第五章压电式传感器.
压电式力传感器
石英晶体的压电效应演示
当力的方向改变时,电荷的极性随之改变,输出电压 的频率与动态力的频率相同;当动态力变为静态力时,电 荷将由于表面漏电而很快泄漏、消失。
4
压电效应是可逆的 在介质极化的方向施加电场时,电介质会产生 形变,将电能转化成机械能,这种现象称
“逆压电效应”。 •压电元件可以将机械能——转化成电能 也可以将电能——转化成机械能。
Z
Z
Y Y
X X
(a ) (b)
石英晶体
(a)理想石英晶体的外形 (b)坐标系 8
Y -
Y +
X
+
+
(b)
X
(a)
硅氧离子的排列示意图
(a) 硅氧离子在Z平面上的投影 (b)等效为正六边形排列的投影
石英晶体具有压电效应,是由其内部结构决定的。 组成石英晶体的硅离子 Si4+和氧离子 O2- 在 Z平面投影, 如图 ( a ) 。为讨论方便,将这些硅、氧离子等效为图 ( b ) 中正六边形排列,图中“+”代表 Si 4 + ,“-”代表 2O2-。 9
2.压电陶瓷压电效应产生的机理
压电陶瓷属于铁电体一类的物质,是人工制造的多晶压电材料, 它具有类似铁磁材料磁畴结构的电畴结构。电畴是分子自发形成 的区域,它有一定的极化方向,从而存在一定的电场。在无外电 场作用时,各个电畴在晶体上杂乱分布,它们的极化效应被相互 抵消,因此原始的压电陶瓷内极化强度为零,见图(a)。
直流电场E 剩余极化强度
电场作用下的伸长 (a)极化处理前 (b)极化处理中
剩余伸长 (c)极化处理后
15
但是,当把电压表接到陶瓷片的两个电极上进行测量时,却无 法测出陶瓷片内部存在的极化强度。这是因为陶瓷片内的极化强 度总是以电偶极矩的形式表现出来,即在陶瓷的一端出现正束缚 电荷,另一端出现负束缚电荷。由于束缚电荷的作用,在陶瓷片 的电极面上吸附了一层来自外界的自由电荷。这些自由电荷与陶 瓷片内的束缚电荷符号相反而数量相等,它起着屏蔽和抵消陶瓷 片内极化强度对外界的作用。所以电压表不能测出陶瓷片内的极 化程度,如图。
压电式传感器教案.
.理论课讨论课□实验课□习题课□其他教学方法及手段设计:板书多媒体辅助教学教具□其它□(请打√).作业:何谓压电效应?何谓纵向压电效应和横向压电效应?理论课讨论课□实验课□习题课□其他教学方法及手段设计:板书多媒体辅助教学教具□其它□(请打√).在无外电场作用时,电畴在晶体中杂乱分布,它们各自的极化效应被相互抵消,压电陶瓷内极化强度为零。
因此原始的压电陶瓷呈中性,不具有压电性质。
在陶瓷上施加外电场时,电畴的极化方向发生转动,趋向于按外电场方向的排列,从而使材料得到极化。
外电场强度大到使材料的极化达到饱和的程度,理论课 讨论课□ 实验课□ 习题课□ 其他 教学重点、难点、关键知识点及采用的措施: 重点:压电式传感器的测量电路教学方法及手段设计:板书 多媒体辅助教学 教具□ 其它□ (请打√) +++---------+++++++++---++++----xy A F xP 1P 2P 3o F xB x A F y yC B DP 1P 2P 3o F y-+.总电容量为单片的一半,输出电压增大了1倍。
、并联:两个压电片的负端粘结在一起,中间插入的金属电极成为正电极在两边的电极上。
从电路上看,这是并联接法三、压电式传感器的测量电路 电压放大器(阻抗变换器)t U t C dF U mm a ωωsin sin == 讨论、作业和思考:思考:简述压电式传感器前置放大器的作用、两种形式各自的优缺点及如何合理论课 讨论课□ 实验课□ 习题课□ 其他 教学方法及手段设计:板书 多媒体辅助教学 教具□ 其它□ (请打√).。
第五章压电式传感器1教程
01:31:03
-
+
加力F:放电现象 取消F:充电现象
机械能
电能
正压电效应:
01:31:03
q d 33 F
– –
– – –
