(完整版)北师大版数学八年级下册图形的平移与旋转单元测试题
北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)
第三章图形的平移与旋转一、旋转题1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.2.用放大镜将图形放大,应该属于()A. 平移变换B. 相似变换C. 对称变换D. 旋转变换3.将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED 的面积等于8,则平移距离等于()A. 2B. 4C. 8D. 165.如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为()A. 6cmB. 4πcmC. 2πcmD. 3cm6.如图,Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连结CC′,则∠CC′B′的度数是()A. 45°B. 30°C. 25°D. 15°7.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点H,则图中△AHC′的面积等于()A. 12﹣6B. 14﹣6C. 18﹣6D. 18+68.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A. ②B. ③C. ④D. ⑤9.如图,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()A. B. C. 4 D.10.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A. 75°B. 60°C. 45°D. 15°二、填空题11.在等边三角形、正方形、直角三角形、等腰梯形中,既是轴对称图形,又是中心对称图形的是________ .12.在△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB'C',则∠B'AC=________.13.如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C=________ cm.14.点P(﹣2,1)向上平移2个单位后的点的坐标为________15.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为________ cm.16.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为________m.三、解答题17.如图所示,有一条宽相等的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,若要硬化这条小路,且每平方米造价50元,则需要多少元钱?18.请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.19.每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2.参考答案一、旋转题C BD A C D C D A B二、填空题11.正方形12.17°13.114.(﹣2,3)15.1316.200三、解答题17.解:在矩形ABCD中,AF∥EC,又∵AF=EC,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC﹣BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).240×50=1200元.答:需要1200元钱18.解:如图所示:解说词:两只小船在水中向前滑行19.解:如图所示:。
北师大版八年级数学下册第三章 图形的平移与旋转 单元测试卷 (含答案)
北师版八年级数学下册图形的平移与旋转单元测试卷(含答案)(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.在A,B,C,D四幅图案中,能通过左图平移得到的是(B)A B C D2.下列图形中是中心对称图形的是(B)A B C D3.△ABC在平移过程中,下列说法错误的是(B)A.对应线段一定相等B.对应线段一定平行C.周长和面积保持不变D.对应边中点所连接线段的长等于平移的距离4.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上(D)A.向左平移了5个单位长度B.向下平移了5个单位长度C.向上平移了5个单位长度D.向右平移了5个单位长度5.如图,已知图形是中心对称图形,则对称中心是(D)A.点F B.点D C.线段BD的中点D.线段FD的中点6.如图,将△ABC绕点B顺时针旋转,旋转角是∠ABC,则下列说法错误的是(A)A.AC∥BE B.AB=BD C.BC平分∠ABE D.AC=DE 7.如图是某公园里一处长方形风景欣赏区ABCD,长AB=100米,宽BC=50米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为2米,那么小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为(B)A .148米B .196米C .198米D .200米8.下列3个图形中,能通过旋转得到右侧图形的有(B)① ② ③A .①②B .①③C .②③ D.①②③9.如图,把△ABC 沿BC 方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB 的面积大小变化情况是(C)A .增大B .减小C .不变D .不确定10.如图,在△OAB 中,OA =OB ,∠AOB=15°,在△OCD 中,OC =OD ,∠COD=45°,且点C 在边OA 上,连接CB ,将线段OB 绕点O 逆时针旋转一定角度得到线段OE ,使得DE =CB ,则∠BOE 的度数为(B)A .15°B .15°或45°C .45°D .45°或60°二、填空题(每小题4分,共20分)11.“绿水青山就是金山银山”,可以用“平移”来解释的是“山”字. 12.平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A′(2,0);再将线段OA′顺时针旋转90°,则点A″的坐标为(0,-2__).13.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC′=5.14.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于点D 成中心对称,则对称中心点D 的坐标是(2,-12).15.如图,在平面直角坐标系xOy中,△OA1B1绕点O逆时针旋转90°,得△OA2B2;△OA2B2绕点O逆时针旋转90°,得△OA3B3;△OA3B3绕点O逆时针旋转90°,得△OA4B4;…;若点A1(1,0),B1(1,1),点B2020的坐标是(1,-1).三、解答题(共50分)16.(12分)如图1,2均为7×6的正方形网格,点A,B,C在格点上.(1)在图1中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形(画一个即可);(2)在图2中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).图1 图2 解:(1)(2)如图所示.(答案不唯一)17.(12分)如图,在等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.解:(1)∵△ABC为等腰直角三角形,∴∠BAD=∠BCD=45°,由旋转,得∠BA D=∠BCE=45°,∴∠DCE=∠ACB+∠BCE=45°+45°=90°.(2)∵AB=BC=4,∠ABC=90°,∴AC=AB2+BC2=4 2.∵CD=3AD, ∴AD=2,CD=3 2.由旋转,得AD=CE= 2.∴DE=CD2+CE2=(32)2+(2)2=2 5.18.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)OB=OA1=16+1=17,A1B=25+9=34.∵OB2+OA21=A1B2,∴△OA1B为等腰直角三角形.19.(14分)如图所示,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探索:在△ABC中,AB+AC与中线AD之间的关系,并说明理由.解:(1)延长AD至A′,使AD=A′D,连接A′B,则△A′DB就是与△ADC关于点D成中心对称的三角形.(2)A′B=AC.(3)AB+AC>2AD.理由:∵△ADC与△A′DB关于D点成中心对称,∴AD=A′D,AC=A′B.在△ABA′中,AB+BA′>AA′,即AB+AC>AD+A′D.∴AB+AC>2AD.。
(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案
北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2、下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、下列各网格中的图形是用其图形中的一部分平移得到的是()A. B. C.D.5、下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.6、下列交通标志图案中,是中心对称图形的是()A. B. C. D.7、下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8、下列图形是中心对称图形的是()A. B. C. D..9、下列图形中可以由一个基础图形通过平移变换得到的是()A. B. C. D.10、如图,将△ABC沿边BC向右平移2个单位长度得到△DEF,若AC的长为3个单位长度,则四边形ACFD的周长为()A.6B.10C.8D.1211、如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B. C. D.12、如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格13、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形15、将点 A( 2, -1) 向左平移 3 个单位长度,再向上平移 4 个单位长度得到点 B ,则点B 的坐标是()A.(5, 3)B.( -1, 3)C.( -1, -5)D.(5, -5)二、填空题(共10题,共计30分)16、在直角坐标系中,△ABC的顶点坐标是A(﹣1,2)、B(﹣3,1)、C (0,﹣1).(1)若将△ABC向右平移2个单位得到,画出△A′B′C′,A点的对应点A′的坐标是________ .(2)若将△A′B′C′绕点C′按顺时针方向旋转90°后得到△A1B1C′,则A′点的对应点A1的坐标是________ .(3)直接写出两次变换过程中线段BC扫过的面积之和为________ .17、将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)18、如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=________.19、如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是________20、一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是________.21、如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________度.22、中,,,,将此三角形绕点旋转,当点落在直线上的点处时,点落在点处,此时点到直线的距离为________.23、如图,已知在矩形0ABC中,0A=3,OC=2,以边OA,OC所在的直线为轴建立平面直角坐标系xOy,反比例函数y= (x>0)的图象经过点B,点P(t,0)是x轴正半轴上的动点,将点B绕点P顺时针旋转90°,使点B恰好落在反比例y= (x>0)的图象上,则t的值是________。
北师大版八年级数学下册《图形的平移与旋转》单元测试卷及答案含有详细解析
北师大版八年级数学下册《图形的平移与旋转》单元测试卷一、选择题1、如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为( ) A .6 B .8C .10 D .122、下列四个图案中,不能由1号图形平移得到2号图形的是( )3、下列四个图形分别是四届国际数学家大会的会标,其中有( )个是中心对称图形。
A .1B .2C .3D .4 4、下列说法中,不正确的是( ) A .图形平移是由移动的方向和距离所决定的 B .图形旋转是由旋转中心和旋转角度所决定的C .任意两条相等的线段都成中心对称D .任意两点都成中心对称5、在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保持不变,则所得图形在原图形的基础上( )A .向左平移了3个单位长度B .向下平移了3个单位长度C .向上平移了3个单位长度D .向右平移了3个单位长度 6、如图,在64方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()(第6题图)(第7题图)A .格点MB .格点NC .格点PD .格点Q7、如图,△ABC 经过平移后得到△DEF ,则下列说法中正确的有( )①AB ∥DE ,AB =DE ;②AD ∥BE ∥CF ,AD =BE =CF ;③AC ∥DF ,AC =DF ;④BC ∥EF ,BC =EF 。
A .1 个B .2个C .3个D .4个 8、如图所示,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A'点,连接A'B ,则线段A'B 与线段AC 的关系是 ( )A .垂直B .相等C .平分D .平分且垂直(第8题图)(第9题图)(第10题图)9、如图,△DEC 是由△ABC 经过了如下的几何变换而得到的:①以AC 所在直线为对称轴作轴对称,再以C 为旋转中心,顺时针旋转90°;②以C 为旋转中心,顺时针旋转90°得△A ′B ′C ′,再以A ′C ′所在直线为对称轴作轴对称;③将△ABC 向下向左各平移1个单位长度,再以AC 的中点为中心作中心对称,其中正确的变换有( ) A .①② B .①③ C .②③ D .①②③ 10、如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD.下列结论一定正确的是( )A. ∠ABD =∠EB. ∠CBE =∠CC. AD ∥BCD. AD =BC二、填空题11、用等腰直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为______度.12、在平面直角坐标系中,将点A(1,5)向右平移2个单位长度,可以得到对应点的坐标A ′_________;将点A(1,5)向下平移6个单位长度,可以得到对应点的坐标A ″________。
北师大版八年级数学下册 图形的平移与旋转单元测试题
