数学分析课本(华师大三版)-习题集与答案解析第十二章
数学分析课后习题答案(华东师范大学版)
P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时,y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀ Cx dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁ C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼ C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56tdx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dxx x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺.于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dxcos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴Cx x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵ ]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sinC x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,CxC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,duu dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄ ⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I. .。
数学分析课本(华师大三版)-习题及答案02
第二章 数列极限习题§1数列极限概念1、设n a =nn)1(1-+,n=1,2,…,a=0。
(1)对下列ε分别求出极限定义中相应的N : 1ε=0.1,2ε=0.01,3ε=0.001;(2)对1ε,2ε,3ε可找到相应的N ,这是否证明了n a 趋于0?应该怎样做才对; (3)对给定的ε是否只能找到一个N ? 2、按ε—N 定义证明:(1)∞→n lim 1+n n =1;(2)∞→n lim 2312322=-+n n n ;(3)∞→n lim n n n !;(4)∞→n lim sinn π=0;(5)∞→n lim n an=0(a >0)。
3、根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列: (1)∞→n limn1;(2)∞→n limn3;(3)∞→n lim 31n ;(4)∞→n lim n 31; (5)∞→n limn21;(6)∞→n limn10;(7)∞→n lim n21。
4、证明:若∞→n lim n a = a ,则对任一正整数k ,有∞→n lim k n a += a 。
5、试用定义1'证明: (1)数列{n1}不以1为极限;(2)数列{n n )1(-}发散。
6、证明定理2.1,并应用它证明数列{nn)1(1-+}的极限是1。
7、证明:若∞→n lim n a = a ,则∞→n lim |n a |= |a|。
当且仅当a 为何值时反之也成立?8、按ε—N 定义证明: (1)∞→n lim )1(n n -+=0;(2)∞→n lim3321n n++++ =0;(3)∞→n lim n a =1,其中,1nn -n 为偶数, n a =nnn +2,n 为奇数。
§2收敛数列的性质1、求下列极限:(1)∞→n lim 32413323++++n n n n ;(2)∞→n lim 221n n +;(3)∞→n lim 113)2(3)2(+++-+-n n nn ;(4)∞→n lim )(2n n n -+;(5)∞→n lim )1021(n n n +++ ;(6)∞→n lim n n31313121212122++++++ 。
《数学分析》(华师大二版)课本上的习题12-15
第十二章 数项级数§ 1 级数的收敛性1. 试讨论几何级数(也称为等比级数) )0....( (2)≠++++a a a ar a r rn的收敛性。
2. 证明下列级数的收敛性,并求其和数:(1)....;)15)(45(1......161111161611++-+⋅+⋅+⋅n n (2).....;)11....()11()312!(323222++++++nn(3);)2)(1(1++∑n n n(4));122(n n n ++-+∑ (5);122nn -∑3. 证明:若级数un∑发散,0≠c ,则unc∑也发散。
4. 设级数un∑和v n∑都发散,试问)(v u nn+∑一定发散吗?又若un与v n(n=1,2,….)都是非负数,则能得出什么结论? 5. 证明:若数列}{a n收敛于a,则级数a a aa n n-=-∑+11)(6. 证明:若数列}{b n有+∞=bnlim ,则(1) 级数)(1b bn n -∑+发散;(2) 当0≠b n 时,级数)11(1bb n n+-∑=117. 应用第5,6题的结果求下列级数的和:(1);))(1(1∑+-+n a n a(2);)1(12)1(1++∑-+n n n n(3);]1)[1(12)1(22∑++++n n n8. 应用柯西准则判别下列级数的收敛性:(1)∑22sin n n; (2)∑-+-12221)1(n n n ;(3)∑-n)1(; (3)∑+nn 21;9. 证明级数∑un收敛的充要条件是:任给正数ξ,存在某自然数N,对一切n>N,总有ξ<++++u uu n N N (1)。
10. 举例说明:若级数∑un对每一个自然数p 满足条件0)...(1lim =++++∞→u uu p n n nn ,则这级数不一定收敛。
§ 2 正项级数1. 应用比较原则判别下列级数的收敛性:(1)an 221+∑; (2)32sinnnπ∑;(3)∑+n211; (4)∑∞=2)(ln 1n nn ;(5))1cos 1(∑-n ; (6)∑nnn1;(7))0(),2(11>-+-∑a a a nn; (8)∑∞=2ln )(ln 1n nn ;2. 用比较判别法或根式判别法鉴定下列级数的收敛性:(1)∑-⋅⋅⋅⋅!)12(31n n ; (2)∑+10)!1(n n ;(3)∑+)12(n n n; (4)∑n nn !;(5)∑22nn; (6)∑)(a b nn(其中)0,,);(b a b a n a a an n≠>∞→→且3. 设∑u n和∑vn为正项级数,且存在正数N,对一切n>N,有vv uunn nn 11++≤。
