,如图3.4所示。
(a)儿何模型(b)有限元模型幽3.3涡轮盘榫槽部分有限元模型(a)儿何模型(b)有限元模型图3.4涡轮柱扇区有限元模型3.4涡轮盘的材料参数该型发动机涡轮盘采用GH4169合金材料,它是以体心四方的广和面心立方的/相沉淀强化的镍基高温合金,在一253~700。
柴油机结构原理
柴油机结构一、发动机的工作原理发动机的功能是将燃料在气缸内燃烧使其热能转换成机械能,从而输出动力。
能量的转换是通过不断地依次反复进行“进气—压缩—做功——排气”四个连续过程来实现的,每进行这样一个连续过程就叫做一个工作循环。
1、进气冲程—活塞由曲轴带动从上止点向下止点运动,此时排气门关闭,进气门开启。
活塞移动的过程中,气缸内的容积逐渐增大,形成一定的真空度,于是经过虑芯的空气通过进气门进入气缸。
直至活塞到达下止点时,进气门关闭,停止进气。
2、压缩冲程—进气冲程结束时,活塞在曲轴的带动下,从下止点向上止点运动,气缸容积逐渐减小,由于进排气门均关闭,气体被压缩,气缸内温度上升,直至活塞到达上止点时,压缩结束。
3、做功冲程—在压缩冲程末,高压油嘴喷出高压燃油与空气混合,在高温、高压下混合气体迅速燃烧,使气体的温度、压力迅速升高而膨胀,从而推动活塞由上止点向下止点运动,再通过连杆驱动曲轴转动做功,至活塞到下止点时,做功结束。
4、排气冲程—在做功冲程结束时,排气门被打开,曲轴通过连杆推动活塞由下止点向上止点运动,废气在自身剩余压力和活塞的推力作用下,被排出气缸,直至活塞到达上止点时,排气门关闭,排气结束。
排气冲程终了时由于燃烧室容积存在,气缸内还存少量废气,气体压力也因排气门和排气管的阻力而仍高于大气压。
二、发动机的总体构造柴油机由两大机构四大系统组成。
1、柄连杆机构—曲柄连杆机构主要由构成气缸的机体、活塞、连杆、曲轴和飞轮等组成。
由发动机的工作循环可知,混合气在气缸内燃烧产生的高压是通过活塞、连杆、曲轴而变为有用的机械能输出的;反之,工作循环的准备过程也是由曲轴通过连杆通过活塞作往复运动来实现的。
可见,曲柄连杆机构是发动机维持工作循环,实现能量转换的核心。
2、配气机构—为使发动机的工作循环能够连续进行,必须定时地开闭气门,以便向气缸内充入新鲜气体和排出废气。
它主要由气门和控制气门开闭的凸轮轴及其他传动件等组成。
三缸发动机曲轴轮的工作原理(60-2齿)
三缸发动机曲轴轮的工作原理(60-2齿)三缸发动机曲轴轮是发动机中的一个重要组成部分,它起着连接和驱动活塞运动的作用。
在三缸发动机中,曲轴轮上通常有60-2的齿数,这是指曲轴轮上有60个齿和2个缺口。
本文将详细介绍三缸发动机曲轴轮的工作原理。
首先,我们需要了解曲轴轮的基本结构。
三缸发动机曲轴轮是由一块均匀分布齿和缺口的金属板制成的。
曲轴轮安装在发动机的曲轴上,并与连杆相连,通过连杆传递活塞的运动。
曲轴轮的齿与缺口与感应器相对应,感应器会通过检测曲轴轮上的齿和缺口来确定某个活塞位置的准确时间。
在三缸发动机中,曲轴轮上的齿和缺口通常是以特定的间隔分布的。
60-2的齿和缺口模式意味着曲轴轮上有60个齿和2个缺口。
这样的设计可以提供更精确的活塞位置计算。
三缸发动机曲轴轮的工作原理如下:1.感应器检测:曲轴轮上的齿和缺口会被感应器检测到。
感应器通常是一种磁性装置,它能够感应到曲轴上的磁场变化。
当曲轴上的齿或缺口经过感应器时,感应器会发出一个电信号。
2.信号解读:感应器发出的信号被传送到发动机控制单元(ECU)中。
