高斯小学奥数五年级上册含答案_第12讲_几何计数

合集下载

高斯小学奥数五年级上册含答案_逻辑推理二

高斯小学奥数五年级上册含答案_逻辑推理二

第十三讲逻辑推理二相信学们之前已经接触过一些有趣的逻辑推理题目,其中比较典型的一类题目就是让我们来判断问题的真假.还记得我们用什么方法来判断吗?对了,假设法!假设法就像是测谎仪,用它来测一测,就知道谁说的是真话,谁说的是假话了.除此之外,如果有两个人说的话正好相反,那么我就可以断定其中必然有一个人说的是真话,另一个人说的是假话.我们可以把这个方法称为矛盾分析法.好了,下面就开始我们的推理之旅吧!例题1.3位女神分别说了如下的话.雅典娜(智慧女神):“阿佛洛狄忒不是最美的.”阿佛洛狄忒(爱和美的女神):“赫拉不是最美的.”赫拉(天后):“我是最美的.”只有最美的女神说了真话,请问她是谁?「分析」阿佛洛狄忒和赫拉的话是互相矛盾的,据此可以推理出什么呢?懒懒和笨笨是两只小猪,一只说真话,一只说假话.而且它们一只是公的,一只是母的.懒懒说:“说谎的是母猪.”笨笨说:“说谎的不是母猪.”请问懒懒和笨笨谁是母猪?例题2.艾趣、艾吕和艾游三姐妹参加了去英国的旅行团.回国后,三人向朋友们分享去英国的经历:艾趣:“我们去了爱丁堡,没去湖泊区,但参观了北威尔士.”艾吕:“我们去了爱丁堡,也去了湖泊区,但没有参观北威尔士.”艾游:“我们没有去爱丁堡,但是去了北威尔士.”已知每个人都说了一句谎话,那么她们三人到底去了哪些景区?「分析」如果要用假设法,先根据谁的话来作假设会更简单一些?一位农夫建了一个三角形的鸡窝,三边都是等高的铁丝网.这位农夫在笔记本上做了如下记录:(1)面向仓库那边的铁丝网价钱:10美元;(2)面向水池那边的铁丝网价钱:20美元;(3)面向住宅那边的铁丝网价钱:30美元.而这三个价钱中有一个是错的.又知道每一边铁丝网的价钱都是10美元的倍数,且三边铁丝网的价钱互不相同.那么这位农夫一共花了多少钱买铁丝网?除了真假问题之外,还有一类题目是告诉我们一些条件让我们做出判断或计算,我们可以把这类问题称为条件推理问题.例题3.现在要从六个人中挑选几个去参加数学竞赛,有以下要求:(1)赵甲和钱乙这两人至少去一个;(2)赵甲和李丁不能都去;(3)赵甲、周戊和吴己这三个人中要去两人;(4)钱乙和孙丙要么都去,要么都不去;(5)孙丙和李丁要去一人;(6)如果李丁不去,周戊也不去.应该挑选哪几个人去?「分析」虽然这道题目不是真话假话问题,但是也可以用假设法来解决.根据第几个条件作假设会简单一些?A,B,C,D四名学生猜测自己的数学成绩.A说:“如果我得优,那么B也得优.”B说:“如果我得优,那么C也得优.” C说:“如果我得优,那么D也得优.”结果大家都没说错,但是只有两个人得优.谁得了优?例题4.热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛谁胜谁负?比分是多少?「分析」因为每个队都没有换过人,所以各队总分都是五个数的和.根据第二个条件和第五个条件可知,雷霆队有一个22分,热火队有两个22分.接下来继续推理就容易了.甲、乙、丙、丁四人一起打牌,每人的姓是赵、钱、孙、李中的一个.他们约好第一把赢的人可以从其他三人手中各拿100元;第二把赢的人可以从其他三人手中各拿200元;第三把赢的人可以从其他三人手中各拿300元;第四把赢的人可以从其他三人手中各拿400元.他们一共玩了4把,每人各赢了一次.又知道:(1)第一把赢的人是孙先生;(2)第二把赢的人是乙;(3)第三把赢的人是钱先生;(4)第四把赢的人是丙;(5)打牌之前李先生的钱最多,打牌后丁的钱最多.那么甲、乙、丙、丁分别姓什么?例5.鹿哼、雷婷、王萍和贺纯正在进行一场精彩的室内网球双打赛,通过下面观众的议论,我们知道以下信息:(1)鹿哼比雷婷年轻;(2)王萍比他的两个对手年龄都大;(3)鹿哼比他的搭档年纪大;(4)鹿哼和雷婷的年龄差距比王萍和贺纯的年龄差距更大.请讲这四位运动员按照年龄大小顺序排列,并且找出鹿哼的搭档是谁.「分析」这道题目与大小顺序有关系,可以先画出四个位置,然后根据题目中的条件把人放到位置上.例题6.桌上放着3红2蓝5个帽子.张三、李四和迟哼站成一排,须老师从桌上拿出3个帽子,分别戴到三个人的头上.排队的人都能看到前面的人头上帽子的颜色,但是看不到自己的(当然也看不到后面的人,但是三个人都知道帽子一共有3红2蓝).这时须老师问队伍最后面的张三是否知道自己帽子的颜色,张三说不知道.须老师又问中间的李四是否知道自己帽子的颜色,李四说不知道.想不到这时候站在最前面的迟哼,竟然非常有把握的说:“老师,我知道我帽子的颜色!”请问,迟哼头上的帽子是什么颜色的,他又是怎么知道的?「分析」张三的回答是不知道.那如果张三的回答是知道,能说明什么呢?第一次数学危机从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。