数学分析课本(华师大三版)-习题及答案01
数学分析课本(华师大三版)-习题及答案01第一章实数集与函数习题§1实数1、设a 为有理数,x 为无理数。
证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明|22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗7、设x>0,b>0,a ≠b 。
证明x b x a ++介于1与ba 之间。
8、设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|§2数集、确界原理1、用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6;(3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<=""></b(4)sinx ≥22。
2、设S 为非空数集。
试对下列概念给出定义:(1)S 无上界;(2)S 无界。
3、试证明由(3)式所确定的数集S 有上界而无下界。
4、求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n 21,n ∈+N }。
数学分析课后习题答案(华东师范大学版)
152P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(153⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x)9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222154⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ155⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dx C x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2156C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin (157(23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =158Ct t t t t t dt t t t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212159⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:160⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-161所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311162⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(163C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x)12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dx164C x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有165⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12166⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12167⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=168⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222169⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
华东师大版八年级上-数学第12章试题(附答案)
(时间:45分钟满分:100分)姓名:分数:一、选择题(每小题4分,共32分)1•下列运算正确的是()(A)a3+a=a (B) 2a • a;=2a(C) (2ay=8a (D)a s^a:=a2.下列计算正确的是()(A)-2a (a+1) =~2a:+2a(B)-3x”y • 5x*y3=:"15x6y(C)(-2x-y) (2x+y) =4x-y:(D)35x”yW5x~y=7xy3.下列因式分解错误的是()(A)x=y匚(x+y) (x-y)(B)x:+6x+9= (x+3)2(C)x c+xy=x (x+y)(D)x'+y 匚(x+y):4.代数式(x+1) (x-1) (x=+l)的计算结果是()(A)f-l (B)x'+1(C)(X-1)* (D) (x+1)*5.如图所示:小明家“小房子”的平面图形,它是由长方形和三角形组成的,则这个平面图形的面积是()(A)6a"-2ab~7b"(B)4a-"b-+4ab(C)8a(D)8a-4ab6.计算-(a:b)5+2a:b ・(-3aTb):的结果为( )(A) -17八?(B)"18a6b:(C) 17aV (D) 18a%37•若3M,9M,则3^的值为()4 79(A)- (B)- (0-3 (D冶8.若 a, b 是正数,a-b=l, ab=2,贝|| a+b 等于( )(A)-3 (B)3 (C)±3(D)9二、填空题(每小题4分,共24分)• x e+3x:・x= .10.多项式ax:-a与多项式x=-2x+l的公因式是_.11.一个长方形的长是2x,宽比长少4,若将长方形的长増加3,宽增加2,则面积增大_; 当x二2时,增大面积为_.12. ______________________________ 若 m-n=2,则 2m__4mn+2n__l 的值为 .13.对于任何实数a. b・c. d,我们规定£ f |=3d-bc,按照这个规定,请你计算:当x +1 3% c ax"-3x+l=0时,“ 的值为__________ ・14.地震中里氏震级增加1级,释放的能量增大到原來的32倍,那么里氏—级地震释放的能量是3级地震释放能量的32’倍.三、解答题(共44分)15.(6分)把下列各式分解因式:(1)x\-4xy; (2) m:x c+2m:xy+mV;16.