初中数学中考总复习:图形的变换--知识讲解(提高)

合集下载

2024年中考数学二轮专题复习之图形变换(简单)

2024年中考数学二轮专题复习之图形变换(简单)

中考二轮专题复习之 图形变换 知识点归纳 考点一:对称有关概念 1.轴对称 (1). 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .(2). 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .(3).如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .2.中心对称(1). 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .(2). 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .(3). 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.(4). 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 . 对应训练1、如图,一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像( )2、如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B. ①④C.②③D.②④3、已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形4、如图,AD 是ΔABC 的中线,∠ADC=45°,把ΔADC 沿AD 对折,点C 落在点C ′的位置,则BC′与BC 之间的数量关系是 .5、如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.6、如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′,并写出对应点的坐标;(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .7.如图,将矩形ABCD 沿GH 对折,点C 落在点Q 处,点D 落在点E 处,EQ 与BC 交于点F.若AD =8 cm ,AB =6 cm ,AE =4 cm ,则△EBF 的周长是________cm .8、如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =23,将菱形按如图方式折叠,使点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .9、如图,正方形ABCD 中,AB =2,E 是CD 中点,将正方形ABCD 沿AM 折叠,使点B 的对应点F 落在AE 上,延长MF 交CD 于点N ,则DN 的长为 __________.考点二:平移旋转有关概念1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为__ ___,它是由移动的 和 所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .3. 图形旋转的定义:把一个图形 的图形变换,叫做旋转,叫做旋转中心, 叫做旋转角. 4. 图形的旋转由 、 和 所决定.①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针.③旋转 一般小于360º.5. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .对应训练1、如图,下列图案②③④⑤⑥⑦中, 是由①平移得出的, 是由①平移且旋转得出的。

图形的变换知识点

图形的变换知识点

图形的变换知识点图形的变换是数学中的一个重要概念,他描述了在平面上或者空间中的图形经过某些操作后的位置、形状或者大小的改变。

图形的变换主要包括平移、旋转、对称和放缩四种基本操作。

下面将逐一介绍这些图形变换的知识点。

一、平移平移是指将图形沿着直线方向移动一段距离,移动后的图形和原图形大小、形状不变,只是位置发生改变。

平移可以向上、向下、向左、向右等不同方向进行。

平移的要素包括平移的向量、平移的大小和方向。

二、旋转旋转是指将图形绕着某一点或者某一直线进行转动,转动的角度可以是顺时针或者逆时针方向。

旋转后的图形与原图形形状相似,只是方向或者位置发生了改变。

旋转的要素包括旋转的中心点、旋转的角度和旋转的方向。

三、对称对称是指图形相对于某一直线、某一点或者某一平面以一定的规律对应。

对称分为线对称和点对称两种。

线对称是指图形相对于某一直线对应,对称后的两部分完全一致;点对称是指图形相对于某一点对应,对称后的图形和原图形关于对称中心点对称。

四、放缩放缩是指改变图形的大小,可以使图形变得比原图形更大或者更小。

放缩的结果是图形的尺寸与原图形成一定的比例关系。

缩小图形的操作称为收缩,放大图形的操作称为放大。

综上所述,图形的变换是指通过平移、旋转、对称和放缩等操作改变图形的位置、形状和大小。

这些操作在数学和几何学中有广泛的应用,可以帮助我们更好地理解和描述图形特性,同时也是许多实际问题求解的基础。

在实际应用中,我们可以通过使用坐标系和向量运算等工具来进行图形变换的计算和分析,并且可以使用计算机软件进行图形的显示和变换操作。

通过深入学习和理解图形的变换知识点,我们可以更好地解决相关问题,提高数学和几何学的素养。

初中数学图形变换知识点整理

初中数学图形变换知识点整理

初中数学图形变换知识点整理初中数学中,图形变换是一个重要的知识点,它包括了平移、旋转、对称和放缩四个部分。

这些变换不仅在初中数学中有着广泛的应用,也是进一步学习几何知识和应用问题的基础。

下面将对这些知识点进行整理和阐述。

一、平移平移是指将一个图形沿着一定的方向和距离移动,平移后的图形与原图形相似,只是位置发生了改变。

在平移中,有以下几个关键概念需要注意:1. 平移的向量:平移是向量的运算,表示为→AB,表示从点A到点B的位移,也可以表示成矢量形式(AB)。

2. 平移的性质:平移具有保持图形大小、形状和方向不变的性质。

即平移后的图形与原图形全等。

3. 平移的规律:平移的规律可以总结为“横坐标加上有向线段的横坐标,纵坐标加上有向线段的纵坐标”。

即新图形的坐标为(x+a,y+b),其中a和b为向量→AB的横纵坐标。

二、旋转旋转是指将一个图形围绕一个中心点旋转一定的角度,旋转后的图形与原图形形状相似,但方向可能有所改变。

在旋转中,要注意以下几个关键概念:1. 旋转中心:旋转中心是图形旋转的轴心点,围绕该点进行旋转。

旋转中心可以是图像的一个顶点、中点或者其他位置。

2. 旋转角度:旋转角度是指图形旋转的角度,可以是正数也可以是负数。

顺时针旋转角度为负,逆时针旋转角度为正。

3. 旋转规律:旋转后的图形的顶点坐标可以通过坐标公式得出。

对于顺时针旋转,坐标公式为:新坐标点的横坐标为原坐标点的纵坐标,新坐标点的纵坐标为原坐标点的横坐标的相反数。

对于逆时针旋转,公式则相反。

三、对称对称是指图形通过某一条直线、点或平面变换后重合,这条直线、点或平面称为对称轴。

对称中需要注意以下几个关键概念:1. 对称轴:对称轴是图形对称的参考线。

对称轴可以是一条直线、一个点或平面。

2. 对称性质:对称是指图形经过对称变换后,与原图形完全重合,即图形左右对称、上下对称或中心对称。

3. 对称变换规律:对称变换后的图形的坐标可以通过规律得出。

人教版中考数学第一轮复习第七章图形与变换

人教版中考数学第一轮复习第七章图形与变换

第七章图形与变换第二十四讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为.2.点P(2,-1)关于x轴对称的点P′的坐标是.3.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?4.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是5.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)7.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(-2,-3)B.(-2,6)C.(1,3)D.(-2,1)8.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°9.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2 10.已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.11.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.12.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.13.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.14.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.第二十五讲相似图形(一):【知识梳理】1.比例基本性质及运用(1)线段比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比a、b中,a叫做比的前项 b叫做比的后项.注意:①针对两条线段;②两条线段的长度单位相同,但与所采用的单位无关;③其比值为一个不带单位的正数.(2)线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段a、b、c、d,如果a c=b d或a:b=c:d,那么a、b、c、d叫做成比例的项,线段a、d叫做比例外项,线段b、d叫做比例内项,线段d叫做a、b、c的第四比例项,当比例内项相同时,即a bb c=或a:b=b:c,那么线段b叫做线段a和c的比例中项.(3)比例的性质,①基本性质:如果a:b=c:d,那么ad=bc;反之亦成立。

