人教版七年级数学上册有理数加减法同步练习
七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版)
七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版) 班级姓名学号一、选择题(共8题)1.计算1+(−2)的正确结果是( )A.−2B.−1C.1D.32.如果某天北京的最低气温为a∘C,中午12点的气温比最低气温高了10∘C,那么中午12点的气温为( )A.(10−a)∘C B.(a−10)∘CC.(a+10)∘C D.(a+12)∘C3.有理数a,b在数轴上的对应的位置如图所示,则( )A.a+b<0B.a+b>0C.a−b=0D.a−b>04.比−3大1的数是( )A.2B.−2C.4D.−45.若x的相反数是3,∣y∣=5,则x+y的值为( )A.−8B.2C.8或−2D.−8或26.下列说法正确的是( )A.一个数,如果不是正数,必定是负数B.有理数的绝对值一定是正数C.两个有理数相加,和一定大于每个加数D.相反数等于本身的数是07.把算式:(−5)−(−4)+(−7)−(+2)写成省略括号的形式,结果正确的是( )A.−5−4+7−2B.5+4−7−2C.−5+4−7−2D.−5+4+7−28.若∣x∣=3,∣y∣=4则x+y值为( )A.±7或±1B.7或−7C.7D.−7二、填空题(共5题)9.计算:−(−4)+∣−5∣−7=.10.比−312大而比213小的所有整数的和为.11.我们知道,在三阶幻方中每行、每列、毎条对角线上的三个数之和都是相等的,在如图的三阶幻方中已经填入了两个数9和15,则图中最右上角的数n应该是.12.某天最高气温为8∘C,最低气温为−1∘C,则这天的最高气温比最低气温高∘C.13.某书店举行图书促销,每位促销人员以销售50本为基准,超过记为正,不足记为负,其中5名促销人员的销售结果如下(单位:本):5,2,3,−6,−3,这5名销售人员共销售图书本.三、解答题(共6题)14.计算:(1) (+11)−(−2).(2) (+26)+(−18)+5+(−26).15.某景区一电瓶小客车接到任务从景区大门出发,向东走3千米到达A景点,继续向东走 1.5千米到达B景点,然后又回头向西走8.5千米到达C景点,最后回到景区大门,任务完成.以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴.(1) 请在数轴上分别用点A,B,C表示出上述三个景点的位置,并写出各点表示的数.(2) A,C两景点之间的距离是多少?请列式计算.(3) 若电瓶车出发前剩余电量足够行驶20千米,在途中不充电的情况下,该电瓶车能否完成此次任务?请计算说明.16.粮库6天内发生粮食进、出库的吨数如下(“+”表示进库,“−”表示出库): +26,−32,−15,+ 34,−38,−20.(1) 经过这6天,库里的粮食是增多还是减少了?增加(减少)了多少?(2) 经过这6天,管理员结算时发现库里还存480吨粮,那么6天前库里存粮多少吨?(3) 如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?17.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,−4,+13,−10,−12,+3,−13,−17,3.5.(1) 最后一名老师送到目的地时,小王在出车地点的什么方向?距出车地点的距离是多少?(2) 若汽车耗油量为0.4升/千米,每升汽油需7.2元,小王这天上午需汽油费多少元?18.对男生进行引体向上的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,−5,0,−2,+4,−1,−1,+3.(1) 这8名男生有百分之几达到标准?(2) 这8名男生共做了多少个引体向上?19.检修队乘汽车沿着东西走向的公路往返行驶检修线路,某天早上从A地出发到收工时所走的路程为(若约定向东为正方向),当天行驶的记录如下:(单位:km)+18,−9.5,+7,−14,−6.2,+13,−6.8,+10.5.(1) 收工时距A地多远?(2) 若汽车行驶每千米耗油0.3升,那么这一天共耗油多少升?参考答案1. 【答案】 B2.【答案】 C3.【答案】 A4.【答案】 B5.【答案】 D6.【答案】 D7.【答案】 C8.【答案】 A9.【答案】910.【答案】25111.【答案】1212.【答案】213. 【答案】−314.【答案】(1) 原式=11+2=13.(2) 原式=(26+5)+(−18−26)=31−44=−13.15. 【答案】(1) 点 A ,B ,C 分别表示 3,4.5,−4.(2) 3−(−4)=3+4=7.(3) ∣4.5∣×2+∣−4∣×2=9+8=17,因为 17<20所以在途中不充电的情况下,该电瓶车能完成此次任务.16. 【答案】(1) 26+(−32)+(−15)+34+(−38)+(−20)=−45 吨答:库里的粮食减少了,减少了 45 吨.(2) 480+45=525(吨)答:6 天前库里存粮 525 吨.(3) (26+∣−32∣+∣−15∣+34+∣−38∣−20)×5=165×5=825(元),答:这 6 天要付 825 元装卸费.17. 【答案】(1) 由题意得:+15−4+13−10−12+3−13−17+3.5=−21.5小王距出车地点的西方,距离是 21.5 千米.(2) 由题意得:(+15+∣−4∣+13+∣−10∣+∣−12∣+3+∣−13∣+∣−17∣+∣3.5∣)×0.4×7.2=90.5×0.4×7.2=260.64元.小王这天上午需汽油费 260.64 元18.【答案】(1) 这 8 名男生中有 4 人达标;48×100%=50% 所以这 8 名男生有百分之五十达到标准.(2)10×8+(2−5+0−2+4−1−1+3) =80+0=80(个).所以这8名男生共做了80个引体向上.19.【答案】(1) (+18)+(−9.5)+(+7)+(−14)+(−6.2)+(+13)+(−6.8)+(+10.5)=12所以收工时距A地12km.(2) ∣+18∣+∣−9.5∣+∣+7∣+∣−14∣+∣−6.2∣+∣+13∣+∣−6.8∣+∣+∣10.5∣=85所以85×0.3=25.5升.。
人教版七年级初一数学上册同步练习1.3.1有理数的加法(附答案)
11.3.1有理数的加法 同步练习基础巩固题:1、计算:(1)15+(-22) (2)(-13)+(-8)(3)(-0.9)+1.51 (4))32(21-+2、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-2(2))412(216)313()324(-++-+-4、计算:(1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+应用与提高题1、(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
2、若2,3==b a ,则=+b a ________。
3、已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。
4、若1<a <3,求a a -+-31的值。
35、计算:7.10)]323([3122.16---+-+-6、计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?中考链接1、数轴上A 、B 两点所表示的有理数的和是________。
2、小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )A 、1B 、2C 、0D 、-14参考答案基础检测1、-7,-21,0.61,-61 严格按照加法法则进行运算。
2、-10,-3.把符号相同的数就、或互为相反数的数结合进行简便运算3、-1,213-。
把同分母的数相结合进行简便运算。
4、756,4310-。
拆分带分数,整数部分和分数部分分别进行加法运算;把小数化成分数进行简便运算。
七年级数学上册《第一章 有理数的加减法》同步训练题及答案(人教版)
七年级数学上册《第一章有理数的加减法》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.a-b=a+()A.b B.-b C.a D.-a2.在0,-2 ,4,−4.5这四个数中,绝对值最小的数是()A.0 B.−2C.4 D.−4.53.下列说法正确的是()A.若两数差为0,则这两个数一定相等B.两个有理数的差一定小于被减数C.互为相反数的两个数之差为0D.如果两数之差为负数,那么这两个数都是负数4.1−(−2)=()A.−3B.3C.1D.−15.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,请问:a,b,c三数之和是”()A.﹣1 B.0 C.1 D.26.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是().A.B.C.D.7.下列各组数中,大小关系正确的是()A.-7<-5<-2 B.-7>-5>2 C.-7<-2<-5 D.-2>-7>-58.如图,数轴上A,B两点对应的数分别是a和b .对于以下四个式子:①2a−b;②a+b;③|b|−|a|;,其中值为负数的是()④baA.①②B.③④C.①③D.②④二、填空题9.请写出一个比-3大而比 −13 小的有理数: .10.比较大小: −57 −3411.如果x <0,y >0,且|x |=2,|y |=3,那么x +y = .12.若a <0,b <0,|a|<|b|,则a ﹣b 0.13.某一天早晨气温是﹣13℃,到了中午上升了12℃,到午夜又下降了10℃,则午夜的气温是 ℃.三、解答题14.计算:(1)﹣6+6+9(2)0+(﹣3.71)+(+1.71)﹣(﹣5)(3)﹣3 13 +(﹣ 12 )﹣(﹣ 13 )+1 12(4)3﹣(+1 34 )﹣5+(﹣1.25)15.在数轴上表示下列各数及它们的相反数,并用“<”把这些数连接起来.-(+2),0,-|-1.2|,+|−13|.16.某面粉厂购进标有50千克的面粉10袋,复称时发现误差如下(超过记为正,不足记为负):+0.6 , +1.8 , ―2.2 , +0.4 , ―1.4 , ―0.9 , +0.3 , +1.5 ,+0.9 , ―0.8问:该面粉厂实际收到面粉多少千克?17.李老师在学校西面的南北走向的公路边从点A 出发沿公路来回给学生植树提供帮助,若设定向南的路程记为正数,向北的路程记为负数,则李老师所走的路程依次记录如下(单位:千米):+1.2,-1,+1,-0.8,-0.6,-0.5,-0.3(1)求李老师能否回到出发点A ?(2)李老师一共走了多少千米?18.小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元). 星期一 二 三 四 五 六 七 收入+65 +68 +50 +66 +50 +75 +74 支出 -60 -64 -63 -58 -60 -64 -65 (1)到这个周末,小李有多少节余?(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?参考答案1.B2.A3.A4.B5.B6.D7.A8.D9.-110.>11.112.>13.-1114.(1)解:-6+6+9=0+9=9;(2)解:0+(-3.71)+(+1.71)-(-5) =(0+5)+(-3.71+1.71)=5-2=3(3)解:−313+(−12)−(−13)+112=(−313+13)+(112- 12);=-3+1=-2.(4)解:3-(+1 34)-5+(-1.25).=(3-5)+(-1 34-1.25)=-2-3=-5.15.解:-(+2)的相反数是2;0的相反数是0;-|-1.2|的相反数是1.2;+|−13|的相反数是−13画数轴如下图:则-(+2)<-|-1.2|<−13<0<+|−13|<1.2<2.16.解:由题意得:面粉的总质量=50×10+(0.6+1.8-2.2 +0.4-1.4-0.9+0.3+1.5+0.9-0.8)=500+0.2=500.2(千克).答:该面粉厂实际收到面粉500.2千克.17.(1)解:+1.2−1+1−0.8−0.6−0.5−0.3=−1所以李老师不能回到出发点A.(2)解:|+1.2|+|−1|+|+1|+|−0.8|+|−0.6|+|−0.5|+|−0.3|=5.4即李老师共走了5.4千米.18.(1)解:(+65+68+50+66+50+75+74)+(-60-64-63-58-60-64-65)=14(元)答:到这个周末,小李有14元的节余。