+ + + + +
E
极化方向
– – – – –
电 场 方 向
+ + + + + 同向:伸长现象 反向:缩短现象 电能 机械能
压电陶瓷的逆压电效应
01:31:03
压电式传感器是典型的有源传感器。
电压放大器和电荷放大器比较:电荷放大器电路复 杂,价格昂贵,电压放大器反之;但电压放大器下 限频率较高,灵敏度与电 缆分布电容有关,选用时 宜综合考虑。 01:31:03
CF
1 i U U SC jC F R F
1 U A0U jC F R F
q
i
Ce
RF
U∑
Rd
-A0 USC
1 U j A0 1CF A0 1 R 01:31:03 F
横向压电效应: 沿机械轴(y轴)施加作用力,电荷仍出现在与x 轴相垂直的表面上。
01:31:03
4.压电陶瓷
压电陶瓷所以具有压电效应,
是由于陶瓷内部存在自发极化。
这些自发极化经过极化工序处理 而被迫取向排列后, 陶瓷内即存
在剩余极化强度。如果外界的作
用(如压力或电场的作用)能使 此极化强度发生变化,陶瓷就出 现压电效应。
电轴
机械轴
01:31:02
3.1 石英晶体的压电特性
fy
压电型传感器
图5-5 Y轴方向受压
如果Z轴方向受力时,由于硅离子和氧离子是对称的平移,故 表面不呈现电荷,没有压电效应。
第三节
压电陶瓷的压电效应
压电陶瓷是多晶体,每个晶粒有自发极化的电畴, 每个单晶粒形成一个自发极化方向一致的小区域即电 畴(如图5-6所示)。电畴间边界称畴壁。相邻不同电 畴间自发极化强度取向有一定夹角(与晶体结构有 关)。刚烧结好的压电陶瓷内的电畴是无规则排列, 其总极化强度为0,此时受力则无压电效应。 人工制造的多晶体压电材料,由无数细微的单晶组 成。极化方向杂乱无章,压电陶瓷材料整体对外不显 极化方向,各向同性。 若让原始的压电陶瓷材料具压电特性,需在一定温 度下对它进行极化处理。将这些材料置于外电场作用 下,使其中的电畴发生转动,趋向于其本身自发的极 化方向与外电场方向一致。极化处理过的压电陶瓷具 有良好的压电特性。
QK Usc= Ca Co Ci (1 k )Cf
。
(1+K) 〉〉 Cf
Ca Co Ci
Q QK Cf (1 K )Cf
∴Usc=-
由上式得:输出电压Usc与电缆电容Co无关,而与Q成正比,这是电荷放大器的 优点。
并
压电元件连接方式:
→ 电荷增加一倍,电容量也增加一倍,输出电
第二节
石英晶体的压电效应
一块完整单晶体,外形都构成一个凸多面体。围成凸多面体的面叫 晶面。如图5-2所示。
Z
z
C
y
Y
X
x
图5-2 石英晶体的外形及坐标轴
Z轴是晶体的对称轴,光线沿它通过晶体不产生双折 射现象,光轴(中性轴),该轴方向上没有压电效应; X轴:称电轴,垂直于X轴晶面上的压电效应最显著;Y 轴:称机械轴,在电场作用下,沿此轴方向的机械变形 最显著。 从晶体上切下一个平行六面体(矩形片),让它的 三对平行面分别平行于X、Y、Z轴(石英晶体切型中的 一种)。 沿X轴加压力产生的压电效应称纵向压电效应,沿Y轴 加压力产生的压电效应称横向压电效应。如图5-3所示。 若将X、Y轴方向施加的压力改为拉力,则产生电荷的 位置与施加压力时相同,但电荷的符号相反。
传感器原理及应用 第五章 磁电式与压电式传感器
8/2/2023
8
5.1.3磁电式感应式传感器的测量电路
磁电感应式传感器是速度传感器,若要获取被测位移 或加速度信号,则需要配用积分或微分电路。下图为测量 电路方框图。
磁电式传感器虽然配用积分电路可以测量位移,但它 只能测量位移随时间的变化,即动态位移,不能测静态位 移。
8/2/2023
(1)在有效载荷作用下测得最低频率时,位移的振幅为 5mm,试计算这时的输出电压值。
11
[例题1]图(a)磁电式传感器和图(b)自感式传感器有 何 异同?为什么后者可测量静态位移或距离而前者却不能?