中考数学总复习:图形的变换--知识讲解(基础)【含解析】

中考数学总复习:图形的变换--知识讲解(基础)【含解析】

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】中考总复习:图形的变换--知识讲解(基础)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.4.中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点.中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.5.中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.【要点诠释】图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.【典型例题】类型一、平移变换1.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为____________.【思路点拨】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【答案与解析】∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;【总结升华】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.举一反三:【变式】(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.【答案】解:(1)△AGB为△DEC平移后的三角形,如下图所示;(2)∵△AGB为△DEC平移后的三角形,∴BG=CE=3,BG∥CE,∵CE⊥BD,∴BG⊥BD.在Rt△BDG中,∵∠GBD=90°,BG=3,BD=6,∴DG==3,∵四边形ABCD是平行四边形,∴AD=BC=2,∴AG=D G﹣AD=3﹣2=.2.如图(1),已知ABC ∆的面积为3,且,AC AB =现将ABC ∆沿CA 方向平移CA 长度得到EFA ∆. (1)求ABC ∆所扫过的图形面积;(2)试判断,AF 与BE 的位置关系,并说明理由; (3)若,15︒=∠BEC 求AC 的长.【思路点拨】(1)根据平移的性质及平行四边形的性质可得到S △EFA =S △BAF =S △ABC ,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA 为菱形,根据菱形的对角线互相垂直平分可得到AF 与BE 的位置关系为垂直;(3)作BD ⊥AC 于D ,结合三角形的面积求解. 【答案与解析】(1)由平移的性质得 AF ∥BC ,且AF=BC ,△EFA ≌△ABC ∴四边形AFBC 为平行四边形 S △EFA =S △BAF =S △ABC =3∴四边形EFBC 的面积为9;(2)BE ⊥AF证明:由(1)知四边形AFBC 为平行四边形 ∴BF ∥AC ,且BF=AC 又∵AE=CA∴BF ∥AE 且BF=AE∴四边形EFBA 为平行四边形又已知AB=AC ∴AB=AE∴平行四边形EFBA 为菱形 ∴BE ⊥AF ;(3)如上图,作BD ⊥AC 于D ∵∠BEC=15°,AE=AB ∴∠EBA=∠BEC=15° ∴∠BAC=2∠BEC=30°BCA ('C )E∴在Rt△BAD中,AB=2BD 设BD=x,则AC=AB=2x∵S△ABC=3,且S△ABC=12AC•BD=12•2x•x=x2∴x2=3∵x为正数∴x=3∴AC=23.【总结升华】此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.类型二、轴对称变换3(2016•贵阳模拟)(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.【思路点拨】(1)Rt△ABC中,根据sinB═=,即可证明∠B=30°;(2)求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.(3)先判断出AD=AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.【答案与解析】(1)证明:Rt△ABC中,∠C=90°,,∵sinB==,∴∠B=30°;(2)解:∵正方形边长为2,E、F为AB、CD的中点,∴EA=FD=×边长=1,∵沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,∴A′D=AD=2,∴=,∴∠FA′D=30°,可得∠FDA′=90°﹣30°=60°,∵A沿GD折叠落在A′处,∴∠ADG=∠A′DG,AG=A′G,∴∠ADG===15°,∵A′D=2,FD=1,∴A′F==,∴EA′=EF﹣A′F=2﹣,∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,则A′G=AG=2EA′=2(2﹣);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,=tan30°,则AD=DC•tan30°=6×=2,∵∠DAF=∠FAO=∠DAO==30°,∴=tan30°=,∴DF=AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.【总结升华】本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考察的知识点较多,注意将所学知识融会贯通.举一反三:【变式】(2016·松北区模拟)如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50°.若将其右下角向内这出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.【答案】∵∠CPR=12∠B=12×120°=60°,∠CRP=12∠D=12×50°=25°,∴∠C=180°-60°-25°=95°.4. 如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P 在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,使A落在直线PM上一点A′,且A′M所在直线与PM•所在直线重合(如图3),折痕为MN.(1)猜想两折痕PQ,MN之间的位置关系,并加以证明.(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,•MN间的距离有何变化?请说明理由.(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?(1)(2)(3)(4)【思路点拨】(1)猜想两直线平行,由矩形的对边平行,得到一组内错角相等,翻折前后对应角相等,那么可得到PQ与MN被MP所截得的内错角相等,得到平行.(2)作出两直线间的距离.∵PM长相等,∠NPM是不变的,所以利用相应的三角函数可得到两直线间的距离不变.(3)由特殊角得到所求四边形的形状,把与周长相关的边转移到同一线段求解.【答案与解析】(1)PQ∥MN.∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.∴∠AMP=∠MPC.由翻折可得:∠MPQ=∠CPQ=12∠MPC,∠NMP=∠AMN=12∠AMP,∴∠MPQ=∠NMP,故PQ∥MN.(2)两折痕PQ,MN间的距离不变.过P作PH⊥MN,则PH=PM•sin∠PMH,∵∠QPC的角度不变,∴∠C′PC的角度也不变,则所有的PM都是平行的.又∵AD∥BC,∴所有的PM都是相等的.又∵∠PMH=∠QPC,故PH的长不变.(3)当∠QPC=45°时,四边形PCQC′是正方形,四边形C′QDM是矩形.∵C′Q=CQ,C′Q+QD=a,∴矩形C′QDM的周长为2a.同理可得矩形BPA′N的周长为2a,∴两个四边形的周长都为2a,与b无关.【总结升华】翻折前后对应角相等,对应边相等,应注意使用相应的三角函数,平行线的判断,特殊四边形的判定.类型三、旋转变换【高清课堂图形的变换例4】5.已知O是等边三角形ABC内一点,∠AOB=110°,∠BOC=135°,试问:(1)以OA,OB,OC为边能否构成一个三角形?若能,求出该三角形各角的度数;若不能,请说明理由;(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时,以OA,OB,OC为边的三角形是一个直角三角形?【思路点拨】因为△ABC是等边三角形,所以可以运用旋转将△BCO转至△ACD.【答案与解析】(1)以OC为边作等边△OCD,连AD.∵△ABC是等边三角形∴∠BCO=∠ACD (∠BCO+∠ACO=60°,∠ACD+∠ACO=60°)∵ BC=AC,OC=CD∴△BCO≌△ACD (SAS)∴ OB=AD,∠ADC=∠BOC又∵OC=OD∴△OAD是以线段OA,OB,OC为边构成的三角形∵∠AOB=110°, ∠BOC=135°∴∠AOC=115°∴∠AOD=115°-60°=55°∵∠ADC=135°∴∠ADO=135°-60°=75°∴∠OAD=180°-55°-75°=50°∴以线段OA,OB,OC为边构成的三角形的各角是50°、55°、75°.(2)∠AOB+∠AOC+∠BOC=∠AOB+∠AOC+∠ADC=∠AOB+(∠AOD+∠DOC)+(∠ADO+∠CDO)=∠110°+(∠AOD+60°)+(∠ADO+60°) =360°∴∠AOD+∠ADO=130°∴∠OAD=50°当∠AOD是直角时,∠AOD=90°,∠AOC=90°+60°=150°,∠BOC=100°;当∠ADO是直角时,∠ADC=90°+60°=150°,∠BOC=150°.【总结升华】此题主要运用旋转的性质、等边三角形的判定、勾股定理的逆定理等知识,渗透分类讨论思想.6 . 如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.【思路点拨】(1)要证AE1=BF1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE1为直角三角形,就要考虑证∠E1AO=90°.【答案与解析】(1)AE1=BF1,证明如下:∵O为正方形ABCD的中心,∴OA=OB=OD.∴OE=OF .∵△E1OF1是△EOF绕点O逆时针旋转α角得到,∴OE1=OF1.∵ ∠AOB=∠EOF=900,∴ ∠E1OA=900-∠F1OA=∠F1OB.在△E1OA和△F1OB中,1111OE OFE OA FOBO A OB⎧⎪∠∠⎨⎪⎩===,∴△E1OA≌△F1OB(SAS).∴AE1=BF1.(2)取OE1中点G,连接AG.∵∠AOD=900,α=30°,∴ ∠E1OA=900-α=60°.∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.【答案】(1)将△ABP 绕点B顺时针方向旋转90°得△CBQ.则△ABP≌△CBQ且PB⊥QB.于是PB=QB=2a,.在△PQC中,∵,.∴.∴.∵△PBQ是等腰直角三角形,∴∠BPQ=∠BQP=45°.故∠APB=∠CQB=90°+45°=135°.(2)∵∠APQ=∠APB+∠BPQ=135°+45°=180°,∴三点A、P、Q在同一直线上.在Rt△AQC中,.∴正方形ABCD的面积.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