(6分)化简求值:(l)a' •十(£)[其中 a=T;⑵(a+l)s+2(l-a),其中圧-2;(3) (a+b) (a-b)+b (a+2b)-b;其中 a=l, b=-2・17.(8分)⑴已知(x+y)匚18, (x-y)匚6,求 *及xy的值;(2)已知两个数 a, b (a>b),若 a+b=4, a=+b s=10,求 a'b-ab'的值.18.(8 分)⑴已知 x-4x-l=0,求代数式(2x-3)-(x+y) (x-y)-y2的值;⑵已知非零实数a满足a:+l=3a,求的值.19.(8分)⑴若多项式(x"+mx+n) (xTx+4)展开后不含x"项和x•项,试求m, n的值; (2)试说明(2n-3)「+6n'+2n) (^m3-2n)+12n 的值与 n 的值无关.20.(8分)现有两张铁皮,长方形铁皮的长为x+2y,宽为x-2y (x-2y>0),正方形铁皮的边长为2(x-y).现根据需要,要把两张铁皮焊接成一张新的长方形铁皮,新铁皮长为6x,请你求出新铁皮的宽.第12章检测试题答案(时间:45分钟满分:100分)【测控导航表】一、选择题(每小题4分,共32分)1.下列运算正确的是(B )(A)a3+a'=a7(B)2a3・ a=2a7(C) (2a*) 3=8a7(D) a34-a:=a'解析:与『不是同类项,不能合并,故错误;・a4=2a T,正确;C. (2忙8屮,错误;^a2=a6,错误.选 B.2.下列计算正确的是(D )(A)~2a(a+1)=-2a:+2a(B)~3x3y • 5x:y3=-15x6y'(C)(~2x-y) (2x+y)二4x'-y‘(D)35x3y_-rox"y=7xy解析:-2a(a+l)=-2a:-2a,故A选项错误;-3x3y ・ 5x2y3=-15x5y\ 故 B 选项错误;(-2x-y) (2x+y)二-(2x+y)'二-4x'-4xy-y‘,故 C 选项错误. 35x3y24-5x2y=7xy,故 D 选项正确;故选D.3.下列因式分解错误的是(D )(A)x2-y== (x+y) (x-y)(B)x'+6x+9 二(x+3):(C)x'+xy 二x (x+y)(D)x2+y== (x+y)-解ff:x2+2xy+y2=(x+y)2,即选项D错误.故选D.4.代数式(x+1) (x-l) (x'+l)的计算结果是(A )⑷£-1 ⑻£+1(C)(x-1)4(D)(x+1)1解析:原式=(x2-l) (£+1)二£-1.故选 A.3 •如图所示:小明家“小房子”的平面图形,它是山长方形和三角形组成的,则这个平面图形的面积是(A )1 1 |i +L J 11 2a-b(A)6a:~2ab-^b:(B)4a:-b:+4ab(C)8a(D)8a:~4ab解析:根据题意得^■(2a-b) [4a~(2a+b) ] + (2a+b) (2a~b) =^-(4a:-4ab+b-) +4a2_b- =6a"-2ab-^b:. 故选A.6.计算-(九『+2航•(-3航尸的结果为(C ) (A)-17a e b3 (B)-18aV(C) 17a b3 (D) lSa^3 解析:原式=-a6b s+2a2b ・ 9a*b2 =-ab3+18ab3=17ab3.故选C.7.若3M, 9y=7,则3",的值为(A )⑷舟⑻耳(C)-3 (D)丰解析:因为3^4, 9y=7,所以3^二373(3,)匸4宁7孚故选A.8.若a, b 是正数,a-b=l, ab=2,则a+b 等于(B )(A)-3 (B)3 (C)±3(D)9解析:因为(a+b) := (a-b) :+4ab=f+4 X 2 二9, 所以开平方,得a+b二±3, 又因为d,b是正数,所以a+b〉O, 所以a+b二3.故选B.二、填空题(每小题4分,共24分).X6+3X3・x= 5x n .解析:原式=2x n+3x u=5x n.10.多项式ax:-a与多项式x'-2x+l的公因式是xT .解析:多项式ax:-a=a(x+l) (x-1),多项式x'-2x+l二仗-1比则两多项式的公因式为x~l.11.一个长方形的长是2x,宽比长少4,若将长方形的长增加3,宽增加2,则面积增大10x-6 ;当x二2时,增大面积为14 .解析:根据题意得(2x+3) (2x-4+2) -2x (2x-4) = (2x+3) (2x-2) -2x (2x-4)二4x'+2x-6-4x'+8x二10x-6.当x二2 时,原式=20-6=14,则面积增大10x-6,当x二2时,增大面积为14.12.若m-n二2,则2m'-4mn+2n'-l 的值为7 .解析:原式二 2 (m"-2inn+n3)-1=2 (m~n) "-1.因为m-n二2,所以原式=2 X 4-1=7.13.对于任何实数a, b, c, d,我们规定£ ^ad-bc,按照这个规定,请你计算:当xF+l二0时,|:丁書]的值为1 •解析:因为x~-3x+l=0,即x"-3x=~l,所以r?|=(x+l) (x-l)-3x(x-2)=x:-l-3x:+6x二一2x'+6xT二-2 (X2-3X)-1=2-1=1.14.地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏7级地震释放的能量是3级地震释放能量的32’倍.解析:设里氏n级地震释放的能量是3级地震释放能量的32’倍.则32叫32" X 32', 32叫32:所以nT二6, n二7.三、解答题(共44分)15.(6分)把下列各式分解因式:(1)x3y-4xy;(2)m'x'+Zm'xy+m'y';(3)m-81n'.解:⑴原式=xy(x2-4)=xy(x+2)(x-2).⑵原式二(x'+2xy+y‘)=m: (x+y)⑶原^=(m2)2-(9n2)3=(m:+9n:) (m2-9n2)=(m:+9n:) (m+3n) (m~3n).16.(6分)化简求值:(1)a:• a'-a s4-a2+(a3)2,其中a=_l;(2)(a+l)"+2(l-a),其中a二一2;(3)(a+b) (a-b) +b(a+2b)-b",其中a二l,b二-2.解:⑴原式咯二J,当a二-1 时,原式=(-1)6=1.(2)原式=a:+2a+l+2-2a=a:+3,当a二-2 时,原式二(-2)'+3二7.(3)原式=a"_b'+ab+2b2-b^a"+ab,当a=l, b二-2 时,原式=1-2=-1.17.(8 分)⑴已知(x+y)2=18, (x-y)2=6,求x'+y'及xy 的值;⑵已知两个数a, b (a>b),若a+b=4, a:+b3=10,求a:b-ab:的值.解:⑴因为(x+y)'二18, (x-y):=6,所以x'+y'+2xy二18, x'+y'-2xy二6,两式相加得,2(x'+y‘)二24,所以x'+y‘二12.两式相减得,4xy二12,所以xy二3.