第八章 数与形(讲义及答案).
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章数与形(讲义)
➢知识点睛
1. 1+ 3 + 5 + 7 + +(2n-1)=n2
从1 开始的连续n 个奇数的和等于这堆数字个数n 的平方
引申:2 + 4 + 6 + 8 + + 2n =n(n +1)
从2 开始的连续n 个偶数数的和等于n(n+1)。
2.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系
数在三角形中的一种几何排列。
它有以下一些特点(更多的特点并未列出):
(1)每个数等于它上方两数之和。
(2)每行数左右对称,由1 开始逐渐变大。
(3)第n 行的数有n 个。
(4)第n 行所有数之和为2n-1。
➢精讲精练
经典例题 1
观察下图并根据图形将下列算式补充完整。
1=()21+3=()21+3+5=()2
1
练一练
1+3+5+7=()2
1+3+5+7+9+11+13=()2
= 92
经典例题 2
计算:
1 +1
+
1
+
1
+
1
+
1 + = 。
2 4 8 16 32 64
2
经典例题 3
我国宋代数学家杨辉在公元1261 年撰写了《详解九章算法》,他在这本著作中画了一个由数构成的三角形图,我们把它称为杨辉三角。仔细观察下图的杨辉三角,并回答问题。
(1)杨辉三角第8 行第2 个数是;
(2)观察图(2)中的线,你会发现左斜线的数之和等于下一行右面的数。如:1+2+3=6 ,照此规律,第8 行的第3 个数是。
(3)杨辉三角第1 行的所有数之和为1,第2 行的所有数之和为2,第3 行为4,第4 行为8,…,那么,第n 行的所有数之和是。
3
【参考答案】
经典例题1:1,2,3
练一练:4,7,1+ 3 + 5 + 7 + 9 +11 +13 +15 +17经典例题2:1
经典例题3:(1)7
(2)21
(3)2n-1
4