数字信号处理实验报告

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验一 实验报告

数字信号处理实验一 实验报告

数字信号处理实验一1.完成本文档内容的自学阅读和其中各例题后子问题;Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

答: clf;n=-10:20;u=[zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([-10 20 0 1.2])Q1.2命令clf,axis,title,xlabel和ylabel的作用是什么?答:clf清除图对象,axis 控制轴刻度和风格的高层指令,title 设置图名,xlabel和ylabel设置横纵坐标轴名称。

Q1.3修改程序P1.1以产生带有延时11个单位样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

答:clf;n=0:30;ud=[zeros(1,11) 1 zeros(1,19)];stem(n,ud);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([0 30 0 1.2])Q1.4修改程序P1.1以产生单位步长序列s[n].运行修改后程序并显示产生的序列。

答:clf;n = 0:30;u = [1.*n];stem(n,u);title('Unit Sample Sequence');axis([0 30 0 30])Q1.5修改程序P1.1,以产生带有超前7个样本的延时单位阶跃序列sd[n]。

运行修改后的程序并显示产生的序列。

答:clf;n = -15:30;s=[zeros(1,8) ones(1,38)];stem(n,s);xlabel('Time index n');ylabel('Amplitude'); title('Unit Sample Sequence');axis([-15 30 0 1.2]);Q1.6 运行程序P1.2,以产生复数值的指数序列。

数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建实验二信号的采样与重建一.实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。

(2)通过实验,了解数字信号采样转换过程中的频率特征。

(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。

二.实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。

Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t)+10sin(660pi*t)观察采样后信号的混叠效应。

程序:clear,close all, t=0:0.1:20; Ts=1/2; n=0:Ts:20;V=8*cos(0.3*pi*t)+5*cos(0.5*pi*t+0.6435)-10*sin(0.7*pi*t);Vn=8*cos(0.3*pi*n)+5*cos(0.5*pi*n+0.6435)-10*sin(0.7*pi*n); subplot(221)plot(t,V), grid on,subplot(222) stem(n,Vn,'.'), grid on,40200-20-4040200-20-400510152021101520(2)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。

分别显示输入输出序列在时域和频域中的特性。

程序:clear;N=100; M=2;f1=0.043; f2=0.31; n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n); y1=x(1:2:100);y2=decimate(x,M,'fir'); figure(1);stem(n,x(1:N));title('input sequence'); xlabel('n');ylabel('fudu'); figure(2); n=0:N/2-1; stem(n,y1);title('output sequence without LP'); xlabel('n');ylabel('fudu'); figure(3); m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP'); xlabel('n');ylabel('fudu'); figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence');xlabel('w');ylabel('fudu'); figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu'); figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');input sequence21.510.5fudu0-0.5-1-1.5-202120304050n60708090100output sequence without LP21.510.5fudu0-0.5-1-1.5-20510152025n3035404550output sequence with LP1.510.5fudu0-0.5-1-1.50510152025n3035404550frequency spectrum of the inputsequence5045403530fudu252021105000.511.5wfrequency spectrum of the output sequence without LP3022.533.52520fudu15105000.511.5w22.533.5感谢您的阅读,祝您生活愉快。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

DSP(数字信号处理)实验报告2

DSP(数字信号处理)实验报告2

本科学生实验报告学号124090314 姓名何胜金学院物电学院专业、班级12电子实验课程名称数字信号处理(实验)教师及职称杨卫平开课学期第三至第四学年下学期填报时间2015 年 3 月 1 9 日云南师范大学教务处编印2.产生幅度调制信号x[t]=cos(2t)cos(200t),推导其频率特性,确定抽样频率,并会出波形。

程序: clc,clear,close all t=[0:0.01:5];x=cos(2*pi*t).*cos(200*pi*t); plot(t,x);clc,clear,close allt0=0:0.001:0.1;x0=0.5*(cos(202*pi*t0)+cos(198*pi*t0)); plot(t0,x0,'r') hold on fs=202;t=0:1/fs:0.1;x=0.5*(cos(202*pi*t)+cos(198*pi*t)); stem(t,x);3.对连续信号x[t]=cos(4t)进行抽样以得到离散序列,并进行重建。

