第十章定积分的应用§4旋转曲面的面积_数学分析
数学分析第十章 定积分的应用
x x(t) y y(t)
t [, ]
给出,在[, ]上y(t)连续, x(t)连续可微,
且x'(t) 0,记a x( ),b x( ),则
曲边梯形的面积
A y(t)x' (t) dt.
例2
求椭圆 x2 a2
y2 b2
1的面积.
解
椭圆的参数方程
x y
a cos t bsin t
对一个立体,如果知道该立体上垂直于一 定轴的各个截面面积,那么,这个立体的体积 也可用定积分来计算.
如图,设 A( x)
表示过点 x且 a o
垂直于 x轴的
x
bx
截面面积。
A( x)为 x的已知连续函数,
取积分变量为 x,变化范围[a,b]
相应于[a, b]上的任一小区间[ x, x dx],
立体位于该小区间部分而成的薄片的体积近似看成是 以 A(x) 为底面积、 dx 为高的扁圆柱体的体积,即
1.由连续曲线
y f ( x)( f ( x) 0)、x 轴与两条直线 x a、 x b所围成的平面图形
的面积。
y
y f (x)
oa
bx
2.如果y=f(x)在[a,b]上不都是非负时,如下图
华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)
第10章 定积分的应用10.1 复习笔记一、平面图形的面积由连续曲线()(0)y f x =≥,以及直线,()x a x b a b ==<和x 轴所围曲边梯形的面积为()b baaA f x dx ydx ==⎰⎰如果()f x 在[,]a b 上不都是非负的,则所围图形的面积为()b baaA f x dx y dx ==⎰⎰一般地,由上、下两条连续曲线2()y f x =与1()y f x =以及两条直线,()x a x b a b ==<所围的平面图形(图l0-1),它的面积计算公式为21[()()]baA f x f x dx =⎰-图10-1二、由平行截面面积求体积 1.立体体积的一般计算公式 设为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b ),称为位于[a,b]上的立体,若在任意一点x∈[a,b]处作垂直于x轴的平面,它截得的截面面积是关于x的函数,记为A(x),并称之为的截面面积函数(见图10-2),设A(x)是连续函数.图10-2 图10-3对[a,b]作分割过各个分点作垂直于x轴的平面x=xi,i=1,2,…,n,它们把分割成n个薄片,i=1,2,…,n任取那么每一薄片的体积(见图10-3)于是由定积分的定义和连续函数的可积性,当时,上式右边的极限存在,即为函数A (x)在[a,b]上的定积分,于是立体的体积定义为2.旋转体的体积a b上的连续函数,Ω是由平面图形设f是[,]≤≤≤≤0|||f(x)|,ay x b绕x轴旋转一周所得的旋转体,那么易知截面面积函数为2()[()],[,]A x f x x a b π=∈得到旋转体Ω的体积公式为2=[()]baV f x dxπ⎰三、平面曲线的弧长与曲率 1.平面曲线的弧长 (1)定义①如果存在有限极限ss T T =→0||||lim即任给0ε>,恒存在0δ>,使得对C 的任意分割T ,只要||||T δ<,就有|s |T s ε-<则称曲线C 是可求长的,并把极限s 定义为曲线C 的弧长.②设曲线AB 是一条没有自交点的闭的平面曲线.在AB 上任取点P ,将AB 分成两段非闭曲线,如果AP 和PB 都是可求长的,则称AB 是可求长的,并把AP 的弧长和PB 的弧长的和定义为AB 的弧长.③设曲线C 由参数方程(),(),[,]x x t y y t t αβ==∈给出.如果(t)x 与()y t 在[,]αβ上连续可微,且'()x t 与'()y t 不同时为零,即''()()0x t y t +≠,],[βα∈t ,则称C 为一条光滑曲线.(2)定理设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程(),(),[,]x x t y y t t αβ==∈ (10-1)给出.若()x t 与()y t 在[,]αβ上连续可微,则C 是可求长的,且弧长为'2'2[()][()]s x t y t dt βα=+⎰ (10-2)(3)性质设AB 是一条没有自交点的非闭的可求长的平面曲线.如果D 是AB 上一点,则和AD 和DB 也是可求长的,并且AB 的弧长等于AD 的弧长与DB 的弧长的和.2.曲率 (1)定义如图10-4,设()t α表示曲线在点((),())P x t y t 处切线的倾角,==()()t t t ααα∆+∆-表示动点由P 沿曲线移至))(),((t t y x t x Q ∆+∆+时切线倾角的增量,若PQ 之长为s ∆,则称||K sα-∆=∆为弧段PQ 的平均曲率.如果存在有限极限|||lim ||lim |00dsd s s K s t ααα=∆∆=∆∆=→∆→∆则称此极限K 为曲线C 在点P 处的曲率.图10-4(2)计算公式设曲线C 是一条光滑的平面曲线,由参数方程(10-1)给出,则曲率的计算公式为2322)(||''''''''y x y x y x K +-=若曲线由()y f x =表示,则相应的曲率公式为2''3'2||(1+y )y K =四、旋转曲面的面积1.设平面光滑曲线C 的方程为(),[,]y f x x a b =∈(不妨设()0f x ≥),这段曲线绕x 轴旋转一周得到旋转曲面的面积为2(baS f x π=⎰2.如果光滑曲线C 由参数方程(),(),[,]x x ty y t t αβ==∈给出,且()0y t ≥,那么由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为2(S y t βαπ=⎰五、定积分的近似计算 1.梯形法公式121()(...)22bn n ay y b a f x dx y y y n --=+++++⎰2.抛物线法公式(辛普森Simpsom 公式)021*******()[4(...y )2(...)]6bn n n ab af x dx y y y y y y y n---≈+++++++++⎰10.2 课后习题详解§1 平面图形的面积1.求由抛物线y =x 2与y =2-x 2所围图形的面积.解:该平面图形如图10-1所示.两条曲线的交点为(-1,1)和(1,1),所围图形的面积为图10-12.求由曲线与直线所围图形的面积.解:该平面图形如图10-2所示.所围图形的面积为。
§4旋转曲面的面积
(3)
首页
×
如果光滑曲线C由参数方程 x=x(t),y=y(t),t ∈[α,β] 且 y(t)≥0,那么由弧微分知识推知曲线C绕 x 轴旋转所得 旋转曲面的面积为
S 2 y(t ) x 2 (t ) y'2 (t )dt .
(4)
事实上,由(2)知,
S 2 f x 1 f
lim f ( x )dx a f ( x )dx.
b T 0
首页
×
一般地,我们归纳出所求量Φ的积分表达式的步骤. (1) 选取积分变量及变化区间; (2) 设想把区间[a,b]分成n个小区间,取其中任一小 区间并记作[x, x+△x],求出相应于此小区间的 部分量△Φ的近似值
dΦ=f(x)dx;
b a 2
x dx = 2 a f x
b
dy 2 1( ) dx dx
= 2 f x dx dy = 2 y( t )ds
b 2 2 a
= 2
2 '2 = 2 y( t ) x ( t ) y ( t )dt .
首页
dx 2 dy 2 y( t ) ( ) ( ) dt dt dt
S f (i )xi ( xi xi xi 1 ).
i 1
首页
n
×
(iii)取极限 注意到(1)式右边的和式既依赖于对区间[a, b] 的分割,又与所有中间点 i( i=1,2,…,n)的取法
有关.可以想象,当分点无限增多,且对[a, b]无限细
分时,如果此和式与某一常数无限接近,且与分点xi, 中间 i 点的选取无关,则就把此常数定义作为曲边梯 形的面积S.
数学分析2课件:10-4 旋转曲面的面积
(此时,以简代繁、以直代曲、以静代动)。
则
U b f ( x)dx。 a
三、旋转曲面的面积
y
设平面光滑曲线C的方程为:
y f (x)
y f ( x), x [a,b] (不妨设f ( x) 0).
o
x x x
x
这段曲线绕x轴旋转一周得到旋转曲面,求这 个曲面的面积。
过x和x x分别作垂直于x轴的平面,
[2 f ( x) y]
1
y x
2
x
2f
(
x
)
1
f 2( x)x
o(x).
dS 2f ( x) 1 f 2( x)dx 2f ( x)ds,
S 2
b
f (x)
1 f 2( x)dx.
a
——直角坐标下旋转曲面面积计算公式。
如果光滑曲线C的参数方程为:
x x(t), y y(t),t [a, ] y(t) 0,
则曲线C绕x轴旋转所得旋转曲面的面积为 :
S 2 a y(t)ds
dS 2yds
2
y(t )
x2(t ) y2(t )dt.
a
如果光滑曲线C的极坐标方程为:
r r( ), ,
则 S 2
y( )ds
a
2
r( )sin
r 2( ) r2( )d .
a
例1 求抛物线 y2 8x, 0 x 1 4
则 U b f ( x)dx。 a
平面图形的面积:
y
y f (x)
A | y | x,
dA | y | dx; A( x)
x x dx
o a x x dx b x
立体的体积: V A( x)x, dV A( x)dx;
旋转曲面的面积公式推导
旋转曲面的面积公式推导要推导旋转曲面的面积公式,我们首先需要了解旋转曲面的定义和特征。
旋转曲面是由一个平面曲线围绕其中一轴旋转一周形成的曲面。
在数学中,我们通常将轴称为旋转轴,将平面曲线称为母线。
一般来说,旋转曲面的面积可以通过将曲面切分成无数个微小的扇形面元来进行计算。
每个小扇形面元的面积可以近似地看作一个扇形的面积。
现在,让我们来具体推导旋转曲面的面积公式:假设我们的旋转曲面是由一个平面曲线y=f(x)(母线)绕x轴旋转一周得到的。
首先,我们将曲线分成n个小段,并将每个小段切分成微小的线段。
第i个小段的长度为Δl_i,小段的起点和终点分别为(x_i,y_i)和(x_i+1,y_i+1)。
现在,我们来推导一个微小线段的扇形面积。
根据旋转曲面的特征,我们可以得知旋转轴到任意点(x_i,y_i)的距离可以表示为r_i=y_i。
因此,我们可以将微小线段的长度Δl_i转化为弧长Δs_i=r_i*Δθ_i。
其中,Δθ_i可以通过微积分中的极限求解方法得到,即Δθ_i = lim(θ_i+1 - θ_i) 当Δx_i -> 0 时根据微积分的定义,我们知道tan(Δθ_i) = Δy_i / Δx_i。
当Δx_i -> 0 时,tan(Δθ_i) 可以近似地等于 dy_i / dx_i,即微分形式。
因此,Δθ_i等于 dy_i / dx_i。
由于我们是围绕x轴旋转的,因此弧长Δs_i可以表示为:Δs_i = r_i * Δθ_i = y_i * dy_i / dx_i然后,我们根据扇形面积的公式,将Δs_i和Δl_i相乘,得到扇形面积的微分形式。
dA_i = (Δs_i * Δl_i) = (y_i * dy_i / dx_i) * Δl_i我们可以将Δl_i表示为微小线段的长度Δx_i。
由于我们是将曲线分成了n个小段,将所有扇形面积的微分形式相加得到曲面的面积。
A = ∑(i=1 to n) dA_i= ∑(i=1 to n) (y_i * dy_i / dx_i) * Δx_i当我们令n趋向于无穷大时,即Δx_i趋向于0时,我们可以将上式改写为定积分的形式:A = ∫(x=a to b) y(x) * sqrt(1 + y'(x)^2) dx这就是旋转曲面的面积公式推导的结果。
第十章定积分的应用§4旋转曲面的面积_数学分析
一 微元法
用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通
过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这
样的:设所求量 是一个与某变量(设为 x)的变化区间 有关的量,且关于区间 具
有可加性. 我们就设想把 分成 n 个小区间,并把其中一个代表性的小区间记坐
近似表达式(其中 为
称为量
1)所求量 关于分布区间
2) U f (x)x o(x)
具有代数可加性.