解:相同点:二者都有线圈和活动衔铁。不同点:(a)
磁电式传感器的线圈是绕在永久磁钢上,磁电式传感器有永久
磁铁。自感式传感器的线圈是绕在不带磁性的铁心上。(b)
自感式传感器的自感取决于活动衔铁与铁心的距离,磁电式传
当传感器的工作温度发生变化或受到外界磁场干扰、机械振动或 冲击时,其灵敏度将发生变化而产生测量误差。 相对误差为
dsI dB dL dR sI B L R
8/2/2023
6
1.非线性误差
主要原因是:由于传感器线圈内有电流I流过时, 将产生一定的交变磁通ΦI,此交变磁通叠加在永久
磁铁所产生的工作磁通上,使恒定的气隙磁通变化 如右图所示。
如图所示可见,在磁电感应式传感器后面接积分电路可 以测量位移,后面接微分电路可以测量加速度。因为位移是 速度的积分,而加速度是速度的微分。
8/2/2023
13
[例题3]已知磁电式速度传感器的技术参数如下:频率范围 5~100Hz,位移幅值范围为5mm(峰-峰值),加速度幅值 范围为0.1~30g(g=9.8m/s2),无阻尼固有频率为5Hz,线 圈电阻为600Ω,横向灵敏度最大为20%,灵敏度为 4.88V/(m/s),质量为170g。假设测量的振动是简谐振动。
05压电PPT课件
F 极化面
Q
F
机械能{
压电效应及可逆性
逆压电效应
压电介质
}电能
正压电效应
5.1 压电效应
机械能转变为电能 压 电 效 应
电能转变为机械能
纵向压电效应
正压电效应
横向压电效应 切向压电效应
逆压电效应
电致伸缩效应
⑤与T1作用下产生的变形对应有束缚电荷σ3=d31T1; 所以有:
T1
3 d 31
S1
c11 • T1
c11
•
3 d 31
3
S1 •
d 31 c11
T1
C11
S1
d 31
c11
σ3
特点:信号变换是单向的。
5.5.2电边界为开路状态
Ce
A
U~
Rd C c R i C i U i
U0
Ce
A
U~
R C Ui
5.5 测量电路
●压电方程耍同时考虑力与电之间相互作用和相互影响,即 力正压电效应产生电荷 电荷逆压电效应力
●测量线路不同(电边界为短路状态或电边界为开路状态),则力与电之 间相互作用和相互影响不同。
5.5.1电边界为短路状态(电荷放大)
④应力T1与形变S1关系为: S1=C11T1 式中:C11为压电陶瓷固有的柔度系数;
5.2压电材料--5.2.1石英晶体 天然形成的石英晶体外形
石英晶体切片及 双面镀银封装
石英晶体振荡器(晶振)
晶振
石英晶体在振荡 电路中工作时,压 电效应与逆压电效 应交替作用,从而 产生稳定的振荡输 出频率。
压电式传感器的测量电路
传感器原理与应用——第五章 第五章 传感器原理与应用
1. 电压放大器(阻抗变换器) 电压放大器(阻抗变换器)
Ca A Ca
ua
Re
Ce
Ri
Ci
uo
ua
R
C
ui
(a)
(b)
图 5-16 压电传感器接放大器的等效电路 (a) 放大器电路; (b) 等效电路 放大器电路;
传感器原理与应用——第五章 第五章 传感器原理与应用
传感器原理与应用——第五章 第五章 传感器原理与应用
5.3.3 压电式传感器的测量电路 由于压电式传感器的输出电信号很微弱, 由于压电式传感器的输出电信号很微弱,通常先把传 感器信号先输入到高输入阻抗的前置放大器中, 感器信号先输入到高输入阻抗的前置放大器中,经过 阻抗交换以后, 阻抗交换以后,方可用一般的放大检波电路再将信号 输入到指示仪表或记录器中。(其中,测量电路的关键 其中, 输入到指示仪表或记录器中。 其中 在于高阻抗输入的前置放大器。) 在于高阻抗输入的前置放大器。)
传感器原理与应用——第五章 第五章 传感器原理与应用