(1)生成信号x(t),时间为t=0:0.001:4,画出x(t)的波形。

程序clc,clear,close all t0=0:0.001:3; x0=cos(4*pi*t0); plot(t0 ,x0,'r');(2)以faam=10HZ对信号进行抽样,画出在0≤t≤1范围内的抽样序列,x[k],利用抽样内插函数恢复连续时间信号,画出重逢信号的波形。

程序:clc,clear,close all t0=0:0.001:3; x0=cos(4*pi*t0); plot(t0,x0); hold onfs=10;t=0:1/fs:3; x=cos(4*pi*t); stem(t,x);4.若x[k]是对连续信号x(t)=cos(0.5t)以samf=2Hz抽样得到的离散序列,如何通过在抽样点之间内插,恢复原连续时间信号x(t)?程序:clc,clear,close all t=0:0.0001:4; x=cos(0.5*pi*t); plot(t,x); Figure1:clc,clear,close allt=0:0.0001:4; x=cos(0.5*pi*t); subplot(2,1,1); plot(t,x);t0=0:0.5:4;x0=cos(0.5*pi*t0); subplot(2,1,2); stem(t0,x0);5.已知序列x[k]={1,3,2,-5;k=0,1,2,3},分别取N=2,3,4,5对其频谱X(e j)进行抽样,再由频域抽样点恢复时域序列,观察时域序列是否存在混叠,有何规律?k=[0,1,2,3]; x=[1,3,2,-5]; n=100;omega=[0:n-1]*2*pi/n;X0=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,1);stem(k,x);title('原序列');subplot(3,4,2);plot(omega./pi,abs(X0));title('序列的频谱 N=100');N=2;omega=[0:N-1]*2*pi/N;X1=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,5);stem(omega./pi,abs(X1));title('频域抽样 N=2');rx1=real(ifft(X1)); subplot(3,4,9);stem(rx1);title('时域恢复');N=3;omega=[0:N-1]*2*pi/N;X2=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,6);stem(omega./pi,abs(X2));title('频域抽样 N=3');rx2=real(ifft(X2)); subplot(3,4,10);stem(rx2);title('时域恢复');N=4;omega=[0:N-1]*2*pi/N;X3=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,7);stem(omega./pi,abs(X3));title('频域抽样 N=4');rx3=real(ifft(X3)); subplot(3,4,11);stem(rx3);title('时域恢复');。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

数字信号处理实验报告 (实验四)

数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。

2. 运用MA TLAB 验证离散时间傅立叶变换的性质。

二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。

由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。

在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。

为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。

例3.1 运用MA TLAB 画出以下系统的频率响应。

y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。

在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。

在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。

通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。

接着,我们进行了数字信号滤波的实验。

滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。

在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。

除了滤波,我们还进行了数字信号变换的实验。

数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。

在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。

我们进行了数字信号解调的实验。

数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。

在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。

总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。

数字信号处理实验报告 (3)

数字信号处理实验报告 (3)

数字信号处理实验报告13050Z011305024237数字信号处理实验报告实验一 采样定理(2学时) 内容:给定信号为()exp()cos(100**)x t at at π=-,其中a 为学号, (1)确定信号的过采样和欠采样频率(2)在上述采样频率的条件下,观察、分析、记录频谱,说明产生上述现象的原因。