初中数学 图形的变换(知识点总结及练习)

初中数学 图形的变换(知识点总结及练习)

图形的变换一、平移1.定义:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

2.性质:(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动。

(2)连接各组对应点的线段平行(或在同一直线上)且相等。

二、轴对称1.定义:把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2.性质:(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3.判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

三、旋转1.定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2.性质:(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

四、中心对称1.定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2.性质:(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3.判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

五、坐标系中对称点的特征1.两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2.关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3.两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)一、选择题1.在图形的平移中,下列说法中错误的是()A.图形上任意点移动的方向相同;B.图形上任意点移动的距离相同C.图形上可能存在不动点;D.图形上任意对应点的连线长相等2.如图所示图形中,是由一个矩形沿顺时针方向旋转90°后所形成的图形的是()A.(1)(4)B.(2)(3)C.(1)(2)D.(2)(4)第4题图3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④B.①②③C.②③④D.①③④4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF5.下列说法正确的是()A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则△ADE是△ABC放大后的图形;B.两个位似图形的面积比等于位似比;C.位似多边形中对应对角线之比等于位似比;D.位似图形的周长之比等于位似比的平方6.下面选项中既是中心对称图形又是轴对称图形的是()A.等边三角形B.等腰梯形C.五角星D.菱形7.下列图形中对称轴的条数多于两条的是()A.等腰三角形B.矩形C.菱形D.等边三角形8.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()9.钟表上2时15分,时针与分针的夹角是()A.30°B.45°C.22.5°D.15°二、填空题10.一个正三角形至少绕其中心旋转________度,就能与本身重合,一个正六边形至少绕其中心旋转________度,就能与其自身重合.11.如图,可以看作是由一个三角形通过_______次旋转得到的,每次分别旋转了__________.12.如图,在梯形ABCD中,将AB平移至DE处,则四边形ABED是_______四边形.13.已知等边△ABC,以点A为旋转中心,将△ABC旋转60°,这时得到的图形应是一个_______,且它的最大内角是______度.14.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形的周长为30cm,则较大图形周长为________.15.将如左图所示,放置的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是右图所示四个图形中的_______(只填序号).16.如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是_______第16题图第17题图17.如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.三、解答题18.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.19.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,看看得到的图案是什么?20.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.21.如图所示,四边形ABCD是正方形,E点在边DE上,F点在线段CB•的延长线上,且∠EAF=90°.(1)试证明:△ADE≌△ABF.(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.(3)指出线段AE与AF之间的关系.22.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD 折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.23.如图,正方形ABCD内一点P,使得PA:PB:PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP绕点B顺时针旋转90°至△BCP′,连结PP′)。

图形的变换归纳总结

图形的变换归纳总结

图形的变换归纳总结图形变换是数学中的一个重要概念,它涉及到图形在平面内的平移、旋转、镜像和缩放等操作。

通过对图形变换的归纳总结,我们能够更好地理解其规律和性质,并应用于解决实际问题。

本文将从平移、旋转、镜像和缩放四个方面来归纳总结图形变换的相关知识。

一、图形平移图形平移是指在平面内保持大小和形状不变的情况下,将图形沿平行向量平移一定距离。

平移变换的特点是新旧图形相似,仅位置发生改变。

平移变换常用符号表示为T(x, y) = (x + a, y + b),其中T表示平移操作,(x, y)表示原始图形的坐标,而(a, b)表示平移向量的坐标。

通过平移变换,我们可以得到同一图形在不同位置的变化。

二、图形旋转图形旋转是指将图形按照某一中心点旋转一定角度,使其形状和大小保持不变。

旋转变换的特点是新旧图形相似,仅方向发生改变。

旋转变换常用符号表示为R(θ),其中R表示旋转操作,θ表示旋转的角度。

旋转角度可正可负,表示顺时针或逆时针方向的旋转。

通过旋转变换,我们可以得到同一图形在不同方向的变化。

三、图形镜像图形镜像是指将图形沿一条直线作对称操作,使其形状和大小保持不变。

镜像变换的特点是新旧图形相似,仅位置关系发生改变。

镜像变换常用符号表示为M(x, y),其中M表示镜像操作,(x, y)表示原始图形的坐标。

镜像操作可以分为水平镜像和垂直镜像两种情况。

通过镜像变换,我们可以得到同一图形在不同位置关系下的变化。

四、图形缩放图形缩放是指按照一定的比例改变图形的大小,使其形状保持不变。

缩放变换的特点是新旧图形相似,仅大小发生改变。

缩放变换常用符号表示为S(k),其中S表示缩放操作,k表示缩放的比例因子。

比例因子k可以大于1表示放大操作,也可以小于1表示缩小操作。

通过缩放变换,我们可以得到同一图形在不同大小比例下的变化。

通过对图形变换的归纳总结,我们可以发现以下规律:1. 平移、旋转和缩放操作都可以通过坐标变换实现,其中平移操作相对简单,仅需改变图形的坐标即可;旋转和缩放操作则需要通过旋转矩阵和缩放矩阵进行计算。