对于前面所讲过的平面图形的面积、立体体积、曲线弧长相应的微元分别为:
S | y | x V S(x)x s 1 y2 x
二 旋转曲面的面积
§5 定积分在物理中的某些应用
(一) 教学目的:掌握定积分在物理中的应用的基本方法. (二) 教学内容:液体静压力;引力;功与平均功率.
。在
的一段近似的看成质点,其质量为 ,与 相距
,因此可以按照两质点间的引力计算公式求出这段细直棒对质点 的引力 的大小为
从而求出 在水平方向分力
Fx 的元素为
于是得到引力在水平方向的分力为
dFx
k
的近似值,即细直棒对质点
amdy (a2 y 2 )3/ 2
上式中的负号表示 指向 轴的负向,又由对称性知,引力在铅直方向分力为
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数学分析课本(华师大三版)-习题及答案第十章
第十章 定积分的应用一、填空题1. 求曲线8,2222=+=y x x y 所围成图形面积A (上半平面部分),则A = 2. 曲线x x e y e y -==,及1=x 所围面积A = 3. 曲线θθcos 1,cos 3+==r r 所围面积A = 4. 曲线)0(>=λλθae r 从0=θ到αθ=一段弧长S = 5. 曲线 ⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x 从0=t 到π=t 一段弧长S =6. 均匀摆线)0(cos 1sin π≤≤⎩⎨⎧-=-=t ty tt x ,弧长4=S ,则其重心坐标是7. 曲线0,0),0(==≤=y x x e y x 所围图形绕Ox 轴旋转所得旋转体的体积为 ;而绕Oy 轴旋转所得旋转体的体积为 8. 抛物线)(a x x y -=与直线x y =所围图形的面积为9. 在抛物线24x y =上有一点P ,已知该点的法线与抛物线所围成的弓形面积为最小,则P 点的坐标是10.设有一内壁形状为抛物面22y x z +=的容器,原来盛有)(83cm π的水,后来又入注)(643cm π的水,设此时水面比原来提高了hcm ,则h = 11.由曲线,2,1=+=x xx y 及2=y 所围图形的面积S = 曲线x x x y 223++-=与x 轴所围成的图形的面积A = 二、选择填空题1. 曲线)0(ln ,ln b a a y x y <<==与y 轴所围成图形的面积为A ,则A =( ) (A )⎰ba xdx ln ln ln (B )⎰ba e ex dx e(C )⎰baydy e ln ln (D )⎰ba e exdx ln2.曲线x y xy ==,1,2=x 所围成的图形面积为A ,则A =( )(A )dx x x )1(21-⎰(B )dx xx )1(21-⎰(C )⎰⎰-+-2121)2()12(dy y dy y(D )⎰⎰-+-2121)2()12(dx x dx x3.曲线x e y =下方与该曲线过原点的切线左方及y 轴右方所围成的图形面积A =( ) (A )dx ex e x )(10-⎰ (B )dy y y y e)ln (ln 1-⎰(C )dx xe e exx )(1⎰- (D )dy y y y )ln (ln 1-⎰4.曲线)0(cos 2>=a a r θ所围图形面积A =( )(A )()θθπd a 220cos 221⎰ (B )θθππd a ⎰-2cos 221 (C )()θθπd a 220cos 221⎰(D )()θθπd a 220cos 2212⎰ 5.曲线πθπθθ=-==,,ae r 所围图形面积A =( )(A )⎰πθθ02221d e a (B )⎰πθθ20222d e a (C )⎰-ππθθd ea 22 (D )⎰-ππθθd e a 2226.曲线θθ2cos ,sin 22==r r 所围图形面积A =( )(A )()()⎰⎰+-222121212cos 2sin 2θθθθd d(B )()()⎰⎰+462602cos sin 2πππθθθθd d(C )()()⎰⎰+46262cos 21sin 221πππθθθθd d(D )()()⎰⎰+462602cos sin 22πππθθθθd d7.曲线()21ln xy -=上210≤≤x 一段弧长S =( )(A )dx x ⎰⎪⎭⎫⎝⎛-+212111 (B )⎰-+2102211dx x x (C )dx x x ⎰⎪⎭⎫ ⎝⎛--+2102121 (D )dx x ⎰-+21022])1[ln(1 8.摆线)0()cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 一拱与x 轴所围图形绕x 轴旋转,所得旋转体的体积=V ( )(A )()⎰-ππ2022cos 1dt t a (B )())]sin ([cos 12202t t a d t a a--⎰ππ(C )()⎰--ππ2022)]sin ([cos 1t t a d t a (D )()⎰-adt t a ππ2022cos 19.星形线⎪⎩⎪⎨⎧==ta y ta x 33sin cos 的全长S =( )(A )⎰-⋅202)sin (cos 3sec 4πdt t t a t(B )⎰-⋅022)sin (cos 3sec 4πdt t t a t(C )⎰-⋅π02)sin (cos 3sec 2dt t t a t(D )⎰-⋅02)sin (cos 3sec 2πdt t t a t10.心形线)cos 1(4θ+=r 与直线2,0πθθ==围成图形绕极轴旋转的旋转体体积=V ( )(A )⎰+202)cos 1(16πθθπd(B )⎰+2022sin )cos 1(16πθθθπd(C )⎰++2022]cos )cos 1(4[sin )cos 1(16πθθθθπd(D )⎰++0222]cos )cos 1(4[sin )cos 1(16πθθθθπd11.两个半径为a 的直交圆柱体所围的体积为V =( )(A )⎰-adx x a 022)(4(B )⎰-adx x a 022)(8(C )⎰-adx x a 022)(16 (D )⎰-adx x a 022)(212.矩形闸门宽a 米,高h 米,垂直放在水中,上沿与水面齐,则闸门压力p =( ) (A )⎰hahdh 0 (B )⎰aahdh 0(C )⎰hahdh 021(D )⎰h ahdh 0213.横截面为S ,深为h 的水池装满水,把水全部抽到高为H 的水塔上,所作功=W ( )(A )⎰-+hdy y h H S 0)( (B )⎰-+Hdy y h H S 0)((C )⎰-hdy y H S 0)( (D )⎰+-+Hh dy y h H S 0)(14.半径为a 的半球形容器,每秒灌水b ,水深)0(a h h <<,则水面上升速度是( )(A )⎰h dy y dh d 02π (B )⎰--h dy a y a dh d 022])([π (C )⎰hdy y dh db2π (D )⎰-hdy y ay dh d b2)2(15.设)(),(x g x f 在区间[]b a ,上连续,且m x g x f <<)()((m 为常数),则曲线b x a x x f y x g y ====,),(),(所围平面图形绕直线m y =旋转而成的旋转体体积为( ) (A )⎰-+-badx x g x f x g x f m )]()()][()(2[π(B )⎰---badx x g x f x g x f m )]()()][()(2[π(C )⎰-+-badx x g x f x g x f m )]()()][()([π(D )⎰---badx x g x f x g x f m )]()()][()([π三、计算题1.求抛物线2x y =与2x 2y -=所围图形的面积。
10.4 旋转曲面的面积
S 2
y(t )
x2(t) y2(t)dt.
(iii ) 若光滑曲线r r( ) 0, [, ] [0, ],则
S
2
r(
)sin
r 2( ) r2( ) d .
例1、求半径为R 的球面面积。
例2、求 双纽线 r 2 2a2cos2 (a 0) 绕极轴
f ( x)dx o(x) , 从而 的微元 d f ( x)dx .
4、所求量
b
a d
b
a
f
( x)dx.
注:定积分的实质是具有可加性的连续变量的 求和问题.
如:几何中的面积、体积、弧长; 物理中的功、压力、引力等.
如:求曲线C 的弧长 .
y
y
a o x x x b x s x2 y2
(i)曲线C : y f ( x)( x [a,b]) , 则 弧长微元: ds 1 [ f ( x)]2dx .
弧长:
b
s a
1 [ f ( x)]2dx .
(ii
)曲线
C
:
x y
x(t) ,
y(t )
t
[
,
]
,
则
弧长元素:ds [x(t)]2 [ y(t)]2 dt .
旋转曲面微元
dS 2πf ( x) 1 f 2 ( x)dx,
旋转曲面的面积为
S
2
b
a
f
(
x)
1
f 2( x) dx.
(ii) 若光滑曲线由 x x(t), y y(t), t [ , ] 给出,
数学分析教案(华东师大版)第十章定积分的应用
第十章定积分的应用教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等教学时数:10学时§ 1 平面图形的面积( 2 时)教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积一、组织教学:二、讲授新课:(一)直角坐标系下平面图形的面积:1.简单图形:型和型平面图形 .2.简单图形的面积 : 给出型和型平面图形的面积公式.对由曲线和围成的所谓“两线型”图形, 介绍面积计算步骤. 注意利用图形的几何特征简化计算.例1求由曲线围成的平面图形的面积.例2求由抛物线与直线所围平面图形的面积.(二)参数方程下曲边梯形的面积公式:设区间上的曲边梯形的曲边由方程给出 . 又设, 就有↗↗, 于是存在反函数. 由此得曲边的显式方程.,亦即.具体计算时常利用图形的几何特征 .例3求由摆线的一拱与轴所围平面图形的面积.例4 极坐标下平面图形的面积:推导由曲线和射线所围“曲边扇形”的面积公式. (简介微元法,并用微元法推导公式 . 半径为, 顶角为的扇形面积为 . )例5求由双纽线所围平面图形的面积 .解或. ( 可见图形夹在过极点, 倾角为的两条直线之间 ) . 以代方程不变,图形关于轴对称 ; 以代, 方程不变,图形关于轴对称 . 参阅P242 图10-6因此.三、小结:§ 2 由平行截面面积求体积( 2 时)教学要求:熟练地应用本章给出的公式,用截面面积计算体积。
定积分的应用4旋转曲面的面积数学分析
§4 旋转曲面的面积(一) 教学目的:理解微元法的基本思想和方法,掌握旋转曲面的面积计算公式. (二) 教学内容:旋转曲面的面积计算公式.基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式. (三) 教学建议:要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积.————————————————————一 微元法用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这样的:设所求量 是一个与某变量(设为x )的变化区间 有关的量,且关于区间具有可加性. 我们就设想把分成n 个小区间,并把其中一个代表性的小区间记坐, 然后就寻求相应于这个小区间的部分量的近似值(做这一步的时候,经常画出示意图帮助思考),如果能够找到的形如近似表达式(其中为上的一个连续函数在点x 处的值, 为小区间的长度),那么就把 称为量的元素并记做,即dx x f dU )(=以量 的元素作为被积表达式在上进行积分,就得到所求量 的积分表达式:⎰badx x f )(例如求由两条曲线)(,)(21x f y x f y == (其中],[,21b a C f f ∈)及直线 b x a x ==, 所为成图形的面积A.容易看出面积元素dx x f x f DA |)()(|21-=于是得平面图形b x a x f y x f ≤≤≤≤,)()(21 的面积为⎰-=badxx f x f A |)()(|21采用微元法应注意一下两点: 1)所求量 关于分布区间 具有代数可加性.2))()(x o x x f U ∆=∆-∆对于前面所讲过的平面图形的面积、立体体积、曲线弧长相应的微元分别为:xy s x x S V x y S ∆'+≈∆∆≈∆∆≈∆21)(||二 旋转曲面的面积§5 定积分在物理中的某些应用(一) 教学目的:掌握定积分在物理中的应用的基本方法. (二) 教学内容:液体静压力;引力;功与平均功率.基本要求:(1)要求学生掌握求液体静压力、引力、功与平均功率的计算公式.(2) 较高要求:要求学生运用微元法导出求液体静压力、引力、功与平均功率的计算公式.(三) 教学建议:要求学生必须理解和会用求液体静压力、引力、功与平均功率的计算公式.——————————————————————————1 变力沿直线所作的功从物理学知道,如果物体在做直线运动的过程中受到常力F 作用,并且力F 的方向与物体运动的方向一致,那么,当物体移动了距离s 时,力F 对物体所作的功是 FS W = 如果物体在运动过程中所受到的力是变化的,那么就遇到变力对物体作功的问题,下面通过例1说明如何计算变力所作的功例1 把一个带电量为的点电荷放在 轴的原点 处,它产生一个电场,并对周围的电荷产生作用力,由物理学知道,如果有一个单位正电荷放在这个电场中距离原点为 的地方,那么电场对它的作用力的大小为2r qk F =( 是常数),如图,当这个单位正电荷在电场中从处沿 轴移动到)(b a b r <=处时,计算电场力 对它所做得功.解 在上述移动过程中,电场对这个单位正电荷的作用力是不断变化的,取 为积分变量,它的变化区间为,在上任取一小区间,当单位正电荷从 移动到时,电场力对它所作的功近似于dr rkq2,从而得功元素为于是所求的为例2 某水库的闸门形状为等腰梯形,它的两条底边各长10m 和6m,高为20m,较长的底边与水面相齐,计算闸门的一侧所受的水压力。
第6讲 旋转曲面的面积
§4 旋转曲面的面积
微元法
旋转曲面的面积
例1
求将椭圆
x2 a2
+
y2 b2
=
1 (a
>
b)
绕
x
轴旋转所得
椭球面的面积.