高斯小学奥数五年级上册含答案_第12讲_几何计数

高斯小学奥数五年级上册含答案_第12讲_几何计数

第十二讲几何计数漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。

旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。

分割田地大概有3条横线、4条竖线左右,可适当增减。

人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。

后面给出问题:在图中,有多少个“井”字?几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.三角形应该是很简单的几何图形了,我们先从三角形数起吧.例题1.下列图形中各有多少个三角形?「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无目的的举例,一定要注意按照一定的顺序来枚举,并注意寻找规律.那么,本题应该按照怎样的顺序去枚举呢?下图中有多少个三角形?例题2.右图中共有多少个三角形?「分析」对于这道题目,我们也首先想到枚举法.应该按照怎样的顺序去枚举呢?你能发现其中的规律吗?练习2:.请数出这个图形中有多少个三角形.下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解决问题的规律和方法.例题3.下列图形中,分别有多少个正方形?「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?例题4.在右图中(下列各小题中,长方形均包括正方形)(1)一共有多少个长方形?(2)包含“★”的长方形共多少个?(3)包含“☆”的长方形共多少个?(4)两个五角星都包含的长方形共多少个?(5)至少包含一个五角星的长方形共多少个?(6)两个五角星都不包含的长方形共多少个?★☆「分析」如果还用枚举法处理这道题目,就会越数越复杂.那有没有好一点的方法?我们换一个角度来思考这个问题.同学们可以想想看,怎样才能在图中画出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以了,也就是只需要画出两条横线和两条竖线.如右图所示.因此,长方形的个数就是选择两条横线和两条竖线的所有方法数.下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.例题5.右图中共有多少个长方形?(注意:长方形包括正方形)「分析」我们可以考虑下方3×5的长方形和右边6×2的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的.哪些重复计算了?容易看出来重复计算的是右下角重叠的3×2的部分,那么把这部分中的长方形减去就能得到最后答案.例题6.右图中有多少个平行四边形?「分析」题目中要求数出平行四边形的个数,那么你能发现图中有几类平行四边形吗?如何数出每一种的数量呢?数学家的墓志铭一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287年—公元前212年)作业1. 右图中共有多少个三角形?作业2. 右图中共有多少个三角形?作业3. 右图是由12个11⨯的小正方形组成的,数一数图中一共有多少个正方形.作业4. 右图是由15个11⨯的小正方形组成的,数一数图中一共有多少个长方形.(长方形包括正方形.)作业5. 在右图中(下列各小题中,长方形均包括正方形)(1)包含“★”的长方形共多少个? (2)包含“☆”的长方形共多少个? (3)两个五角星都包含的长方形共多少个?第十二讲几何计数例题1.答案:16;15详解:注意有序枚举:(1)左图中由一部分组成的三角形有6个,由两部分组成的三角形有3个,由三部分组成的三角形有6个,由六部分组成的三角形有1个,共计16个.(2)右图中由一部分组成的三角形有4个,由两部分组成的三角形有6个,由三部分组成的三角形有2个,由四部分组成的三角形有2个,由六部分组成的三角形有1个,共计15个.例题2.答案:78详解:恰当分类,有序枚举.图中的三角形可以分为两类,一类是尖朝上的,一类是尖朝下的.