(2)因为a+b二4, a:+b:=10, 所以ab=|[ (a+b):- (a:+b:)]=|x (16-10)二3,所以(a-b) 2= (a+b) -4ab=16-12=4,因为a>b,所以a-b二2,所以a:b-ab:=ab (a-b)二3 X 2二6.18.(8 分)⑴已知x2-4x-l=0,求代数式(2x-3)2-(x+y) (x-y)-y2的值;(2)已知非零实数a满足于+1二3&,求J+令的值.解:⑴ 原式二(4x‘T2x+9) - (x2-y2) -y:=4x:-12x+9 - x'+y‘- y‘二3x'T2x+9=3 (x'-4x+3).因为X2-4X-1=0,即x:-4x=l,所以原式二3X (1+3)二12.(2)因为a^O, a2+l=3a,所以a+^=3,所以(a+^)=9,所以于+$+2二9,即a3+>7,所以X+制勺值为7.19.(8分)⑴若多项式(x3+mx+n) (x「3x+4)展开后不含£项和E项,试求m, n的值;⑵试说明(2n-3)=+(^3-F2n)(扑-2n)+12n的值与n的值无关.解:(1) (x'+mx+n) (x c-3x+4) =x:+ (m~3) x3+ (n~3m+4) x2+ (4m-3n) x+4n.因为展开后不含£和x‘项,所以m-3二0 且n-3m+4二0,解得m=3, n=5.(2)原式二4n'T2n+9+ (jn3)2- (2n) :+12n二4n‘-12n+9+士n? - 4n'+12n二詁9,因为化简后代数式中没有n,所以代数式的值与n的值无关.20.(8分)现有两张铁皮,长方形铁皮的长为x+2y,宽为x-2y(x-2y>0),正方形铁皮的边长为2 (x-y).现根据需要,要把两张铁皮焊接成一张新的长方形铁皮,新铁皮长为6x,请你求出新铁皮的宽.解:原来两张铁皮的面积和为(x+2y) (x-2y)+[2(x-y)]‘=x:-4y:+4x:-8xy+4y:=5x:-8x y.新铁皮的宽二(5x'-8xy) *6x=:x-寻.所以新铁皮的宽为附加题(共20分)21.(10分)数学课上李老师和同学们玩一个有趣的猜数游戏,李老师让每位同学在心里想好一个除0以外的数,把这个数先乘以2再加上4然后平方,把所得结果减去16,再除以原来所想的数的4倍.大家都仔细算出了结果.奇怪的是,同学们把算出的结果告诉老师,老师就能立即说出这位同学心中原来所想的数是多少. 王晓猛同学觉得蹊跷,他说:“刚才大家说的都是整数,数字乂不大,如果换成是小数或者分数,老师就猜不出来了•”你同意王晓猛的看法吗说出你的道理. 解:不同意.设同学们心中想的数为6可列式表示为[(2a+4)T6"4aF+4.因此得数比你心中想的数大4,用得数减去4就是你心中的数.所以与数是整数还是分数或小数无关. 22.(10分)有些多项式不能直接运用提公因式法和公式法分解因式,但它的某些项可通过适当的结合,成为一组,利用分组来分解多项式的因式,从而达到分解因式的LI 的.例如:mx+nx+my+ny二(mx+nx) + (my+ny) =x (m+n) +y (m+n) = (m+n) (x+y). 试根据上面的方法分解因式:(1)2ax+3bx+4ay+6by; (2) a3-a:~a+l.解:(1) 2ax+3bx+4ay+6by=(2ax+4ay)+(3bx+6by)=2a(x+2y)+3b(x+2y)=(x+2y)(2a+3b).(2)a3-a:-a+l= (a3~a2) 一(a~l)=a" (a-l)-(a-l)= (a-l) (a:-l)=(a~l)(a+1)(a~l)= (a-l)"(a+l).。
华东师大数学分析答案完整版
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
数学分析课本(华师大三版)-习题及答案Part-II
x = x(t ) x + y + 2t (1 − t ) = 1 is determined by . Find the y y = y (t ) te + 2 x − y = 2
equations of the tangent line and the normal line of the curve at t = 0 . 3. Suppose
Part II
Differentials with one-variable
x = 3t 2 + 2t + 3 . y e sin t − y + 1 = 0
1. Suppose the function y = y ( x ) is determined by the equation system Find the differentials dy |t = 0 and dy 2 |t = 0 . 2. Suppose that the curve
1 (1 + ) x − e x (2) lim ; x →0 x
1
sin x x2 (3) lim( ) . x →0 x
1
lim
x →0
x 2e 2 + 2 cos x − 2 . tgx − sin x
f ( x) x →0
x 6. Suppose that f (0) = 0 , and suppose f ' (0) exists. Find the limit lim +
d2y 1 y . ln( x 2 + y 2 ) = arc tg . Find the second differential 2 x dx 2
数学分析课本(华师大三版)-习题及答案Part-I
a1 = b1 = 1 > 0, an + bn 2 = (an −1 + bn −1 2) 2 . Find the limit lim
n →∞
an . b pn . n →∞ q n
28. Assume p1 > 0, q1 > 0, pn +1 = pn + 3qn , qn +1 = pn + qn . Find the limit lim 29. Assume x1 = a, x2 = b, xn +1 =
41. Prove that (1) (2)
f ( x) = 3 x is uniformly continuous on [0, +∞) ; g ( x) = e x cos 1 is not uniformly continuous on [0,1] . x
42. Suppose that f
is defined on [ a, +∞) . And | f ( x ) − f ( y ) |≤ k | x − y | (k > 0) holds
an =a; n →∞ n
an 1 1 ∈ [a − , a + ] (n = 1, 2L) . n n n
f ∈ C (−∞, +∞) and that | f ( x) − f ( y ) |≤ k | x − y | (0 < k < 1) holds for any
x, y ∈ (−∞, +∞) . Prove that f has the unique fixed point on (−∞, +∞) .