压电式传感器在测量低压力时线性度不好, 压电式传感器在测量低压力时线性度不好,主要 是传感器受力系统中力传递系数非线性所致。 为此, 是传感器受力系统中力传递系数非线性所致 。 为此 , 在力传递系统中加入预加力,称预载。 在力传递系统中加入预加力,称预载。这除了消除低 压力使用中的非线性外, 压力使用中的非线性外,还可以消除传感器内外接触 表面的间隙, 提高刚度。 特别是,它只有在加预载 表面的间隙 , 提高刚度 。 特别是, 后才能用压电传感器测量拉力和拉、 后才能用压电传感器测量拉力和拉、压交变力及剪力 和扭矩。 和扭矩。
(5-20) 20)
第五章 压电式传感器
逆压电效应示意图 E (实线代表形变前的情况, 虚线代表形变后的情况)
++++++ 极化 方向 ------ ++++++
电 场 方 向
由此可见,压电陶瓷所以具有压电效应,是 由于陶瓷内部存在自发极化。这些自发极化经过 极化工序处理而被迫取向排列后,陶瓷内即存在 剩余极化强度。如果外界的作用(如压力或电场 的作用)能使此极化强度发生变化,陶瓷就出现 压电效应。此外,还可以看出,陶瓷内的极化电 荷是束缚电荷,而不是自由电荷,这些束缚电荷 不能自由移动。所以在陶瓷中产生的放电或充电 现象,是通过陶瓷内部极化强度的变化,引起电 极面上自由电荷的释放或补充的结果。
j wq& 1 1 1 + A0 ) + j w[ Ca + ( 1 + A0 ) CF +( RF Ra
]
& = & = A0US 输出电压 USC
&A j wq 0 1 1 1 + A0 ) + j w[ Ca + ( 1 + A0 ) CF ] +( RF Ra
电荷放大器原理电路图
U∑
-A0
C’ USC
根据上式画出等效电路图
q
Ra C a R’
CF、RF等效到A0的输入端时,电容CF将增大(1+A0)倍。电导1/RF 也增大了(1+A0)倍。所以图中C΄=(1+A0)CF;1/R΄=(1 +A0)1/RF,
这就是所谓“密勒效应”的结果。
运放输入电压
& US =
电极 ----- +++++ 极化方向 自由电荷 束缚电荷
----- 电极 + + + + + 陶瓷片内束缚电荷与电极上吸附 的自由电荷示意图
车辆检测技术——压电式传感器
第五章压电式传感器第一节压电式传感器的工作原理压电式传感器以某些电介质(如石英晶体或压电陶瓷、高分子材料)的压电效应为基础而工作的。
在外力作用下,在电介质表面产生电荷,从而实现非电量电测的目的。
因此是一种典型的自发电式传感器。
压电传感元件是力敏感元件,它可以测量最终能变换为力的那些非电物理量,例如动态力、动态压力、振动加速度等。
一压电效应压电现象是100多年前居里兄弟研究石英时发现的。
那么,什么是压电效应呢?由物理学知,一些离子型晶体的电介质(如石英、酒石酸钾钠、钛酸钡等)不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
在这些电介质的一定方向上施加机械力而产生变形时,就会引起它内部正负电荷中心相对转移而产生电的极化,从而导致其两个相对表面(极化面)上出现符号相反的束缚电荷Q(如图5-1(a)所示),且Q与外应力张量T成正比:Q (5-1)dT式中,d——压电常数(a)正压电效应; (b)压电效应的可逆性图5-1 压电效应原理图当外力消失后,又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
如果在这些电介质的极化方向施加电场,这些电介质就在一定方向上产生机械变形或机械应力,当外电场撤去时,这些变形或应力也随之消失,这种现象称之为逆压电效应,或称之为电致伸缩效应。