最新人教版七年级数学上册《有理数的加减法》同步测试题及答案.docx
1.3有理数的加减法同步测试题一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( )A .正B .负C .0D .无法确定9. 下列说法正确的是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( )A .[(-2.29)+8]+(-7.71)B .(-2.29)+[8+(-7.71)]C .(-8)+(2.29+7.71)D .[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( )A .-8+4-5+2B .-8-4-5+2C .-8-4+5+2D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =_______.15.绝对值大于1而小于6的所有整数的和是____.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________)=(-19)+(+21)(________________)=2.(______ __________)19. 若a -(-b)=0,则a 与 b 的关系是____________.20. 已知|x|=5,y =3,则 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为____________,如果d =3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( C )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( B )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( B )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( D )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( A )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( C )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( B ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( B )A.正B.负C.0 D.无法确定9. 下列说法正确的是( B )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定大于被减数D.0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( D )A.[(-2.29)+8]+(-7.71) B.(-2.29)+[8+(-7.71)]C.(-8)+(2.29+7.71) D.[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B )A.-8+4-5+2 B.-8-4-5+2C.-8-4+5+2 D.8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =____-5___.15.绝对值大于1而小于6的所有整数的和是__0__.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ 1 __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___)=(-19)+(+21)(____有理数加法法则__)=2.(______ 有理数加法法则______)19. 若a -(-b)=0,则a 与 b 的关系是___互为相反数_________.20. 已知|x|=5,y =3,则 x -y 的值为__2或-8______.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212. (4)原式=212+2.5+1-112=4.5. (5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20.(6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2. (7)原式=-12+5+4+(-9)=-12. (8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513. 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.(3)周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离 2 6 10 2 10 0(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1| 当d=3时,|x-(-1)|=3,所以x=2或-4。
千山区一中七年级数学上册 有理数的加减法同步练习含解析新人教版
【答案】C
【解析】根据题意用最高气温 12℃减去最低气温-2℃,根据减去一个数等于加上这个数的相反数即可得到
答案.
【详解】12-(-2)=14(℃).故选:C.
【点睛】本题考查了有理数的减法运算,关键在于理解题意的列式计算.
3.在 2、﹣4、0、﹣3 四个数中,最大的数比最小的数大
A.﹣6 B.﹣2 C. D.
②被减数一定大于减数;错误,例如 2-3=-1;
③0 是最小的有理数;错误,例如-2 是有理数,-2 ;
④一个数的倒数一定小于它本身;错误,例如:1 的倒数是 1 等于它本身;
故选:A.
【点睛】本题考查了有理数的加法、减法,倒数的定义,以及有理数大小的比较,熟练掌握相关知识点是
解题的关键。
二、填空题 11.如果|a|=5,|b|=4,且 a+b<0,则 a-b 的值是________. 【答案】-1 或 -9 【解析】根据题意,利用绝对值的代数意义求出 a 与 b 的值,即可确定出 ab 的值. 【详解】∵|a|=5,|b|=4,且 a+b<0, ∴a=−5,b=−4;a=−5,b=4, 则 a−b=-1 或−9. 故答案为:-1 或−9.
【详解】算式 8-7+3-6 正确的读法是正 8、负 7、正 3、负 6 的和. 故答案为:正 8、负 7、正 3、负 6 的和. 【点睛】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键. 三、解答题 16.小虫从某点 A 出发在一条直线上来回爬行,规定向右爬行的路程记为正数,向左爬行的路程记为负 数.爬行的各段路程依次记为(单位:cm):﹣11、+8、+10、﹣3、﹣6、+12、﹣10 (1)小虫最后是否回到出发点,请判断并且说明理由 (2)在爬行的过程中,如果每爬行一个单位长度奖励一粒芝麻,则整个运动过程中小虫一共得到多少粒 芝麻? 【答案】(1)小虫最后回到出发点(2)一共得到 60 粒芝麻 【解析】(1)把记录数据相加,结果为 1,说明小虫最后回到距离点 O 右侧 1cm 的地方; (2)小虫一共得到的芝麻数,与它爬行的方向无关,只与爬行的距离有关,所以应把绝对值相加,再求 得到的芝麻粒数. 【详解】解:(1)﹣11+8+10﹣3﹣6+12﹣10=0. 所以小虫最后回到出发点; (2)|﹣11|+|+8|+|+10|+|﹣3|+|﹣6|+|+12|+|﹣10| =11+8+10+3+6+12+10 =60(cm), 60×1=60(粒). 所以整个运动过程中小虫一共得到 60 粒芝麻. 【点睛】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键. 17. 【答案】-15 【解析】根据有理数的加减混合运算法则计算即可. 【详解】原式=16-29-11+9, =25-40, =-15. 故答案为:-15. 【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练的掌握有理数的加减混合运算法则.
七年级数学上册《第一章 有理数的加法》同步练习及答案-人教版
七年级数学上册《第一章有理数的加法》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________基础巩固练习一、选择题1.计算-2+1的结果是( )A.1B.-1C.3D.-32.下列计算正确的是( )A.(+6)+(+13)=+7B.(-6)+(+13)=-19C.(+6)+(-13)=-7D.(-5)+(-3)=83.佳佳家冰箱冷冻室的温度为-15 ℃,求调高3 ℃后的温度,这个过程可以用下列算式表示的是( )A.-15+(-3)=-18B.15+(-3)=12C.-15+3=-12D.15+(+3)=184.有理数a、b在数轴上对应的位置如图所示,则a+b的值( )A.大于0B.小于0C.小于aD.大于b5.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)星期一二三四五盈亏+220 -30 +215 -25 +225则这个周共盈利( )A.715元B.630元C.635元D.605元6.两个有理数的和等于零,则这两个有理数( )A.都是零B.一正一负C.有一个加数是零D.互为相反数7.下列各式的结果,符号为正的是( )A.(-3)+(-2)B.(-2)+0C.(-5)+6D.(-5)+58.在一竞赛中,老师将90分规定为标准成绩,记作0分,高出此分的分数记为正,不足此分的分数记为负,五名参赛者的成绩为+1,-2,+10,-7,0.那么( )A.最高成绩为90分B.最低成绩为88分C.平均成绩为90分D.平均成绩为90.4分二、填空题9.比﹣3大2的数是.10.已知飞机的飞行高度为10 000 m,上升3 000 m后,又上升了-5 000 m,此时飞机的高度是 m.11.在下面的计算过程后面填上运用的运算律.计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)( )=[(-2)+(-5)]+[(+3)+(+4)] ( )=(-7)+(+7)=0.12.-113的相反数与-34的和是____________.13.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为______℃.14.计算(-0.5)+314+2.75+(-512)的结果为 .三、解答题15.计算:(-23)+(+58)+(-17);16.计算:|(-7)+(-2)|+(-3);17.计算:﹣27+(﹣32)+(﹣8)+27;18.计算:(+26)+(-14)+(-16)+(+18);19.若|a|=4,|b|=2,且a<b,求a+b的值.20.