解 将上半椭圆写成参数方程
=x a co= s t , y bsin t , 0 ≤ t ≤ π.
令 c2 =a2 − b2 , e =c , 则
a
∫ S
2π
π
bsin t
绕 x 轴旋转
π
∫ ( ) ( ) S=2 ⋅ 2 π 2 a sin3 t ⋅
−3a cos2 t sin t
2
+
3a sin2 t cos t
2
dt
0
π
y
∫ = 12 π a2 2 sin4 t cos t dt 0
π
=
12
π
a
2
1 5
sin5
t
2 0
O
x
=S
数学分析 第十章 定积分的应用
高等教育出版社
微元法
旋转曲面的面积
=
4πab
1 2
u
1 − e2u2
+
1 2e
arcsin
eu
1 0
=
2πab
b a
+
a c
arcsin
c a
a2
a2 − b2
=
2πb b +
arcsin a2 − b2
a
.
特别当 a = b 时,即半径为 a 的球面的面积:
π
0
∫ S = 4πa2 2 sin tdt = 4πa2 cos t = 4πa2 .
数学分析10.4旋转曲面的面积
第十章定积分的应用4 旋转曲面的面积一、微元法定义:已知:若φ(x)=⎰xf(t)dt,则当f为连续函数时,φ’(x) =f(x),或adφ=f(x)dx,且φ(a)=0,φ(b)=⎰bf(t)dt.a现将问题倒过来,若所求量φ是分布在某区间[a,x]上的,或它是该区间端点x的函数,即φ=φ(x), x∈[a,b],且当x=b时,φ(b)适为最终所求的值.在任意小区间[x,x+△x]⊂[a,b]上,若能把φ的微小增量△φ近似表示为△x的线性形式:△φ≈f(x)△x,其中f为某一连续函数,而且当△x→0时,△φ- f(x)△x=o(△x),亦即dφ=f(x)dx,那么只要把定积分⎰bf(x)dx计算出来,就是该问题所求的结果,这种a方法通常称为微元法.注:1、所求量φ关于分布区间必须是代数可加的;2、微元法的关键是正确给出△φ的近似表达式△φ≈f(x)△x.应用:求平面图形面积的微元表达式:△A≈|y|△x,且dA=|y|dx. 求立体体积的微元表达式:△V≈A(x)△x,且dV=A(x)dx.求曲线弧长的微元表达式:△s≈2y1'+dx.+△x,且ds=2y1'二、旋转曲面的面积设光滑曲线C 的方程为y=f(x), x ∈[a,b],不妨设f(x)≥0.曲线C 绕x 轴旋转一周得旋转曲面如图,可用微元法导出其面积公式. 通过x 轴上点x 与x+△x 分别作垂直于x 轴的平面,在旋转曲面上截得一狭带,当△x 很小时,近似于一圆台侧面,即△s ≈π[f(x)+f(x+△x)]22y x ∆+∆=π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x ,其中△y=f(x+△x)-f(x),又y lim 0x ∆→∆=0,2x x y 1lim ⎪⎭⎫⎝⎛∆∆+→∆=)x (f 12'+. 由f ’(x)的连续性可保证:π[2f(x)+△y]2x y 1⎪⎭⎫ ⎝⎛∆∆+△x-2πf(x))x (f 12'+△x=o (△x).∴dS=2πf(x))x (f 12'+, S=2π⎰'+ba2)x (f 1f(x )dx.若光滑曲线C 由参数方程:x=x(t), y=y(t), t ∈[α,β]给出,且y(t)≥0,则 由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为: S=2π⎰'+'βα22)t (y )t (x y(t)dt.例1:计算圆x 2+y 2=R 2在[x 1,x 2]⊂[-R,R]上的弧段绕x 轴旋转所得球带的面积.解:圆在x 轴上方的曲线为y=22x R -,则y ’=22xR x --,所得球带的曲面面积为:S=2π⎰-+⋅-21x x 22222xR x 1x R dx=2πR(x 2-x 1).注:当x 1=-R, x 2=R 时,则得球的表面积S 球=4πR 2.例2:计算由内摆线x=acos 3t,y=asin 3t 绕x 轴旋转所得旋转曲面面积。
定积分求图形的面积和旋转体的课件
分部积分法
∫u(x) v'(x) dx = u(x)v(x) - ∫u'(x) v(x) dx (其中u(x)和v(x)是两个函数,且u'(x)表示 u的导数)。
02
用定积分求图形面积
曲边梯形的面积
01
定义
曲边梯形是由一条水平曲线、一条垂直曲线和两条斜线组成的平面图形
。
02 03
面积计算
首先需要找到曲边梯形的四条边的曲线方程,然后根据定积分的计算方 法,分别对四条边进行定积分计算,最后将四个定积分的结果相加得到 曲边梯形的面积。
定积分求图形的面 积和旋转体的体积
contents
目录
• 定积分基础知识 • 用定积分求图形面积 • 用定积分求旋转体的体积 • 实例分析 • 习题与答案
01
定积分基础知识
定积分的定义
定积分是函数在某个区间上的总和。 被积函数:在区间[a, b]上定义的任意函数f(x)。
积分区间:一个实数轴上的一个区间[a, b]。 积分结果:函数f(x)在区间[a, b]上的总和。
定积分的计算
积分的基本性质
∫(a,b) (f(x)±g(x)) dx = ∫(a,b) f(x) dx ± ∫(a,b) g(x) dx。
A 积分的基本公式
∫(0,x) k dx = kx + c (其中k是常数 ,c是积分常数)。
BCLeabharlann D换元积分法如果∫f(x) dx = F(x),那么∫f[g(x)] dx = F[g(x)] (其中g(x)是可微函数,且F(x)是 f(x)的原函数)。
注意事项
在计算过程中,需要考虑到曲线与x轴、y轴的交点以及各条边的长度, 同时还需要对每条边进行区间分割并确定每个小区间的中点坐标,以便 进行积分计算。
数学分析(华东师大)第十章定积分的应用
∫ ∫ ∫∫∫第十章 定积分的应用§1 平面图形的面积在上一章开头讨论过由连续曲线y = f ( x) (≥0) , 以及直线x = a, x = b( a <b) 和 x 轴所围曲边梯形的面积为b bA =∫ f ( x ) d x =∫y d x .aa如果 f ( x)在[ a , b]上不都是非负的, 则所围图形的面积为b b A=f (x)d x =aay d x .一般地,由上、下两条连续曲线y = f 2 ( x )与y = f 1 ( x )以及两条直线x = a与 x = b( a <b) 所围的平面图形 ( 图 10 - 1) , 它的面积计算公式为bA=[ f 2( x) - f 1 ( x) ] d x. (1)a图 10 -1图 10 - 2例 1 求由抛物线 y 2= x 与直线 x - 2 y - 3 = 0 所围平面图形的面积 A . 解 该平面图形如图 10 - 2 所示 .先求出抛物线与直线的交点 P(1 , - 1 ) 与Q(9 , 3 ) .用 x = 1 把图形分为左、右两部分, 应用公式(1 ) 分别求得它们的面积 为1A 1 =x -- xd x =∫2x d x = 4 , 39 A 2 =1x - x - 32d x = 28 .31 01 ∫ ∫ ∫ ∫∫3240第十章 定积分的应用所以 A = A 1 + A 2 = 32.3本题也可把抛物线方程和直线方程改写成x = y 2= g ( y) , x = 2 y + 3 = g 2 ( y) , y ∈ [ - 1 , 3].并改取积分变量为y , 便得3A=[ g 2(y)-g 1 ( y)] d y - 1=(2 y +3 -y 2) d y = 32.-13设曲线 C 由参数方程x = x ( t ) , y = y( t) , t ∈ [α,β] (2)给出,在[α,β]上y(t)连续,x(t)连续可微且x ′(t)≠0(对于y(t)连续可微且 y ′( t )≠0的情形可类似地讨论) .记a = x(α), b = x(β)(a <b 或b <a),则由 曲线 C 及直线 x = a , x = b 和 x 轴所围的图形 ,其面积计算公式为βA=y( t) x ′( t )d t. (3)α例 2 求由摆线 x = a( t - sin t ) , y = a( 1 - cos t ) ( a > 0 ) 的一 拱与 x 轴所 围平面图形( 图10 - 3 ) 的面积 .图 10 - 3解 摆线的一拱可取 t ∈[ 0 , 2π] .所求面积为2πA=a(1 - co s t )[a( t - s in t)]′d t 0 = a∫22π( 1 - cos t ) 2d t = 3πa2.如果由参数方程(2 ) 所表示的曲线是封闭的, 即有x(α) = x (β) , y(α) = y(β),且在(α, β) 内曲线自身不再相交, 那么由曲线自身所围图形的面积为βA=y( t ) x ′( t ) d t α●∫∫∫§1 平面图形的面积241β或x ( t ) y ′( t)d t . (4)α此公式可由公式(1)和(3)推出,绝对值内的积分,其正、负由曲线(2)的旋转方向 所确定.2 2 例3 求椭圆 x+ y = 1 所围的面积 .a 2b 2解 化椭圆为参数方程x = a cos t , y = b sin t , t ∈ [0 , 2π] .由公式(4 ) , 求得椭圆所围面积为2πA=b s in t (a co s t)′d t 0 = a ∫b2πsin2t d t = πab .显然, 当 a =b = r 时, 这就等于圆面积πr 2.设曲线 C 由极坐标方程r= r(θ),θ∈[α,β]给出, 其中 r(θ) 在[α, β] 上连续, β- α≤2π.由曲线 C 与两条射线θ= α, θ= β所围成的平面图形, 通常也称为扇形( 图 10 -4).此扇形的面积计算公式为βA = 1 2 αr 2 (θ)d θ. (5)图 10 -4图 10 - 5这仍可由定积分的基本思想而得 .如图 10- 5 所示, 对区间[α, β] 作任意分 割T :α= θ0 <θ1 <<θn-1 <θn = β,射线θ=θi (i =1,2, , n -1)把扇形分成n 个小扇形.由于r (θ)是连续的,因 此当‖T ‖很小时,在每一个Δi =[θi - 1 ,θi ]上r (θ)的值变化也很小.任取ξi ∈ Δi ,便有r(θ) ≈r (ξi ),θ∈Δi , i = 1,2,, n .这时, 第 i 个小扇形的面积242第十章 定积分的应用Δ A i ≈12于是r 2 (ξi )Δθi ,nA ≈ ∑1 r 2(ξ)Δθ .i ii = 1由定积分的定义和连续函数的可积性, 当‖T ‖→0 时, 上式右边的极限即为公 式(5 ) 中的定积分 .例 4 求双纽线 r 2= a 2cos 2θ所围平面图形的面积. 解 如图10 - 6所示,因为r 2≥0,所以θ的取值范围是 -π,π与 4 43π 5π 4,4 .由图形的对称性及公式(5),得 到π A =4·1 4 a 2cos2θd θ 2∫π = a 2 sin 2θ 4 0= a 2 .图 10 - 6习 题1 . 求由抛物线 y = x 2与 y = 2 - x 2所围图形的面积 .2 . 求由曲线 y = | ln x | 与直线 x = 1, x = 10 , y = 0 所围图形的面积.10 3 . 