34. Let f ∈ C[ a, b] . And for arbitrary x ∈ [ a, b] , there exists y ∈ [ a, b] such that
《数学分析》(华师大版)课本上习题
《数学分析》(华师大版)课本上习题第二十二章曲线积分与曲面积分P.361 第一型曲线积分与第一型曲面积分1. 计算下列第一型曲线积分:(1))1,0(),0,1(),0,0(,)(B A O L ds y x L是以其中?+为顶点的三角形;(2)+Lds y x2122)(,其中L 是以原点为中心,R 为半径的右半圆周;(3)?L xyds ,其中L 为椭圆12222=+by a x 在第一象限中的部分;(4)Lds y ,其中L 为单位圆122=+y x ;(5)ds z y x L)(222++,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段;(6)?Lxyzds ,其中L 为曲线)10(21,232,22≤≤===t t z t y t x 的一段;(7)+Lds z y 222,其中L 是2222a z y x =++与y x =相交的圆周.2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量.设其线密度为.2az =ρ 3. 求摆线??≤≤-=-=)0()cos 1()sin (πt t a y t t a x 的重心,设其质量分布是均匀的.4. 计算下列第一类型曲面积分:(1)++SdS z y x )(,其中S 是上半圆面0,2222≥=++z a z y x ;(2)+SdS y x )(22,其中S 为立体122≤≤+z y x 的边界曲面;(3),??+S yx dS 22其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分;(4)SxyzdS ,其中S 为平面1=++z y x 在第一卦限中的部分;5. 若曲线以极坐标))((21θθθθρρ≤≤=表示,试给出计算Lds y x f ),(的公式,并用此公式计算下列曲线积分:(1)?+Ly x ds e22,其中L 为曲线)4(πθρ≤≤=a 的一段;(2)?Lxds ,其中L 为对数螺线)0(>=k ae k θρ在圆a r =内的部分.6. 设有一质量分布不均匀的半圆弧)0(sin ,cos πθθθ≤≤==r y r x ,其线密度θρa =(a 为常数),求它对原点)0,0(处质量为m 的质点的引力.7. 证明:若函数f 在光滑曲线],[),(),(:βα∈==t t y y t x x L 上连续,则存在点L y x ∈),(00,使得L y x f dS y x f L=?),(),(00,其中L ?为L 的长.8. 计算dS z S2,其中S 为圆锥表面的一部分:≤≤≤≤??===,20,0:;cos sin sin sin cos :π?θθ?θa r D r z r y r x S这里θ为常数).20(πθ≤≤P.371 第二型曲线积分1. 计算第二型曲线积分:(1)-L ydx xdy ,其中L 为本节例2中的三种情形.(2)?+-Ldy dx y a )2(,其中L 为摆线)20)(cos 1(),sin (π≤≤-=-=t t a y t t a x 沿t 增加方向的一段;(3)++-L y x ydy xdx 22,其中L 为圆周222a y x =+,依逆时针方向;(4)?+Lxdy ydx sin ,其中L 为)0(sin π≤≤=x x y 与x 轴所围的闭曲线,依顺时针方向;(5)++Lzdz ydy xdx ,其中L :从(1,1,1)到(2,3,4)的直线段.2. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由)0,(a 沿椭圆移动到),0(b ,求力所作的功。
数学分析课本(华师大三版)
数学分析课本(华师大三版)篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________6.若f(x)有原函数xlnx,则?xf??(x)dx?_______________ 7.?ln(sinx)sin2?3??2xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________ 9.设?xf(x)dx?arcsinx?C,则? dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan 2x,则f(x)?_______________ 18.?f?(x)1??f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u??(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f??(x)连续,那么?xf??(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x??1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________.26 若(?f(x)dx)??lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dx??C,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()(1?e)?C (1?e)?x?C ?2ln(1?e)?C (e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)?I2?x ?I2?x ??I1 ?I1 4.当n??1时,?xn lnxdx?() nn?1n(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C 7.?(cosx2 ?sinx2)dx?() (sinx?cos x)?C (cos xx222?sin 2)?C?cosxxx22?C?sin2?C8.?x?sinx1?cosxdx?()??2cotx??C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()?x?cosxB.?e?x?sinxC.?e?x??x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。