ECU是发动机的中央控制器,它负责监测和控制发动机的各种参数。
ECU会解读感应器信号,并确定当前活塞的位置。
3.点火时序:根据活塞位置的确定,ECU会控制点火系统的点火时序。
点火时序指的是点火系统在发动机运行中点火的时间和顺序。
正确的点火时序可以确保燃烧室内的燃料正确燃烧,并提供足够的动力。
4.燃料喷射控制:在确定好点火时序后,ECU还会控制燃料喷射系统的工作。
燃料喷射系统负责将燃料喷射到燃烧室中。
ECU会根据活塞位置和发动机负荷来控制燃料喷射的时机和量。
通过以上几个步骤,三缸发动机曲轴轮的工作原理得以实现。
曲轴轮上的齿和缺口通过感应器的检测,使ECU能够准确地确定活塞位置,并控制点火时序和燃料喷射时机,从而确保发动机的稳定运行。
总结起来,三缸发动机曲轴轮通过感应器检测齿和缺口,ECU根据检测信号确定活塞位置,并控制点火时序和燃料喷射时机,从而保证发动机的正常工作。
发动机的构成和各部分的工作原理
发动机的构成和各部分的工作原理1. 概述发动机是指将化学能转化为机械能的装置,是汽车的重要组成部分。
发动机可以根据工作原理分为内燃机和外燃机,根据燃料种类又可以分为汽油机和柴油机。
2. 发动机结构发动机主要由缸体、缸盖、曲轴、连杆、气门、油泵、燃油喷嘴等组成。
2.1 缸体和缸盖发动机的缸体和缸盖是发动机的关键部分。
发动机的缸体包裹着活塞和气缸,形成气缸体,当汽油燃烧时,活塞在气缸中上下移动,产生了机械能。
缸盖上有气门和火花塞孔,气门用于控制气缸内的进出气,火花塞则用于产生火花点火。
2.2 曲轴和连杆曲轴是发动机的“心脏”,是一个主轴,承载着连杆和活塞进行往复运动,并通过曲轴轴承与主轴轴承固定在发动机的缸体上。
连杆由两颗轴承和一根连杆连接而成,是连接曲轴和活塞的零件之一。
曲轴和连杆工作起来,实际上就是将活塞的往复运动变成了曲轴的旋转运动。
2.3 气门发动机的气门是控制气缸内进出气的开关,分为进气门和排气门。
气门的开启和关闭实际上就是通过凸轮轴“指使”的。
发动机的排气系统会把废气排出汽车,保证发动机正常工作;而进气系统则会将空气和油混合,然后进入气缸进行燃烧。
2.4 油泵和燃油喷嘴油泵是用来将油从油箱中吸出并送到发动机油路的一个装置,将汽油和空气混合后送入气缸。
燃油喷嘴则是控制油量和油的雾化细度的,将燃油雾化后,与空气混合,进入气缸被点燃。
3. 发动机工作原理在汽车行驶时,发动机的循环过程大约可以分为4个过程:吸气、压缩、爆炸、排放。
3.1 吸气发动机工作开始后,活塞会向下移动形成的吸气冲程,气门打开,活塞从气缸内吸入新鲜空气和油的混合物。
3.2 压缩活塞完成吸气冲程后,向上移动形成压缩冲程,同时气门关闭,将油气混合物压缩至极限;随着气压的上升,温度会随之上升,直至油气混合物点火自爆。
3.3 爆炸此刻,点火塞点火喷出高温、高压的火花,将油气混合物点燃,燃烧产生的高温和高压试图将曲轴向前推入,机械能即将产生。
发动机的结构原理之4曲轴飞轮组结构与工作原理
(6)曲轴的轴向限位 通常是通过在曲轴的前部、中部或后部安装止推轴
承来实现的(翻边轴瓦)。
连杆轴颈
止推垫片
主轴颈 主轴承盖
止推垫片
安装注意:
止推片有减磨层的一面朝向转动件。当 曲轴向前窜动时,后止推片承受轴向推力; 向后窜动时,前止推片承受轴向推力。
曲轴的轴向间隙的调整:
更换止推片的厚度。
3)结构:
连杆轴颈
前端轴
曲轴轴颈
平衡重
后端轴
曲柄
曲拐