第三章图形的平移与旋转一、选择题(每题3分,共30分)1.已知点P(a-3,2-a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()2.下列图形中,是中心对称图形但不是轴对称图形的是()3.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A.(0,5) B.(5,1) C.(2,4) D.(4,2)4.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(-2,3) B.(3,-1)C.(-3,1) D.(-5,2)5.如图,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A′B′C′,则其旋转中心的坐标是()A.(1.5,1.5) B.(1,0) C.(1,-1) D.(1.5,-0.5)6.如图,在Rt△ABO中,∠ABO=90°,OA=2,AB=1,把Rt△ABO绕着原点逆时针旋转90°,得△A′B′O,那么点A′的坐标为()A.(-3,1) B.(-2,3) C.(-1,3) D.(-3,2) 7.如图,在正方形ABCD中,点E为DC边上的点,连接BE,若△BCE绕C 点按顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD 的度数为()A.10°B.15°C.20°D.25°8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n°后,得到△EDC,此时,点D在AB边上,斜边DE交AC 边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2 B.60,2 C.60,32D.60, 39.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC平移的距离为()A.4 B.5 C.6 D.810.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针旋转90°;③先以直线MN为轴作轴对称图形,然后向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将△ABC变换成△PQ R的是()A.①②B.①③C.②③D.①②③二、填空题(每题3分,共24分)11.如图,在打水过程中旋转的部分是________(填一种),平移的部分是________(填一种).12.在平面直角坐标系中,将点P(-2,1)先向右平移3个单位长度,再向上平移4个单位长度,得到点P′,则点P′的坐标是________.13.在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a +b的值为________.14.等边三角形至少绕中心旋转________才能与自身重合.15.如图,△ABC的顶点分别为A(3,6),B(1,3),C(4,2).若将△ABC绕点B 顺时针旋转90°,得到△A′BC′,则点A的对应点A′的坐标为________.16.如图,把边长为3 cm的正方形ABCD先向右平移1 cm,再向上平移1 cm,得到正方形EFGH,则阴影部分的面积为________.17.如图,在等边三角形ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=4.5,BD=4,则△ADE 的周长为________.18.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后得到△AFB,连接EF,则有下列结论:①△AED≌△AEF;②BE+DC=DE;③S△ABE+S△ACD>S△AED;④BE2+DC2=DE2.其中正确的是________(填入所有正确结论的序号).三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.如图,等边三角形ABC经过平移后成为△BDE,其平移的方向为点A到点B 的方向,平移的距离是线段AB的长.△BDE能否看成是△ABC经过旋转得到的?如果能,请指出△BDE是△ABC绕哪一点经过怎样的旋转得到的?并指出点A,B,C的对应点.20.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1(点A,B,C的对应点分别是点A1,B1,C1).(2)将△A1B1C1向右平移4个单位长度,作出平移后的△A2B2C2(点A1,B1,C1的对应点分别是点A2,B2,C2).(3)在x轴上求作一点P,使P A1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果).21.如图,在Rt△ABC中,∠ACB=90°,AC=4 cm,BC=3 cm,△ABC沿AB 方向平移至△DEF,若AE=8 cm,BD=2 cm.求:(1)△ABC沿AB方向平移的距离;(2)四边形AEFC的周长.22.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF =CE.求证:FD=EB.23.如图①,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF,BE.(1)线段AF和BE有怎样的数量关系?请说明理由.(2)将图①中的△CEF绕点C旋转一定的角度,得到图②,(1)中的结论还成立吗?作出判断并说明理由.24.在平面直角坐标系xOy中,如图,已知Rt△DOE中,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠B=∠OED,BC=DE.(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN(不写作法,保留作图痕迹);(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合,画出△A′B′C′(不写作法,保留作图痕迹);(3)求OE的长.答案一、1.C 2.B 3.B 4.C 5.C 6.C 7.B 8.C 9.A 10.D 二、11.手柄;水桶(答案不唯一) 12.(1,5) 13.-714.120° 15.(4,1) 16.4 cm 2 17.8.5 18.①③④三、19.解:能,△BDE 可以看成是△ABC 绕点B 按顺时针方向旋转120°得到的,点A ,B ,C 的对应点分别为点E ,B ,D .(答案不唯一) 20.解:(1)如图. (2)如图.(3)如图所示,作出点A 1关于x 轴的对称点A ′,连接A ′C 2,交x 轴于点P ,则点P 即为所求,点P 的坐标为⎝ ⎛⎭⎪⎫83,0.21.解:(1)∵△ABC 沿AB 方向平移至△DEF ,∴AD =BE .∵AE =8 cm ,BD =2 cm , ∴AD =8-22=3(cm),即△ABC 沿AB 方向平移的距离是3 cm. (2)由平移的特征及(1)得,CF =AD =3 cm ,EF =BC =3 cm. 又AE =8 cm ,AC =4 cm ,∴四边形AEFC 的周长=AE +EF +CF +AC =8+3+3+4=18(cm).22.证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB =OD ,OA =OC .∵AF =CE ,∴OF =OE .在△DOF 和△BOE 中,OD =OB ,∠DOF =∠BOE ,OF =OE , ∴△DOF ≌△BOE (SAS ).∴FD =EB .23.解:(1)AF =BE .理由如下:∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60°.在△AFC 与△BEC 中,⎩⎨⎧AC =BC ,∠ACF =∠BCE ,CF =CE ,∴△AFC ≌△BEC (SAS ).∴AF =BE .(2)成立.理由:∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°.∴∠ACB -∠FCB =∠FCE -∠FCB ,即∠ACF =∠BCE .在△AFC 与△BEC 中,⎩⎨⎧AC =BC ,∠ACF =∠BCE ,CF =CE ,∴△AFC ≌△BEC (SAS ).∴AF =BE .24.解:(1)△OMN 如图所示.(2)△A ′B ′C ′如图所示.(3)设OE =x ,则ON =x ,过点M 作MF ⊥A ′B ′于点F ,如图所示.由作图可知,∠ONC′=∠OED,∠A′B′C′=∠B,∵∠B=∠OED,∴∠ONC′=∠A′B′C′.∴B′C′平分∠A′B′O.∵C′O⊥OB′,易得△FB′C′≌△OB′C′.∴B′F=B′O=OE=x,FC′=OC′=OD=3.∵A′C′=AC=5,∴A′F=A′C′2-C′F2=52-32=4,∴A′B′=x+4,易知A′O=5+3=8.在R t△A′B′O中,A′O2+B′O2=A′B′2,即82+x2=(4+x)2,解得x=6. ∴OE=6.。
北师大版八年级数学下册 第三章 :图形的平移与旋转 达标检测卷(含详细解答)
北师大版八年级数学下册第三章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.(崆峒区期末)把如左图所示的海豚吉祥物进行平移,能得到的图形是()A B C D2.观察下列四个图形,中心对称图形是()A B C D3.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′B′C′的面积大小变化情况是()A.增大 B.减小 C.不变 D.不确定4.图中的两个三角形是经过什么变换得到的()A.旋转 B.旋转与平移C.旋转与轴对称 D.平移与轴对称第4题图第5题图5.如图,四边形OABC绕点O逆时针旋转得到四边形ODEF,∠AOC=50°,∠COD =60°,那么四边形OABC旋转的角度是()A.10° B.40° C.50° D.110°6.(河南期中)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度7.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°第7题图第8题图8.如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,使点D刚好落在斜边AB上,则n的大小为()A.30 B.45 C.60 D.759.如图,EF∥BC,ED∥AC,FD∥AB,D,E,F为三边中点,图中可以通过平移互相得到的三角形有()A.2 对 B .3 对 C .4 对 D.5对10.在平面直角坐标系中,点A(-1,m)在直线y =2x +3上,连接OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y =-x +b 上,则b的值为( )A .-2B .1C .32D .2 第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.(邵阳期末)如图,将Rt △ABC 绕直角顶点A 按顺时针方向旋转180°得△AB 1C 1,则旋转后BC 的对应线段为 .第11题图12.平面直角坐标系中,点P 的坐标是(2,-1),则点P 关于原点对称的点的坐标是 .13.在平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A ′ .14.五角星图形绕它的中心旋转,要与它本身完全重合,旋转角至少为 .15.如图是由两个正三角形和两个等腰三角形组成的图案,图中两个阴影部分的三角形可以通过:①平移;②旋转;③轴对称中的哪些方式得到.在横线上写上答案的序号: .第15题图16.如图,将△ABC沿BC方向平移2 cm得到△DEF.如果四边形ABFD的周长是20 cm,则△ABC周长是 cm.第16题图第17题图17.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是 .18.★如图,已知直线MN∥PQ,把∠C=30°的直角三角板ABC的直角顶点A放在直线MN上,将直角三角板ABC在平面内绕点A任意转动,若转动的过程中,直线BC与直线PQ的夹角为60°,则∠NAC的度数为.三、解答题(共66分)19.(6分)将已知△ABC的顶点A,B,C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C;(2)画△ABC关于点O的中心对称图形△A2B2C2.20.(8分)(南城县期中)如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.21.(8分)如图,等边△ABC与等边△A1B1C1关于某点成中心对称,已知A,A1,B 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.22.(8分)在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a=-1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位长度,再向上平移1个单位长度后得到点N,当点N 在第三象限时,求a的取值范围.23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3b,4a-b)与点Q(2a-9,2b-9)也是通过上述变换得到的对应点,求a,b的值.24.(12分)(鼓楼区期末)如图,在Rt△ABC中,∠C=90°,∠CAB=35°,BC=7.线段AD由线段AC绕点A按逆时针方向旋转125°得到,△EFG由△ABC沿CB 方向平移得到,且直线EF过点 D.(1)求∠DAE的大小;(2)求DE的长.25.(14分)如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.(崆峒区期末)把如左图所示的海豚吉祥物进行平移,能得到的图形是(C)A B C D2.观察下列四个图形,中心对称图形是(C)A B C D3.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′B′C′的面积大小变化情况是(C)A.增大 B.减小 C.不变 D.不确定4.图中的两个三角形是经过什么变换得到的(D)A.旋转 B.旋转与平移C.旋转与轴对称 D.平移与轴对称第4题图第5题图5.如图,四边形OABC绕点O逆时针旋转得到四边形ODEF,∠AOC=50°,∠COD =60°,那么四边形OABC旋转的角度是(D)A.10° B.40° C.50° D.110°6.(河南期中)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形(C)A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度7.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点 D.如果∠D=40°,则∠BAC的度数为(B)A.30° B.40° C.50° D.60°第7题图第8题图8.如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,使点D刚好落在斜边AB上,则n的大小为(C)A.30 B.45 C.60 D.759.如图,EF∥BC,ED∥AC,FD∥AB,D,E,F为三边中点,图中可以通过平移互相得到的三角形有 (B )A.2 对 B .3 对 C .4 对 D.5对10.在平面直角坐标系中,点A(-1,m)在直线y =2x +3上,连接OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y =-x +b 上,则b 的值为 (D ) A .-2 B .1 C .32D .2第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.(邵阳期末)如图,将Rt △ABC 绕直角顶点A 按顺时针方向旋转180°得△AB 1C 1,则旋转后BC 的对应线段为B 1C 1.第11题图12.平面直角坐标系中,点P 的坐标是(2,-1),则点P 关于原点对称的点的坐标是(-2,1).13.在平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A ′(2,0).14.五角星图形绕它的中心旋转,要与它本身完全重合,旋转角至少为72度. 15.如图是由两个正三角形和两个等腰三角形组成的图案,图中两个阴影部分的三角形可以通过:①平移;②旋转;③轴对称中的哪些方式得到.在横线上写上答案的序号:②③.第15题图16.如图,将△ABC沿BC方向平移2 cm得到△DEF.如果四边形ABFD的周长是20 cm,则△ABC周长是16cm.第16题图第17题图17.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是2 2 .18.★如图,已知直线MN∥PQ,把∠C=30°的直角三角板ABC的直角顶点A放在直线MN上,将直角三角板ABC在平面内绕点A任意转动,若转动的过程中,直线BC与直线PQ的夹角为60°,则∠NAC的度数为30°或90°或150°.选择、填空题答题卡一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 得分答案 C C C D D C B C B D二、填空题(每小题3分,共24分)得分:________11.__B1C1__ 12.__(-2,1)__13.__(2,0)__ 14.__72度__15.__②③__ 16.__16__17.__2 2 __ 18.__30°或90°或150°__三、解答题(共66分)19.(6分)已知△ABC的顶点A,B,C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C;(2)画△ABC关于点O的中心对称图形△A2B2C2.解:(1)如图,△A1B1C即为所求.(2)如图,△A2B2C2即为所求.20.(8分)(南城县期中)如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.解:由旋转的性质可知:∠BAC=∠DAE=15°,AC=AE,∠CAE=90°,由翻折的性质可知:∠FAD=∠EAD=15°,AF=AE.∴AC=AF,∠CAF=60°,∴△ACF为等边三角形.21.(8分)如图,等边△ABC与等边△A1B1C1关于某点成中心对称,已知A,A1,B 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.解:(1)点A1和点B为对应点,∴对称中心为A1B的中点,∴对称中心的坐标为(0,2.5).(2)在△ABC中,AB=2,C到AB的距离为 3 .即点C到y轴的距离为 3 ,∴点C的坐标为(- 3 ,3),点C1的坐标为( 3 ,2).22.