抛物线 y 2= 2 x 把圆 x 2+ y 2≤8 分成两部分 , 求这两部分面积之比. 4 . 求内摆线 x = a cos 3 t , y = a sin 3 t ( a > 0 ) 所 围图 形的 面积( 图 10 - 7).5 . 求心形线 r = a( 1 + cos θ) ( a > 0) 所围图形的面积 .6 . 求三叶形曲线 r = a sin 3θ( a >0) 所围图形的面积.7.求由曲线x a+ y b= 1 ( a 、b > 0 ) 与坐标轴所围 图形的面积 .8 . 求由曲线 x = t - t 3, y = 1 - t 4所围图形的面积.9 . 求二曲线 r = sin θ与 r = 3 cos θ所围公共部分的面图 10 - 7积 .2 2 2 2 10 . 求两椭圆x + y = 1 与 x+ y = 1( a > 0 , b > 0 )所围公共部分的面积.a2b 2b2a 22§2 由平行截面面积求体积243§2 由平行截面面积求体积设Ω为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b).为方便起见称Ω为位于[a,b]上的立体.若在任意一点x ∈[a,b] 处作垂直于x 轴的平面,它截得Ω的截面面积显然是x 的函数,记为A(x),x∈[a,b] ,并称之为Ω的截面面积函数(见图10-8).本节将导出由截面面积函 数求立体体积的一般计算公式和旋转体的体积公式.图 10 - 8设截面面积函数A(x)是[a,b]上的一个连续函数.对[a,b]作分割 T :a=x 0 < x 1 << x n = b.过各个分点作垂直于 x 轴的平面 x = x i , i = 1 , 2 ,, n , 它们把 Ω 切割成 n 个薄 片.设A( x )在每个小区间Δi =[x i - 1 , x i ]上的最大、小值分别为M i 与m i ,那么 每一薄片的体积ΔV i 满足m i Δx i ≤ΔV i ≤M i Δx i ①.n于是, Ω的体积 V = ∑ΔV i 满足i = 1n∑ i = 1nm iΔ xi≤ V ≤ ∑M i Δx i .i = 1因为 A ( x)为连续函数, 从而在[ a, b] 上可积, 所以当‖T ‖足够小时, 能使nn∑ωiΔx i=∑(Mi- m i )Δ x i <ε,i=1i =1其中ε为任意小的正数 .由此知道① 严格地说, 这里对 Ω的形状需作如下假设: 把 Ω的上述平行截面正投影到某一垂直于 x 轴的平 面上, 它们永远是一个含在另一个的里面( 这时能保证此处的不等式成立) .一般还可推广到 Ω由满足这 种假设的若干个立体相加或相减而得的情形.∫0 2 2 a2 244第十章 定积分的应用nnV=lim ∑M i Δx i或 lim ∑ m i Δx i‖ T ‖ →0 i =1‖ T ‖ →0 i = 1n= lim ∑A(ξi )Δx i ,‖ T ‖ →0 i = 1其中A(ξi )= M i (或m i ),所以有bV=A ( x )d x. (1)a 例 1 求由两个圆柱面 x 2 + y 2 = a 2 与 z 2 + x 2= a 2所围立体的体积 .解图10-9所示为该立体在第一卦限部 分的图象(占整体的八分之一).对任一x 0∈ [0 , a] , 平面 x = x 0 与这部分立体的截面是一个 边长为 a 2- x 2的正方形,所以A(x)= a 2- x 2,x ∈[0 , a].由公式( 1) 便得aV =∫8 (a 2 - x 2) d x = 16 a 3 . 0 3例2 求由椭球面 x a 2 y 2+ 2 b + z c 2= 1 所围立图 10 - 9体( 椭球) 的体积 .解 以平面 x =x 0 ( |x 0 | ≤a) 截椭球面, 得椭圆( 它在 yOz 平面上的正投影):y2z22+ 2= 1 .b 21 - x 0a 2所以截面面积函数为(根据§1例3): c 2 1 - x 0a22于是求得椭球体积A( x ) = πbc 1 - xa2 , x ∈[-a , a] .V =∫πbc 1- x d x = 4πabc.- a a 23 显然, 当 a =b =c = r 时, 这就等于球的体积4πr 3 .3设ΩA ,ΩB 为位于同一区间[a,b]上的两个立体,其体积分别为V A , V B .若 在[a,b]上它们的截面面积函数A(x)与B(x)皆连续,且A(x)=B(x),则由 公式(1)推知V A = V B .这个关于截面面积相等则体积也相等的原理,早已为我国齐梁时代的数学家祖¹3(祖冲之(429—500)之子,生卒年代约在公元5世纪末∫§2 由平行截面面积求体积245至6 世纪初) 在计算球的体积时所发现 .在 《九章算术》一书中所记载的祖¹3原理是“: 夫 叠絔成立积,缘幂势既同则积不容异”,其中 幂就是截面面积,势就是高.这就是说,等高 处的截面面积既然相等,则两立体的体积不 可能不等(图10-10).17世纪意大利数学家 卡伐列利(Cavalieri)也提出了类似的原理,但 要比祖¹3晚一千一百多年.下面讨论旋转体的体积 .设 f 是[ a,b] 上的连续函数, Ω是由平 面图形图 10 - 100≤ y ≤ f (x) , a ≤ x ≤b绕 x 轴旋转一周所得的旋转体 .那么易知截面面积函数为 A ( x ) = π[ f ( x ) ] 2, x ∈ [ a , b] .由公式(1 ) , 得到旋转体Ω的体积公式为bV =∫π [ f ( x) ]2d x. (2)a例3 试用公式( 2) 导出圆锥体的体积公式 .解 设正圆锥的高为 h , 底圆半径为 r .如图 10- 11 所示, 这圆锥体可由平面图形0≤| y | ≤ rx ,x ∈[ 0 , h]绕 x 轴旋转一周而得 .所以其体积为 hV = π0 r x h d x = 1πr 2 h, 3这个结果读者在中学课程里便已熟知了 .又因同底同高的两个圆锥, 在相同高程 处的截面为相同的圆, 即截面面积函数相同, 所以任一高为 h , 底半径为 r 的圆锥( 正或斜) , 其体积恒为1 πr 2h .3例 4 求由圆 x 2+ ( y - R) 2≤ r 2(0 <r <R ) 绕 x 轴旋转一周所得环状立体 的体积 .解如图10- 12所示,圆x 2+(y - R )2= r 2 的上、下半圆分别为y= f 2 ( x ) = R+ r 2- x 2, x ≤ r.y= f 1 ( x ) = R -r 2- x 2,故圆环体的截面面积函数是A ( x) =π[ f 2 ( x ) ] 2 - π[ f 1 ( x ) ] 2=4πRr 2- x 2, x ∈ [ - r , R].h 22∫∫246第十章 定积分的应用图 10 -11 图 10 - 12由此得到圆环体的体积为V = 8πRr 2 - x 2d x = 2π2 r 2 R .如果把上述结果改写成 V = 2πR ·πr 2, 读者不难看出这相当于一个圆柱体 的体积 .习 题1. 如图10 - 13 所示, 直椭圆柱体被通过底面短轴的斜平面所截, 试求截得楔形体的 体积 .2. 求下列平面曲线绕轴旋转所围成立体的体 积:( 1) y = sin x , 0≤ x ≤π, 绕 x 轴;(2 ) x = a ( t - sin t ) , y = a ( 1 - cos t ) ( a > 0) , 0≤ t ≤2π, 绕 x 轴;( 3) r = a(1 + cos θ) ( a > 0 ) , 绕极轴;2 2( 4) x + y= 1 , 绕 y 轴.ab2图 10 - 13 3 . 已知球半径为 r , 验证高为 h 的球缺体积V =πh 2r - h3( h ≤ r ) .4 . 求曲线 x = a cos 3 t , y = a sin 3t 所围平面图形 ( 图 10 - 7 )绕 x 轴旋转所得立体的体积 . 5. 导出曲边梯形0≤y ≤ f ( x) , a ≤x ≤b 绕 y 轴旋转所得立体的体积公式为bV =2πx f ( x) d x. a6 . 求 0≤ y ≤sin x , 0≤ x ≤π所示平面图形绕 y 轴旋转所得立体的体积.r∫§3 平面曲线的弧长与曲率247§3 平面曲线的弧长与曲率一 平面曲线的弧长 先建立曲线弧长的概念 .设平面曲线 C = AB .如图 10 - 14 所 示 , 在 C 上从 A 到 B 依次取分点:A = P 0 , P 1 ,P 2,, P n - 1 , P n = B,它们成为对曲线 C 的一个分割, 记为 T .然后用线 段联结 T 中每相邻两点, 得到 C 的 n 条弦P i - 1 P i ( i = 1 , 2 , ,n) , 这 n 条弦又成为 C 的一条内接折 线 .记n图 10 - 14‖ T ‖ = max 1 ≤ i ≤ nP i -1 P i, s T =∑ i = 1P i -1 P i,分别表示最长弦的长度和折线的总长度 .定义 1 对于曲线 C 的无论怎样的分割T , 如果存在有限极限lim ‖ T ‖→ 0s T = s ,则称曲线 C 是可求长的, 并把极限 s 定义作为曲线C 的弧长 .定义 2 设平面曲线 C 由参数方程x = x ( t ) , y = y( t) , t ∈ [α,β](1)给出.如果x (t)与y (t)在[α,β]上连续可微,且x ′( t)与y ′( t)不同时为零(即 x ′2( t)+ y ′2(t)≠0, t ∈[α,β]),则称C 为一条光滑曲线.定理10.1 设曲线 C 由参数方程( 1 ) 给出 .若 C 为一光滑曲线① , 则 C 是 可求长的, 且弧长为βs =x ′2 (t) + y ′2 (t)d t .(2)α证 如前所述 , 对 C 作任意分割 T = { P 0 ,P 1 , , P n } , 并设 P 0 与 P n 分别对应 t = α与t = β, 且P i ( x i , y i ) = ( x( t i ) , y( t i ) ) , i = 1 ,2,, n - 1. 于是, 与 T 对应地得到区间[α, β] 的一个分割T ′:α= t 0 <t 1 <t 2 < < t n-1 <t n = β.在T ′所属的每个小区间Δi =[t i - 1 , t i ]上,由微分中值定理得①这是曲线可求长的一个充分条件,而连续曲线不一定是可求长的.i i i248第十章 定积分的应用Δx i = x(t i ) -x(t i-1 ) = x ′(ξi )Δt i ,ξi ∈Δi ;Δy i = y (t i ) - y ( t i-1 ) = y ′(ηi )Δt i ,ηi ∈Δi .从而曲线 C 的内接折线总长为n2 2s T =∑ i = 1 Δx i + Δy in= ∑x ′2(ξ) + y ′2(η)Δt .iiii = 1又因 C 为光滑曲线, 当 x ′( t ) ≠0 时, 在 t 的某邻域内 x =x ( t ) 有连续的反 函数, 故当Δx →0 时Δt →0; 类似地, 当 y ′( t ) ≠0 时, 亦能由Δy →0 推知Δt → 0 .所以当 | P i - 1 P i |=Δx 2 +Δy 2→0时,必有Δt i→0.反之, 当Δt i →0 时, 显然有|P i - 1 P i |→0 .