设最小的三角形边长为1.(1)尖朝上的:边长为1的三角形有123410+++=个;边长为2的三角形有1236++=个;边长为3的三角形有123410+++=个;边长为4的三角形有1236++=个;边长为5的三角形有123+=个;边长为6的三角形有1个.共计56个.(2)尖朝下的:边长为1的三角形有1234515++++=个;边长为2的三角形有1236++=个;边长为3的三角形有1个.共计22个.图中一共有78个三角形.例题3.答案:91,112详解:分别考虑边长为1、2、3、4、5、6的正方形各有多少个即可.左图有66554433221191⨯+⨯+⨯+⨯+⨯+⨯=个,右图有766554433221112⨯+⨯+⨯+⨯+⨯+⨯=个.例题4.答案:(1)756;(2)216;(3)240;(4)108;(5)348;(6)408详解:(1)7条横线选2条作为长,9条竖线选2条作为宽,有22792136756C C⨯=⨯=个.(2)含★的长方形上下左右边分别有3、4、3、6种选法,这样长方形有3436216⨯⨯⨯=个.(3)含☆的长方形上下左右边分别有4、3、5、4种选法,这样长方形有4354240⨯⨯⨯=个.(4)两个五角星都含的长方形上下左右边分别有3、3、3、4种选法,长方形有3334108⨯⨯⨯=个.(5)根据容斥原理,至少包含一个五角星的长方形有216240108348+-=个.(6)用排除法,两个五角星都不包含的长方形有756348408-=个.例题5.答案:135个详解:如图,下方阴影部分中一共有长方形224690C C⨯=个;右方阴影部分中一共有长方形227363C C⨯=个.其中右下方3×2长方形中的长方形被重复计算了,共有224318C C⨯=个.所以图中一共包含长方形906318135+-=个.例题6.答案:45个.详解:所有平行四边形一共有三种不同的方向:尖朝右、尖朝左和尖朝上,如图:这就提示我们可以按这个特点来分类,因为根据图形的对称性,这三种平行四边形的个数是一样多的.只需数出其中的一种,就能算出最后的答案了.下面我们来数尖朝上的平行四边形.所有这种平行四边形的边都是斜的,没有横线,所以要数它们的个数,可以把图中的所有横线都去掉,变成如下图形:这样一来图形就简单了,这个图里的平行四边形很容易数出来:最小的平行四边形有10个,两个小平行四边形拼成的有12个,三个小平行四边形拼成的有6个,四个小平行四边形拼成的有5个,六个小平行四边形拼成的有2个,共35个.而对于另外两种平行四边形,也可根据同样的方法数出,都是35个.因此原来图形中一共有353105⨯=个平行四边形.练习1.答案:8个;12个简答:(1)左图中由一部分组成的三角形有3个,由两部分组成的三角形有4个,由四部分组成的三角形有1个,共计8个.(2)右图中由一部分组成的三角形有5个,由两部分组成的三角形有4个,由三部分组成的三角形有2个,由五部分组成的三角形有1个,共计12个.练习2.答案:48个简答:由1个小三角形组成的三角形有151025+=个;由4个小三角形组成的三角形有10313+=个;由9个小三角形组成的三角形有6个;由16个小三角形组成的三角形有3个;由25个小三角形组成的三角形有1个;共有48个.练习3.答案:2470个简答:按正方形的大小分类,共有2222191817119203962470++++=⨯⨯÷=个.练习4.答案:(1)450;(2)144简答:(1)5条横线选2条作为长,10条竖线选2条作为宽,有225101045450C C⨯=⨯=个.(2)含黑点的长方形上下左右边分别有2、3、6、4种选法,这样长方形有2364144⨯⨯⨯=个.作业1.答案:10个简答:由一个部分组成的三角形有5个,由两个部分组成的三角形有4个,由三个部分组成的三角形有1个,共计10个.作业2.答案:14个简答:边长为1的有10个,边长为2的有4个,共计14个.作业3.答案:20个简答:正方形数目:边长为1的12个,边长为2的6个,边长为3的2个,共计20个.作业4. 答案:90个简答:长方形有2246C C 90⨯=个.作业5. 答案:(1)180个;(2)192个;(2)108个简答:(1)3354180⨯⨯⨯=个;(2)4443192⨯⨯⨯=个;(3)3343108⨯⨯⨯=个.。