(8分)在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a =-1时,点M 在坐标系的第象限;(直接填写答案)(2)将点M 向左平移2个单位长度,再向上平移1个单位长度后得到点N ,当点N 在第三象限时,求a 的取值范围.解:(1)当a =-1时,点M 的坐标为(-1,2), 所以M 在第二象限,所以应填“二”.(2)将点M 向左平移2个单位长度,再向上平移1个单位长度后得到点N ,点M 的坐标为(a ,-2a),所以N 点的坐标为 (a -2,-2a +1). 因为N 点在第三象限,所以⎩⎪⎨⎪⎧a -2<0,-2a +1<0,解得12<a<2,所以a 的取值范围为12 <a<2.23.(10分)如图,三角形DEF 是三角形ABC 经过某种变换得到的图形,点A 与点D ,点B 与点E ,点C 与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a +3b ,4a -b)与点Q(2a -9,2b -9)也是通过上述变换得到的对应点,求a ,b 的值.解:(1)点A 的坐标为(2,3),点D 的坐标为(-2,-3),点B 的坐标为(1,2),点E 的坐标为(-1,-2),点C 的坐标为(3,1),点F 的坐标为(-3,-1),对应点的横、纵坐标分别互为相反数.(2)由(1),得⎩⎪⎨⎪⎧a +3b +2a -9=0,4a -b +2b -9=0, 解得⎩⎪⎨⎪⎧a =2,b =1,答:a 的值为2,b 的值为1.24.(12分)(鼓楼区期末)如图,在Rt △ABC 中,∠C =90°,∠CAB =35°,BC =7.线段AD 由线段AC 绕点A 按逆时针方向旋转125°得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点 D. (1)求∠DAE 的大小; (2)求DE 的长.解:(1)∵△EFG 是 由△ABC 沿CB 方向 平移得到,∴AE∥CF,∴∠EAC+∠C=180°.∵∠C=90°,∴∠EAC=90°.又线段AD是由线段AC绕点A按逆时针方向旋转125°得到,即∠DAC=125°,∴∠DAE=35°.(2)∵△EFG是由△ABC沿CB方向平移得到,∴AE∥CF,EF∥AB,∴∠AED=∠F=∠ABC.又∵∠DAE=∠BAC=35°,AD=AC,∴△ADE≌△ACB(AAS),∴DE=BC=7.25.(14分)如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴CO=CD,∠OCD=60°,∴△COD 是等边三角形.(2)解:当α=150°时,△AOD 是直角三角形. 理由:∵△BOC ≌△ADC , ∴∠ADC =∠BOC =150°, ∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =90°, 则△AOD 是直角三角形.(3)解:①要使OA =AD ,需∠AOD =∠ADO , ∵∠AOD =360°-110°-60°-α=190°-α, ∠ADO =α-60°, ∴190°-α=α-60°, ∴α=125°;②要使OA =OD ,需∠OAD =∠ADO. ∵∠OAD =180°-(∠AOD +∠ADO) =180°-(190°-α+α-60°) =50°,∴α-60°=50°, ∴α=110°;③要使OD =AD.需∠OAD =∠AOD.∵∠AOD =360°-110°-60°-α=190°-α, ∠OAD =180°-(α-60°)2 =120°-α2,∴190°-α=120°-α2 ,解得α=140°.综上所述,当α的度数为125°,110°或140°时, △AOD 是等腰三角形.。
北师大版八年级下《第三章图形的平移与旋转》测试题(含答案)
第三章 图形的平移与旋转一、选择题(本大题共7小题,每小题4分,共28分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )图12.已知△ABC 沿水平方向平移得到△A ′B ′C ′,若AA ′=3,则BB ′等于( ) A.32B .3C .5D .10 3.已知点A (a ,2018)与点A ′(-2019,b )是关于原点O 的对称点,则a +b 的值为( ) A .1B .5C .6D .44.如图2,△ABC 绕点A 顺时针旋转80°得到△AEF ,若∠B =100°,∠F =50°,则∠α的度数是( )图2A .40°B .50°C .80°D .100°5.正方形ABCD 在平面直角坐标系中的位置如图3所示,将正方形ABCD 绕点A 顺时针旋转180°后,点C 的坐标是( )图3A .(2,0)B .(3,0)C .(2,-1)D .(2,1)6.如图4,将边长为4的等边三角形OAB 先向下平移3个单位长度,再将平移后的图形沿y 轴翻折,经过两次变换后,点A 的对应点A ′的坐标为( )图4A .(2,3-23)B .(2,1)C .(-2,23-3)D .(-1,23)7.如图5,P 是正方形ABCD 内一点,将△ABP 绕着B 沿顺时针方向旋转到与△CBP ′重合,若PB =3,则PP ′的长为( )图5A.2 2 B.3 2C.3 D.无法确定二、填空题(本大题共5小题,每小题4分,共20分)8.有一种拼图游戏是当每一行的小方格铺满后,这一行消失并使玩家得分.若在游戏过程中,已拼好的图案如图6,又出现了一小方格体向下运动,为了使所有图案消失,最简单的操作是将这个小方格体先________时针旋转________°,再向________平移,再向________平移,才能拼成一个完整的图案,从而使图案消失.图69.如图7,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=________°.10.已知点A(1,-2),B(-1,2),E(2,a),F(b,3),若将线段AB平移至EF,点A,E为对应点,则a+b的值为________.图711.如图8所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.图812.如图9,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为__________.图9三、解答题(本大题共4小题,共52分)13.(12分)如图10,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的函数表达式.图1014.(12分)如图11,将一个直角三角板ACB(∠C=90°)绕60°角的顶点B顺时针旋转,使得点C旋转到AB的延长线上的点E处,请解答下列问题:(1)三角板旋转了多少度?(2)连接CE,请判断△BCE的形状;(3)求∠ACE的度数.图1115.(14分)在网格中画对称图形.(1)如图12是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图13①②③中(只需各画一个,内部涂上阴影);图12图1①是轴对称图形,但不是中心对称图形;②是中心对称图形,但不是轴对称图形;③既是轴对称图形,又是中心对称图形.(2)请你在图13④的网格内设计一个商标,满足下列要求:①是顶点在格点的凸多边形(不是平行四边形);②是中心对称图形,但不是轴对称图形;③商标内部涂上阴影.16.(14分)如图14,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC 绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?图141.[答案]C2.[解析]B根据平移的定义及性质解题.平移是在平面内,把一个图形沿某个方向移动一定的距离的运动.平移不改变图形的形状和大小,只改变图形的位置.本题中AA′与BB′都是对应点所连的线段,所以BB′=3.3.[答案]A4.[答案]B5.[答案]B6.[解析]C∵等边三角形OAB的边长为4,∴A(2,23).∵先向下平移3个单位长度,∴点A的对应点坐标为(2,23-3).∵再将平移后的图形沿y轴翻折,∴这时点A的对应点A′的坐标为(-2,23-3).故选C.7.[答案]B8.[答案]顺90右下9.[答案]4610.[答案] -1[解析]∵线段AB平移至EF,即点A平移到点E,点B平移到点F,而A(1,-2),B(-1,2),E(2,a),F(b,3),∴点A向右平移1个单位长度到点E,点B向上平移1个单位长度到点F,∴线段AB先向右平移1个单位长度,再向上平移1个单位长度得到EF,∴-2+1=a,-1+1=b,∴a=-1,b=0,∴a+b=-1+0=-1.11.[答案]8[解析]S阴影=S△A′B′C′-S△BC′D=252-92=8.12.[答案] (8076,0)[解析]∵点A(-3,0),B(0,4),∴AB=32+42=5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为4+5+3=12.∵2019÷3=673,∴△2019的直角顶点是第673个循环组的第三个三角形的直角顶点.∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).13.解:(1)△A1B1C1如图所示.(2)△D1E1F1如图所示.(3)△A1B1C1和△D1E1F1y=x或y=-x-2.14.解:(1)∵∠ABC=60°ACB绕顶点B 顺时针旋转得到△DEB,∴∠CBE等于旋转角,∴三角板旋转了120°.(2)连接CE,∵直角三角板ACB绕顶点B顺时针旋转得到△DEB,∴BC=BE,∴△BCE为等腰三角形.(3)∵∠CBE =120°,△BCE 为等腰三角形,∴∠BCE =12×(180°-120°)=30°,∴∠ACE =∠ACB +∠BCE =90°+30°=120°.15.解:(1)如图①,是轴对称图形,但不是中心对称图形(答案不唯一); 如图②,是中心对称图形,但不是轴对称图形; 如图③,既是轴对称图形,又是中心对称图形. (2)16.解:(1)ADC , ∴CO =CD ,∠OCD =60°, ∴△COD 是等边三角形. (2)当α=150°时,△AOD 是直角三角形. 理由:∵△BOC ≌△ADC , ∴∠ADC =∠BOC =150°. ∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =90°, 即△AOD 是直角三角形.(3)①要使OA =AD ,需∠AOD =∠ADO , ∵∠AOD =360°-110°-60°-α=190°-α,∠ADO =α-60°, ∴190°-α=α-60°, ∴α=125°;②要使OA =OD ,需∠OAD =∠ADO. ∵∠OAD =180°-(∠AOD +∠ADO)=180°-(190°-α+α-60°)=50°, ∴α-60°=50°, ∴α=110°;③要使OD =AD ,需∠OAD =∠AOD. ∵∠AOD =360°-110°-60°-α=190°-α,∠OAD =180°-(α-60°)2=120°-α2,∴190°-α=120°-α2,解得α=140°.综上所述,当α的度数为125°,110°或140°时,△AOD 是等腰三角形.。
(完整版)北师大版数学八年级下册图形的平移与旋转单元测试题.doc
《图形的平移与旋转》【巩固练习】一、选择题1.以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有() .A.4个B.5个C.6个D.3个2.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是() .A.①③B.①②C.②③D.②④3. ( 2015?番禺区一模)下列图形可以由一个图形经过平移变换得到的是()A. B . C . D .4. 如图,O是正六边形ABCDEF的中心,下列图形可由△OBC平移得到的是() .A. △ OCDB. △OABC. △ OAFD.△ OEF5.如图,∠ DOE为直角,如果△ ABC关于 OD的对称图形是△ A′ B′ C′,△ A′ B′C′关于 OE的对称图形是△ A″ B″C″,则△ ABC与△ A″ B″ C″的关系是().A .以∠ DOE的平分线成轴对称; B.关于点O成中心对称C.平移关系;D.不具备任何关系第 4 题第5题第6题6.如图所示,△ ABC中, AC= 5,中线 AD=7,△ EDC是由△ ADB旋转 180°所得,则 AB 边的取值范围是().A. l < AB<29B. 4<AB< 24 C .5< AB<19 D. 9< AB< 197.下列变换中,哪一个是平移().8.如图所示,将一个含 30°的直角三角板 ABC绕点 A 选择,使得点 B, A,C在同一条直线上,则三角板ABC旋转的角度是().A. 60°B.90°C.120° D . 150°二、填空题9. 某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100 米,则荷塘周长为.10.如图, AB⊥BC, AB=BC=2cm,弧 OA与弧 OC关于点 O中心对称,则 AB、 BC、弧 CO、弧 OA所围成的面积是 __________cm2.11.如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和 AD边上的 AF 重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.第 10 题第11题第12题12.如图,在矩形纸片 ABCD中, AB= 2cm,点 E 在 BC上,且 AE= CE.若将纸片沿 AE折叠,点 B恰好与AC上的点 B1重合,则AC=cm.13. 如图,把Rt △ ABC绕点 A 逆时针旋转44°,得到Rt △AB’ C’,点 C’恰好落在边 AB 上,连接BB’,则∠ BB’ C’ =.第 13 题第14题14.如图所示,图形①经过变换得到图形②;图形①经过变换得到图形③;图形①经过变换得到图形④.(填平移、旋转、轴对称)15. 如图,把大小相等的两个长方形拼成L 形图案,则∠FCA=度.16.将△ ABC绕 BC边的中点O旋转 1800得到△ BCD.如果 AB+BD=12㎝ , 那么旋转前后图形拼成的四边形的周长是.三、解答题17.动手操作.( 1)在 A 图中画出图形的一半,是它们成为一个轴对称图形.( 2)把 B 图形②绕O点方向旋转,然后向平移格,再向平移格,可同图形①拼成一个正方形.19.阅读材料:如图(一),在已建立直角坐标系的方格纸中,图形①的顶点为A、 B、C,要将它变换到图④(变换过程中图形的顶点必须在格点上,且不能超出方格纸的边界).例如:将图形①作如下变换(如图二).第一步:平移,使点C( 6, 6)移至点( 4, 3),得图②;第二步:旋转,绕着点(4, 3)旋转 180°,得图③;第三步:平移,使点(4, 3)移至点O( 0, 0),得图④.则图形①被变换到了图④.解决问题:( 1)在上述变化过程中 A 点的坐标依次为:( 4,6)→(,)→(,)→(,)(2)如图(三),仿照例题格式,在直角坐标系的方格纸中将△ DEF经过平移、旋转、翻折等变换得到△OPQ.(写出变换步骤,并画出相应的图形)20. 如图,在正方形网格上有一个△ABC.(1)作出△ ABC关于点 O的中心对称图形△ A′ B′C′(不写作法,但要标出字母);(2)若网格上的最小正方形边长为1,求出△ ABC的面积.《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】一、选择题1.轴对称与平移、旋转的关系不正确的是().A.经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C.经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D.经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的2. 在旋转过程中,确定一个三角形旋转的位置所需的条件是().①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④B.①②③C.②③④D.①③④3. 下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为().A B C D4.如图,在△ ABC中,∠ ACB=90°,∠ B=50°,将此三角形绕点 C 顺时针方向旋转后得到△ A’ B’C’,若点 B’恰好落在线段AB上, AC、 A’ B’交于点O,则∠ COA’的度数是()A. 50° B . 60° C . 70° D . 80°5.如图 , 把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠ FPH 90o,PF 8 , PH 6 ,则矩形ABCD 的边BC 长为() .A.20B.22C.24D.30第 4 题第 5 题6.如图 , 正方形硬纸片ABCD的边长是4,点E、 F 分别是AB、 BC的中点,若沿左图中的虚线剪开,拼成如下图的一座“小别墅”,则图中阴影部分的面积是().A. 2 B . 4 C. 8 D. 107. 如图,在Rt△ ABC中,∠ ACB=90°, AC=BC= 2,将 Rt △ ABC绕 A 点按逆时针方向旋转30°后得到Rt △ ADE,点 B 经过的路径为弧BD,则图中阴影部分的面积是().A. B. C.1 D.163 68.