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.能力提升练习一、选择题:1.如图,数轴上点A ,B 表示的有理数分别是a ,b ,则( ) A.a +b >0 B.a +b <a C.a +b <0 D.a +b >b2.若两个有理数的和为负数,则这两个有理数( )A.一定都是负数B.一正一负,且负数的绝对值大C.一个为零,另一个为负数D.至少有一个是负数3.如果a ,b 是有理数,那么下列式子成立的是( )A.如果a <0,b <0,那么a +b >0B.如果a >0,b <0,那么a +b >0C.如果a >0,b <0,那么a +b <0D.如果a <0,b >0且|a|>|b|,那么a +b <04.计算0.75+(- 114)+0.125+(-57)+(-418)的结果是( ) A.657 B.-657 C.527 D.-5275.已知|a|=5,|b|=2,且|a ﹣b|=b ﹣a ,则a +b =( )A.3或7B.﹣3或﹣7C.﹣3D.﹣76.如图,数轴上P 、Q 、S 、T 四点对应的整数分别是p 、q 、s 、t ,且有p +q +s +t =﹣2,那么,原点应是点( )A.PB.QC.SD.T二、填空题7.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a +b +c= .8.上周五某股民小王买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是 .9.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为.10.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为.三、解答题:11.计算:(-1.75)+1.5+(+7.3)+(-4.25)+(-6.5).12.计算:137+(-213)+247+(-123).13.计算:(-2.125)+(+315)+(+518)+(-3.2).14.计算:(-2.125)+(+315)+(+518)+(-3.2).15.某产粮专业户出售余粮10袋,每袋重量如下(单位:千克):199、201、197、203、200、195、197、199、202、196.(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克?(2)这10袋余粮一共多少千克?16.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.答案基础巩固练习1.B2.C3.C4.A.5.D6.D7.C.8.D9.答案为:﹣1.10.答案为:8000.11.答案为:加法交换律,加法结合律.12.答案为:7 1213.答案为:-114.答案为:0.15.解:原式=[(-23)+(-17)]+(+58)=-40+58=18.16.解:原式=|-9|+(-3)=9+(-3)=6.17.解:原式=﹣27+(﹣32)+(﹣8)+27=﹣27﹣32﹣8+27=﹣40;18.解:原式=[(-14)+(-16)]+(26+18)=-30+44=14.19.解:∵|a|=4,|b|=2∴a=4或﹣4,b=2或﹣2∵a<b∴a=﹣4,b=2或﹣2当a=﹣4,b=2时,a+b=﹣4+2=﹣2;当a=﹣4,b=﹣2时,a+b=﹣4﹣2=﹣6.20.解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.21.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5. 故答案为:1,﹣2.5;(2)∵A点表示1∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合∴其中点==﹣1∵点B表示﹣2.5∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.能力提升练习1.C2.D3.D;4.B.5.B.6.C.7.答案为:0.8.答案为:34元;9.答案为:11,3,﹣7.10.答案为:﹣b<a<﹣a<b.11.解:原式=[(-1.75)+(-4.25)]+[(-6.5)+1.5]+(+7.3)=-6+(-5)+7.3=-11+7.3=-3.7.12.解:原式=(137+247)+[(-213)+(-123)]=4+(-4)=0.13.原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.14.解:原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.15.解:(1)以200千克为基准,超过200千克的数记作正数,不足200千克的数记作负数则这10袋余粮对应的数分别为:-1、+1、-3、+3、0、-5、-3、-1、+2、-4. (-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11.答:这10袋余粮总计不足11千克.(2)200×10+(-11)=2 000-11=1 989.答:这10袋余粮一共1 989千克.16.解:(1))∵1个最小的连续偶数相加时,S=1×(1+1)2个最小的连续偶数相加时,S=2×(2+1)3个最小的连续偶数相加时,S=3×(3+1)…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+…+400=(2+4+6+...+400)﹣(2+4+6+ (160)=200×201﹣80×81=40200﹣6480=33720.。
最新人教版七年级数学上册全册同步练习含答案
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m 的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数1.1正数和负数1.B2.C3.B4.输1场5.从Q出发后退4下6.227,2.7183,2020,480-18,-0.333…,-25901.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂6.(1)-1 (2)-81 (3)0 (4)1258。
2022最新人教版七年级上册数学 有理数加减法同步练习(含答案)
1.3有理数加减法同步练习(一)1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是℃。
2.直接写出答案(1)(-2.8)+(+1.9)=,(2)10.75(3)4--=,(3)0(12.19)--=,(4)3(2)---=3. 已知两个数556和283-,这两个数的相反数的和是。
4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是。
5. 已知m是6的相反数,n比m的相反数小2,则m n-等于。
6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是。
7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.– 4 5 6二.选择:8.下列交换加数的位置的变形中,正确的是()A、14541445-+-=-+-B、1311131134644436-+--=+--C、12342143-+-=-+-D、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-9. 下列计算结果中等于3的是( ) A.74-++ B. ()()74-++ C. 74++- D.()()74+--10. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数11.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在A. 在家B. 在学校C. 在书店D. 不在上述地方12、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )(A) 20 (B) 119 (C) 120 (D) 319 13. 计算:①-57+(+101) ②90-(-3)③-0.5-(-341)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⑤()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑥()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5 (1)问收工时距O 地多远?(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?15、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。
人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)
2021-2022学年人教版七年级数学上册《1.3有理数的加减法》同步能力提升训练(附答案)1.﹣20+21=()A.﹣1B.1C.﹣2021D.20212.下列计算正确的是()A.﹣5+(﹣3)=﹣(5﹣3)=﹣2B.2﹣(﹣5)=﹣(5﹣2)=﹣3C.(﹣3)﹣(﹣4)=﹣(3+4)=﹣7D.(﹣3)+(+2)=﹣(3﹣2)=﹣1 3.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或34.昆明市某天的最高气温为12℃,最低气温为﹣2℃,这天的最高气温比最低气温高()A.﹣10℃B.10℃C.14℃D.﹣14℃5.下列说法中,正确的是()A.若|a|=|b|,则a=b B.互为相反数的两数之和为零C.0是最小的整数D.数轴上两个有理数,较大的数离原点较远6.温度﹣4℃比﹣9℃高()A.5℃B.﹣5℃C.13℃D.﹣13℃7.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.708.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则a+b+c的值是()A.﹣2B.﹣1C.1D.09.2020年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()A.14℃B.﹣14℃C.38℃D.﹣38℃10.比﹣2大2的数是()A.﹣4B.0C.2D.411.计算:﹣3﹣(﹣2)+5=.12.已知a<b,且|a|=6,|b|=3,则a﹣b的值为.13.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.14.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.15.我市某天上午的气温为﹣2℃,中午上升了6℃,下午受冷空气的影响,到夜间温度下降了9℃,则这天夜间的气温为.16.﹣5与3的和的绝对值是;﹣5的相反数与3的绝对值的差是.17.计算(﹣)+|0﹣5|+|﹣4|+(﹣9)的结果为.18.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是.19.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).20.1+(﹣6.5)+3+(﹣1.25)﹣(﹣2).21.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣3)+(﹣2.75)+(+7).22.