高思竞赛数学导引-五年级第十二讲-余数学生版资料讲解

高思竞赛数学导引-五年级第十二讲-余数学生版资料讲解

第12讲余数内容概述掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1. 72除以一个数,余数是7.商可能是多少?2. 100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?3. 20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4. 4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.(1) 220除以7的余数是多少?(2) 1414除以11的余数是多少?(3) 28121除以13的余数是多少?7.810888888个⨯⨯⨯++⨯+ΛΛ除以5的余数是多少?8.一个三位数除以21余17,除以20也余17.这个数最小是多少?9.有一个数,除以3的余数是2,除以4的余数是1.请问:这个数除以12余数是几?10.100多名小朋友站成一列,从第一人开始依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?拓展篇1.1111除以一个两位数,余数是66. 求这个两位数.2.(1)4434421Λ42121421421421个除以4和125的余数分别是多少?(2)4434421Λ80821808808808个除以9和11的余数分别是多少?3.一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?4.自然数12222267-⨯⨯⨯⨯4434421Λ个的个位数字是多少?5.算式20072007200720072006321++++Λ计算结果的个位数是多少?6.一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?7.一个自然数除以19余9,除以23余7.这个自然数最小是多少?8.刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里有4只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?9.4434421Λ123123123123123个除以99的余数是多少?10.把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?11.有一个大于l 的整数,用它除300、262、205得到相同的余数,求这个数.12.用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,如果这个数大于1,那么这个数是多少?超越篇1.从l 依次写到99,可以组成一个多位数12345…979899.这个多位数除以11的余数是多少?2.算式43421ΛΛ72008777777个⨯⨯⨯++⨯+计算结果的末两位数字是多少?3.算式20077531⨯⨯⨯⨯⨯Λ计算结果的末两位数字是多少?4.有5000多根牙签,按以下6种规格分成小包:如果10根一包,最后还剩9根;如果9根一包,最后还剩8根;如果依次以8、7、6、5根为一包,最后分别剩7、6、5、4根.原来一共有牙签多少根?5.有三个连续的自然数,它们从小到大依次是5、7、9的倍数,这三个连续自然数最小是多少?6.请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.7.已知.0000940909421717!21CD AB 那么四位数ABCD 是多少?8.有一些自然数n ,满足:2n - n 是3的倍数,3n - n 是5的倍数,5n - n 是2的倍数,请问:这样的,n 中最小的是多少?。