由此知道:当C 为光滑曲线时,‖T ‖→0与‖T ′‖→0是等价 的.由于 x ′2( t ) + y ′2(t)在[α,β]上连续从而可积,因此根据定义1,只需证明:nlim s T =lim∑x ′(ξi ) + y ′(ξi )Δt i ,(3)‖ T ‖ →022‖T ′‖→0 i= 1而后者即为(2 ) 式右边的定积分 .为此记2 22 2ζi =x ′(ξi ) + y ′(ηi ) -x ′(ξi ) + y ′(ξi ),则有ns T = ∑i = 1x ′2 (ξi ) + y ′2(ξi ) +ζi Δt i .利用三角形不等式易证ζi ≤ | y ′(ηi ) |-| y ′(ξi ) |≤ y ′(ηi ) -y ′(ξi ) ,i = 1 ,2, , n.由y ′(t)在[α,β]上连续,从而一致连续,故对任给的ε>0,存在δ>0,当‖T ′‖<δ时,只要ξi 、ηi ∈Δi ,就有ζ <ε , i = 1 , 2, , n. β - α因此有n22ii in∑ζΔti = 1n≤∑ i = 1ζi Δt i <ε.iii = 1即(3 ) 式得证, 亦即公式(2 ) 成立 .∫2∫∫∫2π ∫π ∫§3 平面曲线的弧长与曲率249若曲线 C 由直角坐标方程y= f ( x ) , x ∈ [ a ,b]表示, 把它看作参数方程时, 即为x = x ,y= f ( x ) , x ∈ [ a , b].所以当 f ( x)在[ a , b]上连续可微时, 此曲线即为一光滑曲线 .这时弧长公式为bs=1 + f ′( x ) d x.(4)a又若曲线 C 由极坐标方程r= r(θ),θ∈[α,β]表示, 把它化为参数方程, 则为 x = r (θ) cos θ,y= r(θ) sin θ, θ∈ [α, β].由于x ′(θ) = r ′(θ)co s θ- r (θ)s in θ, y ′(θ)= r ′(θ)s in θ+ r (θ)co s θ, x ′2(θ) + y ′2 (θ) = r 2 (θ) + r ′2 (θ),因此当r ′(θ)在[α,β]上连续,且r (θ)与r ′(θ)不同时为零时,此极坐标曲线为 一光滑曲线.这时弧长公式为βs =r 2 (θ) + r ′2(θ)d θ.(5)α例1 求摆线 x = a(t - sin t ) ,y = a(1- cos t ) ( a > 0 ) 一拱的弧长( 见图 10 - 3) .解x ′(t)= a(1- co s t),y ′(t)= a s in t,由公式(2)得2π2πs =x ′2 (t) + y ′2( t )d t=2 a 2( 1 - cos t ) d t = 2∫as in td t = 8a .2x - x例 2 求悬链线 y =e+e从 x = 0 到 x = a > 0 那一段的弧长.2x- x x- x 2解y ′=e- e ,1+ y ′2 =(e +e ),由公式(4)得24 aax- xa - as =∫ 1+ y ′2d x =∫e +ed x =e-e .22例 3 求心形线 r = a( 1 + cos θ) ( a > 0 ) 的周长 .解 由公式 (5 ) 得2ππs =r 2 + r ′2d θ= 2 02 a 2 ( 1 + cos θ) d θ= 4∫a co s θθ= 8a . 0 2d∫250第十章 定积分的应用注意 若把公式(2)中的积分上限改为t,就得到曲线(1)由端点P 0 到动点 P( x ( t ) ,y( t ) ) 的弧长, 即ts( t )=αx ′2(η) + y ′2(η)d η.由于被积函数是连续的, 因此d sd t =d x 2d t+d y 2d t ,d s= d x 2+ d y 2. (6)特别称 s( t ) 的微分 d s 为弧微分 .如图 10-15 所示, PR 为曲线在点 P 处的切 线, 在直角三角形 PQR 中, PQ 为d x ,QR 为d y , PR 则为 d s .这个三角形称为 微分三角形 .图 10 -15图 10 - 16二 曲率曲线上各点处的弯曲程度是描述曲线局部性态的又一重要标志 .考察图10-16中由参数方程(1)给出的光滑曲线 C.我们看到弧段PQ 与QR 的长度相差 不多而其弯曲程度却很不一样.这反映为当动点沿曲线C 从点P 移至Q 时,切线转过的角度 Δα比动点从Q 移至R 时切线转过的角度Δβ要大得多.设α( t)表示曲线在点P(x(t),y(t))处切线的倾角,Δα=α( t +Δt) -α( t)表示动点由 P 沿曲线移至 Q( x( t + Δx) , y( t + Δt) ) 时切线倾角的增量 .若PQ 之长为Δs, 则称珡K =为弧段PQ 的平均曲率 .如果存在有限极限 K= lim ΔΔt →0 Δ则称此极限 K 为曲线 C 在点 P 处的曲率.由于假设 C 为光滑曲线, 故总有y ′( t )=lim ΔαΔs →0 Δsα( t) = arctanx ′(t) 或 α(t) = a r ccot x ′(t) . y ′(t )又若 x ( t) 与 y( t )二阶可导, 则由弧微分(6) 可得=§3 平面曲线的弧长与曲率251所以曲率计算公式为d α d s = α′(t ) s ′(t) = x ′( t )y ″( t ) - x ″( t )y ′( t ) [x ′2 (t) + y ′2 (t)]362/ .K=(x ′2+ y ′2 )362/. (7)若曲线由 y = f ( x) 表示, 则相应的曲率公式为K=(1+ y ′2 )362/ . (8)例 4 求椭圆 x = a cos t , y = b sin t , 0≤ t ≤2π上曲率最大和最小的点 .解 由于 x ′= - a sin t , x ″= - a cos t , y ′= b cos t , y ″= - b sin t , 因此按 公式 (7 ) 得椭圆 上任意点处的曲率为K= ab =( a 2sin 2t + b 2cos 2 t )362/ ab[ ( a 2 - b 2 ) sin 2 t + b 2 ]362/ .3π 当 a >b >0 时,在t =0,π(长轴端点)处曲率最大,而在t =π、 ( 短轴端点) 处曲率最小, 且K max = a b2 , K min = 2 2 ba 2. 若在例 4 中 a = b = R , 椭圆成为圆时, 显然有K = 1 ,R即在圆上各点处的曲率相同, 其值为半径的倒数 .容易知道, 直线上处处曲率为零 .设曲线 C 在其上一点P 处的曲率 K ≠0 .若过点 P 作一个半径为ρ=1的圆, 使它在点 KP 处与曲线C 有相同的切线, 并在点 P 近旁与曲线位于切线的同侧(图 10 - 17).我们把这个圆称为曲线 C 在点 P 处的曲率圆或密切圆 .曲率圆的半径 ρ= 1 K和圆心( P 0) 称为曲线 C在点 P 处的曲率半径和曲率中心 .由曲率圆的定义可以知道, 曲线在点 P 与曲率圆既有相同 的切线, 又有相同的曲率和凸性 .例5 (铁路弯道分析) 如图10 - 18 所示, 火车轨道从直道进入到半径为 R 的圆弧形 弯道时, 为了行车安全, 必须经过一段缓冲轨道(用虚线表示者) , 使得曲率由零连续地增加到 1 R,以保证火车的向心加速度 a =v 2ρ 不发生跳跃性的突变.图 10 -17 图 10 - 18y ″3 0 0 252第十章 定积分的应用图中 x 轴( x ≤0) 表示直线轨道, AB 是半径为 R 的圆弧形轨道( 点 Q 为其圆心) , OA 为 缓冲轨道 .我国一般采用的缓冲曲线是三次曲线其中 l 是OA 的弧长 .对曲线(9)应用曲率公式(8),求得y = x,(9)6 R l2 2K= 8 R l x .(4 R 2 l 2 + x 4 )362/ 当 x 从 0 变为 x 0 时 , 曲率 K 从0 连续地变为K 0 = 8 R 2 l 2 x 0 (4 R 2 l 2 + x 4 )362/1 = R· 8 l 2 x 0 x 44 l 2362/ . R2x 0 1 1当 x 0 ≈l , 且 缓冲作用 .R 很小时, K 0 ≈ R .因此曲线段OA 的曲率从0 逐渐增加到接近于 R, 从而起了习 题1 . 求下列曲线的弧长: (1) y = x 362/,0≤x ≤4; (2)x +y =1;( 3) x = a cos 3t , y = a sin 3t ( a >0) , 0≤t ≤2π;( 4) x = a( cos t + t sin t ) , y = a( sin t - t cos t ) ( a >0) , 0≤t ≤2π;( 5) r = a sin 3 θ( a > 0) , 0≤θ≤3π;3( 6) r = a θ( a >0) , 0≤θ≤2π.2 . 求下列各曲线在指定点处的曲率: (1) xy = 4 , 在点( 2 , 2) ; (2) y = ln x , 在点( 1 , 0 ) ;(3) x = a( t - sin t ) , y = a(1 - cos t ) ( a >0) , 在 t = π的点; 2(4) x = a cos 3 t , y = a sin 3 t ( a >0) , 在 t =π 的点.43 . 求 a 、b 的值 , 使椭圆 x = a cos t , y = b sin t 的周长等 于正弦曲线 y = sin x 在 0≤x ≤ 2π上一段的长 .4 . 设曲线由极坐标方程 r = r(θ) 给出, 且二阶可导, 证明它在点( r, θ)处的曲率为22K =r + 2 r ′ - rr ″.(r 2 + r ′2)362/ *5.用上题公式,求心形线r = a(1+co s θ)(a >0)在θ=0处的曲率、曲率半径和曲率圆.**∫∫∫§4 旋转曲面的面积253* 6 . 证明抛物线 y = ax 2 + bx + c 在顶点处的曲率为最大 . *7 . 求曲线 y = e x 上曲率最大的点 .§4 旋转曲面的面积定积分的所有应用问题,一般总可按“分割,近似求和,取极限”三个步骤导 出所求量的积分形式.但为简便实用起见,也常采用下面介绍的“微元法”.本节 和下一节将采用此法来处理.一 微元法x在上一章我们已经熟知,若令Φ(x) =f(t)d t,则当f 为连续函数时, aΦ′( x ) = f ( x) , 或d Φ= f ( x) d x ,且bΦ( a) = 0 , Φ(b)=f ( x) d x. a现在恰好要把问题倒过来:如果所求量Φ是分布在某区间[a,x]上的,或 者说它是该区间端点x 的函数,即 Φ=Φ(x),x ∈[a,b],而且当x =b 时, Φ( b) 适为最终所求的值.在任意小区间[ x ,x + Δx ] Ì[ a , b]上, 若能把 Φ的微小增量ΔΦ近似表示 为Δx 的线性形式ΔΦ≈f(x)Δx,(1) 其中 f 为某一连续函数, 而且当Δx →0 时,ΔΦ- f ( x )Δx =o(Δx) , 亦即d Φ= f ( x) d x, (2)b那么只要把定积分 f(x)d x 计算出来,就是该问题所求的结果.a上述方法通常称为微元法 .在采用微元法时, 必须注意如下两点: 1) 所求量 Φ 关于分布区间必须是代数可加的.2)微元法的关键是正确给出ΔΦ的近似表达式(1 ) .