计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(4)﹣|﹣1|﹣(+2)﹣(﹣2.75).23.一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10,(1)守门员最后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?24.出租车司机小王某天下午的一段时间内营运全是在东西走向的“抚顺”路上进行的.如果向东记作“+”,向西记作“﹣”,他这段时间内行车情况如下:﹣2,+5,﹣2,﹣3,﹣6,+6(单位:公里;每次行车都有乘客),请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小王的出租车每公里耗油0.1升,每升汽油5.7元,不计汽车的损耗的情况下,请你帮小王计算一下这段时间所耗的汽油钱是多少元?25.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?参考答案1.解:原式=+(21﹣20)=1.故选:B.2.解:A.﹣5+(﹣3)=﹣8,此选项错误;B.2﹣(﹣5)=2+5=7,此选项错误;C.(﹣3)﹣(﹣4)=﹣3+4=1,此选项错误;D.(﹣3)+(+2)=﹣(3﹣2)=﹣1,此选项正确;故选:D.3.解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.4.解:12﹣(﹣2)=12+2=14(℃),即这天的最高气温比最低气温高14℃.故选:C.5.解:A、若|a|=|b|,则a=±b,故原说法错误,故本选项不符合题意;B、互为相反数的两数之和为零,说法正确,故本选项符合题意;C、没有最小的整数,故原说法错误,故本选项不符合题意;D、数轴上两个有理数,绝对值较大的数离原点较远,故原说法错误,故本选项不符合题意;故选:B.6.解:∵﹣4﹣(﹣9)=5(℃),∴温度﹣4℃比﹣9℃高5℃.故选:A.7.解:35+(35﹣10)=35+25=60.故选:B.8.解:∵a是最大的负整数,b是最小的正整数,c的相反数等于它本身,∴a=﹣1,b=1,c=0,∴a+b+c=﹣1+1+0=0,故选:D.9.解:﹣12﹣(﹣26)=﹣12+26=14(℃),故选:A.10.解:﹣2+2=0,即比﹣2大2的数是0,故选:B.11.解:﹣3﹣(﹣2)+5=﹣3+2+5=4;故答案为:4.12.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a﹣b=﹣6﹣3=﹣9或a﹣b=﹣6﹣(﹣3)=﹣3.故答案为:﹣9或﹣3.13.解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.14.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.15.解:﹣2+6﹣9=4﹣9=﹣5(℃)答:这天夜间的气温为﹣5℃.故答案为:﹣5℃.16.解:|﹣5+3|=|﹣2|=2,﹣(﹣5)﹣|3|=5﹣3=2,故答案为:2,2.17.解:(﹣)+|0﹣5|+|﹣4|+(﹣9)=(﹣)+5+4+(﹣9)=(﹣﹣9)+(5+4)=﹣10+10=0.故答案为:0.18.解:点B的海拔高度为:﹣100+30=﹣70(米).故答案为:﹣70.19.解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.20.解:==0+6﹣6.5=﹣0.5.21.解:(1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=[﹣0.5+(+7)]+[(﹣3)+(﹣2.75)]=7+(﹣6)=1.22.解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=(23+7)+(﹣17﹣16)=30﹣33=﹣3;(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4=(﹣26.54+18.54)+(6.4﹣6.4)=﹣8+0=﹣8;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7)=(﹣0.5﹣7)+(3+2.75)=﹣8+6=﹣2;(4)﹣|﹣1|﹣(+2)﹣(﹣2.75)=﹣1﹣2+2.75=+(﹣1﹣2+2.75)=﹣1=﹣.23.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0,答:守门员最后回到了球门线的位置;(2)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54;答:守门员全部练习结束后,他共跑了54米;(3)第1次守门员离开球门线5米;第2次守门员离开球门线:5﹣3=2(米);第3次守门员离开球门线:2+10=12(米);第4次守门员离开球门线:12﹣8=4(米);第5次守门员离开球门线:|4﹣6|=2(米);第6次守门员离开球门线:|﹣2+12|=8(米);第7次守门员离开球门线:|8﹣10|=2(米);所以在练习过程中,守门员离开球门线的最远距离是12米.24.解:(1)﹣2+5﹣2﹣3﹣6+6=﹣2(公里).故小王在下午出车的出发地的正西方向,距下午出车的出发地2公里远;(2)2+5+2+3+6+6=24(公里),24×0.1×5.7=13.68(元).故这段时间所耗的汽油钱是13.68元.25.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.。
人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)
人教版数学七年级上册《有理数加减法》练习题(一)一、单选题:1. 计算:13-12正确的结果是( )A.15 B .-15 C.16 D .-162.计算|-13|-23的结果是( )A .-13 B.13 C .-1 D .13.下列计算正确的是( )A .(-15)-(+5)=-10B .0-(+3)=3C .(-9)-(-9)=-18D .0-(-6)=64. 比-5小-2的数是( )A .-7B .7C .-3D .35.在(-5)- =-6中的方框里应填( )A .-1B .+1C .-11D .+116.下列运算结果为1是( )A .|+3|-|+4|B .|(-3)-(-4)|C .|-2|-|-4|D .|+3|-|-4|7.下列说法正确的是( )A .减去一个数等于加上这个数的相反数B .互为相反数的两数之差为0C .零减任何有理数,差为负数D .减去一个正数,差大于被减数8. 若x 是2的相反数,|y|=3,则x -y 的值是( )A.-5 B.1 C.-1或5 D.1或-59.a,b在数轴上的位置如图,下列结论不正确的是( )A.a+b<0 B.a-b<0 C.-a-b>0 D.-a+b<0二、填空题:10. 计算:(-5)-(-3)=-5+____11. 计算: (-6)-4=-6+________12. 计算: 0-(+5)=0+_________13. 计算:8-(+2 016)=8+________14. 下列说法中:①一个数减去零仍得这个数;②零减去一个数等于这个数的相反数;③一个数减去它的相反数得零;④两个有理数之差不一定小于这两数之和.其中正确的是___________.(填序号)15. 扬州市某天最高气温是6 ℃,最低气温是-2 ℃,那么当日的温差是____℃.16.数轴上表示-3的点与表示-7的点之间的距离是____.17.某粮店出售的3种品牌的面粉袋上,分别标有质量为(25±0.2) kg,(25±0.3) kg,(25±0.4) kg的字样,从中任意拿出两袋,它们的质量最多相差______kg.18.-8与3的差的绝对值是_______.19.在数5,-2,7,-6中,任意两个数相减差最大是______,最小是_________.20.数字解密:第一个数是3=2-(-1);第2个数是5=3-(-2);第三个数是9=5-(-4);第四个数是17=9-(-8)……第六个数是___________________.21.小亮做这样一道计算题:|(-3)+|,其中“”表示被污染看不清的一个数,他翻开答案,知道该题的结果是6,那么“”表示的数是__________.22.已知x是5的相反数,y比x小-7,则x与-y的差是______.三、计算题:23. 计算:(1)(-5)-(-23);(2)(-9.25)-(-414 ).24.已知|a|=5,|b|=4,且a+b<0,求a-b的值.四、解答题:25. 世界上最高的山峰是珠穆朗玛峰,其海拔高度是8 844 m,吐鲁番盆地的海拔是-155 m,两处的海拔高度相差多少米?26. 符号“f”表示一种运算,它的一些运算结果如下:①f(1)=0,f(2)=1,f(3)=2,f(4)=3…②f(12)=2,f(13)=3,f(14)=4,f(15)=5…利用上述规律求:(1)f(10)-[-f(110 )];(2)f(2 015)-f(12 016).人教版数学七年级上册《有理数加减法》练习题(一)答案:一、单选题1-9. DADCB BADB10. 311. (-4)12. (-5)13. (-2016)14. ①②④15. 816. 417. 0.818. 1119. 13 -1320. 65=33-(-32)21. 9或-322. -323. (1)解:原式=18(2)解:原式=-524. 解:a-b的值为-9或-125. 解:8 999米26. (1)解:原式=19(2)解:原式=-2人教版数学七年级上册《有理数加减法》练习题(二)一、单选题1. 某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃2. 在-2,0,1,3这四个数中,最大的数和最小的数的和是( )A.1B.0C.2D.33. 5的相反数与-2的差是( )A.3B.-3C. 7D.-74. 下列表示某地区早晨、中午和午夜的温度(单位:℃),则下列说法正确的是( )A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃5. 若|a|=2,|b|=3,且0>a>b,则a+b=( )A.5B.﹣5C.﹣1D.﹣36. 比-6的一半大2的数是( )A.2B.0C.﹣1D.﹣37. 温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃8. 绝对值大于1且小于5的所有的整数的和是( )A.9B.-9C.6D.09. 计算:-2+3=( )A.1B.-1C.-5D.-610. 已知3x=,2y=,且0xy>,则x y-的值等于( )A.5或-5B.1或-1C.5或1D.-5或-111. 下面说法中正确的是( )A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-112. 计算﹣(﹣1)+|﹣1|,其结果为( )A.﹣2B.2C.0D.﹣113. 若x的相反数是5,|y|=8,且x+y<0,那么x-y的值是( )A.3B.3或-13C.-3或-13D.-13二、填空题14. 比最大的负整数大2的数是_____.15. 比-5大-6的数是____.16. 小怡家的冰箱冷藏室温度是4℃,冷冻室的温度是-2℃,则冷藏室温度比冷冻室温度______℃。
_1、3 有理数的加减法 同步课时训练(含答案) 21-22学年人教版 七年级数学上册