曲拐:由一个连杆轴颈和它两端曲柄及主轴颈构成。
4)材料:中碳钢(汽)、合金铸铁(柴)、球墨铸铁。
5)分类:整体式(常用) 组合式(常用于连杆大头为整体式的小型汽油机和 以滚动轴承作为曲轴主轴承的发动机上)
6)组成: (1)主轴颈 ——用于支撑曲轴。 全支承:曲两轴边的都主有轴 一颈个数主比轴气颈缸者数)目。多强一度个、(刚每度个好连,杆减轴小颈了 磨损;柴油机和大部分汽油机均采用。
片式
飞轮: 掌握飞轮的作用
压
功
进
排
2
四缸四行程发动机的曲拐布置
②直列四冲程六缸发动机发火顺序和曲拐布置
发火顺序:1-5-3-6-2-4
曲轴转角 (度)
0
60
~ 120
180 180
180 240 ~ 300
360 360
360 420 ~ 480
540 540
540 600 ~ 660
720 720
一缸 功 排 进 压
二缸 排 进 压
一、曲轴飞轮组的组成与结构及材料
飞轮
一)曲轴飞轮组的组成 正时齿轮
皮带轮 扭转减振器 起动爪
曲轴
发动机的组成及工作原理
发动机的组成及工作原理发动机是汽车、飞机等交通工具的核心部件,它负责产生动力,驱动车辆或飞行器运行。
发动机的组成和工作原理是了解发动机运行机制的基础,下面将详细介绍。
一、发动机的组成1. 缸体:发动机的主要部件之一,用于容纳活塞和气缸套。
通常由铸铁或铝合金制成。
2. 活塞和连杆:活塞是发动机内部上下运动的部件,通过连杆与曲轴相连,将活塞的线性运动转化为曲轴的旋转运动。
3. 曲轴:发动机的核心部件之一,将活塞的线性运动转化为旋转运动,通过曲轴带动传动系统工作。
4. 气缸套:位于缸体内,提供活塞运动的密封空间,同时起到散热的作用。
5. 气门:位于气缸盖上,用于控制气缸内气体的进出,通常包括进气门和排气门。
6. 气缸盖:覆盖在缸体上方,保护气缸内部,并提供气门的支撑。
7. 燃油系统:包括燃油箱、燃油泵、喷油器等,用于将燃油送入发动机进行燃烧。
8. 空气进气系统:包括进气管、空气滤清器等,用于将空气引入发动机进行燃烧。
9. 点火系统:包括点火线圈、火花塞等,用于点燃混合气体进行燃烧。
10. 冷却系统:包括水泵、散热器等,用于散热,保持发动机温度在适宜范围内。
11. 润滑系统:包括油泵、机油滤清器等,用于给发动机各部件提供润滑和冷却。
二、发动机的工作原理发动机的工作原理可以简单归纳为四个步骤:进气、压缩、燃烧和排气。
1. 进气:活塞下行时,气缸内形成负压,进气门打开,空气通过进气管进入气缸,同时燃油喷入气缸形成可燃混合气体。
2. 压缩:活塞上行时,气缸内的混合气体被压缩,体积减小,同时压力和温度增加。
3. 燃烧:在活塞上行的末段,点火系统触发火花塞产生火花,点燃混合气体,燃烧产生高温高压气体,推动活塞向下运动。
4. 排气:活塞下行时,排气门打开,废气通过排气管排出气缸,同时新的混合气体进入气缸,循环再次进行。
以上过程不断循环进行,通过曲轴的旋转运动将活塞的上下运动转化为连续的旋转运动,驱动车辆或飞行器运行。
发动机的组成及工作原理
发动机的组成及工作原理发动机是现代汽车的核心部件,它负责将燃料转化为机械能,驱动车辆运行。
本文将详细介绍发动机的组成和工作原理。
一、发动机的组成1. 缸体和缸盖:发动机的主体部份,用于容纳活塞温和缸套。
缸体和缸盖通常由铸铁或者铝合金制成,具有良好的强度和散热性能。
2. 活塞和连杆:活塞是发动机内部上下运动的部件,由铝合金制成。