在一般情况下, 要严格 检验ΔΦ-f ( x)Δx 是否为Δx 的高阶无穷小量往往不是一件容易的事 .因此对 (1 ) 式的合理性需特别小心.对于前三节所求的平面图形面积、立体体积和曲线弧长, 改用微元法来处 理, 所求量的微元表达式分别为ΔA ≈ y Δx , 并有 d A=y d x; Δ V ≈ A( x )Δx , 并有 d V = A ( x) d x ;Δs ≈1 + y ′2Δx,并有d s =1+ y ′2d x .§2 导出体积公式(1) 和 §3 导出弧长公式(2) 的过程, 实际上就是在验证 ΔΦ-∫222 1 2 2∫254第十章 定积分的应用bf(x)Δx= o(Δx).如果把弧长增量的近似表达式改取为Δs ≈Δx,将导致s=d x a= b - a 的明显错误 .其根本原因就在于Δs - Δx 并非是Δx 的高阶无穷小量 .二 旋转曲面的面积①设平面光滑曲线 C 的方程为y= f ( x ) , x ∈ [ a , b] ( 不妨设 f ( x) ≥ 0 ).这段曲线绕 x 轴旋转一周得到旋转曲面( 图10 - 19).下面用微元法导出它的面 积公式 .通过 x 轴上点 x 与 x + Δx 分别作垂直于 x 轴的平面, 它们在旋转曲面上截下一条狭带 .当 Δx 很小时, 此狭带的面积近似于一圆台的侧面 积, 即 ΔS ≈π[ f(x)+ f(x+Δx)]Δx 2 + Δy 2= π[ 2 f ( x )+Δy]1+Δy 2 Δx, Δx图 10 - 19其中 Δy = f ( x + Δx ) - f ( x ) .由于lim Δy = 0,lim1+Δy 2= 1 + f ′( x),Δx →0Δx →0Δx因此由 f ′( x )的连续性可以保证π[2 f ( x)+Δy]1+所以得到Δy 2ΔxΔx - 2πf(x)1 + f ′( x)Δx = o(Δx ).d S = 2πf(x) 1 + f ′( x ) d x, bS =2π af(x)1 + f ′( x ) d x .(3)如果光滑曲线 C 由参数方程x = x ( t ) , y = y( t) , t ∈ [ α,β]给出, 且 y( t ) ≥0 , 那么由弧微分知识推知曲线 C 绕 x 轴旋转所得旋转曲面的 面积为S = 2∫π βy ( t) x ′2(t) + y ′2( t)d t .(4)α例 1 计算圆 x 2+ y 2= R 2在 [ x , x ] Ì [ - R , R] 上的弧段 绕 x 轴旋转所①关于曲面面积的严格定义和一般计算公式要在下册重积分章节里给出.2 ∫ ∫§5 定积分在物理中的某些应用255得球带的面积 .解 对曲线y =R 2 - x 2 在区间 [ x 1 , x 2 ] 上应用公式(3 ) , 得到S=2π2 x1R 2 - x21+xd xR 2 - x2= 2π∫Rx 2d x = 2πR ( x2- x 1 ) .x1特别当 x 1 = - R , x 2 = R 时 , 则得球的表面积 S 球 = 4πR .例 2 计算由内摆线 x = a cos 3t , y = a sin 3t ( 见 图 10 - 7 ) 绕 x 轴旋 转所得 旋转曲面的面积 .解 由曲线关于 y 轴的对称性及公式(4 ) , 得π S = 4π 2 0a sin 3 t( - 3 a cos 2 t sin t )2 + (3 a sin 2 t cos t ) 2d t = 12πa ∫2π sin4t cos t d t=12 a 2.π 05习 题1 . 求下列平面曲线绕指定轴旋转所得旋转曲面的面积:( 1) y = sin x , 0≤ x ≤π, 绕 x 轴;( 2) x = a( t - sin t ) , y = a(1 - cos t ) ( a > 0) , 0≤ t ≤2π, 绕 x 轴 ;2 2 ( 3) x + y= 1 , 绕 y 轴;a 2 b2( 4) x 2 + ( y - a) 2 = r 2 ( r <a) , 绕 x 轴.2 . 设平面光滑曲线由极坐标方程r = r(θ) ,α≤ θ≤ β ( [α, β] Ì [0 ,π] , r(θ) ≥0)给出, 试求它绕极轴旋转所得旋转曲面的面积计算公式 .3 . 试求下列极坐标曲线绕极轴旋转所得旋转曲面的面积:( 1) 心形线 r = a(1 + cos θ) ( a >0) ; ( 2) 双纽线 r 2 = 2 a 2 cos 2θ( a > 0) .§5 定积分在物理中的某些应用定积分在物理中有着广泛的应用, 这里介绍几个较有代表性的例子 . 一 液体静压力例1 如图10 - 20所示为一管道的圆形闸门( 半径为 3 米).问水平面齐及x 2∫2 = ∫ ∫ 256第十章 定积分的应用直径时, 闸门所受到的水的静压力为多大?解 为方便起见, 取 x 轴和y 轴如图, 此时圆的方 程为x 2+ y 2= 9 .由于在相同深度处水的静压强相同,其值等于水 的比重(ν)与深度(x)的乘积,故当Δx 很小时,闸门上 从深度 x到 x + Δx 这一狭条ΔA 上所受的静压力为 ΔP ≈ d P=2νx9 - x 2d x .从而闸门上所受的总压力为图 10 - 203P=2νx9 - x 2 d x= 18ν.二 引力例2 一根长为 l 的均匀细杆, 质量为 M , 在其中垂线上相距细杆为 a 处 有一质量为 m 的质点 .试求细杆对质点的万有引力. 解 如图10 - 21 所示, 细杆位于 x 轴上的 l l 2,2,质点位于y 轴上的点a.任取[x, x +Δx ]Ì - l2 , l 2 , 当Δx 很小时可把这一小段细杆看作一质点 , 其质量为 d M = Md x .于l是它对质点 m 的引力为图 10 - 21d F = km d M r km a 2 + x 2 · Ml d x.由于细杆上各点对质点 m 的引力方向各不相同, 因此不能直接对 d F 进行积分 ( 不符合代数可加的条件) .为此, 将d F 分解到x 轴和y 轴两个方向上, 得d F x = d F · sin θ, d F y = - d F ·cos θ.由于质点 m 位于细杆的中垂线上, 必使水平合力为零, 即l 62/F x =- 6l 2/ d Fx= 0.又由cos θ=a ,得垂直方向合力为a 2+ x 2l 62/F y =- 6l 2/d Fy= -∫2l 2 km Ma ( a 2+ x 2 ) - 362/d x 0l-∫§5 定积分在物理中的某些应用257= -2kmMa 1 6l 2/xl·a2 · =- 2kmM,a 4 a 2+ l2负号表示合力方向与 y 轴方向相反 .a 2 + x 2例3设有一半径为 r 的圆弧形导线, 均匀带电, 电荷密度为δ, 在圆心正 上方距圆弧所在平面为 a 的地方有一电量为q 的点电荷 .试求圆弧形导线与点 电荷之间作用力( 引力或斥力) 的大小 .解 如图10 - 22 所示, 把点电荷置于原点,z 轴 垂直向下 , 圆弧形导线置于水平平面 z = a 上.根据库仑定律, 电量为 q 1 , q 2 的两个点电荷之间 的作用力( 引力或斥力) 的大小为kq 1 q 2F = ρ2, 其中ρ是两点电荷之间的距离,k 是库仑常数.图 10 - 22 把中心角为d θ的一小段导线圆弧看作一点电荷, 其电量为 d Q = δd s = δr d θ .它对点电荷 q 的作用力为d F = k · q d Q = ρ2k δrq a2 +r 2 d θ.把 d F 分解为 z 轴方向的垂直分力d F z 和水平方向的分力d F t .由于点电荷 位于圆弧导线的对称轴 Oz 上, 且导线上的电荷密度恒为常数, 因此水平分力 d F t 各向抵消.而d F z = d F ·cos θ =d F ·aa 2 + r 2= k δraq(a 2 + r 2 ) - 362/ d θ,于是垂直方向的合力为2πF z =d F z= 02πk δraq.( a 2+ r 2)362/这就是圆弧形导线与点电荷之间作用力的大小 .三 功与平均功率例4一圆锥形水池, 池口直径30 米, 深10 米, 池中盛满了水 .试求将全部 池水抽出池外需作的功 .解 为方便起见, 取坐标轴如图 10-23 所示 .由于抽出相同深度处单位体 积的水需作相同的功( 等于水的比重×深度) , 因此首先考虑将池中深度为 x 到V2V ∫2258第十章 定积分的应用x + Δx 的一薄层水ΔΩ抽至池口需作的功ΔW.当Δx 很小时, 把这一薄层水的 深度都看作 x , 并取ΔΩ的体积这时有Δ V ≈π 15 1 - x102Δx ,2Δ W ≈d W =πνx 15 1 - x10d x .从而将全部池水抽出池外需作的功为1 0 W = 225πν 0x 1 -x d x 10= 1 875πν.例5 在纯电阻电路( 图10 - 24) 中, 已知交流电压为V = V m sin ωt.图 10 -23图 10 - 24求在一个周期[0,T] T =2πω内消耗在电阻 R 上的能量W , 并求与之相当的直 流电压 .解 在直流电压 ( V = V 0 ) 下 , 功率 P =0 T2R, 那么在时间 T 内所作的功为W= PT = R.现在 V 为交流电压, 瞬时功率为V 2m 2P( t) = Rsin ωt .这相当于: 在任意一小段时间区间[ t ,t +Δt]Ì[ 0 ,T ] 上, 当Δt 很小时, 可把 V 近似看作恒为 V m sin ωt 的情形 .于是取功的微元为d W = P( t ) d t .并由此求得T 2π 22 W =∫ P (t)d t =∫ωVmπVmsin 2ωt d t =.0 RR ω而平均功率则为πV V m∫m *§6 定积分的近似计算259P = 1 2P( t )d t= ω· mT 0 2π R ω2( V 6/2)2= 2R = R. 上述结果的最末形式 , 表示交流电压 V = V m sin ωt 在一个周期上的平均功率与V m 直流电压珡V =的功率是相等的.故称珡V 为该交流电压的有效值.通常所说的2220 伏交流电 , 其实是V =220 2 sin ωt 的有效值.习 题1 .有一等腰梯形闸门,它的上、下两条底边各长为10米和6米,高为20米.计算当水面 与上底边相齐时闸门一侧所受的静压力.2 .边长为 a 和b 的矩形薄板,与液面成α(0<α<90°)角斜沉于液体中.设 a >b,长边平 行于液面,上沿位于深h 处,液体的比重为ν.试求薄板每侧所受的静压力.3. 直径为 6 米的一球浸入水中, 其球心在水平面下10 米处, 求球面上所受静压力 .4. 设在坐标轴的原点有一质量为 m 的质点, 在区间[ a , a +l] ( a > 0 ) 上有一质量为 M 的均匀细杆 .试求质点与细杆之间的万有引力 .5. 设有两条各长为 l 的均匀细杆在同一直线上, 中间离开距离 c, 每根细杆的质量为 M .试求它们之间的万有引力 .( 提示: 在第4 题的基础上再作一次积分 .)6. 设有半径为 r 的半圆形导线, 均匀带电, 电荷密度为δ, 在圆心处有一单位正电荷 .试 求它们之间作用力的大小 .7. 一个半球形( 直径为 20 米) 的容器内盛满了水 .试问把水抽尽需作多少功?8. 长10 米的铁索下垂于矿井中, 已知铁索每米的质量为 8 千克, 问将此铁索提出地面 需作多少功?9. 