人教版 七年级数学上册 1.3 有理数的加减法同步课时训练一、选择题1. 计算-1+2的结果是( )A .-3B .-1C .1D .32. 小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断3. 比-1小2的数是( )A .3B .1C .-2D .-3 4. 下列交换加数位置的变形中,正确的是() A .1-4+5-4=1-4+4-5B .1-2+3-4=2-1-4-3C .5.5-4.2-2.5+1.2=5.5-2.5+1.2-4.2D .13+2.3-5-4.3=13+5-2.3-4.35. 下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13 =⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13; ③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4) =⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4). A .0个B .1个C .2个D .3个6. 二模若a >0,b <0,则a -b 的值( )A.大于零B.小于零C.等于零D.不能确定7. 花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿大街向东走了20米,接着又向西走了-30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方二、填空题8. 如图,数轴上点A,B分别表示数a,b,则a+b________0.(填“>”或“<”).9. 计算:-3-5=________.10. 绝对值小于3的所有整数的和为______,绝对值不大于2020的所有整数的和为______.11. 一种机器零件,图纸标明是Ф30-0.02+0.04,合格品的最大直径与最小直径的差是________.12. 如果|a|=7,|b|=4,那么a+b=________.13. 五袋优质大米以每袋50 kg为基准,超过的记为正,不足的记为负,称重记录(单位:kg)如下:+4.5,-4,+2.3,-3.5,+2.5.那么这五袋大米共超重__________kg,总质量为__________kg.14. 用算式表示(写成省略加号和括号的和的形式):(1)负20、正15、负40、负15、正14的和:________________________;(2)40减35加12减16减4:________________.15. 【阅读材料】“九宫图”源于我国古代夏禹时期的“洛书”(如图①所示),是世界上最早的矩阵,又称“幻方”.用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”(如图②所示).【规律总结】观察图①、图②,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是;若图③是一个“幻方”,则a=.三、解答题16. 阅读下面的解题过程,然后解答相关问题.计算:53.27-(+18)+(-21)+(+46.73)-(-15)+(+21).解:原式=53.27-18-21+46.73+15+21(第一步)=(53.27+46.73)+(21-21)+(-18+15)(第二步)=100+0+3(第三步)=103.(第四步)(1)以上解题过程中,第一步是把原式化成了________________________的形式;(2)第二步的根据是______________________;(3)以上解题过程是否正确?如果不正确,指出首次出现错误的是哪一步,并给出正解.17. 计算:(1)0-(-3.6);(2)23-(-56);(3)(-5)-(+112); (4)(-114)-(-14);(5)(-5)-(-6)-7;(6)4.5-(-614)-(-212).18. 已知|x-2|与|y+7|的值互为相反数,试求-x+y的值.19. 以地面为基准,高于地面记为正,低于地面记为负.已知A处高+2.5 m,B 处高-17.8 m,C处高-32.4 m.(1)A处比B处高多少?(2)B处和C处哪个地方高?高多少?(3)A处和C处哪个地方低?低多少?20. 列式并计算:(1)已知两个数的和为-225,其中一个数为-134,求另一个数;(2)13与-23的差比-12大多少?21. (1)比较大小;①|-2|+|3|________|-2+3|;②|4|+|3|________|4+3|;③|-12|+|-13|________|-12+(-13)|;④|-5|+|0|________|-5+0|.(2)通过(1)中的大小比较,猜想并归纳出|a|+|b|与|a+b|的大小关系,并说明a,b 满足什么关系时,|a|+|b|=|a+b|成立?人教版七年级数学上册 1.3 有理数的加减法同步课时训练-答案一、选择题1. 【答案】C2. 【答案】C3. 【答案】D4. 【答案】C5. 【答案】D6. 【答案】A7. 【答案】C[解析] 以书店为原点,向东为正方向,根据题意,得0+20-(-30)=50(米),所以此时小明的位置在学校.故选C.二、填空题8. 【答案】<9. 【答案】-810. 【答案】00[解析] 绝对值小于3的整数有±2,±1,0,其和为2+(-2)+1+(-1)+0=0.绝对值不大于2020的整数有±2020,±2019,±2018,…,±1,0,其和为0.11. 【答案】0.06[解析] 方法1:最大直径是30.04,最小直径是29.98,其差是30.04-29.98=0.06.方法2:0.04-(-0.02)=0.06.12. 【答案】±11或±3[解析] 因为|a|=7,|b|=4,所以a=±7,b=±4.当a=7,b =4时,a+b=11;当a=7,b=-4时,a+b=3;当a=-7,b=4时,a+b =-3;当a=-7,b=-4时,a+b=-11.13. 【答案】1.8251.8[解析] (+4.5)+(-4)+(+2.3)+(-3.5)+(+2.5)=[(+4.5)+(+2.3)+(+2.5)]+[(-4)+(-3.5)]=(+9.3)+(-7.5)=1.8(kg).50×5+1.8=251.8(kg).14. 【答案】(1)-20+15-40-15+14(2)40-35+12-16-415. 【答案】每一行、每一列和每条对角线上各个数之和都相等-3三、解答题16. 【答案】解:(1)省略括号和加号的和(2)加法的交换律和结合律(3)不正确.首次出现错误的是第三步.正解:原式=53.27-18-21+46.73+15+21=(53.27+46.73)+(21-21)+(-18+15)=100+0-3=97.17. 【答案】[解析] 根据有理数的减法法则,先将减法转化为加法,再运用有理数加法法则进行计算.解:(1)0-(-3.6)=0+3.6=3.6.(2)23-(-56)=23+56=32.(3)(-5)-(+112)=(-5)+(-112)=-612.(4)(-114)-(-14)=(-114)+14=-1.(5)(-5)-(-6)-7=-5+6-7=-6.(6)4.5-(-614)-(-212)=4.5+614+212=1314.18. 【答案】解:因为|x-2|与|y+7|的值互为相反数,所以|x-2|+|y+7|=0.由非负数的性质,得x-2=0,y+7=0,所以x=2,y=-7.所以-x+y=-2+(-7)=-9.19. 【答案】解:(1)(+2.5)-(-17.8)=20.3(m).(2)B处高,高(-17.8)-(-32.4)=-17.8+32.4=14.6(m).(3)C处低,低(+2.5)-(-32.4)=2.5+32.4=34.9(m).20. 【答案】解:(1)根据题意,知这个数为-225-(-134)=-225+134=-1320.(2)13-(-23)-(-12)=13+23+12=112.21. 【答案】解:(1)①>②=③=④=(2)|a|+|b|与|a+b|的大小关系:|a|+|b|≥|a+b|,当a,b同号或至少有一个为0时,|a|+|b|=|a+b|.。
人教版七年级数学上册第一章《有理数的加减混合运算》 同步测试题
人教版七年级数学上册第一章 1.3.2.2有理数的加减混合运算 同步测试题一、选择题(每小题3分,共24分) 1.式子-4+10+6-5的正确读法是( )A .负4、正10、正6、减去5的和B .负4加10加6减负5C .4加10加6减5D .负4、正10、正6、负5的和 2.下列运算正确的是( )A .(-4)-(+2)+(-6)-(-4)=-4B .(-4)-(+2)+(-6)-(-4)=-12C .(-4)-(+2)+(-6)-(-4)=-8D .(-4)-(+2)+(-6)-(-4)=-10 3.将式子3-10-7写成和的形式正确的是( )A .3+10+7B .-3+(-10)+(-7)C .3-(+10)-(+7)D .3+(-10)+(-7) 4.请指出下面计算错在哪一步( ) 1+45-(+23)-(-15)-(+113) =145-23+15-113 ① =(145+15)-(23-113) ②=2-(-23) ③=2+23=223④A .①B .②C .③D .④ 5.下列各式的运算结果中,不正确的是( )A.38-98+(-38)=-98B .-2.3-(-2.6)+(-0.9)=0.6C .39.2-(+22.9)-(-10.1)=26.4D .15-(-4)+(-9)=106.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是( )A .19.7千克B .19.9千克C .20.1千克D .20.3千克 7.-7,-12,+2的和比它们的绝对值的和小( ) A .-38 B .-4 C .4 D .388.数学活动中,王老师给同学们出了一道题:规定一种新运算“★”,对于任意有理数a 和b ,有a ★b =a -b +1,请你根据新运算,计算(2★3)★2的值是( ) A .0 B .-1 C .-2 D .1 二、填空题(每小题4分,共16分)9.式子“-3+5-7+4”读作_____________________________. 10.把(-478)-(-512)-(+318)写成省略括号和加号的形式是___________.11.某地某天早晨的气温是-2 ℃,到中午升高了6 ℃,晚上又降低了7 ℃.那么晚上的温度是___________..12.某天股票甲开盘价为18元,上午11:30时跌了1.2元,下午收盘时又涨了0.8元,则股票甲这天收盘时价格为___________元. 三、解答题(共63分) 13.按运算顺序直接计算: (1)14-(-12)+(-25)-17;(2)(-23)+(-16)-(-14)-(+12).14.运用加法的运算律计算下列各题: (1)-41+28-59+72;(2)-212+56-0.5-(-116).15.已知某银行办理了7笔业务:取款8.5万元,存款6万元,取款7万元,存款10万元,存款16万元,取款9.5万元,取款3万元,则这个银行的现金是增加了还是减少了?增加或减少了多少元?16.计算:(1)213+635+(-213)+(-525);(2)(-913)-|-456|+|0-516|-23;(3)635+24-18+425-16+18-6.8-3.2.(4)(-112)+(-571320)-(-112)+42720.17.检查一商店某水果罐头10瓶的质量,超出记为“+”,不足记为“-”,情况如下:-3克、+2克、-1克、-5克、-2克、+3克、-2克、+3克、+1克、-1克. (1)总的情况是超出还是不足? (2)最多与最少相差多少?18.一场游戏规则如下:(1)每人每次抽4张卡片,如果抽到形如的卡片,那么加上卡片上的数字,如果抽到形如的卡片,那么减去卡片上的数字;(2)比较两人所抽到的4张卡片的计算结果,结果大的为胜者. 请你通过计算(要求有计算过程)回答本次游戏获胜的是谁? 小亮抽到的卡片如图所示:小丽抽到的卡片如图所示:参考答案一、选择题1.式子-4+10+6-5的正确读法是(D)A.负4、正10、正6、减去5的和B.负4加10加6减负5C.4加10加6减5 D.负4、正10、正6、负5的和2.下列运算正确的是(C)A.