新初三数学:图形的变换复习

新初三数学:图形的变换复习

图形的变换与计算【第一部分平移】【知识点】1、平移的概念.2、理解“对应点的连线平行且相等”等平移变换的基本特征;能够按照要求画出简单平面图形平移后的图形;能利用平移进行简单的图案设计.3、平移变换的确定:给定了平移方向和平移的距离,就确定了平移.4、图形在平移下的不变性和不变量.平移把任一线段变成与它平行且相等的线段,即在平移下,任一线段保持方向和长度不变;平移把任一个角变成与它相等的角,即在平移下,任一个角保持大小不变.【基础训练】一、选择题1.下列几种运动属于平移的有()①水平运输带上的砖在运动;②升降机上下做机械运动;③足球场上足球的运动;④超市里电梯上的乘客;⑤平直公路上行驶的汽车A.2种B.3种C.4种D.5种2.点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是( )A.(1.4)B.(1.0) C.(-l,2) D.(3,2)二、填空题1.如图5-1-1所示,每个小正方形的边长都是1个单位长度,△ABC移到了△A′B′C′的位置,则平移的方向是,平移的距离是个单位长度.2.如图5-1-2所示,△ABC平移到△A′B′C′的位置,则与AA′平行的线段有,与AA′相等的线段是.【提高训练】一、选择题1.如图所示5-1-3,在平面内,将一个图形沿某个方向移动一定距离,这样的图形变换为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,至少需要移动()A.12格B.11格C.9格D.8格2.如图5-1-4所示:边长分别为和的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为,大正方形内除去小正方形部分的面积为(阴影部分),那么与的大致图象应为()二、解答题A.B.C.D.图5-1-3图5-1-4图2FD EA BC图1图5-1-5 图5-1-1 图5-1-21.已知如图5-1-5所示,图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点△ABC ,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形.2.在平面直角坐标系中,直线l 过点M(3,0),且平行于轴.(1)如果△ABC 三个顶点的坐标分别是A(-2,0),B(-l,O),C(-1,2),△ABC 关于轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点的坐标; (2)如果点的坐标是(,0),其中,点P 关于轴的对称点是,点关于直线的对称点是,求的长.3.如图5-1-7(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合。

九年级图形的变换知识点

九年级图形的变换知识点

九年级图形的变换知识点图形的变换是数学课程中的一个重要内容,也是九年级学生需要掌握的知识点之一。

通过图形的变换,我们可以改变图形的位置、大小和方向,从而帮助我们更好地理解和解决问题。

本文将介绍九年级图形的变换知识点,包括平移、旋转、镜像和缩放。

1. 平移平移是指将图形在平面上沿着某个方向移动一定的距离,而形状和大小保持不变。

平移的基本步骤是:确定平移的方向和距离,然后保持图形的形状不变,将每个点按照相同的方向和距离移动。

平移有一些重要的性质:- 平移不改变图形的面积和形状。

- 平移前后,图形上的对应点之间的距离保持不变。

- 平移可以用于解决有关位置关系和对称性质的问题。

2. 旋转旋转是指将图形沿着一个中心点旋转一定的角度,而不改变其大小和形状。

旋转的基本步骤是:确定旋转的中心和角度,然后按顺时针或逆时针方向旋转每个点。

旋转有一些重要的性质:- 旋转不改变图形的面积和形状。

- 旋转前后,图形上的对应点之间的距离保持不变。

- 旋转可以用于解决有关对称性质和角度关系的问题。

3. 镜像镜像是指将图形通过一个镜面对称地映射到另一侧,使得图形的每一个点与其镜像点关于镜面对称。

镜像的基本步骤是:选择镜面的位置和方向,然后将原图形上的每个点与镜面上的对应点连接,得到镜像图形。

镜像有一些重要的性质:- 镜像不改变图形的面积和形状。

- 镜像前后,图形上的对应点之间的距离保持不变。

- 镜像可以用于解决有关对称性质和位置关系的问题。

4. 缩放缩放是指按照比例因子改变图形的大小,而形状保持不变。

缩放的基本步骤是:确定缩放的中心和比例因子,然后将图形上的每个点相对于中心按照比例因子进行放缩。

缩放有一些重要的性质:- 缩放改变图形的大小,但不改变其形状。

- 缩放前后,图形上的对应点之间的距离保持按比例变化。

- 缩放可以用于解决有关比例关系和相关性质的问题。

综上所述,九年级图形的变换知识点主要包括平移、旋转、镜像和缩放。

这些变换可以帮助我们更好地理解和解决与图形相关的问题,提高空间想象能力和数学推理能力。

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

《图形的变换》知识点归纳

《图形的变换》知识点归纳

《图形的变换》知识点归纳在我们的日常生活和学习中,图形的变换是一个非常重要的概念。

它不仅在数学领域有着广泛的应用,在艺术、设计、工程等多个领域也都发挥着重要作用。

接下来,让我们一起深入了解图形变换的相关知识点。

一、平移平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。

平移的特点:1、图形的形状和大小不变,只是位置发生了改变。

2、对应点所连的线段平行且相等。

3、对应线段平行且相等。

平移的应用:比如在建筑设计中,通过平移可以复制和排列相同的图案;在计算机图形处理中,平移可以改变图像在屏幕上的位置。

二、旋转旋转是指在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化。

旋转的三要素:旋转中心、旋转方向(顺时针或逆时针)和旋转角度。

旋转的性质:1、旋转前后图形的大小和形状不变。

2、对应点到旋转中心的距离相等。

3、对应点与旋转中心所连线段的夹角等于旋转角。

旋转在生活中的例子很多,像风扇的叶片转动、摩天轮的运行等都是旋转现象。

三、轴对称轴对称图形是指如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

轴对称图形的性质:1、对称轴是对称点连线的垂直平分线。

2、对应线段相等,对应角相等。

常见的轴对称图形有:等腰三角形、正方形、圆形等。

四、中心对称中心对称是指把一个图形绕着某一个点旋转 180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