一物体在某介质中按 x =ct 3作直线运动, 介质的阻力与速度d x的平方成正比 .计算d t物体由 x = 0 移至 x = a 时克服介质阻力所作的功 .10 . 半径为 r 的球体沉入水中, 其比重与水相同 .试问将球体从水中捞出需作多少功?*§6 定积分的近似计算利用牛顿—莱布尼茨公式虽然可以精确地计算定积分的值,但它仅适用于 被积函数的原函数能够求得的情形 .如果这点办不到或者不容易办到, 这就要考 虑近似计算的方法 .在定积分的很多应用问题中, 被积函数甚至没有解析表达式 (只是一条实验记录曲线,或者是一组离散的采样值),这时只能采用近似方法去Tb260第十章 定积分的应用计算相应的定积分 .其实, 根据定积分的定义, 每一个积分和都可看做是定积分的一个近似值, 例如bnn∫f(x)d x ≈∑f(x i)Δxi或∑ f ( x i - 1)Δx i. (1)ai = 1i = 1在几何意义上,这是用一系列小矩形面积来近似小曲边梯形面积的结果.所以把这个近似算法称为矩形法.不过,只有当积分区间被分割得很细很细时,矩形法 才有一定的精确度.如果在分割的每个小区间上采用一次或二次多项式来近似替代被积函数, 那么可以期望获得比矩形法效果好得多的近似计算公式.下面的梯形法和抛物 线法就是这一想法的产物.一 梯形法将积分区间[ a , b] 作 n 等分, 分点依次为a= x 0 < x 1 < x 2 << x n = b,Δ x i =b - a.n相应的被积函数值记为y 0 , y 1 ,y 2, , y n (y i = f ( x i ) , i = 0 , 1 ,2, , n ). 并记曲线 y = f ( x ) 上相应的点为P 0 , P 1 ,P 2 ,, P n ( P i ( x i , y i ) , i = 0 , 1 ,2,, n ).将曲线上每一段弧 P i - 1 P i 用弦 P i - 1 P i 来替代, 这使得每个小区间[ x i - 1 , x i ] 上的曲边梯形换成了真正的梯形( 图 10 - 25) , 其面积为y i - 1 + y i2Δ x i , i = 1 ,2, , n. 于是, 各个小梯形面积之和就是曲边梯形面积的近似值, 即bn∫f ( x) d x ≈∑ y i - 1 + y i Δx i , a i=12 亦即∫f ( x) d x ≈b- a y 0 + y + y + + y y n+ . (2)a n 2 1 2 n-1 2称此近似式为定积分的梯形法公式 .二 抛物线法由梯形法求定积分的近似值, 当 y = f (x) 为凸曲线时偏大, 为凹曲线时偏 小 .如果每段曲线改用与它的凸性相接近的抛物线来近似时, 就可减少上述缺●2∫∫( x ) d x =∫(α 122 ∫∫1 *§6 定积分的近似计算261点 .下面介绍抛物线法 .图 10 -25图 10 - 26将积分区间[ a , b] 作2 n 等分( 图10- 26 ) , 分点依次为a= x 0 < x 1 < x 2 << x 2 n = b,Δ x i =b- a.2 n对应的被积函数值为y 0 , y 1 ,y 2,, y 2 n (y i =f ( x i ) , i = 0 , 1 ,2,, 2 n ). 曲线 y = f ( x ) 上的相应点为P 0 , P 1 ,P 2, , P 2 n ( P i ( x i , y i ) , i = 0 , 1 ,2,, n).现把区间[ x 0 , x 2 ] 上的曲线 y = f ( x ) 用通过三点P 0 ( x 0 , y 0 ) , P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 )的抛物线p 1( x ) =α1 x +β1 x +γ1 来近似替代,便有xx x2f ( x)d x ≈2p2xxx0 0x 2+ β x+γ1 )d x α1 33β122= 3 (x 2 - x 0 ) + 2 (x 2 - x 0 ) + γ1 (x 2 -x 0)x 2 - x 0 22=6[(α1 x 0 +β1 x 0 +γ1) + (α1 x 2 +β1 x 2 +γ1 ) +α1( x 0 + x 2) +2β1( x 0 + x 2) +4γ1 ] x 2 -x 0= 6 ( y 0 + y 2 + 4 y 1 ) = b - a 6n( y 0 + 4 y 1 + y 2 ) .最末第二步的得来是利用了 x 0 + x 2 = 2 x 1 .同样地,在[x 2i - 2 , x 2i ]上用p i ( x)=αi x +βi x +γi 替代曲线y = f( x),将得到x2 ix2 i - 2xf ( x ) d x ≈ 2ix 2 i - 2p i ( x ) d x = b - a( y 2 i -2 6 n + 4 y 2 i - 1 + y 2 i ) . 最后,按i =1,2,, n 把这些近似式相加 ,得到 b n x n∫f( x )d x = ∑∫2i f(x)d x ≈b - a ∑(y 2 i - 2+ 4 y 2 i - 1 + y 2 i ) ,a i =1 即x 2 i -26n i =1 1b1111262第十章 定积分的应用∫f ( x ) d x ≈b- a[ y 0 + y 2 n + 4( y 1 + y 3 ++ y 2 n - 1 ) + a6n2( y 2 + y 4 ++ y 2 n - 2 )].(3)这就是抛物线法公式, 也称为辛普森( Simpson) 公式 .1 作为例子,我们计算定积分∫d x的近似值.0 1 + x 2将区间[0 , 1 ] 十等分, 各分点上被积函数的值列表如下( 取七位小数) :1)用矩形法公式(1 ) 去计算: ( 取四位小数)∫d x11 + x2≈ 10 ( y 0 + y 1 + + y 9 ) = 0 .809 9( 或110 ( y 1 + y 2 ++ y 1 0 ) = 0 .760 0).2)用梯形法公式(2 ) 去计算: ( 取四位小数)∫d x1 y 0y 1 01 + x2≈10 2 + y 1 +y 2 + + y 9 + 2= 0 .785 0.3)用抛物线法公式(3 ) 去计算: ( 取七位小数)∫d x11 + x2≈ 30 [ y 0 + y 1 0 + 4( y 1 + y 3 ++ y 9 ) + 2 ( y 2 + y 4 ++ y 8 )]= 0 .785 398 2 .用准确值①∫d xπ1 + x2= arctg 1= 4 = 0 .785 39816与上述近似值相比较,矩形法的结果只有一位有效数字是准确的,梯形法的结果 有三位有效数字是准确的,抛物线法的结果则有六位有效数字是准确的.可见公式(3)明显地优于公式(2),更优于公式(1).关于定积分近似计算的误差估计, 在《数值分析》一类课程中必有详述, 这里 不再讨论 .①这里用一个很容易求得准确值的定积分作为近似计算的例子,主要的理由就是有准确值可以与近似值相比较.实际使用中不会有这样的事.212∑12∑i* §6 定积分的近似计算263 习题1 .分别用梯形法和抛物线法近似计算∫d x(将积分区间十等分) .1 xπ2 .用抛物线法近似计算∫s in x d x(分别将积分区间二等分、四等分、六等分) .0x3 . 图10 - 27 所示为河道某一截面图.试由测得数据用抛物线法求截面面积.图10 - 274 . 下表所列为夏季某一天每隔两小时测得的气温:(1) 按积分平均1b f ( t ) d t 求这一天的平均气温, 其中定积分值由三种近似法分别计算; b -∫a a12 12( 2) 若按算术平均1i= 1 C i - 1 或1 Ci= 1求得平均气温, 那么它们与矩形法积分平均和梯形法积分平均各有什么联系?简述理由.。
高等数学第10章第4节旋转曲面的面积
§4 旋转曲面的面积一 微元法用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这样的:设所求量 是一个与某变量(设为x )的变化区间 有关的量,且关于区间 具有可加性. 我们就设想把 分成n 个小区间,并把其中一个代表性的小区间记坐 , 然后就寻求相应于这个小区间的部分量 的近似值(做这一步的时候,经常画出示意图帮助思考),如果能够找到的形如 近似表达式(其中 为 上的一个连续函数在点x 处的值, 为小区间的长度),那么就把称为量 的元素并记做,即 dx x f dU )(= 以量 的元素作为被积表达式在 上进行积分,就得到所求量 的积分表达式:⎰badx x f )(例如求由两条曲线)(,)(21x f y x f y == (其中],[,21b a C f f ∈)及直线 b x a x ==, 所为成图形的面积A.容易看出面积元素dx x f x f DA |)()(|21-=于是得平面图形b x a x f y x f ≤≤≤≤,)()(21 的面积为⎰-=badx x f x f A |)()(|21采用微元法应注意一下两点:1)所求量 关于分布区间 具有代数可加性.2))()(x o x x f U ∆=∆-∆对于前面所讲过的平面图形的面积、立体体积、曲线弧长相应的微元分别为:x y s xx S V xy S ∆'+≈∆∆≈∆∆≈∆21)(||二 旋转体的侧面积设y =y(x)于[a,b]上非负,且连续可微,该曲线绕x 轴旋转后所得的旋转面的侧面积:2b aS π=⎰ 例1、 计算圆222R y x =+在],[],[21R R x x -⊂上的弧段绕x 轴旋转后所得的旋转面的侧面积. 例2、 计算由内摆线t a y t a x 33sin ,cos ==绕x 轴旋转后所得的旋转面的侧面积. 作业:P255 1(2)(3), 3(2)。
华东师范大学数学分析第10章
(5)r a sin3 3 (a 0,0
3 );
(6)r a ( a 0),0
2.
解
(1)s
b 1
y '2 ( x)dx
a
s
4 1
0
9 4
xdx
8 27
(10
10
1)
(2) x cos4 (t ), y sin4 t
s 2 x 't2 y '2t dt 0
2 4sin t cost cos4 t sin4 tdt 0
a 64
2
3
(3)
'( y)
[a
1
] y2
b2
a b
(1
) y2
1 2
b2
y,
[ '( y)]2
[
b a
(1
) y 2
b2
y]2
(1 a2
b2
y2 b2 )
1
y2
a2 b2
b2 y2 ( b ,
b
S2
( y) 1
b
'2 ( y)dy 2
b
y2
a1 b
b2
a2 y2 1 b2 y2 dx
5 10
x
1 2
x
从而它的面积为
1 2
x
1 2
x
xOz平面上椭圆方程为
1 4
x2
x2 10
z2 42
1
则 PQR 面积为 25 1
Z2 42
于是所求体积
V
4 2 25 1
0
dz z2
42
2 | 25z 100 z2 4
16
30
第十章(10.4)旋转曲面面积
64 2 a 3
前页 后页 返回
例 求心脏线 r a(1 cos ) 绕极轴旋转所得曲 面的面积. 解 将曲线用参数方程表示:
x r cos a(1 cos )cos , y r sin a(1 cos )sin .