其应变S 与外电场强度E 成正比:E d S t (5-2)式中d t ——逆压电常数。
这种现象称为逆压电效应,或称电致伸缩。
可见,具有压电性的电介质(称压电材料),能实现机电能量的相互转换,如图5-1(b)所示。
二 压电材料目前压电材料可分为三大类:第一类是压电晶体(单晶),它包括压电石英晶体和其他压电单晶;第二类是压电陶瓷(多晶半导瓷); 第三类是新型压电材料,又可分为压电半导体和有机高分子压电材料两种。
在传感器技术中,目前国内外普遍应用的是压电单晶中的石英晶体和压电多晶中的钛酸钡与锆钛酸铅系列压电陶瓷。
压阻及压电传感器
结束
c.流量传感器——压电流速传感器
压电式微加速度计
压电式微加速度计 具有测量范围宽、 启动快、功耗低、 直流供电、抗冲击 振动、可靠性高等 显著优点,在惯性 导航系统中有着广 泛的应用。
敏感质量 壳体
m 压电晶体
敏感轴方向
压电式微加速度计原理示意图
P阱电阻
焊盘
输出
Vdd FET 放大器
源极
传感电容 比较电容
N型(电阻率 =11.7Ωcm) -102.2
53.4
-13.6
P型(电阻率 =7.8Ωcm) 6.6
-1.1
138.1
应变方向 <100> <100> <110> <110> <111>
电流方向 <100> <010> <100> <1-10> <111>
结构 纵向 横向 纵向 横向 纵向
压阻系数
pxeipxei挠度应力whydx阻尼比微传感器实例压阻式压敏电阻空隙玻璃盖板质量块导电胶引线第一个微加速度计的剖面结构示意图基座基座东南大学研制的压阻式大加速度计在同一块芯片上设计了两种结构传感器单悬臂梁和双悬臂梁结构单悬臂梁微加速度计双悬臂梁微加速度计东南大学压阻式微加速度计样品sem照片美国icsensor公司生产的压阻式加速度计最早的微机械加工的应变式加速度传感器的实例之一是roylance和angell在1979年制作的器件用于生物医疗植入以测量心壁加速度
实例5.2
最早的微机械加工的应变式加速度传感器的实例之一 是Roylance和Angell在1979年制作的器件,用于生物 医疗植入,以测量心壁加速度。这个应用要求在100Hz 的带宽内灵敏度约为0.01g,且要求小的传感器尺寸。
第5章压电式传感器力F电荷Q.
5.2 压电材料及其压电机理
石英晶体的压电常数矩阵为
d11 0 0 d12 0 0 0 0 0 d14 0 0 0 d 25 0 0 d11 d11 0 d14 0 0 0 d 26 0 0 0 d 2 d 14 11 0 0 0 0 0 0 0
Sx Sx Q d32 F d 31 F Sy Sy
(5-11)
式中,Sx—极化面的面积;Sy—受力面的面积。
5.2 压电材料及其压电机理
对于Z轴方向极化的钛酸钡(BaTiO3)压电陶瓷的压电常数 矩阵为
0 0 0 d ij 0 0 0 d 31 d 32 d 33
5.2 压电材料及其压电机理
5.2.2 压电陶瓷 1.压电效应
压电陶瓷是人工多晶体压电材料。压电陶瓷在没有极化 之前不具有压电效应,是非压电体;压电陶瓷经过极化处 理后具有压电效应,如图5-6所示,其电荷量Q与力F成正 比,即 Q=dij F (5-10) 式中,d33—压电陶瓷的纵向 极化面 压电常数。
图5-6 压电陶瓷的压电效应
5.2 压电材料及其压电机理
压电陶瓷的正交晶系: 压电陶瓷的极化方向,规定为Z轴; 垂直于极化方向(Z轴)的平面内,任意选择—正交轴系 为X轴和Y轴。极化压电陶瓷的平面是各向同性的,因此, 它的X轴和Y轴是可以互易的,对于压电常数,可用等式 d32=d31来表示。 极化压电陶瓷受到如图5-6(b)所示的横向均匀分布的作用 力F时,在极化面上分别出现正、负电荷,其电量Q为