中心对称图形的性质:1、对称中心平分中心对称图形内通过该点的任意线段。

2、成中心对称的两个图形全等。

平行四边形是典型的中心对称图形。

五、图形的相似相似图形是指形状相同的图形。

相似图形的性质:1、对应角相等。

2、对应边成比例。

相似图形在地图绘制、建筑模型制作等方面有着重要的应用。

六、位似位似是一种特殊的相似,位似图形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行。

初三中考总复习——图形变换

初三中考总复习——图形变换

初三中考总复习一一图形变换西城外国语学校袁慎鹏图形变换是对几何图形认识方法上的一种改变.通过平移、轴对称、旋转变换达到复杂图形简单化、一般图形特殊化,分散条件集中化的目的.从图形变换的角度思考问题,可以整体把握图形的性质,特别是可以帮助我们从更高的层次理解平行线、截长补短、倍长中线等常用辅助线的作用,使问题解决更加简洁明确.当图形运动变化的时候,从运动变换的角度更容易发现不变量和特殊图形.一、《考试说明》的要求:变化:1.顺序有变化,符合学生学习的顺序;2.变换的性质比较笼统没有2014年的说明具体;3.“作图”变为“画图”,画图的要求更加具体;4.基本的轴对称图形由六个变为五个,删掉了“等腰梯形”;5.C级要求的“解决简单问题”统一变为“解决有关问题”二、图形变换在近6年中考中的分布及呈现方式:近6年的中考中,变换在选择、填空、操作题、第23题、第24题、第25题中都有出现过,主要的考察方式有:辨别轴对称图形与中心对称图形;通过阅读理解获取有效信息,选择合适的的变换对图形进行重新构造从而解决问题;把函数的图象进行变换,要求发现平移后的函数与原函数之关系;应用变换的思想综合运用几何知识添加适当的辅助线解决问题.三、复习建议:123.对于几何综合题的复习要引导学生从几何图形与变换的角度重新认识常见辅助线的添加方法,比如:(1)中点、中线——中心对称——倍长中线——中位线(2)等腰三角形、角平分线、垂直平分线一一轴对称一一截长补短;(3)平行四边形一一平移;(4)正多边形、共端点的等线段一一旋转;4.对于坐标系中研究函数图象的平移和对称的问题要引导学生抓住问题的本质,把该问题转化函数图象上点的变换问题,进而进一步转化为函数图象上关键点的变换问题.四、第一轮复习安排和例题共用三个课时,第一课时:三种变换的概念和性质的简单应用;第二课时,作图和操作问题;第三课时:综合.例1( 2013北京)下列图形中,是中心对称图形但不是轴对称图形的是()易混淆;怕文字表述的图形•例 2 如图,Rt△ ABC中,/ ACB= 90°,AO 2cm, ■ A = 60 .将△ ABC沿AB边所在直线向右平移,记平移后它的对应三角形DEF 若将△ ABC 沿直线AB 向右平移3 cm ,求此时梯形CAEF 勺面积;【答案】53学生存在的问题:弄不清 3cm 是那条线段的长,不会分类. 例 3 (2011 上海)Rt △ ABC 中,已知/ C = 90°,/ B = 50°,点D 在边BC 上, BD= 2CD 把厶ABC 绕着点D 逆时针旋转 m (0 <n<180 )度后,如果点B 恰好落在初始Rt △ ABC 的 边上,那么m=学生存在的问题:会将整个△ ABC 旋转后的图形都画,把图形弄复杂 例 4 (2013 湖南郴州)如图,在 Rt △ ACB 中, / ACB=90,/ A=25 , D 是AB 上一点.将 Rt △ ABC 沿CD 折叠,使B 点落在AC 边上的B'处, 贝ADB 等于( )【答案】DA. 25°B . 30°C . 35°D . 40°学生存在的问题:轴对称的性质应用不全面,想到了边,但忘了角•《探诊》P17 T10题 例5西总P29例4学生存在的问题:一是没看清把那个三角形平移或对称,二(1)(2) 若使平移后得到的△ CDF 是直角三角形,则厶ABC 平移的距离应为cm.【答 案】1【答案】80和120 西总P3仃10B是不会判断中心对称 西总P88例1例6 (2014顺义二模)如图,正方形 ABCD 勺边长为3,点E ,F 分另用边AB, BC 上, AE= BF = 1,小球P 从点E 出发沿直 D -------------------- C 线向点F 运动,每当碰到正方形的边时反弹,反弹时反射 角 等于入射角.当小球P 第一次碰到BC 边时,小球P 所经过A E B的路程为 _________ ;当小球P 第一次碰到AD 边时,小球P 所经过的路程为 __________ ;当小球P 第n ( n 为正整数)次碰到点 F 时,小球 P 所经过的路程为.【答案】V 5 , 5V 5 ,6V 5n —5炎.2学生存在的问题:作图不合理,不会将角关系转化为线段的关系例7 (2011北京中考).阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD // BC ,对角线AC 、 BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD BC 的长度 为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题, 首先应想办法移动这些分散的线段,构造一 个三角形,再计算其面积即可,他先后尝试 了翻折、旋转、平移的方法,发现通过平移 可以解决这个问题.他的方法是过点 D 作AC的平行线交BC 的延长线于点E ,得到的△ BDE 即是以 AC 、BD 、AD BC 的长度为三边 长的三角形(如图2).请你回答:图2中△ BDE 的面积等于_______________________________________________ . 参考小伟同学思考问题的方法,解决下列问题: 如图3, △ ABC 的三条中线分别为 AD 、BE 、CF .⑴ 在图3中利用图形变换画出并指明以 AD 、BE 、CF 的长度为三边长的一 个三角形(保留画图痕迹);⑵ 若厶ABC 的面积为1,则以AD BE CF 的长度为三边长的三角形的面积 学生存在的问题:主要是在第三问,能画出图但找不出新三角形与原图形之间 的面积关系,究其原因就是对于中线等分面积的性质不太会用图3例8(2013北京中考)在平面直角坐标系x O y 中,y = mx 2 一2mx 一2 ( m^0) 与 y 轴交于点 A , 对称轴与x 轴交于点B o(1) 求点A , B 的坐标;(2) 设直线I 与直线AB 关于该抛物线的对称,求直线I 的解析式;(3)若该抛物线在- 2 ::: x ::: -1这一段位于直线段位于直线AB 的下方,求该抛物线的解析式 P89西总例2图形这一特点,同时对于抛物线的连续性理解不到位•例9 (2013.1海淀期末).抛物线y = mx 2 • (m -3)x-3(m 0)与x 轴交于A 、B 两 点,且点A 在点B 的左侧,与y 轴交于点C, OB=O.C(1) 求这条抛物线的解析式;(2) 若点Px b)与点Qx 2,b)在(1)中的抛物线上,且 治 乜,PQ=n①求 4x 12 -2x 2n 6n 3 的值;②将抛物线在PQ 下方的部分沿PQ 翻折,抛物线的其它部分保持不变,得到 一个新图象•当这个新图象与 x 轴恰好只有两个公共点时,b 的取值范围 是 .称的,另外就是n 与X 1、X 2的关系弄错,再就是消元不明确;第三问主要是临界 点把握不好,缺乏对于运动变换问题连续搜索的习惯抛物线称轴对I 的上方,并且在2 x 3这一例10 (2014海淀二模)在A ABC中,.ABC =90J , D为平面内一动点,AD =a , AC =b,其中a, b为常数,且a:::b.将厶ABD沿射线BC方向平移,得到△ FCE,点A、B、D的对应点分别为点F、C、E.连接BE .(1)如图1,若D在A ABC内部,请在图1中画出△FCE ;(2)在(1 )的条件下,若AD _ BE,求BE的长(用含a, b的式子表示);(3)若N BACp,当线段BE的长度最大时,则ZBAD的大小为_______________ ;当线段BE的长度最小时,则ZBAD的大小为_________________ (用含G的式子表示)图1 备用图例11(2014北京中考).在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE, DE,其中DE交直线AP于点F .(1)依题意补全图1 ;(2)若.PAB =20,求.ADF 的度数;(3)如图2, 若45、/PAB:::90,用等式表示线段AB,FE,FD之间的数量关系,并证明.第一问解决问题的策略与方法,另外就是对于线段之间的关系不敏感例12 (2014昌平二模)【探究】如图1,在厶ABC中, D是AB边的中点,AE1 BC于点E, BF丄AC于点F, AE BF相交于点M连接DE DF贝U DE DF 的数量关系为.【拓展】如图2,在厶A B C中,C B = C A,点D是AB边的中点,点M在△ A BC的内部,且Z MB(=Z MAC过点M作MEL BC于点E, MFL AC于点F,连接DE DF 求证:DE=DF;【推广】如图3,若将上面【拓展】中的条件“ CB=CA变为“ CB^CA,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.学生存在的问题:主要问题出在第三问一是二次相似确实是一个难点,二是证角等的方法不多•五. 专题整理专题一、平移变换1.(2011湖北黄冈)如图,把 Rt △ ABC 放在直角坐标系内,/ CAB 90°, BC =5,点A B 的坐标分别为( 将厶ABC 沿 x 轴向右平移,当点 C 落在直线y =2x —6上时A. 4B. 8C. 16D. &,22. (2011广东台山)如图,正方形 ABC 闲正方形EFGH 勺边长分别为2 2和..2 , 对角线BD FH 都在直线L 上,。