(-4)-(+2)+(-6)-(-4)=-4 B.(-4)-(+2)+(-6)-(-4)=-12 C.(-4)-(+2)+(-6)-(-4)=-8 D.(-4)-(+2)+(-6)-(-4)=-10 3.将式子3-10-7写成和的形式正确的是(D)A .3+10+7B .-3+(-10)+(-7)C .3-(+10)-(+7)D .3+(-10)+(-7) 4.请指出下面计算错在哪一步(B) 1+45-(+23)-(-15)-(+113) =145-23+15-113 ① =(145+15)-(23-113) ②=2-(-23) ③=2+23=223④A .①B .②C .③D .④ 5.下列各式的运算结果中,不正确的是(B)A.38-98+(-38)=-98 B .-2.3-(-2.6)+(-0.9)=0.6 C .39.2-(+22.9)-(-10.1)=26.4 D .15-(-4)+(-9)=106.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是(C )A .19.7千克B .19.9千克C .20.1千克D .20.3千克 7.-7,-12,+2的和比它们的绝对值的和小(D ) A .-38 B .-4 C .4 D .388.数学活动中,王老师给同学们出了一道题:规定一种新运算“★”,对于任意有理数a 和b ,有a ★b =a -b +1,请你根据新运算,计算(2★3)★2的值是(B )A .0B .-1C .-2D .1 二、填空题9.式子“-3+5-7+4”读作负3加5减7加4或负3、正5、负7、正4的和. 10.把(-478)-(-512)-(+318)写成省略括号和加号的形式是-478+512-318.11.某地某天早晨的气温是-2 ℃,到中午升高了6 ℃,晚上又降低了7 ℃.那么晚上的温度是-3℃.12.某天股票甲开盘价为18元,上午11:30时跌了1.2元,下午收盘时又涨了0.8元,则股票甲这天收盘时价格为17.6元. 三、解答题13.按运算顺序直接计算: (1)14-(-12)+(-25)-17; 解:原式=14+12-25-17 =26-25-17 =1-17 =-16.(2)(-23)+(-16)-(-14)-(+12).解:原式=-23-16+14-12=-56+14-12=-712-12=-1312.14.运用加法的运算律计算下列各题: (1)-41+28-59+72;解:原式=(-41-59)+(28+72) =-100+100 =0.(2)-212+56-0.5-(-116).解:原式=(-212-0.5)+(56+116)=-3+2 =-1.15.已知某银行办理了7笔业务:取款8.5万元,存款6万元,取款7万元,存款10万元,存款16万元,取款9.5万元,取款3万元,则这个银行的现金是增加了还是减少了?增加或减少了多少元?解:规定取出为负,存进为正,由题意可得 -8.5+6-7+10+16-9.5-3=4(万元). 答:这个银行的现金增加了,增加了4万元.16.计算:(1)213+635+(-213)+(-525);解:原式=[213+(-213)]+[635+(-525)]=0+115=115.(2)(-913)-|-456|+|0-516|-23;解:原式=-913-456+516-23=-913-23-456+516=(-913-23)+(-456+516)=-10+13=-923.(3)635+24-18+425-16+18-6.8-3.2.解:原式=(635+425)+(-18+18)-(6.8+3.2)+24-16=11+0-10+24-16 =9.(4)(-112)+(-571320)-(-112)+42720.解:原式=-112-571320+112+42720=(-112+112)+[(-571320)+42720]=0+(-15310)=-15310.17.检查一商店某水果罐头10瓶的质量,超出记为“+”,不足记为“-”,情况如下:-3克、+2克、-1克、-5克、-2克、+3克、-2克、+3克、+1克、-1克. (1)总的情况是超出还是不足? (2)最多与最少相差多少?解:(1)-3+2-1-5-2+3-2+3+1-1=-5(克). 答:总的情况是不足5克. (2)3-(-5)=8(克). 答:最多与最少相差8克.18.一场游戏规则如下:(1)每人每次抽4张卡片,如果抽到形如的卡片,那么加上卡片上的数字,如果抽到形如的卡片,那么减去卡片上的数字;(2)比较两人所抽到的4张卡片的计算结果,结果大的为胜者.精品 Word 可修改 欢迎下载 请你通过计算(要求有计算过程)回答本次游戏获胜的是谁?小亮抽到的卡片如图所示:小丽抽到的卡片如图所示:解:小亮所抽卡片上的数的和为:12-(-32)+(-5)-4=-7; 小丽所抽卡片上的数的和为:-2-(-13)+(-4)-(-14)=-5512. 因为-7<-5512, 所以本次游戏获胜的是小丽.1、在最软入的时候,你会想起谁。
七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)
七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各数中,最小的数是( )A .﹣2B .﹣0.1C .0D .|﹣1|2.如果两个数的和为负数,那么这两个数一定是( )A .正数B .负数C .一正一负D .至少一个为负数3.若 |x| =2, |y| =3,则 |x +y| 的值为( )A .5B .6或1C .5或1D .以上都不对4.绝对值不小于1,而小于4的所有的正整数的和是( )A .8B .7C .6D .55.若关于x 的方程|2x-3|+m=0无解,|3x-4|+n=0只有一个解,|4x-5|+k=0有两个解,则m,n,k 的大小关系是( )A .m >n >kB .n >k >mC .k >m >nD .m >k >n6.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A .﹣10℃B .10℃C .14℃D .﹣14℃7.下列比较大小正确的是( )A .|- 25 |=- 25B .- 56 >- 57C .-(-5 12 )<|-5.5|D .- 78 <- 67 8.a ,b 是有理数,它们在数轴上对应点的位置如图所示,把 a 、−a 、b 、−b 按照从小到大排列正确的是( )A .−a <a <−b <bB .−b <a <b <−aC .a <−b <b <−aD .a <b <−a <−b二、填空题9.计算:(﹣4 )+9= .10.大于 −2 而小于 3 的负整数是 .11.当a=5,b=-3,c=-7时,a-(b-c)的值为 .12.某日最高气温是9℃,最低气温是﹣4℃,该日的温差为 ℃.13.魏晋时期数学家刘微在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,图1表示的数值为:(+1)+(−1)=0,则可推算图2表示的数值是 .(请直接写出最后的结果)三、解答题14.计算:(1)1.3-(-2.7);(2)(-13)-(-17);(3)(-1.8)-(+4.5);(4)6.38-(-2.62);(5)(−14)−(−13) ;(6)(−6.25)−(−314) .15.画数轴,在数轴上表示下列各数,并用“<”号连接下列各数:﹣5,+2,﹣1.5,0和23,−7216.小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各路程依次为(单位:厘米)+5,-3,+10,-8,-9,+12,-10(1)小虫最后是否回到出发点O ?如果没有,在出发点O 的什么地方?(2)小虫离开出发点O 最远时是多少厘米?(3)在爬行过程中,如果爬1厘米奖励两粒芝麻,则小虫一共得到多少粒芝麻?17.某外卖员驾驶一辆充满电的电动车在一条东西方向的商业街上取外卖,若规定向东为正,向西为负,从出发点开始所走的路程为:+4,-2,-3,+7,+1,-2(单位:千米).(1)当取得最后一份外卖时,该外卖员距离出发点多远?在出发点什么方向?(2)若该电动车充满电可行驶25千米,取完外卖后该电动自行车还可行驶多少千米?18.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,-32,-16,+35,-38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?19.某学习平台开展打卡集点数的活动,所获得的点数可以换学习用品和学习资料,规则如下:首日打卡领5个点数,连续打卡每日再递增5个点数,每日可领取的点数的数量最高为30个,若中断,则下次打卡作首日打卡,点数从5个开始重新领取.(1)按规则,第1天打卡领取5个点数,连续打卡,则第2天领取10个点数,第3天领取15个点数,第6天领取个点数,第7天领取个点数;连续打卡7天,一共领取个点数.(2)小红从1月1日开始打卡,连续打卡10天,一共能领取个点数;若1月6日不小心忘记打卡,则这10天会少领取个点数.参考答案1.A2.D3.C4.C5.A6.B7.D8.C9.510.-111.112.1313.−114.(1)解:1.3-(-2.7)=1.3+2.7=4(2)解:(-13)-(-17)=(-13)+(+17)=4(3)解:(-1.8)-(+4.5)=(-1.8)+(-4.5)=-6.3;(4)解:6.38-(-2.62)=6.38+2.62=9(5)解: (−14)−(−13) = −14+13=112(6)解: (−6.25)−(−314) = −614+314=−315.解:如图所示:−5<−72<−1.5<0<23<2 .16.(1)解:+5-3+10-8-9+12-10=-3(厘米)所以小虫最后没有回到出发点,在出发点左3厘米处。
人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷
人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷基础卷(时间:90分钟,满分:100分)一、选择题(每小题4分,共28分)1.两数相加,如果和不是正数,这两个数()A.都是负数B.都是正数C.一正一负D.至少有一为负2.若a为有理数,则∣a∣+a的结果为()A.正数B.负数C.不可能是负数D.正数、负数和零都有可能3.若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是()A.0 B.1 C.2 D.±24.若a,b互为相反数,则a+b的值为()A.0 B.1 C.2 D.±25、绝对值大于2且小于5的所有整数的和是()A、7B、-7C、0D、46、下列说法中正确的是()A、最小的整数是0B、有理数分为正数和负数C、如果两个数的绝对值相等,那么这两个数相等D、互为相反数的两个数的绝对值相等7、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在()A、在家B、在学校C、在书店D、不在上述地方二、填空题(每空2分,共34分)8.(1);(2);(3);(4);(5);(6)。
9.已知两个数是15和-21,这两个数的和的绝对值是___,绝对值的和是__。
10.绝对值小于3的所有整数的和是___。
11、加法交换律用字母表示为:______;加法结合律用字母表示为:___。
12、如果a>0,b>0,那么a+b___0;如果a<0,b<0,那么a+b___0;如果a>0,b<0,且∣a∣>∣b∣,那么a+b___0;如果a<0,b>0,且∣a∣<∣b∣,那么a+b___0。
13、有理数的减法法则,用字母表示为:a-b=____。
14、若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是____.三、解答题(共38分)15、(14分)计算(1)-17+23+(-16)-(-7);(2)1+(-21)+∣-2-3∣-25。