5.2 压电材料及其压电机理
2.压电机理
压电晶体的压电效应的产生是由于晶格结构在机械力的作用下发生 变形所引起的。 石英晶体的化学分子式为SiO2,在一个晶体结构单元(晶胞)中,有三 个硅离子Si4+和六个氧离子O2,石英晶体的内部结构等效为硅、氧离子 的正六边形排列,如图5-5所示,图中“”代表Si4+ 、“ ”表示O2 , 形成 三个互成120º 夹角的电偶极矩Pl、P2和P3。
压电传感器
Z 轴为光轴(中性轴),它是晶体的对称轴,光线沿Z轴通过 晶体不产生双折射现象,因而它的贡献是作为基准轴。 X 轴为电轴(垂直于光轴),该轴压电效应最显著,它通过正 六棱柱相对的两个棱线且垂直于光轴Z,显然X轴共有三个。 Y 轴为机械轴(力轴),显然也有三个,它垂直于两个相对的 表面,在此轴上加力产生的变形最大。
在压电式传感器中,常用两片或多片组合在一 起使用。由于压电材料是有极性的,因此接法也有两 种,如图所示。图a为并联接法,其输出电容C '为 单片的n倍,即C'=nC,输出电压U ' =U,极板上 的电荷量Q'为单片电荷量的n倍,即Q'=nQ。 图中b为串联接法,这时有Q'=Q,U'= nU, C'=C/n。
极化面
F
逆压电效应
Q
机械能{ 压电介质 正压电效应 电能 }
F
压电效应及可逆性
☺具有压电效应的电介物质称为压电材料。具有压电 效应的物质很多,如天然形成的石英晶体,人工制造 的压电陶瓷、钛酸钡、锆钛酸铅等。
☺常见的压电材料可分为两类,即压电单晶体和多晶 体压电陶瓷。
一、石英晶体的压电效应
石英晶体有天然和人造石英单晶 两种。 石英晶体属六方晶系,是一个正 六面体,有右旋和左旋石英晶体之 分,在晶体学中用三根互相 垂直的 轴 Z、X、Y 表示它的坐标。
压电材料的主要性能指标
压电常数——衡量压电效应强弱的参数,直接关系到
压电输出的灵敏度
弹性常数——决定着压电器件的固有频率和动态特性
介电常数——影响压电器件的固有电容与频率下限
绝缘电阻——影响电荷泄漏和低频特性
居里点——压电材料开始丧失压电特性的温度
§5-2
压电式传感器的等效电路
第5章-压电式传感器
气体、充气、弹性体
28
例8: 气体发生器输出特性测试 密封容器压力测试法
29
例9:振动测量仪
q d F d ma a
积分:振动速度、幅值
A: 加速度 160 ug ~ 10 g 转换开关S V: 速度 0.4 ~ 80 cm/s
D: 振幅 4 um ~ 8 cm
30
例10: 压电式血压传感器
41
总结
原始 输入量
力
变换 原理
压电 效应
物理 现象
物性型
能量 关系
转换型
输出量
电荷
42
例11:指套式电子血压计
31
32
例12:水深测量仪
0.01MPa / m
33
其它应用
34
由于压电陶瓷元件的自振频率高, 特别适合测量变化剧 烈的载荷。图中压电传感器位于车刀前部的下方, 当进 行切削加工时, 切削力通过刀具传给压电传感器, 压电传 感器将切削力转换为电信号输出, 记录下电信号的变化 便测得切削力的变化。
1 1 ( ) 2 1
1 1 1 R(Ce Cc Ci )
R(Ce Cc Ci ) 时间常数
输入电压与作用力间的相位差:
2
arctg R(Ce Cc Ci )
2
arctg
1
18
讨论:
( 1 ) 0 (2) 1 3,1 3时 1 i U (3) 3时, 1 1 Ui 理想
1 R d F 1 jC Ui 1 1 Ce R R 1 jC jC 1 jCe R jC
d F
压电式传感器的测量电路
器的输出电压等于零, 因为电荷会通过放大器输入电
阻和传感器本身漏电阻漏掉, 所以压电传感器不能用
于静态力的测量。