数学分析课本(华师大三版)-习题及答案02
数学分析课本(华师大三版)-习题及答案02第二章数列极限习题§1数列极限概念1、设n a =nn)1(1-+,n=1,2,…,a=0。
(1)对下列ε分别求出极限定义中相应的N :1ε=0.1,2ε=0.01,3ε=0.001;(2)对1ε,2ε,3ε可找到相应的N ,这是否证明了n a 趋于0?应该怎样做才对;(3)对给定的ε是否只能找到一个N ? 2、按ε—N 定义证明:(1)∞→n lim 1+n n =1;(2)∞→n lim 2312322=-+n n n ;(3)∞→n lim n n n !;(4)∞→n lim sinn π=0;(5)∞→n lim n an=0(a >0)。
3、根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)∞→n limn1;(2)∞→n limn3;(3)∞→n lim 31n ;(4)∞→n lim n 31;(5)∞→n limn21;(6)∞→n limn10;(7)∞→n lim n21。
4、证明:若∞→n lim n a = a ,则对任一正整数k ,有∞→n lim k n a += a 。
5、试用定义1'证明:(1)数列{n1}不以1为极限;(2)数列{n n )1(-}发散。
6、证明定理2.1,并应用它证明数列{nn)1(1-+}的极限是1。
7、证明:若∞→n lim n a = a ,则∞→n lim |n a |= |a|。
当且仅当a 为何值时反之也成立?8、按ε—N 定义证明:(1)∞→n lim )1(n n -+=0;(2)∞→n lim3321n n++++ =0;(3)∞→n lim n a =1,其中,1nn -n 为偶数, n a =nnn +2,n 为奇数。
§2收敛数列的性质1、求下列极限:(1)∞→n lim 32413323++++n n n n ;(2)∞→n lim 221n n +;(3)∞→n lim 113)2(3)2(+++-+-n n nn ;(4)∞→n lim )(2n n n -+;(5)∞→n lim )1021(n n n +++ ;(6)∞→n lim n n31313121212122++++++ 。
数学分析课本(华师大三版)-习题及答案第三学期试题
(三十二)数学分析试题(二年级第一学期)一 叙述题(每小题10分,共30分)1 叙述含参变量反常积分⎰+∞adx y x f ),(一致收敛的Cauchy 收敛原理。
2 叙述Green 公式的内容及意义。
3 叙述n 重积分的概念。
二 计算题(每小题10分,共50分)1.计算积分⎰+-=C yx ydx xdy I 2243,其中C 为椭圆13222=+y x ,沿逆时针方向。
2.已知 ),,(y z xz f z -= 其中),(v u f 存在着关于两个变元的二阶连续偏导数,求z 关于y x ,的二阶偏导数。
3.求椭球体1222222=++cz b y a x 的体积。
4.若l 为右半单位圆周,求⎰lds y ||。
5.计算含参变量积分⎰+-=π2)cos 21ln( )(dx a x a a I (1<a )的值。
三 讨论题(每小题10分,共20分)1 若积分在参数的已知值的某邻域内一致收敛,则称此积分对参数的已知值一致收敛。
试讨论积分⎰∞++=0221xa adxI 在每一个固定的a 处的一致收敛性。
2 讨论函数dx yx x yf y F ⎰+=122)()(的连续性,其中)(x f 在]1,0[上是正的连续函数。
数学分析试题(二年级第一学期)答案1一 叙述题(每小题10分,共30分)1 含参变量反常积分⎰+∞adx y x f ),(关于y 在],[d c 上一致收敛的充要条件为:对于任意给定的0>ε, 存在与y 无关的正数0A , 使得对于任意的0,A A A >',],[ ,),(d c y dx y x f A A∈<⎰'ε成立。
2 Green 公式:设D 为平面上由光滑或分段光滑的简单闭曲线所围的单连通区域。
如果函数),(),,(y x Q y x P 在D 上具有连续偏导数,那么⎰⎰∂∂∂-∂∂=+DDdxdy xPx Q Qdy Pdx )(,其中D ∂取正向,即诱导正向。
数学分析课本(华师大三版)-习题集与答案解析第十二章
第十二章 数项级数证明题1 . 证明下列级数的收敛性 ,并求其和 :(4) ( n 2 2 n 1 n); 2n2. 证明:若级数u n 发散,则 Cu n 也发散(c ≠0).3. 证明 :若数列 {a n }收敛于 a,则级数(a n a n 1) a 1-a .(1)1 1 1 (3)1n(n 1)(n 2)2n 1(5)(5n 4)(5n 1)1.6 6.11 11.16(2)4 .证明: 若数列{b n}有lim b n ,则n(1)级数(b n 1 b n)发散;1 1 1(2)当b n≠0 时,级数n b n 1 b15. 证明级数u n 收敛的充要条件是:任给正数ε ,有某自然数N, 对一切n>N 总有|u N+u n+1+⋯+u n|< ε6. 设u n、v n 为正项级数,且存在正数N0,对一切n>N 0,有un 1 vn 1u n v n7. 设正项级数a n 收敛,证明级数a2n 也收敛;试问反之是否成立?8. 设a n≥0,且数列{na n}有界,证明级数a2n收敛.9. 设正项级数 u n 收敛,证明级数 u n u n 1 也收敛 .(2) 若 n>N 0 时有C n ≤0, 且 lim1 b k,则级数a nn110. 证明下列极限11. 设 {a n }为递减正项数列 ,证明 :级数 a n 与2m a 2m 同时n1 m 0收敛或同时发散a12. 设 a n >0, b n >0, C n =b n n b n+1,证明: a n 1N 0及常数 K,当 n>N 0 时,有 C n ≥k>0,则级数 a n 收敛 ;n1n(1)l n im (n n !)0;(2) lim (2n!)n! n an!0(a 1).