七年级图形的变换知识点

七年级图形的变换知识点

七年级图形的变换知识点图形的变换是数学中非常基础的概念,同时也是几何学中非常重要的部分之一。

在七年级的数学学习过程中,学生需要学习各种图形的变换,并在实际中应用。

本文将详细介绍七年级图形的变换知识点。

1. 平移变换平移变换是将图形沿着某个方向移动一段距离,保持图形原有形状和大小不变。

平移变换也称为平移、移动或位移。

图形进行平移变换的方式有两种:一种是通过向量的加法实现平移,另一种是通过指定平移量来实现平移。

当通过向量的加法实现平移时,平移变换的公式为:P’ = P + v其中,P表示图形上任意一点的坐标,v表示平移向量,P’表示平移后图形上对应点的坐标。

当通过指定平移量实现平移时,平移变换的公式为:P’(x’, y’)= P(x + a, y + b)其中,a和b表示平移量,P表示图形上任意一点的原始坐标,P’表示平移后图形上对应点的新坐标。

2. 翻折变换翻折变换又称为对称变换或映射变换,它是指将图形围绕某个轴线翻折后形成的新图形。

轴线称为对称轴。

图形进行翻折变换的方式有两种:一种是按照对称轴上的点对图形进行翻折,另一种是按照对称轴上的中垂线对图形进行翻折。

无论采用哪种方式,进行翻折变换后,被翻折的图形与原始图形的形状和大小保持不变。

在翻折变换中,被翻折的图形的每个顶点都沿着对称轴对称,即对于一个点(x,y),它的对称点为(-x,y)或(x,-y)。

3. 旋转变换旋转变换是将图形绕着某个点或某条线旋转一定角度,从而形成新图形的变换。

在旋转变换过程中,图形的形状和大小不变。

旋转变换的公式为:P’(x’, y’)= (x - a)cosθ - (y - b)sinθ + a, (x - a)sinθ +(y - b)cosθ + b其中,θ表示旋转的角度,(a,b)表示旋转的中心点,P表示图形上的任意一个点的坐标,P’表示旋转后的新坐标。