于是
前页 后页 返回
S 2π r sin r 2 r 2 d
[ xi 1 , xi ] ( i 1 ~ n), 则 A
i 1 n
Ai
step2. 近似: i [ xi 1 , xi ],
计算 Ai f ( i ) xi
( i 1~n)
前页 后页 返回
求和:
A f ( i )x i
i 1
n
n
A lim step3. 取极限: f ( i )xi 即 A f ( x )dx 0
把弹簧拉长0.1m,求力所做的功。 【解】根据物理学虎克 定律:
F
F ( x ) kx
( x 0)Байду номын сангаас
0
0.1
当x = 0.01时,F = 5 N = k×0.01 m
5 k 500 0.01
(N )
前页 后页 返回
F ( x ) 500 x
dW ( x )dx 500 xdx
2 a(1 cos )sin a 2 (1 cos )2 a 2 sin 2 d
0
π
2πa
2
0 (1 cos )sin 2cos 2 d
2
π
16πa
0 cos
1 4
π
4
数学分析课程简介
数学分析课程简介课程编码:21090031-21090033课程名称:数学分析英文名称:Mathematical Analysis课程类别:学科基础课程课程简介:数学分析俗称:“微积分”,创建于17世纪,直到19 世纪末及20世纪初才发展为一门理论体系完备,内容丰富,应用十分广泛的数学学科。
数学分析课是各类大学数学与应用数学专业、信息与计算科学专业最主要的专业基础课。
是进一步学习复变函数论、微分方程、微分几何、概率论、实变分析与泛函分析等后继课程的阶梯,是数学类硕士研究生的必考基础课之一。
本课程基本的内容有:极限理论、一元函数微积分学、级数理论、多元函数微积分学等方面的系统知识,用现代数学工具——极限的思想与方法研究函数的分析特性——连续性、可微性、可积性。
极限方法是贯穿于全课程的主线。
课程的目的是通过三个学期学习和系统的数学训练,使学生逐步提高数学修养,特别是分析的修养,积累从事进一步学习所需要的数学知识,掌握数学的基本思想和方法,培养与锻炼学生的数学思维素质,提高学生分析与解决问题的能力。
教材名称:数学分析教材主编:华东师范大学主编(第四版)出版日期:2010 年6 月第四版出版社:高等教育出版社数学分析1》课程教学大纲(2010 级执行)课程代号:21090031总学时:80学时(讲授58学时,习题22学时)适用专业:数学与应用数学、信息与计算科学先修课程:本课程不需要先修课程,以高中数学为基础一、本课程地位、性质和任务本课程是本科数学与应用数学专业、信息与计算科学专业的一门必修的学科基础课程。
通过本课程的教学,使学生掌握数学分析的基本概念、基本理论、思想方法,培养学生解决实际问题的能力和创新精神,为学习后继课程打下基础。
二、课程教学的基本要求重点:极限理论;一元函数微分学及贯穿整个课程内容的无穷小分析的方法。
基本要求:掌握极限、函数连续性、可微等基本概念;掌握数列极限、函数极限;闭区间连续函数性质;熟练掌握函数导数、微分的计算及应用;掌握微分中值定理及其应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4 旋转曲面的面积(一) 教学目的:理解微元法的基本思想和方法,掌握旋转曲面的面积计算公式.(二) 教学内容:旋转曲面的面积计算公式.基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式. (三) 教学建议: 要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积. ————————————————————一 微元法 用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这样的:设所求量 是一个与某变量(设为x )的变化区间 有关的量,且关于区间 具有可加性. 我们就设想把 分成n 个小区间,并把其中一个代表性的小区间记坐, 然后就寻求相应于这个小区间的部分量 的近似值(做这一步的时候,经常画出示意图帮助思考),如果能够找到 的形如 近似表达式(其中 为上的一个连续函数在点x 处的值, 为小区间的长度),那么就把 称为量 的元素并记做 ,即dx x f dU )(=以量 的元素作为被积表达式在 上进行积分,就得到所求量 的积分表达式:⎰badx x f )(例如求由两条曲线)(,)(21x f y x f y == (其中],[,21b a C f f ∈)及直线 b x a x ==, 所为成图形的面积A.容易看出面积元素dx x f x f DA |)()(|21-=于是得平面图形b x a x f y x f ≤≤≤≤,)()(21 的面积为⎰-=badx x f x f A |)()(|21采用微元法应注意一下两点:1)所求量 关于分布区间 具有代数可加性.2))()(x o x x f U ∆=∆-∆对于前面所讲过的平面图形的面积、立体体积、曲线弧长相应的微元分别为:xy s x x S V xy S ∆'+≈∆∆≈∆∆≈∆21)(||二 旋转曲面的面积§5 定积分在物理中的某些应用(一) 教学目的:掌握定积分在物理中的应用的基本方法.(二) 教学内容:液体静压力;引力;功与平均功率.基本要求:(1)要求学生掌握求液体静压力、引力、功与平均功率的计算公式.(2) 较高要求:要求学生运用微元法导出求液体静压力、引力、功与平均功率的计算公式.(三) 教学建议:要求学生必须理解和会用求液体静压力、引力、功与平均功率的计算公式.——————————————————————————1 变力沿直线所作的功从物理学知道,如果物体在做直线运动的过程中受到常力F 作用,并且力F 的方向与物体运动的方向一致,那么,当物体移动了距离s 时,力F 对物体所作的功是 FS W =如果物体在运动过程中所受到的力是变化的,那么就遇到变力对物体作功的问题,下面通过例1说明如何计算变力所作的功例1 把一个带电量为 的点电荷放在 轴的原点 处,它产生一个电场,并对周围的电荷产生作用力,由物理学知道,如果有一个单位正电荷放在这个电场中距离原点 为 的地方,那么电场对它的作用力的大小为2r qk F =( 是常数),如图,当这个单位正电荷在电场中从 处沿 轴移动到)(b a b r <=处时,计算电场力 对它所做得功.解 在上述移动过程中,电场对这个单位正电荷的作用力是不断变化的,取 为积分变量,它的变化区间为 ,在 上任取一小区间 ,当单位正电荷从 移动到时,电场力对它所作的功近似于dr r kq2,从而得功元素为于是所求的为例2 某水库的闸门形状为等腰梯形,它的两条底边各长10m 和6m,高为20m,较长的底边与水面相齐,计算闸门的一侧所受的水压力。
解 如图3.9.2 以闸门的长底边的中点为原点且铅直向下作 轴,取 为积分变量,它的变化范围为 .在 上任取一个小区间 ,闸门上相应于该小区间的窄条各点处所受到水的压强近似于)/(2m kN xg ,这窄条的长度近似为510x,高度为 ,因而这一窄条的一侧所受的水压力近似为这就是压力元素,于是所求的压力为例3 设有一根长度为 、线密度为 的均匀细直棒,在其中垂线上距棒 单位处有一质量为 的质点。
试计算该棒对质点 的引力解 取坐标系如图3.9.3所示,使棒位于 轴上,质点 位于 轴上,棒的中点为原点 ,取 为积分变量,它的变化区间为 。
在 上任取一小区间,把细直棒上相应于 的一段近似的看成质点,其质量为 ,与相距 ,因此可以按照两质点间的引力计算公式求出这段细直棒对质点 的引力 的大小为从而求出 在水平方向分力 的近似值,即细直棒对质点 的引力在水平方向分力x F 的元素为 2/322)(y a dyam k dF x +-=ρ于是得到引力在水平方向的分力为上式中的负号表示 指向 轴的负向,又由对称性知,引力在铅直方向分力为平均值内容概述:本节介绍函数的平均值求法学习时数:2学习目标:了解平均值的求法学习要点:函数的算术平均值、函数的加权平均值、函数的均方平均值学习基础:微积分基本定理函数的算术平均值在实际问题中,常常用一组数据的算术平均值来描述这组数据的概貌。
例如,对某一零件的长度进行次 测量,测得的值为 。
这时,可以用 的算术平均值作为这一零件的长度的近似值。
但是,在工程技术与自然科学中,有时还要考虑一个连续函数在区间 上所取得“一切值”的平均值。
例如求交流电在一个周期上的平均功率就是这样的例子。
下面就来讨论如何规定即计算连续函数 在区间 上的平均值。
先把区间 分成 等分,设分点为每个小区间的长度为)1,,2,1(-=-=∆n i n ab x i ,设在这些分点处 的函数值依次为 n y y y ,,,21 ,那么可以用n y y y ,,,21 的平均值来近似表达函数 在 上所取的"一切值"的平均值,如果 取的比较大,那么上述平均值就能比较确切地表达函数 在 上所取的"一切值"的平均值.因此自然地,我们就称极限为函数 在区间 上的算术平均值(简称平均值).现在因此得连续函数 在区间 上的平均值 等于函数 在区间 上的定积分除以区间 的长度 , 即(3.10.2)请读者注意我们是怎样从有限多个数值的算术平均值的概念出发,演化出连续函数在一个区间上的平均值的定义的,其中关键之举是使用了极限方法.函数的加权平均值我们以商业中的一个问题为例来讨论函数的加权平均.假设某商店销售某种商品,以每单位商品售价 元,销售了 各单位商品,调整价格后以每单位商品售价 元, 销售了 个单位商品. 那么,在整个销售过程中, 这种上平的平均售价为212211q q q p q p ++ (元)这种平均成为加权平均. 一般地设n y y y ,,,21 为实数, n k k k ,,,21 ,称为n y y y ,,,21 关于n k k k ,,,21 的加权平均值,其中n y y y ,,,21 称为资料数据n k k k ,,,21 称为权数. 当),,2,1(1n i k i == 时, 加权平均就是算术平均。
现在我们讨论连续变量的情形. 假设某商店销售某种商品, 在时间段 内, 该商品的售价与单位时间内的销售量都与时间有关. 如果已知在时刻 时, 售价 , 单位时间内的销售量 , 那么如何计算这种商品在时间段上的平均售价呢? 下面我们用元素法分析, 并且给出他的计算方法.在区间上任取一小区间 . 在这短暂的时间间隔内, 这种商品的售价近似于 , 销售的数量近似于 , 因此, 在这段短暂的时间间隔内, 销售这种商品所得到的收益近似于,这就是在这段时间内销售这种商品所得收益的元素于是, 在这段时间内销售这种商品的总收益与销售总量分别为⎰=2 1)( )(TTdttqtpR与⎰=21)(TTdt tqQ从而这段时间内这种商品的平均售价为一般地,如果 , , 且那么成为函数关于权数在区间上的加权平均值.若令 , 加权平均就变成了算术平均积分学的背景积分学的工作由求面积开始.早在古希腊时期,阿基米德就求过抛物线下的方形面积.我国刘徽的割圆术,也是同一思想.18世纪英国伟大的物理学家、数学家牛顿从运动学的角度出发创立了微积分学.他认为线是点连续运动的结果,运动质点的轨迹是一条曲线;变量就是量的连续运动,变量的无穷小增量为"瞬",他给出了求一个变量关于时间的瞬时变化率的普遍方法,并且证明了面积可以由求变化率的逆过程得到.与牛顿几乎是同时创立微积分的德国数学家莱布尼兹是从几何学的角度来考虑问题的.他很早就意识到,求曲线的切线的斜率依赖于纵坐标的差值与横坐标的差值之比,而求面积则依赖于在横坐标上无穷小区间的纵坐标之和或无限窄矩形之和.并且这种求差与求和的运算是互逆的.由此可知,莱布尼兹是将微分看承变量相邻无限小的差,而积分则是由变量分成无穷多微分之和.他引进了记号" "," "表示微分," "表示积分, 和 是互逆定积分 问题1: 曲边梯形的面积 问题2:变速直线运动的路存在定理 广义积分定积分 的性质 定积分的计算法 牛顿-莱布尼茨公式 )()()(a F b F dx x f ba -=⎰定积分小结莱布尼兹 刘 辉的运算.莱布尼兹是历史上最伟大的符号数学家之一,他所创立的微积分符号对飞机粉的传播和发展产生了很大的影响,并且一直沿用至今.下面我们来看看微积分名称的由来.牛顿称微积分为流数法(fluxious),这个名称后来逐渐被淘汰了.莱布尼兹使用"差的计算"(Calculus differentialis)与"求和运算"(Calculus summatorius)的术语.莱布尼兹的朋友瑞士数学家约翰 伯努利主张把"求和运算"改为"求整运算",它就成为专门术语"积分学"(integral calcullus)的来源.两者合起来叫做微积分,英文里简称"Calculus",在本章和下一章里,我们分别来学习不定积分(Indefinite integral calculus)和定积分(Definite integral calculus)牛 顿(I.Newton 1642.12.25—1727.3.3)英国数学家和物理学家出生在一个农民家庭,出生前父亲就去世了,三岁时母亲改嫁,由外祖母抚养。
1661年入剑桥大学,1665年获学士学位,1668年获硕士学位。
由于他出色的成就,1669年巴鲁(Barrow )把数学教授的职位让给年仅26岁的牛顿。