基本要求:验证采样定理,观察过采样和欠采样后信号的频谱变化。

a=37; %1305024237 fs=10000; %抽样频率 t=0:1/fs:0.05;x1=exp(-a*t).*cos(100*pi*a*t);N=length(x1); %信号时域横轴向量 k=(0:N-1); %信号频域横轴向量 Y1=fft(x1); Y1=fftshift(Y1); subplot(2,1,1); plot(t,x1);hold on ; stem(t,x1,'o'); subplot(2,1,1); plot(k,abs(Y1)); gtext('1305024237');051015201305024237 刘德文a=37; %1305024237 fs=800; %抽样频率 t=0:1/fs:0.05;x1=exp(-a*t).*cos(100*pi*a*t);N=length(x1); %信号时域横轴向量 k=floor(-(N-1)/2:(N-1)/2); %信号频域横轴向量 Y1=fft(x1); Y1=fftshift(Y1); subplot(2,1,1); plot(t,x1);hold on ; stem(t,x1,'o'); subplot(2,1,2); plot(k,abs(Y1)); title('1305024237 ');0.0050.010.0150.020.0250.030.0350.040.0450.05-20-15-10-50510152005101305024237 刘德文实验二 信号谱分析(2学时) 内容: 给定信号为:(1)()cos(100**)x t at π= (2)()exp()x t at =-(3)()exp()cos(100**)x t at at π=-其中a 为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告西南交通大学信息科学与技术学院姓名:伍先春学号:20092487班级:自动化1班指导老师:张翠芳实验一序列的傅立叶变换实验目的进一步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅立叶变换(FFT )的应用。

实验步骤1. 复习DFS 和DFT 的定义,性质和应用;2. 熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;利用提供的程序例子编写实验用程序;按实验内容上机实验,并进行实验结果分析;写出完整的实验报告,并将程序附在后面。

实验内容1. 周期方波序列的频谱试画出下面四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。

2. 有限长序列x(n)的DFT(1) 取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2) 将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3) 取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。

利用FFT进行谱分析 已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。

请分别画出N=45; N=50;N=55;N=60时的幅值曲线。

数字信号处理实验一1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=⎩⎨⎧-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验二 用双线性变换法设计IIR 数字滤波器 一、 实验目的1. 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法; 2. 掌握数字滤波器的计算机仿真方法;3.通过观察对实际心电图的滤波作用,获得数字滤波器的感性知识。

数字信号处理实验报告MATLAB

数字信号处理实验报告MATLAB

数字信号处理实验报告姓名:班级:09电信一班学号:2)]得下图二,图二图一3.将如下文件另存为:sigadd.m文件function [y,n] = sigadd(x1,n1,x2,n2)% 实现y(n) = x1(n)+x2(n)% -----------------------------% [y,n] = sigadd(x1,n1,x2,n2)% y = 在包含n1 和n2 的n点上求序列和,% x1 = 在n1上的第一序列% x2 = 在n2上的第二序列(n2可与n1不等)n = min(min(n1),min(n2)):max(max(n1),max(n2)); % y(n)的长度y1 = zeros(1,length(n)); y2 = y1; % 初始化y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % 具有y的长度的x1y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % 具有y的长度的x2y = y1+y2;在命令窗口输入:x1=[1,0.5,0.3,0.4];n1=-1:2;x2=[0.2,0.3,0.4,0.5,0.8,1];n2=-2:3; [y,n] = sigadd(x1,n1,x2,n2)得:y =n=-1:10;x=sin(0.4*pi*n);y=fliplr(x);n1=-fliplr(n);subplot(2,1,1),stem(n,x) subplot(2,1,2),stem(n1,y在命令窗口键入:n=-1:10; x=sin(0.4*pi*n);n (samples)实验结果:1.(1)在命令窗口输入:tic; [am,pha]=dft1(x)N=length(x);w=exp(-j*2*pi/N);for k=1:Nsum=0;for n=1:Nsum=sum+x(n)*w^((k-1)*(n-1));endam(k)=abs(sum);pha(k)=angle(sum);end;toc得到如下结果:am =Columns 1 through 11120.0000 41.0066 20.9050 14.3996 11.3137 9.6215 8.6591 8.1567 8.0000 8.1567 8.6591Columns 12 through 169.6215 11.3137 14.3996 20.9050 41.0066pha =Columns 1 through 110 1.7671 1.9635 2.1598 2.3562 2.5525 2.7489 2.9452 3.1416 -2.9452 -2.7489Columns 12 through 16-2.5525 -2.3562 -2.1598 -1.9635 -1.7671Elapsed time is 0.047000 seconds.(2)在命令窗口输入:tic;[am,pha]=dft2(x)N=length(x);n=[0:N-1];k=[0:N-1];w=exp(-j*2*pi/N);nk=n’*k;wnk=w.^(nk); Xk=x*wnk; am= abs(Xk); pha=angle(Xk); toc得到下图:figure(1)00.10.20.30.40.50.60.70.80.91signal x(n), 0 <= n <= 99(2)在命令窗口键入:n3=[0:1:99];y3=[x(1:1:10) zeros(1,90)]; %添90个零。