连杆连接活塞和曲轴,将活塞的上下运动转化为曲轴的旋转运动。
3. 曲轴和凸轮轴:曲轴是发动机的主轴,将连杆的运动转化为旋转运动,并输出动力。
凸轮轴控制气门的开关时机,以实现进气、压缩、燃烧和排气的顺序。
4. 气缸套温和门:气缸套是安装在缸体内的套管,用于减少活塞与缸体的磨擦,并提供密封性能。
气门控制气缸内气体的进出,包括进气门和排气门。
5. 燃烧室和喷油系统:燃烧室是燃料燃烧的空间,通常位于活塞顶部。
喷油系统负责将燃料喷入燃烧室,以实现燃烧过程。
6. 点火系统:点火系统产生高压电流,通过火花塞点燃混合气体,引起燃烧过程。
点火系统由点火线圈、分电器和火花塞组成。
7. 冷却系统:冷却系统通过循环冷却液来吸收发动机产生的热量,并将其散发到外部环境中。
冷却系统包括水泵、散热器和风扇等部件。
8. 润滑系统:润滑系统负责给发动机的各个运动部件提供润滑油,减少磨擦和磨损。
润滑系统包括油泵、油滤器和油底壳等部件。
二、发动机的工作原理发动机的工作原理可以分为四个过程:进气、压缩、燃烧和排气。
1. 进气过程:活塞下行时,气缸内形成负压,进气门打开,新鲜空气通过进气道进入气缸。
同时,喷油系统将燃料喷入进气道,与空气混合形成可燃气体。
2. 压缩过程:活塞上行时,气缸内的可燃气体被压缩,体积减小,压力增加。
同时,凸轮轴控制的气门关闭,确保可燃气体被封闭在燃烧室内。
3. 燃烧过程:当活塞接近顶点时,点火系统产生高压电流,通过火花塞点燃可燃气体,引起燃烧过程。
燃烧产生的高温高压气体推动活塞向下运动,驱动曲轴旋转。
汽车发动机的工作原理(图解)
汽车发动机的工作原理(图解)一、发动机的构造1.汽缸:发动机通常由多个汽缸组成,每个汽缸都是一个密闭的容器,用于进行燃烧过程。
汽缸的内径和活塞的行程决定了发动机的排量大小。
2.活塞:活塞是位于汽缸内来回运动的零件,它的作用是在汽缸内产生压力。
活塞下面通过连杆与曲轴相连,将压力转化为机械能。
3.曲轴:曲轴连接活塞和汽车的传动系统。
当活塞在汽缸内产生压力时,经过连杆和曲轴的转化,可以产生往复运动,并利用汽缸压力驱动曲轴旋转。
4.凸轮轴:凸轮轴是发动机的控制系统,它通过凸轮的形状和数量来控制进气门和排气门的开闭。
凸轮轴的转动由曲轴传动。
5.进气系统:进气系统是负责将空气引入汽缸的部分,主要包括进气管道、节气门、空气滤清器等。
进气系统能够根据发动机工况的不同来调整进气量。
6.燃油系统:燃油系统是负责将燃料输送到发动机的部分,主要包括燃油箱、燃油泵、燃油喷嘴等。
燃油系统能够根据发动机负荷的不同来调整燃料的供给。
7.点火系统:点火系统是发动机燃烧的起点,主要包括点火线圈、火花塞等。
点火系统通过产生一个电火花来点燃燃料混合气体,引发燃烧过程。
二、发动机的工作原理1.进气冲程:活塞在下行过程中,进气门打开,活塞下行形成负压,进气门打开后,气缸内的新鲜空气通过进气门进入气缸。
2.压缩冲程:活塞在上行过程中,进气门关闭,活塞向上行驶,将气缸内的空气压缩,使气体温度和压力增加。
3.燃烧冲程:当活塞到达上行行程的最高点时,喷油嘴会向气缸内喷入燃料。
燃料和压缩空气混合后被点火系统的火花点燃,引发燃烧过程。
燃烧释放的能量推动活塞向下行驶。
4.排气冲程:当活塞到达下行行程的最低点时,排气门打开,活塞向上行驶,将燃烧产生的废气排出汽缸。
发动机通过不断循环进行进气、压缩、燃烧和排气等工作冲程,形成连续的能量转化过程,从而驱动汽车运动。