如图,在正方形 ABCD外取一点 E,连接 AE,BE, DE. 过点 A 作 AE 的垂线交 DE于点 P.若 AE=AP=1,PB= 5 .下列结论:①△ APD≌△ AEB;②点 B 到直线 AE的距离为 2 ;③ EB⊥ ED;④S +S =1+ 6 ;△APD△ APB⑤ S =4+ 6 .其中正确结论的序号是().正方形 ABCDA.① ③④B.① ② ⑤C.③ ④ ⑤D.①③⑤二、填空题9.10. 如图,图 B 是图 A 旋转后得到的,旋转中心是,旋转了Rt ABC A< B CM AB ACM.CM A DCD恰好与AB 垂直,那么∠ A 等于度 .第 9 题第 10 题第 12 题11.(2016?大连)如图,将△ ABC绕点 A 逆时针旋转得到△ ADE,点 C 和点 E 是对应点,若∠ CAE=90°,AB=1,则 BD=.12. 如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13. 时钟的时针不停地旋转,从上午8: 30 到上午 10: 10,时针旋转的旋转角是.14. 如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在 Rt △ ABC中,∠ ACB= 90°,∠ A= 30°, AC=4 3, BC的中点为 D,将△ ABC绕点 C 顺时针旋转任意一个角度得到△FEC, EF 的中点为 G,连接 DG.在旋转过程中,DG的最大值是.三、解答题117.如图,在正方形ABCD中, F 是 AD的中点, E 是 BA 延长线上一点,且AE=AB.2①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF 变到△ ADE 的位置?若是旋转,指出旋转中心和旋转角.②线段 BF 和 DE之间有何数量关系?并证明.19. 如图,长方形ABCD在坐标平面内,点 A 的坐标是A(2, 1),且边 AB、CD与x 轴平行,点B、 C 的坐标分别为B( a, 1), C( a, c),且 a、 c 满足关系式c= x 轴平行,边+AD、BC与+3.(1)求 B、 C、D 三点的坐标;(2)怎样平移,才能使 A 点与原点重合?平移后点 B、C、 D的对应分别为 B1C1D1,求四边形 OB1C1D1的面积;( 3)平移后在x 轴上是否存在点P,连接 PD,使若不存在,试说明理由.S△COP=S 四边形OBCD?若存在这样的点P,求出点P 的坐标;20.如图, P 是等边三角形 ABC中的一点, PA= 2,PB=2 3, PC=4,求 BC边得长是多少?CPBA。
北师大版八年级数学下册第三章 图形的平移与旋转 单元测试题(含答案)
第三章《图形的平移与旋转》单元测试卷一.选择题(每小题3分36分)1.下列四组图形中,平移其中一个三角形可以得到另一个三角形的一组图形是()2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为()A.2B.3C.5D.73.如图,把△ABC绕点C顺时针旋转某个角度q后得到△A′B′C′,若∠A=30°,∠1=70°,则旋转角q等于()A.30°B.50°C.40°D.100°4.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于A.55°B.70°C.125°D.145°5.下列标志既是轴对称图形又是中心对称图形的是()6.点P(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°.∠B′=110°,则∠BCA′的度数是().A.110°B.80°C.40°D.30°8.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)9.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D 的坐标是()A.(2,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-2,0)10.下列图形:线段、角、圆、平行四边形、矩形、正方形中,既是轴对称图形又是中心对称图形的有()A.6个B.5个C.4个D.3个11.如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为( ). A.30,2 B.60,2 C.60,23D.60,312.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB =150°;④四边形AOBO ′的面积为;⑤AOCAOBS S+=其中正确的结论是( )A. ①②③B.①②③④C.①②③⑤D.①②③④⑤二.填空题(题型注释)13.点P (-2,1)向上平移2个单位后的点的坐标为__________ .14.如图,等腰直角△ABC 中,AC =BC ,∠ACB =90°,点O 分斜边AB 为BO :OA =1将△BOC 绕C 点顺时针方向旋转到△AQC 的位置,则∠AQC = .15. 如图,在正方形ABCD 中,边AD 绕点A 顺时针旋转角度m (︒<<︒3600m ),得到线段AP ,连接PB ,PC .当△BPC 是等腰三角形时,m 的值为 .16.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为_________.三.解答题(共52分)17.如图,已知△ABC 三个顶点的坐标分别为A (-2,-1),B (-3,-3),C (-1,-3),(1)、画出△ABC 向右平移三个单位的对应图形△111C B A ,并写出1A 的坐标; (2)、画出△ABC 关于原点O 对称的△222C B A ,并写出2A 的坐标;18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 绕点B 顺时针旋转90°得到△A ′BC ′,请画出△A ′BC ′;(2)求BA边旋转到B A′位置时所扫过图形的面积.19.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(4分)(2)当AE=1时,求EF的长.(4分)21.已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD 的长.22.如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用.旋转的性质证明.......你的结论。
第三章图形的平移与旋转 单元自测2022-2023学年北师大版八年级数学下册
北师大版八年级数学下册第三章图形的平移与旋转单元自测一、单选题1.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列图形中,是中心对称图形的是()A.B.C.D.4.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.5.下列关于防范“新冠肺炎”的标志中是中心对称图形的是()A .戴口罩讲卫生B .勤洗手勤通风C .有症状早就医D .少出门少聚集6.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.如图,在平面直角坐标系中,已知点()06B ,,点A 在第一象限内,AB OA =,120OAB ∠=︒,将ABO 绕点О逆时针旋转,每次旋转90°,则第2023次旋转结束时,点A 的坐标为( )A .(33-,B .()3-,C .)33-,D .(33,8.下列图形是中心对称图形,也是轴对称的是( )A .B .C .D .9.下列图案中,不是中心对称图形的是( )A .B .C .D .10.如图,在OAB 绕点O 逆时针旋转80°得到OCD ,若10050A D ∠=︒∠=︒,,则AOD ∠的度数是( )A .30°B .40°C .50°D .60°二、填空题11.如图,将右边的图案变成左边的图案,是通过 变化得到的.12.如图,将△ABC 绕点A 逆时针旋转得到△AB'C',点B'在BC 上.若△B =50°,则△CAC′的度数为 .13.如图,在ABC 中,70C ∠=︒,将ABC 绕点A 顺时针旋转后,得到AB C '',且C '在边BC上,则B AB ∠'的度数为 .14.如图,数轴上放置的正方形的周长为8个单位,它的两个顶点A 、B 分别与数轴上表示1-和3-的两个点重合.现将该正方形绕顶点按顺时针方向在数轴上向右无滑动的翻滚,当正方形翻滚一周后,点A 落在数轴上所对应的数为7.(1)当正方形翻滚三周后,点A 落在数轴上所对应的数为 ;(2)如此继续下去,当正方形翻滚n 周后(n 表示正整数),用含n 的式子表示点A 落在数轴上所对应的数为 .三、计算题15.如图,在ABC 中,点D 是 AB 边上的中点.(1)画出 BCD 关于点D 的中心对称图形( AED ); (2)若 2AC = , 4BC = ,根据所作图形直接写出线段 CD 长的取值范围.16.如图所示,△ABC 平移后得到了△DEF ,D 在AB 上,若△A=26°,△E=74°,求△1,△2,△F ,△C 的度数.四、作图题17.ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点.( 1 )将ABC 向上平移3个单位长度,再向左平移1个单位长度,得到111A B C ;作111A B C 关于y 轴对称的222A B C ;在图中画出111A B C 和222A B C ,并写出2A 、2B 、2C 的坐标. ( 2 )在y 轴上存在一点M ,使得11A B M 的周长最小,请在图中画出点M 的位置.18.如图,在6×6的方格中,有一格点△ABC (顶点都在小正方形的顶点上)及格点P ,按下列要求画格点三角形.(1)在图1中,画出△ABC 绕点P 顺时针旋转90°后的三角形△A'B'C'.(2)在图2中,画出△ABC 绕某一点顺时针旋转90°后的△DEF ,且点P 在△DEF 内(不包括边界).五、解答题19.如图,在ABC 中,80B ∠=︒,将ABC 绕点C 逆时针旋转50°得到A B C ''',且AB A C⊥'于点D ,求A CB ∠''的度数.20.如图,在ΔABC 中,75CAB ∠=,在同一平面内,将ΔABC 绕点A 旋转到ΔAB C ''的位置,使得CC '△AB ,求BAB ∠'的度数.六、综合题21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt ABC 的三个顶点()22A -,,()05B ,,()02C ,.(1)将ABC 以点C 为旋转中心旋转180︒, 得到11A B C ,请画出11A B C 的图形;(2)平移ABC ,使点A 的对应点2A 坐标为()26-,,请画出平移后对应的222A B C 的图形; (3)若将11A B C 绕某一点旋转可得到222A B C ,请直接写出旋转中心的坐标.22.如图,将ABC 绕点A 顺时针旋转60°得到AED ,(1)填空:若35BAC ∠=︒,则CAE ∠的度数为 ; (2)连接BE ,若线段5AB =,求ABE 的周长.23.将一副三角板的两个锐角顶点重合,△AOB =45°,△COD =30°,OM 、ON 分别是△AOC 、△BOD 的平分线.(1)如图1,当OB 与OC 重合时,则△MON 的大小为 ;(2)当△COD 绕着点O 旋转至如图2所示,且△BOC =10°时,求△MON 的度数; (3)当△COD 绕着点O 旋转至如图3所示,且△BOC =n°时,求△MON 的度数.答案解析部分1.【答案】C【解析】【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、是轴对称图形,也是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故答案为:C.【分析】根据轴对称图形和中心对称图形的定义逐项判断即可。
八年级数学下册第三章《图形的平移与旋转》单元测试题-北师大版(含答案)
八年级数学下册第三章《图形的平移与旋转》单元测试题-北师大版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.今年4月,被称为“猪儿虫”的璧山云巴正式运行.云巴在轨道上运行可以看作是( )A .对称B .旋转C .平移D .跳跃2.在平面直角坐标系中,点(4,)P m n -,(,2)Q m n -均在第一象限,将线段PQ 平移,使得平移后的点P 、Q 分别落在x 轴与y 轴上,则点P 平移后的对应点的坐标是( )A .(4,0)-B .(4,0)C .(0,2)D .(0,2)-3.如图,在Rt ABC △中,90ABC ∠=︒,2AB BC =ABC 绕点A 逆时针转60°得到AB C ''△,则BC '的长是( )A 31B .232C .32D .234.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒5.下列命题是真命题的是( )A .一个角的补角一定大于这个角B .平行于同一条直线的两条直线平行C .等边三角形是中心对称图形D .旋转改变图形的形状和大小6.如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥7.如图,点A 的坐标为()0,2,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为(),3m ,则m 的值为( )A 43B 221C 53D 421 8.以图(1)(以O 为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是( )A .绕着OB 的中点旋转180°即可 B .先绕着点O 旋转180°,再向右平移1个单位C .先以直线AB 为对称轴进行翻折,再向右平移1个单位D .只要向右平移1个单位9.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-10.小明把一副三角板按如图所示叠放在一起,固定三角板ABC ,将另一块三角板DEF 绕公共顶点B 顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF 旋转的度数可能是( )A .15°或45°B .15°或45°或90°C .45°或90°或135°D .15°或45°或90°或135°11.如图,ABC 与A B C '''关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A '是对称点B .BO B O '=C .AOB A OB ''∠=∠D .ACB C A B '''∠=∠ 12.如图,已知△ABC 中,∠CAB =20°,∠ABC =30°,将△ABC 绕A 点逆时针旋转50°得到△AB ′C ′,以下结论:∠BC =B ′C ′,∠AC ∠C ′B ′,∠C ′B ′∠BB ′,∠∠ABB ′=∠ACC ′,正确的有( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠二、填空题(本大题共8小题,每小题3分,共24分)13.已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.14.如图.两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF 的位置,8,3==AB DP ,平移距离为6,则阴影部分的面积为____________.15.如图,边长为2的等边ABO 在平面直角坐标系的位置如图所示,点O 为坐标原点,点A 在x 轴上,以点O 为旋转中心,将ABO 按顺时针方向旋转120°,得到OA B ''△,则点A '的坐标为_____.16.如图,在ABC 中,∠C =90°,点D 、E 分别在AC 、BC 上,∠CDE =45°,ECD 绕点D 顺时针旋转x 度(45<x <180)到11E C D △,则1BEE ∠等于______度.(用含x 的代数式表示)17.如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪. 则草坪的面积为__________.18.如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.19.线段MN 是由线段EF 经过平移得到的,若点(1,3)-E 的对应点(4,7)M -,则点(3,2)F --的对应点N 的坐标是____________.20.如图,DEF ∆是由ABC ∆通过平移得到,且点,,,B E C F 在同一条直线上,如果14BF =,6EC =.那么这次平移的距离是_________.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,已知图中A 点和B 点的坐标分别为()2,4-和()2,2-.(1)请在图1中画出坐标轴建立适当的直角坐标系;(2)写出点C 的坐标为______;(3)在y 轴上有点D .满足20DBC S =△,则点D 的坐标为______;(4)已知第一象限内有两点()4,M m n -,(),3N m n -.