4. 放缩变换放缩变换是指将图形沿着x轴或y轴等比例缩小或扩大的变换。

中考数学图形与变换

中考数学图形与变换

中考数学图形与变换数学是中学生中考科目中的一项重要内容,其中数学的图形与变换是一个重要的考察点。

本文将围绕中考数学图形与变换展开讨论,并介绍一些相关的概念和方法。

一、图形的基本概念在数学中,图形是指由一组点或线段组成的具有特定形状和特征的对象。

常见的图形有点、直线、线段、角、三角形、四边形、圆等。

首先,我们来介绍一些常见的图形概念。

点是图形的基本单位,用一个大写字母表示,如A、B、C。

直线是由无数个连续的点组成,没有端点,用一对大写字母表示,如AB。

线段是直线的一部分,有两个端点,用一对大写字母表示,如AB。

角是由两个线段共享一个端点组成,用一个大写字母表示,如∠ABC。

三角形是由三个线段组成的图形,用三个大写字母表示,如△ABC。

四边形是由四个线段组成的图形,用四个大写字母表示,如ABCD。

圆是由一组处于同一平面上等距离于一个点的点组成的图形,用一个大写字母表示,如O。

二、图形的基本特征图形除了有形状之外,还具有一些基本特征,例如长度、面积和角度等。

长度是指图形所包含的线段的总长度。

在计算长度时,我们可以使用勾股定理、平移等方法进行求解。

面积是指图形所围成的空间区域的大小。

在计算面积时,根据不同的图形,可以使用不同的公式进行计算,例如三角形可以使用海伦公式,矩形可以使用边长相乘,圆可以使用πr²等。

角度是指由两个线段共享一个端点而形成的开口部分。

角度的度量单位是度,一般用度(°)表示。

在计算角度时,可以根据需要使用360度制或弧度制。

三、图形的变换方法图形的变换是指通过平移、旋转、翻转等操作改变图形的位置、方向或形状。

平移是指保持图形形状不变,仅仅对图形进行位置上的移动。

平移可以用向量来表示,根据向量的平移法则进行操作。

旋转是指保持图形形状不变,仅仅对图形进行旋转。

旋转可以通过绕一个特定点旋转或绕一个特定的线旋转来完成。

翻转是指将图形按照指定的轴进行对称操作,可以分为水平翻转、垂直翻转和中心对称三种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:图形的变换--知识讲解(提高)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.4.翻折变换:图形翻折问题是近年来中考的一个热点,其实质是轴对称问题,折叠重合部分必全等,折痕所在直线就是这两个全等形的对称轴,互相重合的两点(对称点)连线必被折痕垂直平分.【要点诠释】翻折的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等,折叠图形中有相似三角形,常用勾股定理.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.【要点诠释】1.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.2.平移、旋转和轴对称之间的联系一个图形沿两条平行直线翻折(轴对称)两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.【典型例题】类型一、平移变换1.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.【思路点拨】(1)根据已知利用SAS判定△A′AD′≌△CC′B;(2)由已知可推出四边形ABC′D′是平行四边形,只要再证明一组邻边相等即可确定四边形ABC′D′是菱形,由已知可得到BC′=12AC,AB=12AC,从而得到AB=BC′,所以四边形ABC′D′是菱形.【答案与解析】(1)证明:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.∴∠D′A′C′=∠BCA.∴△A′AD′≌△CC′B.(2)解:当点C′是线段AC的中点时,四边形ABC′D′是菱形.理由如下:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴C′D′=CD=AB.由(1)知AD′=C′B.∴四边形ABC′D′是平行四边形.在Rt△ABC中,点C′是线段AC的中点,∴BC′=12 AC.而∠ACB=30°,∴AB=12 AC.∴AB=BC′.∴四边形ABC′D′是菱形.【总结升华】本题考查了平移的性质特点以及全等的判定和菱形的判定,注意对这两个判定定理的准确掌握,考查学生综合运用数学的能力.2.操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是-3,则点A′表示的数是________;若点B′表示的数是2,则点B表示的数是_____;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是__________.(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.【思路点拨】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数,设点E表示的数为b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F的坐标为(x,y),根据平移规律列出方程组求解即可.【答案与解析】(1)点A′:-3×13+1=-1+1=0,设点B表示的数为a,则13a+1=2,解得a=3,设点E表示的数为b,则13b+1=b,解得b=32;故答案为:0;3;32.(2)根据题意得,-313202a ma ma n+=-⎧⎪+=⎨⎪+=⎩g,解得12122amn⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,设点F的坐标为(x,y),∵对应点F′与点F重合,∴12x+12=x,12y+2=y,解得x=1,y=4,所以,点F的坐标为(1,4).【总结升华】耐心细致的读懂题目信息是解答本题的关键.举一反三:【变式】如图,若将边长为cm2的两个互相重合的正方形纸片沿对角线AC翻折成等腰直角三角形后,再抽出一个等腰直角三角形沿AC移动,若重叠部分PCA'∆的面积是21cm,则移动的距离'AA等于.【答案】根据题意得:AB∥A′B′,BC∥B′C′,∴∠A′PC=∠B=90°,∵∠A=∠CA′P=∠ACP=45°,∴△A′PC是等腰直角三角形,∵△A′PC的面积是1cm2,∴S△A′PC=12A′P•PC=1(cm2),∴A′P=PC=2cm,∴A′C=2cm,由于原等腰直角三角形的斜边是22cm,所以平移的距离是:22-2(cm).类型二、轴对称变换3.已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交与点F、G(如图1),23AF ,求DE的长;(2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.【思路点拨】本题涉及到的知识点有翻折变换(折叠问题);矩形的性质;直线与圆的位置关系.【答案与解析】(1)在矩形ABCD中,AB=2,AD=1,AF=23,∠D=90°.根据轴对称的性质,得EF=AF=23.∴DF=AD-AF=13.在Rt△DEF中,DE=22213()()333-=.(2)设AE与FG交于O,取AD的中点M,连结并延长MO,交BC于N.由轴对称的性质得AO=EO.∴MN∥DE,MO=DE.∵∠D=90°,AD∥BC,∴四边形MNCD是矩形,MN=CD=AB=2.设DE=x,则ON=2-x.∵△AED的外接圆与BC相切,∴ON是△AED的外接圆的半径.∴OE=ON=2-x,AE=2ON=4-x.在Rt△AED中,AD2+DE2=AE2,∴12+x2=(4-x)2,解得x=158.∴DE=158,OE=2-12x=1716.由轴对称的性质得AE⊥FG.∴∠FOE=∠D=90°.又∵∠OEF=∠DEA,∴△FEO∽△AED,∴FO OEAD DE=.∴把OE=1716,DE=158,AD=2代入解得FO=1730.易证△FEO≌△GAO,∴FO=GO,∴FG=2FO=1715,即折痕FG的长是1715.【总结升华】本题通过矩形纸片折叠,利用轴对称图形的性质,在丰富的图形关系中,考查学生获取信息和利用所得信息认识新事物的能力,本题对图形折叠前后的不变量的把握、直线与圆位置关系的准确理解、方程思想的运用意识和策略等具有可再抽象性.举一反三:【变式】如图所示,有一块面积为1的正方形纸片ABCD,M、N分别为AD、BC的边上中点,将C点折至MN上,落在P点的位置,折痕为BQ,连接PQ.