数字信号处理课程实验报告

数字信号处理课程实验报告

数字信号处理课程实验报告课题名称:IIR滤波器相位校正实验一、实验内容与分析1、实验目的和内容1)利用MATLAB设计一个IIR滤波器;2)结合课本关于全通滤波器特性知识(课本p128),在IIR滤波器后级联一个全通相位滤波器进行相位校正,使此滤波器最终实现线性相位特性;3)分别使用相位校正前后两滤波器实现对某一信号的处理;4)画出IIR滤波器、全通滤波器、相位校正后滤波器的幅度频率特性曲线、相位频率特性曲线,信号时域波形、信号的幅度频率特性曲线、相位频率特性曲线;5)详述实验设计原理,分析相位校正前后两类滤波器对信号处理后的区别。

2、实验的分析1)、IIR滤波器的设计通过对实验内容的理解,我们首先需要设计一个IIR滤波器,对课本第六章的学习我们知道IIR数字滤波器有两种设计方法:间接设计法和直接设计法。

间接设计法中有巴特沃斯滤波器,切比雪夫I型、II型滤波器,椭圆滤波器和贝塞尔滤波器五种。

我们选择设计切比雪夫II型低通滤波器,其中的技术指标为:通带边界频率fp=1000Hz,阻带边界频率fs=2000 Hz,阻带最小衰减As=40 dB,通带最大衰减Ap=1 dB。

2)全通滤波器的设计全通滤波器的幅度特性是在整个频带上均等于常数,或者等于1.信号通过全通滤波器后,其输出的幅度特性保持不变,仅相位发生变化。

由于IIR滤波器后需要级联一个全通相位滤波器,使整个系统实现线性相位特性,为了求解全通滤波器的参数,我们先假设整个系统具有线性相位特性,再根据已经设计好了的切比雪夫II 型滤波器的系统参数,求解全通滤波器的参数。

二、实验的过程1、切比雪夫II型滤波器的设计过程在确定了滤波器的参数之后,我们运用cheb2ord函数计算模拟低通滤波器的最小阶数;然后用cheby2计算滤波器传输函数的系数。

然后运用脉冲响应不变法将模拟低通滤波器转换成数字滤波器。

这样我们就设计出了满足给定参数的切比雪夫II型滤波器。

数字信号处理实验报告

数字信号处理实验报告

《数字信号处理》实验报告实验一:Z 变换及离散时间系统分析给定系统)8.0/(2.0)(2+-=z z H ,编程并绘出系统的单位阶跃响应y(n),频率响应)e (jw H 。

给出实验报告。

实验代码clear;x=ones(100); t=1:100;b=[0 0 -0.2 ]; a=[1 0 0.8]; y=filter(b,a,x); (t,x,'r.',t,y,'k-'); grid on ;ylabel('x(n) and y(n)') xlabel('n')单位阶跃响应单位抽样:b=[0 0 -0.2 ]; a=[1 0 0.8];[h,t]=impz(b,a,70);stem(t,h, '.')幅頻,相频b=[0 0 -0.2 ];a=[1 0 0.8];[H,w]=freqz(b,a,256,1);Hr=abs(H);Hphase=angle(H);Hphase=unwrap(Hphase); subplot(211)plot(w,Hr);grid on;ylabel(' 幅频.')subplot(212)plot(w,Hphase);grid on; ylabel(' 相频')零极点图:b=[0 0 -0.2 ];a=[1 0 0.8];subplot(221);zplane(b,a);实验二:快速傅里叶变换设x(n)由三个实正弦组成,频率分别是8Hz,9Hz,10Hz,抽样频率为60 Hz,时域取256点,作FFT变换,观察波形,给出实验报告。

实验代码:clear all;N=256;f1=8;f2=9;f3=10;fs=60;w=2*pi/fs;x=sin(w*f1*(0:N-1))+sin(w*f2*(0:N-1))+sin(w*f3*(0:N-1)); subplot(3,1,1);plot(x(1:N/4));f=-0.5:1/N:0.5-1/N;X=fft(x);=ifft(X);(3,1,2);plot(f,fftshift(abs(X)));subplot(3,1,3);plot(real(y(1:N/4)));实验三:无限冲击响应数字滤波器设计设计一个数字带通滤波器,参数自定。