汽车发动机是复杂而精密的机械装置,涉及到机械、电子、燃料等多个领域的知识。
通过对发动机构造和工作原理的了解,我们可以更好地理解汽车发动机的工作过程,为汽车的维修和使用提供基础。
旋转发动机的工作原理
旋转发动机的工作原理
旋转发动机的原理和普通发动机一样,但是它利用了气体在旋转时所产生的离心力。
这种离心力是由于气体分子在惯性力的作用下作无规则运动所产生的,就像是我们在地球上看到的行星绕着太阳作公转运动一样。
由于气体分子的这种无规则运动,使得气体分子之间、气体分子与容器之间产生了相对运动,使气体在容器内产生了一个压强差。
这个压强差就是旋转发动机的动力源。
旋转发动机一般都有两个进气道,一个进气道为进气道,它将空气吸入到发动机内,使空气中所含的氮气变成氮气和氧气,然后再将这些空气排到排气道中去;另一个进气道为排气道,它将废气排到大气中。
进气道和排气道都是由一个管道组成的。
进气管道与排气管道相连,它们之间由一段很长的管道相连接。
当发动机开始工作时,发动机内的燃烧室将空气压缩,并使空气和氧气充分混合燃烧;当发动机停止工作时,燃烧室内的燃烧产物便会通过管道排出发动机外。
—— 1 —1 —。
发动机的组成及工作原理
发动机的组成及工作原理发动机是现代汽车的核心部件,负责将燃料能转化为机械能,驱动车辆前进。
本文将介绍发动机的组成和工作原理,帮助读者更好地了解发动机的运行机制。
一、发动机的组成1. 活塞和活塞环活塞是发动机的关键部件之一,它通过往复运动带动曲轴旋转,将燃烧室内的压力能转化为机械能。
活塞环则负责密封燃烧室,防止燃气泄漏。
2. 汽缸和气缸盖汽缸是活塞运动的工作空间,它由耐磨材料制成,在内部安装了气缸套。
气缸盖则覆盖在汽缸上方,起到密封和支撑气门机构的作用。
3. 曲轴和连杆曲轴是发动机的主轴,通过活塞的往复运动将线性运动转化为旋转运动。
连杆连接活塞和曲轴,将活塞运动带到曲轴上,实现功率传递。
4. 气门和进气系统气门是控制气体进出燃烧室的开关,通过气门机构的运动实现开闭。
进气系统由进气管道、空气滤清器和节气门组成,负责提供新鲜空气供燃烧使用。
5. 燃油系统燃油系统由燃油箱、燃油泵、喷油器等组件组成,负责将燃料送入燃烧室,保证发动机正常燃烧。
6. 点火系统点火系统用于在燃烧室内点燃混合气,它由火花塞、点火线圈和点火控制模块组成。
火花塞负责产生火花,将混合气点燃。
二、发动机的工作原理1. 循环过程发动机的工作原理是通过四个循环过程完成的:进气、压缩、燃烧和排气。
在进气过程中,活塞向下运动,汽缸内形成负压,进气门打开,吸入新鲜空气和燃料。
接着,活塞上升将混合气压缩,提高燃烧效率。
然后,点火系统产生火花,引燃混合气,产生高温高压气体,推动活塞向下运动。
最后,排气门打开,废气排出,完成一个循环过程。
2. 燃烧过程燃烧过程是发动机产生动力的关键环节。
在燃烧室内,燃料与空气混合形成可燃混合气,点火系统产生火花点燃混合气。
火焰蔓延并使混合气体燃烧,释放出大量的热能。
燃烧过程的效率和质量直接影响发动机的性能和经济性。
3. 工作循环发动机的工作循环有两种常见类型:四冲程循环和两冲程循环。
四冲程循环包括进气冲程、压缩冲程、燃烧冲程和排气冲程,每个冲程都由活塞的往复运动完成。
v12发动机工作原理
v12发动机工作原理今天咱们来唠唠那超酷的V12发动机的工作原理,这可就像是一场超级精彩的机械大秀呢!你看啊,V12发动机它是个啥样子呢?就像它的名字说的,有12个气缸。