平移线段MN 使点M 、N 分别落在两条坐标轴上.则点M 平移后的对应点的坐标是______.22.如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.23.如图,()1,0A ,点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为()3,2-.(1)点B 的坐标为_______,点E 的坐标为______;(2)点P 从点O 出发,沿OB BC CD →→移动,若点P 的速度为每秒1个单位长度,运动时间为()0t t >秒. ∠用含t 的式子表示点P 的坐标;∠当t 为多少时,点P 的横坐标与纵坐标互为相反数;∠当三角形AEP 的面积为2时,直接..写出此时t 的值.24.在平面直角坐标系中,A(-2,4),B(-3,-1),C(0,2).将∠ABC平移至∠A1B1C1,点A对应点A1(3,3),点B对应点B1,点C对应点C1.(1)画出平移后的∠A1B1C1,并写出B1的坐标;(2)求∠ABC的面积;(3)若存在点D(m,n)使得∠BB1D和∠BB1C面积相等,其中m,n均为绝对值不超过5的整数,则点D的坐标为_________.25.在平面直角坐标系xOy中,对于点A,规定点A的α变换和β变换.α变换:将点A向左平移一个单位长度,再向上平移两个单位长度;β变换:将点A向右平移三个单位长度,再向下平移一个单位长度(1)若对点B进行α变换,得到点(1,1),则对点B进行β变换后得到的点的坐标为.=,求m的值.(2)若对点C(m,0)进行α变换得到点P,对点C(m,0)进行β变换得到点Q,OP OQ(3)点D为y轴的正半轴上的一个定点,对点D进行α变换后得到点E,点F为x轴上的一个动点,对点F进行β变+的最小值为,直接写出点D的坐标.换之后得到点G,若DG EF参考答案1.C2.A3.A4.B5.B6.C7.C8.D9.B10.D11.D12.B13.514.3915.(1316.452x ⎛⎫+ ⎪⎝⎭ 17.242平方米18.()1,3-19.(−6,2)20.421.(1)1(2)(3,2)(3)(0,﹣6)或(0,10)(4)(0,3)或(﹣4,0)22.(1)(3,37°)23.(1)(0,2),(2-,0)(2)∠当点P 在OB 上时,点P 的坐标为(0,t );点P 在BC 上时,点P 的坐标(2t -,2);当点P 在CD 上时,点P 的坐标为(3-,7t -);∠当t =4时,点P 的横坐标与纵坐标互为相反数;∠t 的值为43或17324.(1)B1的坐标(2,﹣2)(2)6(3)(﹣5,3)或(0,2)或(5,1)或(﹣1,﹣5)25.(1)(5,-2)(2)58m=-(3)(0,32)。
北师大版八年级数学下册《图形的平移与旋转》单元测试卷及答案解析
北师大版八年级数学下册《图形的平移与旋转》单元测试卷一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2、下列四个图形中,既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个3、如图,将线段AB沿箭头方向平移2 cm得到线段CD,若AB=3 cm,则四边形ABDC的周长为( )A.8 cm B.10 cm C.12 cm D.20 cm(第3题图)(第4题图)(第5题图)(第6题图)4、如图,将△AOB绕点O按顺时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是( )A.18°B.27°C.45°D.72°5、如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为()A.∠BOF B.∠AOD C.∠COE D.∠COF6、如图所示,在矩形ABCD中,AD=8,DC=4,将△ADC按逆时针方向绕点A旋转到△AEF (点,A,B,E在同一直线上),连接CF,则CF=( )A.10 B.12 C.D.7、将长度为3cm的线段向上平移20cm,所得线段的长度是()A.3cm B.23cm C.20cm D.17cm8、如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是()A.40°B.50° C.60°D.70°二、填空题9、如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为_____cm.(第8题图)(第9题图)(第11题图)10、平面直角坐标系中,P(2,3)关于原点对称的点A 坐标是_______.11、如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为__________.12、如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=______.(第12题图)(第13题图)(第14题图)13、如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转与△CBP'重合,若PB = 3,则PP' = _________14、如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AB=,BC=1,则线段BE的长为_____________.15、如图,将R t△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是______________(第15题图)(第16题图)16、如图,是正方形内一点,连接、、,将绕点顺时针旋转到的位置.若,,,则__________.三、解答题17、如图,三个顶点的坐标分别为.(1)请画出关于原点对称的,并写出的坐标;(2)请画出绕点逆时针旋转90°后的18、(8分)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π)19、如图,在△AOB中,OA=OB,∠AOB=50°,将△AOB绕O点顺时针旋转30°,得到△COD,OC交AB于点F,CD分别交AB、OB于点E、H.求证:EF=EH.20、如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合.(1)△ABC旋转了多少度?(2)求∠AEC的度数.21、如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是点______,旋转的最小角度是______度(2)AC与EF的位置关系如何,并说明理由。
word完整版新北师大版八年级下册第三章图形平移与旋转测试题
八年级下册第三章《图形的平移与旋转》测试题一、选择题1.以下四幅图案中,能经过轴对称由图案 1 获得的是 ( )△▽△△△▽△△△△▽△▽△▽图案 1 A B C D2.以下图形中 , 旋转 1200后能与原图形重合的是 ( )A 等边三角形B正方形C正五边形D正六边形3.以下现象不属于平移的是 ( )A. 乘电梯从 2 楼到 3 楼B. 铅球沿直线转动C. 铁球从高处自由着落D. 坐滑梯下滑4.如图,把△ ABC绕点 C 逆时针旋转 900获得△ DCE,若∠ A=350,则∠ADE为 ( )00 C . 13500AADE CEC BDB第 4 题图第 5 题图5. 如图 , 在等腰直角△ ABC中, 将绕极点 A 逆时针旋转 650后获得△ AED,则∠EAC= ( )A. 75 0B. 850C.95006.把∠ A 是直角的△ ABC绕 A 点顺时针旋转 60 度, 点 B 转到点 E 得△ AEF,则以下结论错误的选项是 ()A. AB=AF0 C.EF=BC D.0B.∠BAF=150∠CAF=607. 北京时间 9 时整 , 钟面上的时针和分针的夹角是( )度.8.如图 , △ABC沿 BC边所在的直线向左平移获得△ DEF,以下错误的选项是 ( )A. AC=DFB. EB=FCC. DE∥ABD. ∠D=∠ DEFD ECD AAE BF CB第 8 题图第 9题图9. 如图 , △ABC中 ,AB=2,BC=1,将△ ABC绕极点 C旋转1800 ,点 A 落在 E 处, 则 AE 的长 ( )A.5B.3 C . 2 3 . D.2510.如图 ,EF∥BC,ED∥ AC,FD∥AB,D,E,F 为三边中点,图中能够经过平移相互获得的三角形有 ( ) 对 .A. 2B. 3C. 4AE FB CD二、填空题11.一个直角三角形沿竖直方向平移 23 ㎝后获得的三角形的面积是 12 ㎝2, 则原三角形的面积为12.如图是由两个正三角形和两个等腰三角形构成的图案 , 图中两个暗影部分的三角形能够经过 :①平移、②旋转、③轴对称中的哪些方式获得. 在横线上写上你的答案的序号 :.BDCA O 13 题图12题图0013. 如图,∠AOB=90,∠B=30,△COD能够看作是由△ AOB绕点 O顺时针旋转角度得到的。
(常考题)北师大版初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(包含答案解析)
一、选择题1.在平面直角坐标系中,A (0,3),B (4,0),把△AOB 绕点O 旋转,使点A ,B 分别落在点A ′,B ′处,若A ′B ′∥x 轴,点B ′在第一象限,则点A 的对应点A ′的坐标为( ) A .(912,55-) B .(129,55-) C .(1612,55-) D .(1216,55-) 2.下列图形:①平行四边形、②矩形、③正方形、④等边三角形,其中,既是轴对称图形又是中心对称图形的有( )A .①②B .②③C .③④D .①④ 3.如图,将ABC ∆绕顶点C 旋转得到DEC ∆,点A 对应点D ,点B 对应点E ,点B 刚好落在DE 边上,24,48A BCD ∠=︒∠=︒,则ABC ∠等于( )A .68︒B .70︒C .72︒D .74︒4.如图,在Rt ABC ∆中,,AC BC D E =、是斜边AB 上两点,且45DCE ∠=︒,将ACD ∆绕点C 顺时针旋转90︒后,得到BCF ∆,连接EF ,下列结论中:①45ECF ∠=︒;②ACD ∆≌BCE ∆;③CE 平分DCF ∠;④222AD BE DE +=;正确的有( )个A .1个B .2个C .3个D .4个5.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形,又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾6.如图,将ABC 绕点C 逆时针旋转得到DEC ,若点D 刚好落在边AB 上,CB 与DE 交于点F ,120,20ACB E ∠=︒∠=︒,则ADC ∠的度数为( )A .40︒B .50︒C .55︒D .60︒7.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 8.窗棂是中闻传统木构建筑的构架结构设计,使窗成为传统建筑中最重要的构成要素之一,成为建筑的审美中心,下列表示我国古代窗棂洋式结构图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.关于平移后对应点所连的线段,下列说法正确的是( )①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A .①③B .②③C .③④D .①②10.下列美丽的图案,不是中心对称图形的是( )A .B .C .D .11.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 12.如图所示,在ABC ∆中,70CAB ∠=︒,将ABC ∆绕点A 旋转到AB C ''∆的位置,使得C A AB '⊥,则BAB '∠的度数为( )A .10︒B .20︒C .30D .50︒二、填空题13.如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称此图形为旋转对称图形那么下列图形中:①正三角形;②正方形;③正六边形是旋转对称图形,且有一个旋转角为90︒的是______(填序号).14.如图,在等边ABC 中,12AC =,点O 在边AC 上,且4AO =,点P 是边AB 上的一动点.连结OP ,将线段OP 绕点O 逆时针旋转60︒得到线段OD .要使点D 恰好落在边BC 上,则AP 的长为______.15.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.16.如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O旋转150°得到△OA′B′,则点A′的坐标为_____17.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点()P在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第1,2一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,则点P的坐标为_________.18.在一块边长为10米的正方形草坪上修了横竖各两条宽都为2米的长方形小路(图中阴影部分)将草坪分隔成如图所示的图案,则图中未被小路覆盖的草坪的总面积为__________平方米.19.如图,将△AOB绕点O按逆时针方向旋转50°后得到△COD,如果∠AOB=15°,那么∠AOD的度数为_____.20.如图,将周长为8个单位的三角形ABC沿BC方向平移2个单位得到三角形DEF,则四边形ABFD的周长为_______个单位.三、解答题21.△ABC 在网格中的位置如图所示:(1)请画出△ABC 绕着点O 顺时针旋转90º后得到的111A B C △;(2)请画出△ABC 关于点O 对称的222A B C △;(3)在MN 上找到一点P ,使PA+PB 的长度最短.22.如图所示,在正方形网格中,ABC 的顶点坐标分别为()2,4,()1,2,()4,1.请在所给直角坐标系中按要求画图和解答下列问题:(1)以点P 为旋转中心,将ABC 按逆时针方向旋转90︒得到A B C ''',请在图中画出A B C ''',并写出点B 的对应点B '的坐标为_________.(2)在y 轴上求作一点M ,使MA MB +的值最小,点M 的坐标为_________.23.如图,在平面直角坐标系中,ABC 各顶点坐标为:(2,3)A -,(4,0)B -,(1,1)C -.(1)作ABC 关于原点O 成中心对称的111A B C △;(2)将111A B C △向上平移5个单位,作出平移后的222A B C ;(3)在x 轴上求作一点P ,使2PA PA +的值最小,并求出点P 的坐标24.如图,在平面直角坐标系中,已知ABC 的顶点的坐标分别是A (5-,2),B (2-,4),C (1-,1).(1)在图中作出111A B C △,使111A B C △和ABC 关于x 轴对称;(2)画出将ABC 以点O 为旋转中心,顺时针旋转90︒对应的222A B C △; (3)直接写出点B 关于点C 对称点的坐标.25.如图,D 为ABC 内一点,AB AC =,50BAC ∠=︒,将AD 绕着点A 顺时针旋转50︒能与线段AE 重合.(1)求证:EB DC =;(2)若115ADC ∠=︒,求BED ∠的度数.26.如图,Rt ABC △中,90C ∠=︒,AC BC =,ABC 绕点A 逆时针旋转45°得到ADE (B ,D 两点为对应点).(1)画出旋转后的图形;(2)连接BD ,求BDE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设A ′B ′交y 轴于T ′,利用勾股定理可求出A ′B ′的长度,再利用三角形面积公式求出OT 的长度,最后再利用勾股定理即可求出A ′T ′的长度,即可求出A ′点坐标 .【详解】解:如图,设A ′B ′交y 轴于T ′.∵A (0,3),B (4,0),∴OA =3,OB =4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′22OA OB +2234+,∵A OB S ''=12•OA ′•OB ′=12•A ′B ′•OT ′, ∴OT ′=125, ∴A ′T ′22OA OT '-221293()55-=, ∴A ′(-95,125). 故选:A .【点睛】 本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.2.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:平行四边形是中心对称图形,不是轴对称图形;矩形,正方形既是轴对称图形又是中心对称图形;等边三角形是轴对称图形,不是中心对称图形.故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念,正确理解中心对称图形与轴对称图形是解题的关键;3.C解析:C【分析】先通过旋转得到24,ABC=DEC,∠=∠=︒∠∠=D A CE CB ,再通过等边对等角以及三角形外角的性质得到∠=∠=∠+∠E CBE BCD D ,最后代入已知的数据即可求解本题.