人教版七年级数学上册《2.1-有理数的加法与减法》同步练习题-附答案
人教版七年级数学上册《2.1 有理数的加法与减法》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算:−2−(−3)=()A.−5B.5 C.−1D.12.有理数a、b在数轴上的对应的位置关系如图所示,则()A.a+b>0B.a+b<0C.a−b=0D.a−b<03.小明口袋里原有9元钱,买饮料花去3元,求口袋里剩余的钱数.所列算式正确的是()A.9−(−3)B.9+(−3)C.9÷(−3)D.9÷34.某粮店出售的三种品牌的面粉袋上分别标有质量为(20±0.1)kg,(20±0.2)kg,(20±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A.0.8kg B.0.6kg C.0.5kg D.0.4kg5.舟山市体育中考,女生立定跳远的测试中,以1.97m为满分标准,若小贺跳出了2.00m,可记作+0.03m,则小郑跳出了1.90m,应记作()A.−0.07m B.+0.07m C.+1.90m D.−1.90m6.“会当凌绝顶,一览众山小.”泰山,世界文化与自然双重遗产,有“五岳之首”和“天下第一山”之称.1月份的泰山,山顶的平均气温是−9℃,山脚的平均气温是−1℃,则山脚的平均气温与山顶的平均气温的温差是()A.−8℃B.−10℃C.10℃D.8℃7.大约公元前2200年在我国出现的“洛书”中就有关于幻方的记录.在如图所示的三阶幻方中,填写了一些数和汉字(其中每个汉字都表示一个数).若处于每行、每列及每条对角线上的3个数之和都相等,则“中”“国”“梦”这三个字表示的数之和是()A.3 B.1 C.0 D.−18.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,图1可列式计算为(+1)+(−1)=0,由此可推算图2中计算所得的结果为()A.+1B.+7C.−1D.−7二、填空题9.计算−4−2的结果为.10.数轴上表示2的点与表示−5的点之间的距离为.11.如图,点A,B,C是数轴上的三个点,A,B表示数分别是1,3,若C在B的右侧,且BC=2AB,则点C表示的数是.12.数轴上点A表示的数是−112,若数轴上点P,在点A右侧,到点A的距离等于113,则点P所表示的数是.13.如图,在数轴上点A 表示的数是2,点B 被墨水遮住了,已知AB =4,则点B 表示的数为 .14.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是7,8,9,10中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上写的数字是 .15.同学们都知道|5−(−2)|表示5与(−2)之差的绝对值,也可理解为5与−2两数在数轴上所对应的两点之间的距离,试探索:满足条件|x +3|+|x −6|=9所有整数x 的和为 .16.某粮食仓库原库存小麦300吨,本周五天对这一品种小麦的进出货情况统计如下表所示(进货量用正数表示,出货量用负数表示):(单位:吨)星期一 星期二 星期三 星期四 星期五 50 30 60 40 50 −30−35−30−20本周五天后这种小麦库存 吨. 三、计算题17.计算下列各题. (1)−3.4−(−4.7); (2)(−13)+(−43)+2;(3)4+(−12)+0.5+8+(−12); (4)434−(+3.85)−(−314)+(−3.15). 四、解答题18.某市今天的最高气温为7℃,最低气温为0℃.据天气预报,两天后有一股强冷空气将影响该市,届时将降温5℃.问两天后该市的最高气温、最低气温约为多少摄氏度?19.一只昆虫从原点出发在一条直线上左右来回爬行,假定向右爬行的路程记作正,向左爬行的路程记作负,爬过的各段路程依次为(单位:cm):+2,﹣4,+5,﹣2.5,﹣5,+4.5,这只昆虫最后是否回到了原来的出发点?20.某慈善基金会某天上午共汇出三笔捐款,下午共收到两笔捐款,当天基金会的余额增加了1.6万元已知其中四笔的款项如下(记汇进为正,汇出为负.单位:万元):+2,-0.8,-1.5,+3.5.问:还有一笔款项是汇进还是汇出?汇进或汇出多少万元?21.如图,数轴上的A,B两点表示的数分别为−2,1.把一张透明的胶片放置在数轴所在的平面上,并在胶片上描出线段A′B′(点A,B分别对应点A′,B′).左右平移该胶片,平移后的点A′表示的数为a,点B′表示的数为b.(1)计算:−2+1;(2)若胶片向右平移m个单位长度,求a+2b的值(用含m的式子表示).22.某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示与标准质量的差值(单位:克)-3 -1 0 2袋数 1 2 3 2(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?23.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?24.国庆档电影《长津湖》以抗美援朝为背景,讲述了中国人民志愿军在极端严酷惨烈的环境下,凭借钢铁意志最终取得了长津湖战役的胜利,该电影也再次次起了全民爱国热潮,国安民才安,有国才有家!据猫眼数据,截止10月8日,《长津湖》累计票房超过60亿,成为2021年全球票房冠军!该电影9月30日在莱芜的票房为6.7万元,接下来国庆假期7天的票房变化情况如下表(正数表示比前一天增加的票房,负数表示比前一天减少的票房).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日票房(万元)+7.6 +2.7 +2.5 +4.7 +2 -0.6 -13.8 (1)国庆假期7天中,10月4日的票房收入是万元;(2)国庆假期7天中,票房收入最多的一天是10月日:(3)国庆假期7天中,求票房收入最多的一天比最少的一天多多少万元?参考答案1.【答案】D2.【答案】B3.【答案】B4.【答案】B5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】-610.【答案】711.【答案】712.【答案】−1613.【答案】−214.【答案】3,4,4,6或3,4,5,515.【答案】1516.【答案】41517.【答案】(1)解:原式=20−14+18+13=(20+18+13)−14=51−14=37;(2)解:原式=34−72−1−16+32+1=(−72+32)+(34−16)=−2+(912−212) =−2+712=−1512.18.【答案】(1)解:−3.4−(−4.7)=−3.4+(+4.7) =+(4.7−3.4)=1.3(2)解:(−13)+(−43)+2=(−53)+63=13(3)解:4+(−12)+0.5+8+(−12)=4+0.5+8+(−12)+(−12)=12.5+(−12.5)=0(4)解:434−(+3.85)−(−314)+(−3.15)=4.75−(+3.85)−(−3.25)+(−3.15) =4.75+(−3.85)+(+3.25)+(−3.15) =4.75+(+3.25)+(−3.85)+(−3.15)=8+(−7)=119.【答案】解:气温下降5℃,记为-5℃。
人教版七年级数学上册 第一章 有理数 第三节 有理数的加减法 同步测试
人教版七年级数学上册第一章有理数第三节有理数的加减法同步测试一.选择题(共10小题,每小题3分,共30分)1.荆州某日夜晚最低温度比白天最高温度下降了10℃.若这一天白天最高温度为8℃,则夜晚最低温度为()A.2℃B.﹣2℃C.0℃D.18℃2.遵义市2019年6月1日的最高气温是25℃,最低气温是15℃,遵义市这一天的最高气温比最低气温高()A.25℃B.15℃C.10℃D.﹣10℃3.计算﹣2+(﹣6)的结果是()A.12 B.C.﹣8 D.﹣44.比﹣3的相反数小1的数是()A.2 B.﹣2 C.D.5.计算﹣19+20等于()A.﹣39 B.﹣1 C.1 D.396.计算(﹣5)+(﹣7)的值是()A.﹣12 B.﹣2 C.2 D.127.我市春季里某一天的气温为﹣3℃~13℃,则这一天的温差是()A.3℃B.10℃C.13℃D.16℃8.已知|a|=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣39.计算﹣8+1的结果为()A.﹣5 B.5 C.﹣7 D.710.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由﹣5℃到5℃B.气温由﹣1℃到﹣6℃C.气温由5℃到0℃D.气温由﹣2℃到3℃二.填空题(共8小题,每小题3分,共24分)11.计算:﹣=.12.计算:﹣20﹣19=.13.某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.14.2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为和.15.某地某天早晨的气温是﹣2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是℃.16.比﹣4大3的数是.17.扬州2月份某日的最高气温是6℃,最低气温是﹣3℃,则该日扬州的温差(最高气温﹣最低气温)是℃.18.若|a|=3,|b|=5且a>0,则a﹣b=.三.解答题(共7小题,共66分)19.若|a|=3,|b|=5,求a+b的值.20.一个数减去﹣5与2的和,所得的差是6,求该数的相反数.21.计算:﹣5+(+2)+(﹣1)﹣(﹣)22.列式并计算(1)求+1.2的相反数与﹣1.3的绝对值的和.(2)4与2的和的相反数.(3)巴黎和北京的时差是﹣7个小时,李伯伯于北京时间9月29号早上8:00搭乘飞往巴黎,飞行时间约11个小时,则李伯伯到达巴黎的时间是.(填月日时)23.某同学在计算时﹣3﹣N,误将﹣N看成了+N,从而算得结果是5,请你帮助算出正确结果.24.用A、B、C、D分别表示有理数a、b、c,0为原点如图所示.化简|a﹣c|+|b﹣a|+|c﹣a|25.下表记录的是今年长江某一周内的水位变化情况,这一周的上周末的水位已达到警戒水位33米(正号表示水位比前一天上升,负号表示水位比前一天下降).星期一二三四五六水位变化(米)+0.2 +0.8 ﹣0.4 +0.2 +0.3 ﹣0.2(1)本周哪一天长江的水位最高?位于警戒水位之上还是之下?(2)与上周周末相比,本周周末长江的水位是上升了还是下降了?并通过计算说明理由.参考答案一、选择题1.【解答】解:8℃﹣10℃=﹣2℃,夜晚最低温度为﹣2℃.故选:B.2.【解答】解:25﹣15=10℃.故选:C.3.【解答】解:﹣2+(﹣6)=﹣(2+6)=﹣8所以计算﹣2+(﹣6)的结果是﹣8.故选:C.4.【解答】解:﹣3的相反数为3,故比﹣3的相反数小1的数是2.故选:A.5.【解答】解:﹣19+20=1.故选:C.6.【解答】解:(﹣5)+(﹣7)=﹣(5+7)=﹣12,故选:A.7.【解答】解:13﹣(﹣3)=13+3=16.∴这一天的温差是16°C.故选:D.8.【解答】解:∵|a|=1,b是2的相反数,∴a=1或a=﹣1,b=﹣2,当a=1时,a+b=1﹣2=﹣1;当a=﹣1时,a+b=﹣1﹣2=﹣3;综上,a+b的值为﹣1或﹣3,故选:C.9.【解答】解:﹣8+1=﹣7.故选:C.10.【解答】解:A.气温由﹣5℃到5℃,上升了5﹣(﹣5)=10(℃),不符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由5℃到0℃,上升了0﹣5=﹣5(℃),不符合题意;D.气温由﹣2℃到3℃,上升了3﹣(﹣2)=5(℃),符合题意;故选:D.二、填空题11.【解答】解:﹣+=﹣+=.故答案:.12.