数字信号处理实验报告(全)

数字信号处理实验报告(全)

实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一1.分析并绘出常用函数(a) 锯齿波; (b) 三角波; (c) 方波; (d) 抽样函数 的时域特性波形. 程序:clear allª¤ t=0:0.0001:0.1;x1=sawtooth(2*pi*50*t); %产生五个周期锯齿波 subplot(221) plot(t,x1)title('锯齿波110900623') xlabel('t')x2=sawtooth(2*pi*50*t,0.5); %产生五个周期三角波 subplot(222) plot(t,x2) xlabel('t')title('三角波110900623')x3=square(2*pi*50*t); %产生十个周期方波 subplot(223) plot(t,x3) xlabel('t')title('方波110900623') axis([0,0.1,-1.2,1.2]) t=-4:0.1:4;x4=sinc(t); %产生抽样信号 subplot(224) plot(t,x4) xlabel('t')axis([-5,5,-0.5,0.5]) title('抽样信号110900623')-1-0.500.51锯齿波110900623t-1-0.500.51t三角波110900623-1-0.500.51t方波110900623-0.50.5t抽样信号1109006232.分析并绘出常用窗函数时域特性波形. clear ally1=boxcar(80); %矩形窗 plot(y1,'k')axis([-1,81,-0.2,1.2]) gtxst(‘矩形窗’) hold ony2=triang(80); %三角窗 plot(y2,'m.') hold ony3=hanning(80); %汉宁窗 plot(y3,'y*') gtxst(‘汉宁窗’) hold ony4=hamming(80); %海明窗 plot(y4,'r-') gtxst(‘海明窗’) hold ony5=blackman(80); %布莱克曼窗 plot(y5,'g:')gtxst(‘布莱克曼窗’) hold ony6=kaiser(80,7.865);%凯塞-贝尔窗 plot(y6,'b-.')gtxst(‘凯塞-贝尔窗’)title('常用窗函数110900623')01020304050607080-0.20.20.40.60.81窗常用窗函数110900623实验二容:1.计算序列x(n)=[1,2,3,4,5],与序列h(n)=[2,-2,3,5]的线性卷积和6点、8点和10点圆周卷积. xn=[1,2,3,4,5];hn=[2,-2,3,5];yln=conv(xn,hn);ycn1=circonv2(xn,hn,6);ycn2=circonv2(xn,hn,8);ycn3=circonv2(xn,hn,10);ny0=[0:1:length(yln)-1];ny1=[0:1:length(ycn1)-1];ny2=[0:1:length(ycn2)-1];ny3=[0:1:length(ycn3)-1];subplot(2,2,1);stem(ny0,yln)ylabel('线性卷积')subplot(2,2,2);stem(ny1,ycn1);ylabel('圆周卷积6')subplot(2,2,3);stem(ny2,ycn2)ylabel('圆周卷积8')subplot(2,2,4);stem(ny3,ycn3)ylabel('圆周卷积10')axis([0,10,0,40]);function yc=circonv2(x1,x2,N) %子程序1if length(x1)>Nerror('N must not be less than length of x1');endif length(x2)>Nerror('N must not be less than length of x2');endx1=[x1,zeros(1,N-length(x1))];x2=[x2,zeros(1,N-length(x2))];n=[0:1:N-1];x2=x2(mod(-n,N)+1);H=zeros(N,N);for n=1:1:NH(n,:)=cirshiftd(x2,n-1,N);endyc=x1*H';function y=cirshiftd(x,m,N) %子程序2if length(x)>Nerror('the length of x must be less than N');endx=[x,zeros(1,N-length(x))]; n=[0:1:N-1]; y=x(mod(n-m,N)+1);线性卷积110900623圆周卷积6110900623圆周卷积8110900623圆周卷积101109006232.某序列为使用FFT 函数分析其频谱.