【详解】解:由ABC ∆绕顶点C 旋转得到DEC ∆可知:24,ABC=DEC,∠=∠=︒∠∠=D A CE CB ,∴∠=∠=∠+∠E CBE BCD D ,∵48∠=︒BCD ,∴244872∠=︒+︒=︒CBE ,故ABC=DEC=72∠∠︒;故选:C .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角,熟练掌握旋转的性质即可得到结论.4.C解析:C【分析】①根据旋转的性质可得出∠BCF=∠ACD ,由∠ACB=90°,∠DCE=45°,可得出∠BCF+∠BCE=∠ECF=45°,即可判断①;②根据旋转的性质可得出△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,即可判断②; ③根据∠DCE=∠ECF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=EF ,求出∠EBF=90°,根据勾股定理推出即可.【详解】解:∵在Rt △ABC 中,BC=AC ,∴∠A=∠CBA=45°,①由旋转,可知:∠BCF=∠ACD ,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°,∴∠BCF+∠BCE=∠ECF=45°,故①正确;②由旋转,可知:△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,故②错误;③∵∠DCE=∠ECF=45°,∴CE 平分∠DCF ,故③正确;④由旋转可知:AD=BF ,∠CBF=∠A=45°,∵∠CBA=45°,∴∠EBF=90°,由勾股定理得:BF 2+BE 2=EF 2,即AD 2+BE 2=EF 2,在△CDE 和△CFE 中,CE CE DCE ECF CD CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△CFE (SAS ),∴DE=EF ,∴AD 2+BE 2=DE 2,故选:C .【点睛】本题考查了全等三角形的判定、相似三角形的判定、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.5.A解析:A【分析】根据轴对称图形与中心对称图形的概念可知.【详解】A 选项 既是轴对称图形也是中心对称图形B 选项 不是轴对称图形也不是中心对称图形C 选项 是轴对称图形而不是中心对称图形D 选项 不是中心对称图形也不是轴对称图形故选A【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.A解析:A【分析】先根据旋转的性质可得,20AC CD B E =∠=∠=︒,再根据三角形的内角和定理可得40A ∠=︒,然后根据等腰三角形的性质即可得.【详解】由旋转的性质得:,AC CD B E =∠=∠,120,20ACB E ∠=︒∠=︒,12041801800ACB B AC A B E ∠-∠=︒∠-∠∴∠==︒-=︒-︒,又AC CD =,40A ADC ∠∴=∠=︒,故选:A .【点睛】本题考查了旋转的性质、三角形的内角和定理、等腰三角形的性质,熟练掌握旋转的性质是解题关键.7.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 8.C解析:C【分析】将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180︒后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】A 、是轴对称图形,不是中心对称图形,故不符合题意;B 、既不是轴对称图形,也不是中心对称图形,故不符合题意;C 、即是轴对称图形,也是中心对称图形,故符合题意;D 、既不是轴对称图形,也不是中心对称图形,故不符合题意;故选:C .【点睛】此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.9.C解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C.【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.10.B解析:B【详解】解:A是中心对称图形,不符合题意;B不是中心对称图形,符合题意;C是中心对称图形,不符合题意;D是中心对称图形,不符合题意,故选B.【点睛】本题考查中心对称图形,正确识图是解题的关键.11.A解析:A【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.12.B解析:B【分析】先求出∠C′AC的度数,然后根据旋转的性质即可求得答案.【详解】'⊥,∵C A AB∴∠C′AB=90°,∵∠CAB=70°,∴∠C′AC=∠C′AB-∠CAB=20°,∵∠BAB′与∠C′AC都是旋转角,∴∠BAB′=∠C′AC=20°,故选B.【点睛】本题考查了旋转的性质,求出∠C′AC的度数是解题的关键.二、填空题13.②【分析】根据旋转的性质判断出正三角形正方形和正六边形的旋转角找出旋转角是的图形即可【详解】①正三角形的最小旋转角是;②正方形的最小旋转角是;③正六边形的最小旋转角是故答案为:②【点睛】本题考查了旋解析:②【分析】根据旋转的性质判断出正三角形,正方形和正六边形的旋转角,找出旋转角是90︒的图形即可.【详解】①正三角形的最小旋转角是120︒;②正方形的最小旋转角是90︒;③正六边形的最小旋转角是60︒故答案为:②.【点睛】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角的定义,求出每个图形的旋转角.14.8【分析】根据AC=12AO=4求出OC=8再根据等边三角形的性质得∠A=∠C=60°再根据旋转的性质得OD=OP∠POD=60°根据三角形内角和和平角定义得∠AOP+∠APO+∠A=180°∠AO解析:8【分析】根据AC=12,AO=4,求出OC=8,再根据等边三角形的性质得∠A=∠C=60°,再根据旋转的性质得OD=OP,∠POD=60°,根据三角形内角和和平角定义得∠AOP+∠APO+∠A=180°,∠AOP +∠COD +∠POD =180°,利用等量代换可得∠APO =∠COD ,然后证出△AOP ≌△CDO ,得出AP =CO =8.【详解】解:∵AC =12,AO =4,∴OC =8,∵△ABC 为等边三角形,∴∠A =∠C =60°,∵线段OP 绕点D 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,如图所示,∴OD =OP ,∠POD =60°,∵∠AOP +∠APO +∠A =180°,∠AOP +∠COD +∠POD =180°,∴∠AOP +∠APO =120°,∠AOP +∠COD =120°,∴∠APO =∠COD ,在△AOP 和△CDO 中,A C APO COD OP OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△CDO (AAS ),∴AP =CO =8,故答案为8.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质,熟练掌握对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等是本题的关键.15.25【分析】由旋转的性质可得∠C=∠CAB=AB 由等腰三角形的性质可得∠C=∠CAB ∠B=∠ABB 由三角形的外角性质和三角形内角和定理可求解【详解】解:∵AB=CB ∴∠C=∠CAB ∴∠ABB=∠C+解析:25【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B ,由三角形的外角性质和三角形内角和定理可求解.【详解】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°-105°,∴∠C=25°,∴∠C'=∠C=25°,故答案为:25.【点睛】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.16.(0-4)或()【分析】根据直角三角形两锐角互余求出∠AOB=60°然后分①顺时针旋转点A′在y轴负半轴根据OA′的长度写出点A′的坐标即可;②逆时针旋转时求出OA′与x轴负半轴夹角为30°过点A′解析:(0,-4)或(23,2 )【分析】根据直角三角形两锐角互余求出∠AOB=60°,然后分①顺时针旋转,点A′在y轴负半轴,根据OA′的长度写出点A′的坐标即可;②逆时针旋转时,求出OA′与x轴负半轴夹角为30°,过点A′作A′C⊥x轴于C,根据直角三角形30°角所对的直角边等于斜边的一半求出A′C,再利用勾股定理列式求出OC,然后写出点A′的坐标即可.【详解】解:∵∠ABO=90°,∠A=30°,∴∠AOB=60°,①若是顺时针旋150°,如图,点A′在y轴负半轴,则OA′=OA=4,所以,点A′的坐标为(0,-4);②若是逆时针旋转150°,如图,∵旋转角为150°,∴OA′与x 轴负半轴夹角为30°,过点A′作A′C ⊥x 轴于C ,则A′C=12OA′=12×4=2, 由勾股定理得,OC 22224223OA A C ''=-=-=所以,点A′的坐标为(232-),综上所述,点A′的坐标为(0,-4)或(232-).故答案为:(0,-4)或(232-).【点睛】本题考查了坐标与图形变化-旋转,主要利用了直角三角形两锐角互余,直角三角形30°角所对的直角边等于斜边的一半以及勾股定理,难点在于分情况讨论.17.(60581)【分析】首先求出P1~P5的坐标探究规律后利用规律解决问题【详解】解:第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(132)第五次P5(172)…发现点P 的位置4解析:(6058,1)【分析】首先求出P 1~P 5的坐标,探究规律后,利用规律解决问题.【详解】解:第一次P 1(5,2),第二次P 2(8,1),第三次P 3(10,1),第四次P 4(13,2),第五次P 5(17,2),…发现点P 的位置4次一个循环,∵2019÷4=504…3,P 2019的纵坐标与P 3相同为1,横坐标为12×504+10=6058,∴P 2019(6058,1),故答案为(6058,1).本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.18.36【分析】把四条线路平移到两侧再表示出未被小路覆盖的草坪的边长即可算出面积【详解】解:如图所示:(10-4)×(10-4)=36(平方米)故答案为:36【点睛】此题主要考查了图形的平移关键是掌握平解析:36【分析】把四条线路平移到两侧,再表示出未被小路覆盖的草坪的边长即可算出面积.【详解】解:如图所示:(10-4)×(10-4)=36(平方米),故答案为:36.【点睛】此题主要考查了图形的平移,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相19.65°【分析】首先根据旋转变换的性质求出∠AOC的度数结合∠AOB=15°即可解决问题【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°∵∠AOB=15°∴∠AOD=50°+15°=6解析:65°【分析】首先根据旋转变换的性质求出∠AOC的度数,结合∠AOB=15°,即可解决问题.【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°,∵∠AOB=15°,∴∠AOD=50°+15°=65°,故答案为:65°.【点睛】本题主要考查了旋转变换的性质及其应用问题,熟练掌握旋转的性质是解题的关键.20.12【分析】根据平移前后图形的大小不发生改变可知AC=DF题意中平移的距离为2个单位长度即AD=CF=2由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解【详解】∵采用平解析:12根据平移前后图形的大小不发生改变,可知AC=DF,题意中平移的距离为2个单位长度即AD=CF=2,由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解.【详解】∵采用平移得到的△DEF,∴AC=DF∵平移距离为2个单位长度∴AD=CF=2∵△ABC周长为8个单位长度∴AB+BC+AC=AB+BC+DF=8∴四边形ABFD的周长为AB+BF+FD+AD=(AB+BC+DF)+AD+CF=8+2+2=12.故答案为:12.【点睛】考查平移的性质以及平移的距离的知识点,学生掌握平移不变性是解题的关键,并准确表示出平移的距离才可解出题目.三、解答题21.(1)见解析;(2)见解析;(3)见解析【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1,B1,C1即可;(2)利用网格特点和中心对称的性质画出点A、B、C的对应点A2,B2,C2即可;(3)作A点关于直线MN的对称点A′,连接A′B交MN于P点,此时PA+PB=PB+PA′=A′B,从而可判断此时最短.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,点P为所作.【点睛】本题考查作图−旋转变换,最短路线问题,熟练掌握位旋转变换的性质是解本题的关键.22.(1)作图见解析,B '的坐标为()-2,3;(2) 作图见解析,点M 的坐标为80,3⎛⎫ ⎪⎝⎭【分析】(1)依次作出,,A B C 三点以点P 为旋转中心逆时针方向旋转90︒对应点,A B C ''',,按顺序连接起来即可;(2)作点()1,2B 关于y 轴的对称点()1,2B ''-,连接AB ''交y 轴于M 点,M 点即为所求,设直线AB ''的解析式为y kx b =+,代入定点求得函数解析式,从而可得M 点坐标.【详解】解:(1)如图所示,B '的坐标为()-2,3;故答案为:()-2,3;(2)如图所示,作点()1,2B 关于y 轴的对称点()1,2B ''-,连接AB ''交y 轴于M 点,点M 即为所求.设直线AB ''的解析式为y kx b =+,将()()2,4,1,2A B ''-代入解析式,得:422k b k b =+⎧⎨=-+⎩, 解得2383k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AB ''的解析式为2833y x =+,∴直线AB ''与y 轴的交点为80,3⎛⎫ ⎪⎝⎭,即80,3M ⎛⎫ ⎪⎝⎭, 故答案为:80,3⎛⎫ ⎪⎝⎭【点睛】本题考查了画旋转图形;一次函数等相关知识,解题的关键是正确求出一次函数的表达式. 23.(1)见详解;(2)见详解;(3)见详解,2,05⎛⎫⎪⎝⎭ 【分析】(1)根据关于原点对称的点的坐标特征分别作出点A 、B 、C 关于原点的对称点A 1、B 1、C 1,即可得到△A 1B 1C 1;(2)根据平移的性质分别作出点A 1、B 1、C 1向上平移5个单位的对称点A 2、B 2、C 2,即可得到△A 2B 2C 2;(3)由于点A′和A 关于x 轴对称,连结A′A 2交x 轴于P ,则PA′=PA ,所以PA+PA 2=PA′+PA 2=A′A 2,根据两点之间线段最短得到PA 2+PA 的值最小,接着利用待定系数法求出直线A′A 2的解析式为5142y x =-,然后计算函数值为0时的自变量的值即可得到点P 的坐标.【详解】(1)如图,△A 1B 1C 1为所求;(2)如图,△A 2B 2C 2为所求;(3) 作点A 关于x 轴对称的对称点A′,连结A′A 2交x 轴于P ,则P 点为所求,则PA′=PA ,所以PA+PA 2=PA′+PA 2=A′A 2,根据两点之间线段最短得到PA 2+PA 的值最小,设直线2A A '的解析式为y kx b =+,把(2,3)A '--,2(2,2)A 代入得:2322k b k b -+=-⎧⎨+=⎩, 解得5412k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线2A A '的解析式为5142y x =-, 当0y =时,51042x -=, 解得25x =,P点坐标为2,05⎛⎫ ⎪⎝⎭.【点睛】本题考查了作图-中心对称变换和平移变换.根据中心对称的性质可知,作对应点与中心O 连线并延长,利用对应线段相等,由此可以射线上的边上截取相等的线段的方法,找到对应点,顺次连接得出成中心对称的图形.24.(1)见解析;(2)见解析;(3)()0,2-【分析】(1)根据轴对称性质即可在图中作出△A1B1C1,使△A1B1C1和△ABC关于x轴对称;(2)根据旋转的性质即可画出将△ABC以点O为旋转中心,顺时针旋转90°对应的△A2B2C2;(3)根据B(-2,4),C(-1,1).即可写出点B关于点C对称点的坐标.【详解】解:(1)如图,△A1B1C1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)点B 关于点C 对称点的坐标为(0,-2).【点睛】本题考查了作图-旋转变换,作图-轴对称变换,解决本题的关键是掌握旋转和轴对称的性质.25.(1)证明见解析,(2)50°.【分析】(1)证△AEB ≌△ADC 即可;(2)由全等可知∠AEB=∠ADC=115°,依据等腰三角形的性质求出∠AED 即可.【详解】解:(1)证明:由旋转可知,AE=AD ,∠EAD=∠BAC=50°,∴∠EAB=∠DAC ,∵AB=AC ,∴△AEB ≌△ADC ,∴EB DC =.(2)∵△AEB ≌△ADC ,∴∠AEB=∠ADC=115°,∵AE=AD ,∠EAD=50°,∴∠AED=18050652︒-=︒, ∠BED=115°-65°=50°.【点睛】 本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定与性质,解题关键是抓住旋转的性质,联系全等三角形、等腰三角形解题.26.(1)见解析;(2)22.5︒【分析】(1)根据旋转的性质画图即可;(2)根据旋转可知AD=AB ,根据等腰三角形的性质可求.【详解】解:(1)旋转后的图形如图所示;(2)∵90C ∠=︒,AC BC =,∴45BAC ABC ∠=∠=︒.由旋转,得45DAE ADE ∠=∠=︒,AD AB = ∴18067.52DAB ADB ABD ︒-∠∠=∠==︒, ∴67.54522.5BDE ADB ADE ∠=∠-∠=︒-︒=︒.【点睛】本题考查了旋转的性质和画图,等腰三角形的性质,解题关键是根据旋转的性质找到等边和等角.。