【解答】解:﹣20﹣19=﹣(20+9)=﹣39,所以计算﹣20﹣19的结果是﹣39.故答案:﹣39.13.【解答】解:﹣20﹣(﹣23)=﹣20+23=3(℃).故答案为3.14.【解答】解:设图中两空白圆圈内应填写的数字从左到右依次为a,b ∵外圆两直径上的四个数字之和相等∴4+6+7+8=a+3+b+11①∵内、外两个圆周上的四个数字之和相等∴3+6+b+7=a+4+11+8②联立①②解得:a=2,b=9∴图中两空白圆圈内应填写的数字从左到右依次为2,9故答案为:2;9.15.【解答】解:﹣2+6﹣7=﹣3,故答案为:﹣316.【解答】解:﹣4+3=﹣1.故答案为:﹣1.17.【解答】解:6﹣(﹣3)=9(℃)∴该日扬州的温差(最高气温﹣最低气温)是9℃.故答案为:9.18.【解答】解:∵|a|=3,|b|=5,a>0,∴a=3,b=±5,当a=3,b=5时,a﹣b=3﹣5=﹣2;当a=3,b=﹣5时,a﹣b=3﹣(﹣5)=8;综上,a﹣b的值为﹣2或8,故答案为:﹣2或8.三、解答题19.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5,则a=3,b=5时,a+b=8.a=3,b=﹣5时,a+b=﹣2,a=﹣3,b=5时,a+b=2,a=﹣3,b=﹣5时,a+b=﹣8,综上,a+b的值为±2或±8.20.【解答】解:根据题意知这个数为6+(﹣5+2)=6+(﹣3)=3,所以这个数的相反数为﹣3.21.【解答】解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.22.【解答】解:(1)﹣(+1.2)+|﹣1.3|=﹣1.2+1.3=0.1;(2)﹣(4+2)=﹣7;(3)根据题意得:8+11﹣7=12,则到达巴黎得时间是12:00,故答案为:9月29日12:00.23.【解答】解:根据题意得:N=5﹣(﹣3)=5+3=9,则正确的算式为﹣3﹣9=﹣13.24.【解答】解:由图可知:a﹣c<0,b﹣a>0,c﹣a>0,所以|a﹣c|+|b﹣a|+|c﹣a|=﹣(a﹣c)+(b﹣a)+(c﹣a)=﹣a+c+b﹣a+c﹣a=﹣3a+b+2c.25.【解答】解:(1)正号表示水位比前一天上升,负号表示水位比前一天下降,由此计算出每天的实际水位即可求值.本周水位最高的为周五,周一:+0.2,周二:+0.2+0.8=+1,周三:+1﹣0.4=+0.6,周四:+0.6+0.2=+0.8,周五:+0.8+0.3=1.1m,故本周五水位最高高于警戒水位1.1m;(2)通过表格可得+0.2+0.8﹣0.4+0.2+0.3﹣0.2=0.9m,故与上周周末相比,本周周末长江的水位是上升了0.9m.。
七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)
七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.在0、-3、-3.14,π中,最大的有理数的是( )A .0B .3-C . 3.14-D .π2.某市某年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃3.下列各式结果等于3的是( )A .(﹣2)﹣(﹣9)+(+3)﹣(﹣1)B .0﹣1+2﹣3+4﹣5C .4.5﹣2.3+2.5﹣3.7+2D .﹣2﹣(﹣7)+(﹣6)+0+(+3)4.在+1,﹣2,﹣1这三个数中,任取两个数相加,所得的和最大的是( )A .-1B .1C .0D .-35.绝对值不大于3的所有整数的和是( )A .0B .―1C .1D .66.数轴上点A 表示-3,点B 表示1,则表示A 、B 两点间的距离的算式是( )A .-3+1B .-3-1C .1-(-3)D .1-37.如图,数轴上A 、B 两点分别对应有理数a 、b ,则下列结论:①a >0,b <0;②a ﹣b <0;③a+b >0;④|a|﹣|b|>0,其中正确的有( )A .1B .2C .3D .08.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成11,11=10﹣1;198写成202,202=200﹣2;7683写成12323,12323=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算5231﹣3241=( )A .1990B .2068C .2134D .3024二、填空题: 9.计算: ()()14103-+--= .10.珠穆朗玛峰的海拔为8848.86 m ,吐鲁番盆地的海拔为-155 m ,珠穆朗玛峰的海拔比吐鲁番盆地的海拔高 m.11.若140a b -++=,则b a += .12.如果四个有理数之和是12,其中三个数是-9,+8,-2,则第四个数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册有理数加减法同步练习
1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
2.直接写出答案(1)(-2.8)+(+1.9)= ,(2)10.75(3)4--= , (3)0(12.19)--= ,(4)
3(2)---= 3. 已知两个数55
6和283-,这两个数的相反数的和是 。
4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 。
5. 已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。
6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。
7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .
二.选择:
8.下列交换加数的位置的变形中,正确的是( )
A ﹨14541445-+-=-+-
B ﹨1311131134644436-
+--=+-- C 、 12342143-+-=-+- D ﹨4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-
9. 下列计算结果中等于3的是( )
A. 74-++
B. ()()74-++
C. 74++-
D. ()()74+--
10. 下列说法正确的是( )
A. 两个数之差一定小于被减数
B. 减去一个负数,差一定大于被减数
C. 减去一个正数,差一定大于被减数
D. 0减去任何数,差都是负数
11.校﹨家﹨书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在
A. 在家
B. 在学校
C. 在书店
D. 不在上述地方
12﹨火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )
(A) 20 (B) 119 (C) 120 (D) 319
13. 计算:
①-57+(+10
1) ②90-(-3)
③-0.5-(-3
41)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
⑤ ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑥ ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所
走路线(单位:千米)为:+10﹨-3﹨+4﹨+2﹨-8﹨+13﹨-2﹨+12﹨+8﹨+5
(1)问收工时距O 地多远?
(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?
15﹨某商场老板对今年上半年每月的利润作了如下记录:1﹨2﹨5﹨6月盈利分别是13万元﹨12
万元﹨12.5万元﹨10万元,3﹨4月亏损分别是0.7万元和0.8万元。
试用正﹨负数表示各月的利润,并算出该商场上半年的总利润额。
答案:
1:-1
2:-0.9, 4, 12.19, 5
3:17/6
4:6-3+7-2
5:-10
6:15
7:-10
8:D
9:B
10:B
11:B
12:C
13:-1.3; 93; -2; -10; -34; -1
14:解:10-3+4+2-8+13-2+12+8+5=41
把各数的绝对值相加=10+3+4+2+8+13+2+12+8+5=67
67×0.2=13.4(升)
15: +13,+12,-0.7,-0.8,+12.5,+10
+13+12-0.7-0.8+12.5+10=46(万元)
1.3有理数的减法同步练习(二)巩固基础:
1.温度上升5℃,又下降7℃,后来又下降3℃,三次共上升℃.
2.绝对值小于5的所有正整数的和为.
3.比-8的相反数多2的数是.
4.在数轴上表示-4和3的两点的距离是.
5,若a -(-b)=0,则a与b的关系是.
6.如b为正数,则用“<”号连接a,a-b,a+b,为 .
7.已知两数差是25,减数比7的相反数小5,则被减数是.
8.当x=-1, y=-1
2
时,x-y=.
9.若X与-1的差是-1,则X= .
10.绝对值小于100的所有整数的和是.
11.已知M是6的相反数,N比M的相反数小2,则m -n等于( )
A 4
B 8
C -10
D 2
12.不改变原式的值,将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号和的形式是()
A -6-3+7-2 B6-3-7-2
C6-3+7-2D6+3-7-2
13.下列说法中,正确的是()
A减去一个负数,等于加上这个数的相反数
B 两个负数的差,一定是一个负数
C 零减去一个数,仍得这个数
D 两个正数的差,一定是一个正数
14 若有理数a 的绝对值的相反数是-5,则a的值是( )
A 5
B -5
C ±5
D ±1 5
15 在正整数中,前50个偶数和减去50个奇数和的差是( )
A 50
B -50
C 100
D -100
16 x<0, y>0时,则x, x+y, x-y,y中最小的数是( )
A xBx-yCx+y D y
17 1x - + 3y + = 0, 则y -x -
12
的值是 ( ) A -412 B -212 C -112 D 112 18 计算:
(―12)―(―18) 6.25 ―(―7
34)
(―112)―(+13
) (―2.24)―(+4.76)
运用与提高:
19 一个数是8,另一个数比8的相反数小3,求两个数的和。
20.某银行办储蓄业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元,请你计算一下,银行的现款增加了多少?你能用有理数加减法表示出来吗?
21.两个小朋友玩跳棋游戏,游戏的规则是:先画一根数轴,棋子落在数轴上0K 点,第一步从0K 点向左跳1个单位到1k ,第二步从1k 向右跳2个单位到2k ,第三步从2k 向左跳3个单位到3k ,第四步从3k 向右跳4个单位到4k ,…,如此跳20步,棋子落在数轴的20k 点,若20k 表示的数是18,问0K 的值为多少?
中考链接:
22.(2003。
四川)计算2―(―1)的结果是()
A 3
B 1
C ―3
D ―1
23.(2004。
桂林)1 ―3 +5―7 +9―11+…+97―99= 。
24.(2004。
太原)2--
1
2
⎛⎫
⎪
⎝⎭
的结果等于。
参考答案:
1. -5
2. 10
3. 10
4. 7
5.互为相反数
6. a – b <a <a+ b
7.25
8.-1 2
9.–2
10.0
11.D
12.C
13.A
14.C
15.B
16.B
17.A
18.6, 14,5
6
-1
5
6
, -7
19.–3
20.–950+500+(-800)+1200+(-1025)+2500+(-200)
= 1225
21.8
22. A
23.– 25
24. 1。