传感器原理与应用——第五章
当 ω(Ca+Cc+Ci)R>>1 时,放大器输入电压 Uim 如
式(6-10)所示,式中Cc为连接电缆电容,当电缆长
本身电容小,适宜用于以电压作输出信号,并且测量
电路输入阻抗很高的场合。
传感器原理与应用——第五章
5.3.2 压电传感器的等效电路
当压电晶体承受应力作用时,在它的两个极面上出现极 性相反但电量相等的电荷。故可把压电传感器看成一个
电荷源与一个电容并联的电荷发生器。
其电容量为:
Ca q (a)
S r 0 S Ca
种传感器适用于测量以电压作输出的信号和频率较高
的信号。
1 q q;U 2U;C C 2
+ +
-
- (b)串联
传感器原理与应用——第五章
传感器原理与应用——第五章
在上述两种接法中,并联接法输出电荷大,本身
电容大,时间常数大,适宜用在测量慢变信号并且以
电荷作为输出量的场合。 而串联接法输出电压大,
度改变时,Cc也将改变,因而Uim也随之变化。因此, 否则将引入测量误差。
压电传感器与前置放大器之间连接电缆不能随意更换,
传感器原理与应用——第五章
2. 电荷放大器
Cr
-A
q
Ca
Ce
Ci
uo
图5-17 电荷放大器等效电路
传感器原理与应用——第五章
电荷放大器常作为压电传感器的输入电路,由一个
石英晶体
4
如果在陶瓷片上加一个与极化方向平行的压力 F,陶瓷片将产生压缩形变。片内的正、 负束缚电荷之间的距离变小,极化强度也变小。因此,原来吸附在电极上的自由电荷,有一 部分被释放,而出现放电现象。当压力撤消后,陶瓷片恢复原状(这是一个膨胀过程),片内 的正、负电荷之间的距离变大,极化强度也变大,因此电极上又吸附一部分自由电荷而出现 充电现象。这种由机械效应转变为电效应,或者由机械能转变为电能的现象,就是压电陶瓷 的正压电效应。
(P1+P2+P3)x <0 (P1+P2+P3)y =0
(P1+P2+P3)z =0 在 x 轴的正向出现负电荷,在 y、z 方向依然不出现电荷。 可见,当晶体受到沿 x(电轴)方向的力 Fx 作用时,它在 x 方向产生正压电效应,而 y、z 方向则不产生压电效应。
晶体在 y 轴方向受力 Fy 作用下的情况与 Fx 相似。当 Fy >0 时,晶体的形变与图 5-2(b) 相似;当 Fy<0 时,则与图 5-2(c)相似。由此可见,晶体在 y(即机械轴)方向的力 Fy 作 用下,在 x 方向产生正压电效应,在 y、z 方向同样不产生压电效应。
第五章 压电式传感器
主要知识点:晶体、压电陶瓷的压电效应原理,压电元件的结构形式,压电传感 器的工作原理、结构及压电传感器的等效电路、测量电路。 重点: 压电传感器的工作原理、结构及其等效电路、测量电路。 难点: 压电加传感器的应用。
压电式传感器是以某些晶体受力后在其表面产生电荷的压电效应为转换原理的传感器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 压电式传感器
本章主要内容:
压电式传感器的工作原理是基于某些电介质材料的压电材料,它是典型的有源传感器。
本章介绍压电式传感器的工作原理、着重是压电晶体和压电陶瓷两类压电材料;讨论压电式传感器的等效电路和测量电路。
要求初步掌握压电式传感器的原理及应用。
第二讲 压电传感器的等效电路及测量应用
教学目的要求:1.掌握压电元件的等效电路和测量电路;
2.了解压电传感器的基本应用。
教学重点:压电元件的等效电路和测量电路
教学难点:压电传感器的应用
教学学时:共2学时
教学内容:
一、压电式传感器的等效电路
等效电路:
1)压电元件等效为一个电荷源与一个电容并联的电荷等效电路,如图5-4(a )所示。