利用不同宽度N 的矩形窗截短该序列,N 分别为20,40,160,观察不同长度N 的窗对谱分析结果的影响. clear all N=20; n=0:N-1;xn=0.5*cos(11*pi*n/20)+cos(9*pi*n/20); XK=fft(xn,N); magXK=abs(XK); phaXK=angle(XK); subplot(3,2,1) plot(n,xn)xlabel('n');ylabel('x(n)'); title('x(n)时域 N=20'); subplot(3,2,2)k=0:length(magXK)-1; stem(k,magXK,'g.');xlabel('k');ylabel('|X(k)|'); title('X(k) N=20'); hold on N=40; n=0:N-1;119()0.5cos cos 2020x n n n ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭xn=0.5*cos(11*pi*n/20)+cos(9*pi*n/20); XK=fft(xn,N); magXK=abs(XK); phaXK=angle(XK); subplot(3,2,3) plot(n,xn)xlabel('n');ylabel('x(n)'); title('x(n)时域 N=40'); subplot(3,2,4)k=0:length(magXK)-1; stem(k,magXK,'m.'); xlabel('k');ylabel('|X(k)|'); title('X(k) N=40'); hold on N=160; n=0:N-1;xn=0.5*cos(11*pi*n/20)+cos(9*pi*n/20); XK=fft(xn,N); magXK=abs(XK); phaXK=angle(XK); subplot(3,2,5) plot(n,xn)xlabel('n');ylabel('x(n)'); title('x(n)时域 N=160'); subplot(3,2,6)k=0:length(magXK)-1; stem(k,magXK,'b.');xlabel('k');ylabel('|X(k)|'); title('X(k) N=160');-202nx (n )x(n)时域 N=20k|X (k )|X(k) N=20-202nx (n )x(n)时域 N=40k|X (k )|X (k) N=40-202nx (n )x(n)时域 N=160k|X (k )|X (k) N=160实验三:1.用巴特沃斯滤波器设计一个数字低通滤波器,要求在0-0.2π衰耗不大于3dB,在0.6 π –π衰耗不小于60dB ,采样频率Fs=500 Hz. wp=500*0.2*pi; ws=500*0.6*pi; Rp=3; Rs=60; Fs=500; Ts=1/Fs; %参数设计[N,Wn]=buttord(wp,ws,Rp,Rs,'s'); %?模拟巴特沃斯低通滤波器 [Z,P,K]=buttap(N);%°把滤波器零极点模型转化为传递函数模型 [Bap,Aap]=zp2tf(Z,P,K);%°把模拟滤波器原型转化为截止频率为wn 的低通滤波器 [b,a]=lp2lp(Bap,Aap,Wn);%双线性变换法实现模拟滤波器到数字滤波器转换 [bz,az]=bilinear(b,a,Fs); %绘制频率响应图 [H,W]=freqz(bz,az);plot(W*Fs/(2*pi),abs(H)); gridxlabel('频率/Hz')ylabel('频率响应幅度') title('110900623')0.20.40.60.811.21.4频率/Hz频率响应幅度1109006232.分别使用矩形窗和海明窗函数设计一个线性相位FIR 低通滤波器,其逼近理想低通滤波器的频率特性.其中ωc=1rad,τ=12s 。

clf,()0,j c d c eH ωτωωωωωπ-⎧≤⎪=⎨<≤⎪⎩N=25; Wn=1;b=fir1(N,Wn/pi,hamming(N+1)); freqz(b,1,512) title('110900623') hold onb=fir1(N,Wn/pi,boxcar(N+1)); freqz(b,1,512) title('110900623') gtext('矩形') gtext('海明') gtext('矩形') gtext('海明')0.10.20.30.40.50.60.70.80.91-1500-1000-500Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s)0.10.20.30.40.50.60.70.80.91-150-100-50050Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )110900623四、实验心得本次实验过程中,除了学会利用matlab 学会产生各种常用序列、窗函数的方法,也学会利用此工具进行信号的处理,包括频谱分析、抽样、卷积等一些计算量比较大的计算,大大缩减了运算时间,使得对信号进行的数学处理,可以通过直观的图像进行形象的认识,也弥补了我数学运算上的不足。

相关文档
最新文档