(1) 若存在某自然数16. (1)(2)(3)( n 1) 1xx n ,(x 0);n 1 xsinnxα ,x (0,2π0(α, 0); n2ncos n ( 1)nn设 a n >0,a n >a n+1 (n=1,2, ⋯)且 lim a n =0, 证明级数n( 1)n 1a 1 a 2a n是收敛的发散 .a13. 设级数a n 2 收敛 ,证明级数n(a n 0) 也收敛 . n14. 设a n >0,证明数列 {(1+a 1)(1+a 2)⋯(1+a n )}与级数a n 同时收敛或同时发散15. 应用阿贝耳判别法或狄利克雷判别法判断下列级数的收敛性:17. 设p n|u n | u n,g n|u n | u n,证明:若u n条件收敛,则级数p n与q n 都是发散的.二、计算题1. 试讨论几何级数(也称为等比级数)a+r+ar 2+⋯+ar n+ ⋯(a ≠0)的敛散性.2. 设级数u n 与v n 都发散,试问(u n v n) 一定发散吗?又若u n 与v n(n=1,2, ⋯)都是非负数,则能得出什么结论?3. 求下列级数的和:(1)1(a n 1)(a n)(2) ( 1)2n 1 n(n 1)2n 14. 应用柯西准则判别下列级数的敛散性5. 应用比较原则判别下列级数的敛散性(3)22(n 21)[(n 1)2 1](1)sin2n2n(2)(-1)n-1n 2 2n 2 1(3)(-1)n ; n(4)(1)(3)(4)1n 2 a 2 ;11 n2n21 (lnn) nnπ(2)2n sin 3n ;(5) 1 cos1;n(6)n n 1n ;nn(7)a n 1 a 1n 2 ,(a 0) ; nn(8)(lnn 1) lnn .n 2(lnn)6. 用积分判别法讨论下列级数的敛散性(1)n 211(2)nn21(3)n 3nlnnln(lnn )(4) n 3 n(lnn) p (lnlnn) q7. 判别下列级数的敛散性 : (1) 3n n n! nnx n 1( 1)n 1nx n 1 ;n22n 2 n 2(4) (n a 1),(a 1); 1 3 (2n 1) 1 (5) 2 4 2n 2n 18. 求下列极限 (其中 P>1):(1) l n imp 1 p 1 pn(n 1)p (n 2)p(2n)p12np(3)1n 2lnn9. 下列级数哪些是绝对收敛 , 条件收敛或发散的 :(1) sinnxn! (2)(6)n!(x 1) (x n),(x 0) .p n 2( 1)n n n1n2( 1)n sin ;n( 1)n l n (n 1) ; n1n2n 100 n ( 1)n (23n n 1010)n ;n!( x n)n ;sinnx(0 x 2 ) ; n 1 lnn1( 1)n n .列级数的乘积(2)(3)(4)(5)(6)(7) (8)(9)(10) 10. 写出(1)( 1)n(( 1)n(nnnx n 1 ( 1)n 1nx n 1 ;三、考研复习题1. 证明:若正项级数u n 收敛,且数列{u n }单调,则lim u n 0. n 2. 若级数 a n 与 C n 都收敛 , 且成立不等式a n ≤b n ≤C n(n=1,2, ⋯) 证明级数 b n 也收敛.若级数 a n , C n 都发散,试问b n 一定发散吗 ?3. 若 lim a n k 0 ,且级数b n 收敛 ,证明级数a n 也收 nb n n n 敛.若上述条件中只知道b n 收敛,能推得 a n 收敛吗 ? 4. (1) 设 u n 为正项级数 ,且 u n 1 <1, 能否断定级数 u n 收u n敛?(2) 对于级数 u n 有 | u n 1 |≥1,能否断定级数u n 不绝(2)un对收敛,但可能条件收敛.(3) 设u n 为收敛的正项级数,能否存在一个正数ε ,使得lim u n C 0n11εn5. 证明: 若级数a n 收敛, (b n 1 b n) 绝对收敛, 则级数a nb n也收敛.16. 证明级数是发散的.a bn7. 讨论级数1p,(p>0)n 2 n(lnn) p的敛散性.8. 设a n>0, 证明级数an(1 a1)(1 a2) (1 a n )是收敛的.9. 证明:若级数a n2与b2n 收敛,则级数a n b n 和(a n b n )2也收敛,且a nb n a n2b2n111a nb n2 2a n22 b n2210. 证明:(1) 设a n 为正项级数,若(2)若级数1发散,且u n 收敛,a n a n 1 0,l n im u u n a n a n 1 n u n 1n n 10, 则正项级数u n 发散.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 数项级数
证明题
1 . 证明下列级数的收敛性 ,并求其和 :
(4) ( n 2 2 n 1 n); 2n
2. 证明:若级数
u n 发散,则 Cu n 也发散(c ≠0).
3. 证明 :若数列 {a n }收敛于 a,则级数
(a n a n 1) a 1-a .
(1)
1 1 1 (3)
1
n(n 1)(n 2)
2n 1
(5)
(5n 4)(5n 1)
1.6 6.11 11.16
(2)
4 .证明: 若数列{b n}有lim b n ,则
n
(1)级数(b n 1 b n)发散;
1 1 1
(2)当b n≠0 时,级数
n b n 1 b1
5. 证明级数u n 收敛的充要条件是:任给正数ε ,有某自然数N, 对一切n>N 总有
|u N+u n+1+⋯+u n|< ε
6. 设u n、v n 为正项级数,且存在正数N0,对一切n>N 0,有
u
n 1 v
n 1
u n v n
7. 设正项级数a n 收敛,证明级数a2n 也收敛;试问反之是否成立?
8. 设a n≥0,且数列{na n}有界,证明级数a2n收敛.
9. 设正项级数 u n 收敛,证明级数 u n u n 1 也收敛 .
(2) 若 n>N 0 时有
C n ≤0, 且 lim
1 b k
,则级数
a n
n1
10. 证明下列极限
11. 设 {a n }为递减正项数列 ,证明 :级数 a n 与
2m a 2m 同时
n1 m 0
收敛或同时发散
a
12. 设 a n >0, b n >0, C n =b n n b n+1,证明: a n 1
N 0及常数 K,当 n>N 0 时,有 C n ≥k>0,
则级数 a n 收敛 ;
n1
n
(1)
l n im (n n !)