电容器上的电压U a ,电荷量Q 和电容C a 三者关系为
a
a C Q U 2)压电元件也可以等效为一个电压源和一个电容串联表示的电压等效电路,如图5-4(
b )所示。
(b) 电压等效电路 (a )电荷等效电路
图5-4压电式传感器的等效电路 Ca Ua Q Ca Ua Uo
二、 压电式传感器的测量电路
1. 测量电路
如图5-6所示,压电式传感器的输出信号非常微弱,通常需要将其放大后才能进行检测。
又因为传感器的内阻抗极高,因此需要有阻抗非常高的前置放大器与之匹配,然后再使用一般放大、显示、检波、记录等电路。
图5-6 电荷放大器等效电路图
当A >>1时,则
)()1(i c a f C C C C A ++>>+
f
f o )1(C Q C A AQ U -≈+-≈ 说明:1)电荷放大器的输出电压仅与输入电荷量和反馈电容有关,电缆电容等其他因素可忽略不计,这是电荷放大器的特点,也正因为这一特点使得电荷放大器得到广泛的应用。
2)采用电荷放大器的原因:电压放大器中的输出电压与电缆电容有,关因而大都采用电荷放大器。
3)压电传感器的测量对象:动态量,
原因:由于外力作用在压电元件上产生的电荷只有在无泄漏的情况下才能保存,这需要转换电路具有无限大的输入阻抗,但实际上是不可能的,因此压电式传感器不能用于静态测量。
压电元件在交变力的作用下,电荷可以不断补充,可以供给转换电路以一定的电流,故只适用于动态测量。
三、压电式传感器的应用
1. 压电元件的串并联使用
在压电式传感器的使用中,为了提高灵敏度,常常把几片同型号的压电元件叠在一起使用。
并联:图5-7(a)是两个压电片的负极粘在一起,中间插入的金属电极成为两压电片的负极,正电极在两边的电极上。
从电路上看,这是并联接法,类似两个电容的并联。
所以,外力作用下正负电极上的电荷量增加一倍,电容量也增加一倍,输出电压与单片时相同。
串联:图5-7(b)是两压电片不同极性端粘在一起,电路上是串联的。
两压电片中间粘接处正负电荷中和,上、下极板的电荷量与单片时相同,总电容量为单片的一半,输出电压增大一倍。
(a) (b)
图5—7 压电元件连接方式
2. 压电传感器的特点
体积小、重量轻、结构简单、工作可靠、测量频率范围宽等优点,是应用较广的力传感器,但不能测量频率太低的被测量,特别是不能测量静态量,目前多用于测量加速度和动态的力或压力。
3 . 压电传感器的应用
1).压电式测力传感器
2、压电式加速度传感器
本讲小结
压电元件当其表面产生电荷后,可以等效为一个电荷源与电容并联电路,也可以等效为一个电压源和一个电容串联电路。
不论是并联等效电路,还是串联等效电路,要想保持电容上的电荷不变,则要求后续电路的输入阻抗为无穷大,但这是不可能的,因此压电式传感器不能用于静态测量。
压电式传感器输出信号非常微弱,且传感器的内阻极高,故测量时需要有一内阻非常高的放大器与之匹配,实际应用时大多采用电荷放大器作为压电式传感器的前置放大器。
作业
1 .压电式传感器能否用于重力的测量?为什么?
2. 根据图5-11(a )所示石英晶体切片的受力和产生电荷的方向,标出图5.11(b)、(c)、(d)晶体切片上产生电荷的符号。
图5-11 石英晶体切片的受力示意图
3. 图5-12是振动式粘度计的原理示意图。
导磁的悬臂梁6与铁心3组成振动器,压电片4粘贴于悬臂梁上,振动板7固定在悬臂梁的下端,并插入到被测粘度的粘性液体中。
请分析该粘度汁的工作原理。
1—交流激励源;2—励磁线圈;3—电磁铁心;
4—压电片;5—质量块;6—悬臂梁;7—振动板;8—粘性液体;9—容器
图5-12 振动式粘度计的原理示意图
x F x x y y y y
+x
F y F y F +
+---。