这些气缸可不是随便摆着玩的,它们呈V字形排列。
想象一下,就像是一群小伙伴排着很有秩序的队形,两个一排,一共六排呢。
这种排列方式可有不少好处。
它让发动机的结构变得比较紧凑,就像把很多东西都整整齐齐地收纳在一个小盒子里,不会占用太多的空间。
而且这样的排列还能让发动机运转起来更平稳,就像一个走路稳稳当当的人,不会摇摇晃晃的。
那这12个气缸是怎么工作的呢?这可就有趣啦。
每个气缸就像是一个小小的工作室,里面有活塞在欢快地上下跳动。
活塞就像是个勤劳的小工人,在气缸里忙个不停。
当发动机开始工作的时候,空气和燃料就会被送进气缸这个小工作室里。
这就像是给小工人送来了原材料。
然后呢,活塞就会很努力地把这些空气和燃料压缩在一起,就像把松散的棉花用力地捏成一个小团一样。
这个压缩的过程可是很关键的哦,就像是给后面的大爆发做准备呢。
接下来啊,就到了激动人心的点火时刻啦!就像点燃一个小烟花一样,火花塞会在这个时候释放出电火花,一下子就把压缩好的空气和燃料混合气点燃了。
这一烧可不得了,就像是在小工作室里发生了一场小小的爆炸,这个爆炸产生的力量可大啦,会把活塞猛地往下推。
活塞被这么一推,就像被大力士推了一把的小玩偶,快速地向下运动。
这个活塞的运动可不能小看,它可是会带动发动机的曲轴转动的呢。
曲轴就像是一个大转盘,活塞一推,它就开始欢快地转起来啦。
每个气缸都按照这样的顺序工作,一个接着一个,就像接力赛一样。
这个接力赛可是非常有节奏的,12个气缸相互配合得那叫一个默契。
因为有这么多气缸在轮流工作,所以发动机的动力输出就特别连续和平顺。
就像是一条源源不断的河流,不会一会儿有水一会儿没水的。
你知道吗?V12发动机在高转速的时候就像是一个疯狂的舞者。
它转得特别快,那些活塞就像在跳超快的踢踏舞,上下跳动的频率超级高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位移法
一个二阶微分方程 应力用位移的微分表达 2 dt d 2 1 r0 适用于位移边界条件 (1 ) t (ln h)
2.1 概述
轮盘的故障模式:
2 轮缘径向裂纹
轮盘槽底的径向裂纹
6/15/2014 10:42:20 PM
由于材料内部缺陷导致轮盘中心裂纹
8
School of Energy and Power Engineering
2.1 概述
轮盘的故障模式:
3 材料内部缺陷(如松 孔、夹杂)引起盘中 心破裂
涡轮盘材料夹杂缺陷引起盘爆裂
2 d 2u d 1 du d 1 dt d 2 1 (ln h) (ln h) 2 u (1 ) t (ln h) r 0 2 dr r dr r dr r dr E dr dr
6/15/2014 10:42:20 PM
2
2.1 概述
PW4000
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
3
2.1 概述
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
4
2.1 概述
6/15/2014 10:42:20 PM
E du u t t 2 1 dr r 代入平衡方程(假设E, α , v为常数)
d 2u d 1 du d 1 (ln h) (ln h) 2 u 2 dr dr r dr r dr r dt d 2 1 (1 ) t (ln h) r0 dr E dr
r ,
?