0;
(2) lim (2n!)
n! n a
n!
0(a 1).
(1) 若存在某自然数
16. (1)
(2)
(3)
( n 1) 1x
x n ,(x 0);
n 1 x
sinnx
α ,x (0,2π0(α, 0); n
2
n
cos n ( 1)n
n
设 a n >0,a n >a n+1 (n=1,2, ⋯)且 lim a n =0, 证明级数
n
( 1)n 1
a 1 a 2
a n
是收敛的
发散 .
a
13. 设级数
a n 2 收敛 ,证明级数
n
(a n 0) 也收敛 . n
14. 设a n >0,证明数列 {(1+a 1)(1+a 2)⋯(1+a n )}与级数
a n 同时
收敛或同时发散
15. 应用阿贝耳判别法或狄利克雷判别法判断下列级数的收敛
性:
17. 设p n|u n | u n,g n|u n | u n,证明:若u n条件收敛,则级数p n与q n 都是发散的.
二、计算题
1. 试讨论几何级数(也称为等比级数)
a+r+ar 2+⋯+ar n+ ⋯(a ≠0)
的敛散性.
2. 设级数u n 与v n 都发散,试问(u n v n) 一定发散
吗?又若u n 与v n(n=1,2, ⋯)都是非负数,则能得出什么结论?
3. 求下列级数的和:
(1)
1
(a n 1)(a n)
(2) ( 1)
2n 1 n(n 1)
2n 1
4. 应用柯西准则判别下列级数的敛散
性
5. 应用比较原则判别下列级数的敛散
性
(3)
22
(n 2
1)[(n 1)2 1]
(1)
sin2n
2n
(2)
(-1)n-1n 2 2n 2 1
(3)
(-1)n ; n
(4)
(1)
(3)
(4)
1
n 2 a 2 ;
1
1 n
2
n2
1 (lnn) n
n
π
(2)
2n sin 3
n ;
(5) 1 cos1;
n
(6)
n n 1n ;
nn
(7)
a n 1 a 1n 2 ,(a 0) ; nn
(8)
(lnn 1
) lnn .
n 2
(lnn)
6. 用积分判别法讨论下列级数的敛散性
(1)
n 211
(2)
n
n
2
1
(3)
n 3
nlnnln(lnn )
(4) n 3 n(lnn) p (lnlnn) q
7. 判别下列级数的敛散性 : (1) 3n n n! n
nx n 1
( 1)n 1nx n 1 ;
n
2
2n 2 n 2
(4) (n a 1),(a 1); 1 3 (2n 1) 1 (5) 2 4 2n 2n 1
8. 求下列极限 (其中 P>1):
(1) l n im
p 1 p 1 p
n
(n 1)p (n 2)p
(2n)p
1
2n
p
(3)
1
n 2
lnn
9. 下列级数哪些是绝对收敛 , 条件收敛或发散的 :
(1) sinnx
n! (2)
(6)
n!
(x 1) (x n)
,(x 0) .
p n 2
( 1)n n n1
n
2
( 1)n sin ;
n
( 1)n l n (n 1) ; n1
n
2n 100 n ( 1)n (23n n 101
0)n ;
n!( x n
)n ;
sinnx
(0 x 2 ) ; n 1 lnn
1
( 1)n n .
列级数的乘积
(2)
(3)
(4)
(5)
(6)
(7) (8)
(9)
(10) 10. 写出
(1)
( 1)n
(( 1)n
(n
n
nx n 1 ( 1)n 1nx n 1 ;
三、考研复习题
1. 证明:若正项级数
u n 收敛,且数列{u n }单调,则lim u n 0. n 2. 若级数 a n 与 C n 都收敛 , 且成立不等式
a n ≤
b n ≤C n
(n=1,2, ⋯) 证明级数 b n 也收敛.若级数 a n , C n 都发散,试问
b n 一定发散吗 ?
3. 若 lim a n k 0 ,且级数
b n 收敛 ,证明级数
a n 也收 n
b n n n 敛.若上述条件中只知道
b n 收敛,能推得 a n 收敛吗 ? 4. (1) 设 u n 为正项级数 ,且 u n 1 <1, 能否断定级数 u n 收
u n
敛?
(2) 对于级数 u n 有 | u n 1 |≥1,能否断定级数
u n 不绝
(2)
u
n
对收敛,但可能条件收敛.
(3) 设u n 为收敛的正项级数,能否存在一个正数ε ,使得
lim u n C 0
n1
1ε
n
5. 证明: 若级数a n 收敛, (b n 1 b n) 绝对收敛, 则级数
a n
b n也收敛.
1
6. 证明级数是发散的.
a bn
7. 讨论级数
1
p,(p>0)
n 2 n(lnn) p
的敛散性.
8. 设a n>0, 证明级数
a
n
(1 a1)(1 a2) (1 a n )
是收敛的.
9. 证明:若级数a n2与b2n 收敛,则级数a n b n 和
(a n b n )2也收敛,且
a n
b n a n2b2n
1
11
a n
b n2 2a n22 b n22
10. 证明:(1) 设a n 为正项级数,若
(2)若级数1
发散,且u n 收敛,
a n a n 1 0,
l n im u u n a n a n 1 n u n 1n n 1
0, 则正项级数u n 发散.。