北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第三章复习一、选择题(每小题3分,共30分)1、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能2、在图形平移的过程中,下列说法中错误的是( )A 、图形上任意点移动的方向相同B 、图形上任意点移动的距离相同C 、图形上可能存在不动的点D 、图形上任意两点连线的长度不变 3、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点D 4、如右图所示,观察图形,下列结论正确的是( ) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。
5、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形6、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180°7、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180°8、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)9、经过平移, 和 平行且相等, 相等。
10、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12,将△ABC 沿射线BC 的方向平移一段距离后得到△DCE ,那么CD= ;BD= 。
北师大版八年级数学下册图形的平移与旋转单元测试题_5005
第三章图形的平移与旋转一、选择题 (每题 3 分,共 30 分)1.以下四个图形中,能够由如图的图形经过平移获得的是()2.在平面直角坐标系中,将点(- 2, 3)向右平移 4 个单位长度后获得的点的坐标为()A.(2,3) B.(-6,3)C.(-2,7) D.(-2,-1)3.如图,将“笑容”图标向右平移 4 个单位长度,再向下平移 2 个单位长度,点P 的对应点 P′的坐标是 ()A.(-1,6) B.(-9,6)C.(-1,2) D .(-9,2)4.下边摆放的图案,从第 2 个起,每个都是前一个按顺时针方向旋转 90°获得的,第 2 019 个图案中箭头的指向是 ()A.上方B.右方C.下方D.左方5.如图,将一个含 30°角的 Rt△ABC 绕点 A 旋转,使得点 B,A,C′在同一条直线上,则△ABC 旋转的角度是 ()A.60°B.90°C.120°D.150°6.如图,在平面直角坐标系中,△ ABC绕旋转中心顺时针旋转90°后获得△A′B′C′,则其旋转中心的坐标是 ()A.,1.5) B . (1,0)C.(1,- 1)D.,- 0.5)7.如图,在平面直角坐标系中,点 A,C 在 x 轴上,点 C 的坐标为 (-1,0),AC= 2,将 Rt△ ABC 先绕点 C 顺时针旋转 90°,再向右平移 3 个单位长度,则变换后点 A 的对应点的坐标是 ()A.(2,2)B. (1,2)C.(-1,2) 8.如图,△ DEF 是△ABC 经过平移获得的.已知∠以下结论不必定建立的是() D. (2,- 1)A=54°,∠ ABC=36°,则A.∠ F=90°B.∠ BED=∠ FEDC.BC⊥DF D.DF∥AC9.如图,在△ABC 中,∠ CAB=75°,在同一平面内,将△ABC 绕点 A 旋转到△AB′C′的地点,点 C 在 B′C′上,使得 CC′∥AB,则∠ BAB′等于 ()A.30°B.35°C.40°D.50°10.在平面内由极点、极轴和极径构成的坐标系叫做极坐标系.如图,在平面上取定一点 O 称为极点;从点 O 出发引一条射线Ox 称为极轴;线段 OP 的长度称为极径.点 P 的极坐标能够用线段OP 的长度以及从 Ox 转动到 OP 的角度 (规定逆时针方向转动角度为正)来确立,即 P(3,60°)或 P(3,- 300°)或 P(3,420°)等,则点 P 对于点 O 成中心对称的点 Q 的极坐标表示不正确的选项是() A.Q(3,240°)B.Q(3,- 120°)C.Q(3, 600°)D.Q(3,- 500°)二、填空题 (每题 3 分,共 30 分)11.点 (2,- 1)对于原点 O 对称的点的坐标为 __________.12.如图,△A′B′C′是由△ABC 沿射线 AC 方向平移获得的.已知∠ A=55°,∠B=60°,则∠ C′=________.13.如下图的图案是由三个叶片构成,图案绕点O 旋转 120°后能够和自己重合,若每个叶片的面积为 4 cm2,∠ AOB=120°,则图中暗影部分的面积为__________.14.如图,将等边三角形 ABC 绕极点 A 顺时针方向旋转,使边 AB 与 AC 重合得△ACD,BC 的中点 E 的对应点为 F,则∠ EAF 的度数是 ______.15.如图,在△ABC 中,AB= AC,BC=12 cm,点 D 在 AC 上,DC =4 cm.将线段 DC 沿着 CB 的方向平移 7 cm 获得线段 EF,点 E,F 分别落在边 AB,BC 上,则△EBF 的周长为 ____________.16.如图,将长方形 ABCD 绕点 A 顺时针旋转到长方形AB′C′D′的地点,旋转角为α(0 °<α<90°).若∠ 1=110°,则α=________.17.如图,OA⊥OB,△CDE 的边 CD 在 OB 上,∠ECD=45°,CE=4.若将△CDE 绕点 C 逆时针旋转 75°,点 E 的对应点 N 恰巧落在 OA 上,则 OC=________.418.如图,直线 y=-3x+4 与 x 轴、 y 轴分别交于 A,B 两点,把△AOB 绕点 A 顺时针旋转 90°后获得△ AO′B′,则点 B′的坐标是 __________.19.如图,将 Rt△ABC 沿着直角边 CA 所在的直线向右平移获得Rt△ DEF,已1知 BC=a,CA=b,FA=3b,则四边形 DEBA 的面积等于 __________.20.如图,将含有 30°角的直角三角板ABC 放入平面直角坐标系中,极点 A,B分别落在 x 轴, y 轴的正半轴上,∠ OAB=60°,点 A 的坐标为 (1, 0),将三角板 ABC 沿 x 轴向右作无滑动的转动 (先绕点 A 按顺时针方向旋转 60°,再绕点C 按顺时针方向旋转 90° ),当点 B 第一次落在 x 轴上时,则点 B____________.运动的路径与两坐标轴围成的图形的面积是三、解答题 (每题 10 分,共 60 分)21.在如图①所示的方格纸中,每个小方格都是边长为 1 个单位长度的正方形,a, b, c 均为极点都在格点上的三角形 (每个小方格的极点叫做格点).(1)在图①中, a 经过一次 __________变换 (填“平移”“旋转”或“轴对称”)能够获得b;(2)在图①中, c 是能够由 b 经过一次旋转变换获得的,其旋转中心是点________(填“A”“B”或“C”);(3)在图②中画出 a 绕点 A 顺时针旋转 90°后的 d.22.如图,将△ ABC 向右平移 7 个单位长度,再向下平移 6 个单位长度,获得△A1B1C1.(1)不绘图,直接写出点A1, B1,C1的坐标 (点 A1,B1,C1分别是点 A,B,C 的对应点 );(2)求△A1 B1 C1的面积.23.如图,正方形网格中的每一个小正方形的边长都是 1,四边形 ABCD 的四个极点都在格点上, O 为 AD 边的中点,若把四边形 ABCD 绕点 O 顺时针旋转180°,试解决以下问题:(1)画出四边形 ABCD 旋转后的图形;(2)求点 C 在旋转过程中经过的路径长.24.如图,已知Rt△ ABC≌ Rt△DEC,∠ ACB=∠ DCE =90°,∠ ABC=∠ DEC =60°.将 Rt△ECD 沿直线 BD 向左平移到 Rt△E′C′D′的地点,使 E 点落在 AB 上的点 E′处,点 P 为 AC 与 E′D′的交点.(1)求∠ CPD ′的度数;(2)求证: AB⊥ E′D′.25.如图,在 Rt△ ABC 中,∠ACB=90°,点 D,E 分别在 AB,AC 上,CE=BC,连结 CD,将线段 CD 绕点 C 按顺时针方向旋转 90°后得 CF,连结 EF.(1)增补达成图形;(2)若 EF∥CD,求证:∠ BDC= 90°.26.已知△ABC 是等边三角形,将一块含有30°角的直角三角尺 DEF 按如图所示搁置,让三角尺在BC 所在的直线上向右平移.如图①,当点 E 与点 B 重合时,点 A 恰巧落在三角尺的斜边DF 上.(1)利用图①证明: EF =2BC.(2)在三角尺的平移过程中,在图②中线段AH= BE 能否一直建立 (假设 AB,AC与三角尺的斜边的交点分别为 G,H)?假如建立,请证明;假如不建立,请说明原因.答案一、 4.C 5.D 6.C 7.二、 11.(-2,1) ° 13.4 cm214.60° 15.13 cm °218. (7,3) 19.3ab1720. 3+12π三、 21.解: (1)平移(2)A(3)如下图.22.解: (1)A1(5,- 1),B1(3,- 7), C1(9,- 3).(2)S△ A1 11 =S△ABC=6×6-1× ×-1××-1××=26 226 4242 14.B C23.解: (1)旋转后的图形如下图.(2)如图,连结 OC.由题意可知,点 C 的旋转路径是以 O 为圆心, OC 的长为半径的半圆.∵OC=12+ 22=5,∴点 C 在旋转过程中经过的路径长为5π.24.(1)解:由平移的性质知DE∥ D′E′,∴∠ CPD′=∠ CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠C′E′D′=∠ CED =60°,∴∠ BE′C′=∠ BAC=90°-60°=30°.∴∠ BE′D′=∠ BE′C′+∠ C′E′D′= 90°.∴AB⊥E′D′.25.(1)解:补全图形,如下图.(2)证明:由旋转的性质得:∠DCF= 90°, DC= FC,∴∠ DCE+∠ ECF=90°. ∵∠ ACB=90°,∴∠ DCE+∠ BCD= 90°.∴∠ ECF=∠ BCD.∵EF∥DC,∴∠ EFC+∠ DCF= 180°.∴∠ EFC=90°,DC=FC,在△BDC 和△EFC 中,∠ BCD=∠ ECF,BC=EC,∴△ BDC≌△ EFC(SAS).∴∠ BDC=∠ EFC= 90°. 26.(1)证明:∵△ ABC 是等边三角形,∴∠ ACB=60°,AC=BC.∵∠ F=30°,∴∠ CAF=60°-30°=30°.∴∠CAF=∠F.∴CF=AC.∴CF=AC=BC.∴EF= 2BC.(2)解:建立.证明:∵△ ABC 是等边三角形,∴∠ ACB=60°,AC=BC.∵∠ F=30°,∴∠ CHF =60°-30°=30°.∴∠CHF=∠F.∴CH=CF.∵EF= 2BC,∴BE+ CF= BC.又∵ AH+CH=AC,AC=BC,∴AH=BE.。
北师大版八年级数学下册第三章 图形的平移与旋转测试题
第三章图形的平移与旋转一、选择题(本大题共10小题,每题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2.如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB的度数是()A.26°B.44°C.46°D.66°第2题图第3题图第4题图3.如图,将△ABC绕点A按逆时针方向旋转20°得到△ADE,∠BAC=30°,则∠BAE的度数为()A.10°B.20°C.30°D.50°4.如图,△A'B'C'是由△ABC平移得到的,则点C'的坐标为()A.(4,1.5)B.(3.5,1)C.(3.5,1.5)D.(4,1)5.把△ABC各点的横、纵坐标都乘-1后,得到的图形是()A B C D6.如图,将△OAB绕点O逆时针旋转60°得到△OCD,连接BD,AC.若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=4第6题图第7题图第8题图7.如图,四个图案都可以看作是由一个“基本图案”经过旋转形成的,它们的旋转角相同的是()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)8.如图,将△ABC沿BC方向平移4 cm得到△DEF,若四边形ABFD的周长是28 cm,则△DEF的周长是()A.16 cmB.18 cmC.20 cmD.22 cm9.把一对三角纸板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角纸板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为 ()A.3B.5C.4D.第9题图第10题图10.如图,正确描述①到②到③的变换的是()A.①绕点B顺时针旋转135°后向右平移2 cm,再向右平移2 cmB.①绕点B顺时针旋转135°后向右平移4 cm,再向右平移4 cmC.①向右平移2 cm后绕点B顺时针旋转135°,再向右平移2 cmD.①向右平移2 cm后绕点B顺时针旋转135°,再向右平移4 cm二、填空题(本大题共6小题,每题3分,共18分)11.如图,在由边长为1个单位长度的小正方形组成的8×8网格中,将△ABC向右平移3个单位长度后得到△A'B'C'(其中A,B,C的对应点分别为A',B',C'),则∠BA'A的度数是.第11题图第12题图第13题图12.如图,将△ABC绕点B按逆时针方向旋转90°后得到△A'BC',若BC=2,则CC'的长为.13.如图,在平面直角坐标系xOy中,点A的坐标为(0,4),点B在第一象限内,将△OAB沿x轴正方向平移得到△O'A'B',若点A的对应点A'在直线y=x上,则点B与对应点B'之间的距离为.14.如图,在网格中,△ABC绕某点顺时针旋转α°(0<α<180)得到△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α= .第14题图第15题图15.如图,在△ABC中,AB=AC=4,将△ABC绕点A按顺时针方向旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.16.如图,在平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、解答题(本大题共6小题,共72分)17.(10分)在如图所示的方格中,每个小方格都是边长为1个单位长度的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)建立平面直角坐标系,使点B的坐标为(-4,1),点C的坐标为(-1,1),则点A的坐标为;(2)在(1)的基础上,作出△ABC绕原点O顺时针旋转90°后的△A1B1C1,写出A1,B1,C1的坐标.18.(10分)已知△ABC在平面直角坐标系中,且A(-2,1),B(-3,-2),C(1,-4),将其平移后得到△A1B1C1,若A,B 的对应点分别是A1,B1 ,C的对应点C1的坐标是(3,-1).(1)在如图所示的平面直角坐标系中画出△ABC,△A1B1C1,并写出点A1,B1的坐标;(2)△ABC的面积为.19.(12分)象棋中有很多数学知识,如图,给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P处.(1)写出下一步“马”可能到达的点的坐标;(2)①如果顺次连接(1)中的所有点,则得到的图形是图形;(填写“中心对称”“旋转对称”“轴对称”)②指出(1)中关于点P成中心对称的点.20.(12分)如图,在四边形ABCD中,∠DAB=60°,AB=AD,线段BC绕点B顺时针旋转60°得到线段BE,连接AC,ED.(1)求证:AC=DE;(2)若DC=4,BC=6,∠DCB=30°,求AC的长.21.(14分)已知Rt△ABC中,∠BAC=90°,AB=AC,△CDE的边CE在射线AC上,CE<AC,∠DCE=90°,CD=CA.沿CA 方向平移△CDE,使点C移动到点A处,得到△ABF,过点F作FG⊥BC,垂足为点G,连接EG,DG.