(1)求MP的长;(2)求证:以PQ为边长的正方形的面积等于13.【答案】(1)解:连接BP 、PC ,由折法知点P 是点C 关于折痕BQ 的对称点. ∴BQ 垂直平分PC ,BC=BP .又∵M 、N 分别为AD 、BC 边上的中点,且四边形ABCD 是正方形, ∴BP=PC . ∴BC=BP=PC .∴△PBC 是等边三角形. ∵PN ⊥BC 于N ,BN=NC=12BC=12,∠BPN=12×∠BPC=30°, ∴PN=32,MP=MN-PN=232-.(2)证明:由折法知PQ=QC ,∠PBQ=∠QBC=30°. 在Rt △BCQ 中,QC=BC •tan30°=1×33=33, ∴PQ=33. ∴以PQ 为边的正方形的面积为13. 4.已知:矩形纸片ABCD 中,AB=26厘米,5.18=BC 厘米,点E 在AD 上,且6=AE 厘米,点P 是AB 边上一动点,按如下操作:步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图(1)所示); 步骤二,过点P 作,AB PT ⊥交MN 所在的直线于点Q ,连结QE (如图(2)所示); (1)无论点P 在AB 边上任何位置,都有PQ QE (填“>”、“=”、“<”号 ) (2)如图(3)所示,将矩形纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作: ①当点P 在A 点时,PT 与MN 交于点,1Q ,1Q 点的坐标是( , );②当6=PA 厘米时,PT 与MN 交于点2Q ,2Q 点的坐标是(, ); ③当12=PA 厘米时,在图(3)中画出MN ,PT (不要求写画法)并求出MN 与PT 的交点3Q 的坐标;(3)点P 在在运动过程中,PT 与MN 形成一系列的交点,1Q 2Q ,3Q …观察,猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.(1) (2)(3)【思路点拨】(1)根据折叠的特点可知△NQE ≌△NQP ,所以PQ=QE .(2)过点E 作EG ⊥Q 3P ,垂足为G ,则四边形APGE 是矩形.设Q 3G=x ,则Q 3E=Q 3P=x+6.利用Rt △Q 3EG 中的勾股定理可知x=9,Q 3P=15.即Q 3(12,15).(3)根据上述的点的轨迹可猜测这些点形成的图象是一段抛物线,利用待定系数法可解得函数关系式:y=112x 2+3(0≤x ≤26). 【答案与解析】(1)由折叠的特点可知△NQE ≌△NQP ,所以PQ=QE . (2)①(0,3);②(6,6). ③画图,如图所示.过点E 作EG ⊥Q 3P ,垂足为G ,则四边形APGE 是矩形. ∴GP=6,EG=12.设Q 3G=x ,则Q 3E=Q 3P=x+6.在Rt △Q 3EG 中,∵EQ 32=EG 2+Q 3G 2∴x=9. ∴Q 3P=15. ∴Q 3(12,15)(3)这些点形成的图象是一段抛物线.A BCDPEM(P ) (A ) BCDE xN 1QO6 12 18 24 612 18 2Qy函数关系式:y=112x2+3(0≤x≤26).【总结升华】本题是一道几何与函数综合题,它以“问题情境--建立模型--解释、应用与拓展”的模式,通过动点P在AB上的移动构造探究性问题,让学生在“操作、观察、猜想、建模、验证”活动过程中,提高动手能力,培养探究精神,发展创新思维.类型三、旋转变换5.把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时AP•CQ的值为__________.将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,则AP•CQ的值是否会改变?(填“会”或“不会”)此时AP•CQ的值为__________.(不必说明理由)(2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由.【思路点拨】(1)根据等腰直角三角形的性质可知∠A=∠C=45°,∠APD=∠QDC=90°,故可得出△APD ∽△CDQ,故可得出结论;(2)由于三角板DEF的旋转角度不能确定,故应分0°<α≤45°与45°<α<90°时两种情况进行讨论,即可求出MG及MQ的值,进而可得出结论;(3)在图(2)的情况下,根据PQ∥AC时,BP=BQ,即可求出x的值,进而得出结论.【答案与解析】(1)8,不会,8;∵∠A=∠C=45°,∠APD=∠QDC=90°,∴△APD∽△CDQ.∴AP:CD=AD:CQ.∴即AP×CQ=AD×CD,∵AB=BC=4,∴斜边中点为O,∴AP=PD=2,∴AP×CQ=2×4=8;将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.∵在△APD与△CDQ中,∠A=∠C=45°,∠APD=180°-45°-(45°+a)=90°-a,∠CDQ=90°-a,∴∠APD=∠CDQ.∴△APD∽△CDQ.∴AP CD AD CQ=,∴AP•CQ=AD•CD=AD2=(12AC)2=8.(2)当0°<α≤45°时,如图2,过点D作DM⊥AB于M,DN⊥BC于N,∵O是斜边的中点,∴DM=DN=2,∵CQ=x,则AP=8x,∴S△APD=12•8x•2=8x,S△DQC=12x×2=x,∴y=8-8x-x(2≤x<4),当45°<α<90°时,如图3,过点D作DG⊥BC于G,DG=2∵CQ=x,AP=8x,∴BP=8x-4,∵BP BM DG MG=,即8422MGxMG--=,MG=24xx-,∴MQ=24xx-+(2-x)=2484x xx-+-,∴y=2484x xx-+-(0<x<2);(3)在图(2)的情况下,∵PQ∥AC时,BP=BQ,∴AP=QC,∴x=8x,解得x=22,∴当x=22时,y=8-822-22=8-42.【总结升华】本题考查的是相似三角形的判定与性质及图形旋转的性质,三角形的面积公式,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6 . 如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段圆弧,即¼1OO和¼12OO,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她提出了如下问题:问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是_______________?请你解答上述两个问题.【思路点拨】求出正方形OABC 翻转时点O 的轨迹弧长, 再求面积即可.要理解的是第4n 次旋转,顶点O 没有移动.【答案与解析】解:问题①:如图,正方形纸片经过3次旋转,顶点O 运动所形成的图形是三段圆弧¼¼¼11223OO ,O O ,O O ,所以顶点O 在此运动过程中经过的路程为901902221180πππ⎛⎫⋅⋅⋅⋅⋅+=+ ⎪ ⎪⎝⎭. 顶点 O 在此运动过程中所形成的图形与直线2l 围成图形的面积为()2290290122111360360πππ⋅⋅⋅⋅⋅++⋅⋅=+. 正方形纸片经过5次旋转,顶点O 运动经过的路程为: 90190232318018022πππ⎛⎫⋅⋅⋅⋅⋅+=+ ⎪ ⎪⎝⎭.问题②:∵ 正方形纸片每经过4次旋转,顶点O 运动 经过的路程均为:901902221180πππ⎛⋅⋅⋅⋅⋅+=+ ⎝⎭. 4120222012ππ⎛+=++ ⎝⎭,而2π是正方形纸片第4n +1次旋转,顶点O 运动经过的路程. ∴正方形纸片OABC 按上述方法经过81次旋转,顶点O 经过的路程是412022π+. 【总结升华】本题涉及到分类归纳,图形的翻转,扇形弧长和面积.举一反三:【变式】 如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.BA(M)QDC【答案】(1) 点A在正方形整个翻滚过程中所经过的路线图如图:(2) 弧AA1与AD,A1D围成图形的面积为:14圆的面积(半径为1)=4π;弧A1A2与A1D,DN,A2N围成图形的面积为:142)+正方形的面积(边长为1)=12π+;弧A2A3与A2N,NA3围成图形的面积为:36012090536012--=圆的面积(半径为1)=512π;其他三块小面积分别与以上三块相同.∴点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S为:5721=242123ππππ⎛⎫++++⎪⎝⎭.。

相关文档
最新文档