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
16
轮盘应力基本公式
力学模型
平衡方程(1个)
几何方程(2个)
物理方程(材料本构关系,2个) 变形协调方程
6/15/2014 10:42:20 PM
力法求解应力
d r r r d r r d dr E r E E dr E r dr t d hr hdr 2 hr 2 dr 0 r
School of Energy and Power Engineering
26
轴对称平面问题力法求解
将物理方程代入几何方程, (u r )d rd u r rd r u r r t 1 E r t E 对于具有位移边界的轮盘问题,力法和位移法都 可以用。但对于剖面形状复杂的轮盘,求解位移 二阶微分方程是困难的。 若给定应力(或位移)沿半径的变化规律,进行 轮盘剖面造型设计,位移法的方程是不可解的。
若知道应力(分量)边界条件,即可求出 r
,
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
23
位移法求解应力
将几何方程代入物理方程,得 E du u r t t 2 1 dr r
E—盘材料弹性模量 μ—盘材料波松比 α—盘材料线膨胀系数
6/15/2014 10:42:20 PM School of Energy and Power Engineering 21
变形协调方程
利用几何方程消去位移变量,得
d r (r ) dr
r
dr dr (u r )d rd u rd r
6/15/2014 10:42:20 PM School of Energy and Power Engineering 11
2.1 概述
设计时,为防止轮盘破裂,应注意:
轮盘尺寸的变化; 防止低循环疲劳(Low Cycle Fatigue, LCF) 防止共振、叶片颤振引起的高循环疲劳(High Cycle Fatigue, HCF)
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
13
2.2 轮盘强度计算基本假设
满足连续、均匀、各向同性假设
连续性假设 假定整个物体的体积都被组成这个物体的介质所填满,不 留下任何空隙 均匀性假设 假定整个物体都是由同一材料组成的 各向同性假设 假定整个物体的材料参数不随方向而改变
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
12
2.1 概述
轮盘承受的主要载荷:
(1)叶片及盘自身的离心力; (2)温度(径向)不均引起的热应力;(冷却) (3)叶片传来的气体力(轴向、周向), 盘前、后的气体压力; (4)机动飞行时的陀螺力矩; (5)叶/盘振动时的动负荷; (6)盘/轴、盘/盘等的装配应力 (1)、(2)为主要载荷,本章将着重讨论
本章主要内容
2.1 概述
故障、受力特点、设计时注意的问题
2.2 轮盘强度计算基本公式
基本假设、基本方程、两种解法
2.3 简单几何形状轮盘强度计算
实心/空心等温盘、实心/空心非均温盘
2.4 轮盘安全系数
径向/周向破裂转速、轮盘安全系数
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
School of Energy and Power Engineering
5
2.1 概述
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
6
2.1 概述
轮盘的故障模式:
1 轮缘处榫齿部分断裂
轮缘处榫齿 部分断裂
6/15/2014 10:42:20 PM School of Energy and Power Engineering 7
6/15/2014 10:42:20 PM School of Energy and Power Engineering 9
2.1 概述
轮盘的故障模式:
4 高温工作,引起蠕变(甚至 局部颈缩),外径增大,进 而导致破裂
超温下工作的轮 盘发生直径方向 的伸长和局部颈 缩现象
6/15/2014 10:42:20 PM
航空发动机强度与振动
Structural Stressing and Vibration in Aircraft Gas Turbine Engines
第二章 轮盘强度 Chapter 2 Stressing of Discs
能源与动力工程学院 School of Energy and Power Engineering
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
25
力法与位移法的选择
力边界条件用力法,也可以用位移法(应力边界可以用 位移微分显式表达) 位移边界条件用位移法,一般很难用力法,因为位移边 界不好用应力显式表达
6/15/2014 10:42:20 PM
2
6/15/2014 10:42:20 PM School of Energy and Power Engineering
需知厚度 变化规律
24ห้องสมุดไป่ตู้
力法与位移法的区别
力法
两个一阶微分方程 位移用应力分量表达 适用于应力边界条件
d r r r d r r d dr E r E E dr E r dr t d hr hdr 2 hr 2 dr 0 r
6/15/2014 10:42:20 PM
r
轮盘微元体
dR
z
z
ρ—轮盘材料质量密度 ω—轮盘的旋转角速度
18
School of Energy and Power Engineering
力学模型与平衡方程
略去二阶以上的微量
d hr r hdr hr dr 0
2 2
u du u du
将物理方程代入,得到用应力表示的变形协调微分方程
d r r r d r r d r t dr E r E E dr E dr
6/15/2014 10:42:20 PM School of Energy and Power Engineering 22
6/15/2014 10:42:20 PM
School of Energy and Power Engineering
15
主要力学量
应力
r 0, z 0 r , ? z 0, z 0, rz 0
位移 应变
u ? v 0, w 0
或 1 d 2 2 hr r r 0 h dr
6/15/2014 10:42:20 PM
School of Energy and Power Engineering