(1)如图1,当边CE在线段AC上时,求证:GC=GF;(2)如图2,当边CE在线段AC的延长线上时,其余条件不变.求证:△EFG≌△DCG.图1图222.(14分)把两块含45°角的直角三角板按图1所示的方式放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.(1)如图1,求证:BE=AD,AF⊥BE;(2)将△ABC绕点C顺时针旋转(如图2),AD分别交BE,BC于点F,G,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.答案题号 1 2 3 4 5 6 7 8 9 10 答案 B A D A C D D C B D11.45°12.213.14.90 15.2-2 16.(4n+1,)17. (1)建立平面直角坐标系如图所示.(-3,3)(2)△A1B1C1如图所示.A1(3,3),B1(1,4),C1(1,1).18. (1)如图,△ABC,△A1B1C1即所求.因为点C的对应点C1的坐标是(3,-1),所以△ABC向右平移2个单位长度,再向上平移3个单位长度得到△A1B1C1,所以点A1的坐标是(0,4),B1的坐标是(-1,1).(2)7如图,S△ABC=S四边形AMNC-S△AMB-S△BNC=×(1+4)×5-×1×3-×2×4=7.19. (1)(0,0),(0,2),(1,3),(3,3),(4,2),(4,0).(2)①轴对称②根据中心对称的定义,可得(1)中关于点P成中心对称的点为(0,0)和(4,2),(0,2)和(4,0).20. (1)如图,连接BD.∵∠DAB=60°,AB=AD,∴△ABD是等边三角形,∴AB=DB,∠ABD=60°.∵线段BC绕点B顺时针旋转60°得到线段BE,∴CB=EB,∠CBE=60°,∴∠ABC=∠DBE.在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴AC=DE.(2)如图,连接CE.∵CB=EB,∠CBE=60°,∴△BCE是等边三角形, ∴∠BCE=60°,又∵∠DCB=30°,∴∠DCE=90°.在Rt△DCE中,DC=4,CE=BC=6,∴DE==2,由(1)可知,AC=DE=2.21. (1)在Rt△ABC中,∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∵FG⊥CG,∴∠FGC=90°,∴∠GFC=90°-∠ACB=45°,∴∠GFC=∠GCF,∴GC=GF.(2)由(1)中方法可证得GC=GF.∵∠DCG+∠GCF=90°,∠GCF+∠EFG=90°,∴∠DCG=∠EFG.由平移的性质可得CA=EF,又∵CD=CA,∴CD=EF.在△EFG和△DCG中,∴△EFG≌△DCG.22. (1)由题意知,在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠CAD, 又∵∠CDA+∠CAD=90°,∠BDF=∠CDA,∴∠BDF+∠DBF=90°,∴∠BFD=90°,即AF⊥BE.(2)成立.∵∠DCE=∠ACB=90°,∴∠DCE+∠DCB=∠ACB+∠BCD,∴∠BCE=∠ACD.在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠DAC,又∵∠CGA+∠CAG=90°,∠BGF=∠CGA,∴∠BGF+∠GBF=90°,∴∠BFG=90°,即AF⊥BE.。
北师大八年级下《图形的旋转与平移》单元检测卷含答案(基础卷)
单元检测卷:图形的旋转与平移(基础卷)一、选择题(每题 3 分,共 30 分)1、以下所给图形中,既是中心对称图形又是轴对称图形的是()A、B、C、D、【答案】 D2、以下选项中能由左图平移获得的是()A、B、C、D、【答案】 C【分析】解:能由左图平移获得的是:选项C.应选:C.3、在以下实例中,属于平移过程的个数有()① 时针运转过程;②电梯上涨过程;③ 火车直线行驶过程;④ 地球自转过程;⑤ 生产过程中传递带上的电视机的挪动过程.A、1 个B、2 个C、3 个D、4 个【答案】 C【分析】解:① 时针运转是旋转,故此选项错误;② 电梯上涨,是平移现象;③ 火车直线行驶,是平移现象;④ 地球自转,是旋转现象;⑤ 电视机在传递带上运动,是平移现象.故属于平移变换的个数有 3 个.应选: C.4、若点 A 的坐标为( 6,3),O 为坐标原点,将 OA 绕点 O 按顺时针方向旋转90°获得 OA′,则点 A′的坐标是()A 、( 3,﹣ 6)B、(﹣ 3, 6)C、(﹣ 3,﹣ 6) D 、( 3, 6)【答案】 A5、如图,将周长为8 的△ ABC 沿 BC 方向平移 1 个单位获得△ DEF ,则四边形ABFD 的周长为()A、6B、8C、 10D、12【答案】 C【分析】解:依据题意,将周长为8 个单位的△ ABC沿边BC 向右平移 1 个单位获得△ DEF,∴ AD=1,BF=BC+CF=BC+1 , DF=AC ;又∵ AB+BC+AC=8 ,∴四边形 ABFD 的周长 =AD+AB+BF+DF=1+AB+BC+1+AC=10.应选: C.6、如图,在△ABC 中, BC=5 ,∠ A=80°,∠ B=70°,把△ ABC 沿 RS 的方向平移到△DEF的地点,若CF=4,则下列结论中错误的选项是()A 、 BE=4 B、∠ F=30°C、 AB ∥DE D 、DF=5【答案】 D7、如图,将三角尺ABC (此中∠ ABC=60°,∠ C=90°)绕 B 点按顺时针方向转动一个角度到 A 1BC1的地点,使得点 A ,B , C1在同一条直线上,那么这个角度等于()A、120°B、 90°C、 60°D、 30°【答案】 A【分析】解:∵∠ABC=60°,∴旋转角∠CBC 1=180 °﹣ 60°=120 °.120°.∴这个旋转角度等于应选: A.8、如图,将Rt△ABC 绕直角极点 C 顺时针旋转90°,获得△ A′ B′C,连结AA′,若∠ 1=20 °,则∠ B 的度数是()A 、 70°B、 65°C、 60° D 、 55°【答案】 B【分析】解:∵Rt △ABC 绕直角极点 C 顺时针旋转90°获得△ A′B′C,∴ AC=A′C,∴△ ACA′是等腰直角三角形,∴∠ CAA′=45°,∴∠ A′B′C=∠1+ ∠ CAA′=20°+45°=65,°由旋转的性质得∠B=∠ A′B′C=65.°应选: B.9、如图,原有一大长方形,被切割成 3 个正方形和 2 个长方形后还是中心对称图形.若本来该大长方形的周长是120,则切割后不用丈量就能知道周长的图形标号为()A 、①②B 、②③C、①③D、①②③【答案】 A10、如图,在△ ABC 中,∠ CAB=70°,将△ ABC 绕点 A 逆时针旋转到△ AB′ C的′地点,使得CC′∥ AB ,则∠BAB′的度数是()A、70°B、 35°C、 40°D、 50°【答案】 C二、填空题(每题 3 分,共30 分)11、在图形的平移、旋转、轴对称变换中,其同样的性质是________ .【答案】图形的形状、大小不变,只改变图形的地点【分析】解:在图形的平移、旋转、轴对称变换中,其同样的性质是图形的形状、大小不变,只改变图形的地点.12、正三角形中心旋转度的整倍数以后能和自己重合.【答案】 120【分析】试题剖析:依据旋转角及旋转对称图形的定义联合图形特色作答.∵ 360°÷ 3=120 °,∴该图形绕中心起码旋转120 度后能和本来的图案相互重合.13、把点( -2,3)向上平移 2 个单位长度所抵达的地点坐标为________ ,向左平移 2 个单位长度所抵达的地点坐标为 ________ .【答案】( -2,5);( -4,3)【分析】向右或向左平移,纵坐标不变,让横坐标加或减平移的距离即可;向上或向下平移,横坐标不变,纵坐标加或减平移的距离.把点( -2,3)向上平移 2 个单位长度所抵达的地点坐标为14、如图,把三角板的斜边紧靠直尺平移,一个极点从刻度(-2,5)向左平移 2 个单位长度所抵达的地点坐标为(-4,3).“ 5平”移到刻度“ 10,”则极点 C 平移的距离CC′=________.【答案】 515、以下图,△ ABC 中,∠BAC=33°,将△ ABC 绕点 A 按顺时针方向旋转50°,对应获得△AB′ C,′则∠B′ AC 的度数为________.【答案】 17°【分析】解:∵∠BAC=33°,将△ ABC 绕点 A 按顺时针方向旋转50°,对应获得△ AB′C′,∴∠ B'AC'=33 °,∠ BAB'=50°,∴∠ B′AC的度数 =50°﹣ 33°=17°.故答案为: 17°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形的平移与旋转》
【巩固练习】
一、选择题
1. 以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称
图形的有().
A.4个 B.5个 C.6个 D.3个
2.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;
④传送带上瓶装饮料的移动,其中属于平移的是().
A.①③ B.①② C.②③ D.②④
3.(2015•番禺区一模)下列图形可以由一个图形经过平移变换得到的是()
A. B. C. D.
4.如图,O是正六边形ABCDEF的中心,下列图形可由△OBC平移得到的是().
A.△OCD
B.△OAB
C.△OAF
D.△OEF
5.如图,∠DOE为直角,如果△ABC关于OD的对称图形是△A′B′C′,△A′B′C′关于OE的对称图
形是△A″B″C″,则△ABC与△A″B″C″的关系是().
A.以∠DOE的平分线成轴对称; B.关于点O成中心对称
C.平移关系; D.不具备任何关系
第4题第5题第6题
6.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是().
A.l<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19
7. 下列变换中,哪一个是平移().
8.如图所示,将一个含30°的直角三角板ABC绕点A选择,使得点B,A,C在同一条直线上,则三角板
ABC旋转的角度是 ( ).
A.60° B.90° C.120° D.150°
二、填空题
9.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为.
10. 如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是__________cm2.
11. 如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB
边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.
第10题第11题第12题
12. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与
AC上的点B1重合,则AC= cm.
13.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB’C’,点C’恰好落在边AB上,连接BB’,
则∠BB’C’= .
第13题第14题
换得到图形④.(填平移、旋转、轴对称)
15.如图,把大小相等的两个长方形拼成L形图案,则∠FCA=度.
16.将△ABC绕BC边的中点O旋转1800得到△BCD.如果AB+BD=12㎝,那么旋转前后图形拼成的四边形的周长是.
三、解答题
17. 动手操作.
(1)在A图中画出图形的一半,是它们成为一个轴对称图形.
(2)把B图形②绕O点方向旋转,然后向平移格,再向平移格,可同图形①拼成一个正方形.
19.阅读材料:
如图(一),在已建立直角坐标系的方格纸中,图形①的顶点为A、B、C,要将它变换到图④(变换过程中图形的顶点必须在格点上,且不能超出方格纸的边界).
例如:将图形①作如下变换(如图二).
第一步:平移,使点C(6,6)移至点(4,3),得图②;
第二步:旋转,绕着点(4,3)旋转180°,得图③;
第三步:平移,使点(4,3)移至点O(0,0),得图④.
则图形①被变换到了图④.
解决问题:
(1)在上述变化过程中A点的坐标依次为:
(4,6)→(,)→(,)→(,)
(2)如图(三),仿照例题格式,在直角坐标系的方格纸中将△DEF经过平移、旋转、翻折等变换得到△OPQ.(写出变换步骤,并画出相应的图形)
20.如图,在正方形网格上有一个△ABC.
(1)作出△ABC关于点O的中心对称图形△A′B′C′(不写作法,但要标出字母);
(2)若网格上的最小正方形边长为1,求出△ABC的面积.
《图形的平移与旋转》全章复习与巩固(提高)巩固练习
【巩固练习】
一、选择题
1.轴对称与平移、旋转的关系不正确的是().
A.经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的
B .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的
C .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的
D .经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的
2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ).
①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.
A .①②④
B .①②③
C .②③④
D .①③④
3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( ).
A B C D
4.如图,在△ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 顺时针方向旋转后得到△A ’B ’C ’,若点B ’恰好落在线段AB 上,AC 、A ’B ’交于点O ,则∠COA ’的度数是( )
A .50°
B .60°
C .70°
D .80°
5.如图,把矩形纸条沿同时折叠,两点恰好落在边的点处,
若,,,则矩形的边长为( ).
A.20
B.22
C.24
D.30
第4题 第5题 6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ).
A .
2 B .4 C .8 D .10
ABCD EF GH ,B C ,AD P 90FPH =∠8
PF =6PH =ABCD BC
7. 如图,在Rt △ABC 中,∠ACB=90°,
,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是(
).
A.
B. C. D.1
8.
如图,在正方形ABCD 外取一点E ,连接AE ,
BE
,DE. 过点A 作AE 的垂线交DE 于点P .若AE=AP=1,.下列结论:①△APD ≌△AEB ;②点B 到直线AE ;③EB ⊥ED ;④S △APD +S △APB ;⑤S 正方形ABCD .其中正确结论的序号是( ).
A .①③④
B .①②⑤
C .③④⑤
D .①③⑤
二、填空题
10.在Rt ABC 中,∠A<∠B ,CM 是斜边AB 上的中线,将ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.
6π3
π16π+∆∆
第9题 第10题 第12题
11.(2016•大连)如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点C 和点E 是对应点,若∠CAE=90°,AB=1,则BD= .
13. 时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是 .
14. 如图所示,可以看作是一个基本图形经过 次旋转得到的;每次旋转了 度.
15.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =,BC 的中点为D ,将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG .在旋转过程中,DG 的最大值是 .
三、解答题
①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF 变到△ADE 的位置?若是旋转,指出旋
转中心和旋转角.
②线段BF 和DE 之间有何数量关系?并证明.
19.如图,长方形ABCD 在坐标平面内,点A 的坐标是A (2,1),且边AB 、CD 与x 轴平行,边AD 、BC 与x 轴平行,点B 、C 的坐标分别为B (a ,1),C (a ,c ),且a 、c 满足关系式c=
++3.
(1)求B 、C 、D 三点的坐标;
(2)怎样平移,才能使A 点与原点重合?平移后点B 、C 、D 的对应分别为B 1C 1D 1,求四边形OB 1C 1D 1的面积;
(3)平移后在x 轴上是否存在点P ,连接PD ,使S △COP =S 四边形OBCD ?若存在这样的点P ,求出点P 的坐标;若不存在,试说明理由.
20. 如图,P 是等边三角形ABC 中的一点,PA =2,PB =,PC =4,求BC 边得长是多少?
32
B。