高斯小学奥数五年级上册含答案_物不知数与同余

高斯小学奥数五年级上册含答案_物不知数与同余

第二十二讲物不知数与同余农孙子算经〉是南北朝时一邮董要的数 学苕诈,为我国古代 伸经十书》之一• 三人阳行七十稀 五树梅花廿一枝 七子团圆正半月 除百零五便得知除以3余N 除以5余汝除以7定2CP 2书中右一道暑皂的題目、我们称之 为“物不知数冋题“ •这過题的实质圧一个余数问翹, 我国古代的学者很早就研究这个 问题的斛注.我国明朝的数学 家程人位柱抱暑的 农算法统宗》中' 就用了四旬很通倍 的口诀暗承了竝且 的解法.IWWL 你能知道程大位先 生口诀里的盍思叫?故事中的余数问题就是我们今天要研究的 “物不知数” 问题,也称为中国古余数问题. 简 单来说,这类问题就是先知道了除数和余数, 反求被除数的问题. 通常在不同的题目中,余 数限制条件的数量也是不同的,但都是从一个条件入手,逐个条件的去满足.例题 1.(1)一个数除以 21 余 17,除以 20 也余 17.这个数最小是多少?第二小是多少? (2)一个数除以 11 余 7,除以 10 余 6.这个数最小是多少?第二小是多少? 「分析」(1)这个数除以 21和20都余 17,那么减去 17以后得到的差跟 21和 20有什么关 系呢:(2)除以 11和 10 的余数不一样,所以不能同时减去一个数了.反方向考虑一下?练习 1.4余 3,除以 5也余 3,这个自然数最小是多少?5余 1,除以 7余3,这个自然数最小是多少?例题 2.(1)一个三位数除以 8 余 3,除以 12 也余 3.这个三位数最小是多少? (2)一个三位数除以 6 余 1,除以 10 余 5.这个三位数最小是多少?「分析」 看起来和例题 1没有太多区别.不过要小心哦, 8和12 的最小公倍数是 8 12 96 吗?练习 2.一个三位数除以 4 余 3,除以 6 也余 3.这个三位数最大是多少?例题 3.(1)一个数除以 7余2,除以 11余 1.这个数最小是多少?(2)有一队解放军战士, 人数在 150 人到 200 人之间, 从第一个开始依次按 1,2,3, L ,9 的顺序报数,最后一名战士报的数是 3;如果按 1,2,3,L ,7 的顺序报数,最后一名 战士报的数是 4.请问:一共有多少名战士?「分析」 所求自然数要满足两个余数条件, 直接处理并不容易, 但我们可以先让它满足其中 一个余数条件,在此前提下满足另一个余数条件.练习3.一个三位数除以5余2,除以7余3.这个三位数最小是多少?1)一个自然数除以 2)一个自然数除以如果两个数除以同一个数,所得的余数相同,我们称这两个数同余•例如195除以9余6, 15除以9也余6,我们就说“ 195和15除以9同余”.我们之前总结的余数性质以及余数的可替代性都是在同余的前提下进行的,例如195与它的数字和除以9是同余的,1135与它的末两位数字除以4是同余的•而处理余数问题的方法,除了用余数性质、余数可替代性以及分解求余几种方法以外,我们还有一个极其有用的手段:转化成整除问题!195与15除以9的时候同余,195 15 180则是9的倍数;1135与35除以4的时候同余,贝U 1135 35 1100是4的倍数•也就是说:[如果两个数除以第三个数余数相同,则这两个数的差能被第三个数整除•反之亦然.例题4.(1)1024除以一个两位数,余数为23,那么这个两位数可能是多少?(2)100和84除以同一个数,得到的余数相同,但余数不为0•这个除数可能是多少?「分析」(1 )由被除数除数商L余数,被除数是1024,余数是23,说明除数和商要满足什么条件? ( 2)利用同余的定义就可以解决这个问题.练习4.(1 )用150除以一个整数,所得余数是15,请问:这个除数可能是多少?(2) 80和56除以同一个数,得到的余数相同,但余数不为0•这个除数可能是多少?例题5.刘叔叔养了400多只兔子.如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只; 如果每5只兔子关在一个笼子里,那么最后一个笼子里也有2只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只•请问:刘叔叔一共养了多少只兔子?「分析」兔子数量要满足哪些余数条件?例题6.把63 个苹果,90个桔子,130个梨平均分给一些同学,最后一共剩下25 个水果没有分出去.请问:剩下个数最多的水果剩下多少个?「分析」这些同学一共分了多少个水果?人数和分掉的水果数有什么关系?未来的数学家节选自《怎样解题》乔治波利亚未来的数学家应该是一个聪明的解题者,但仅仅做一个聪明的解题者是不够的. 在适当的时候,他应该去解答重大的数学题目,而首先他应该搞清楚他的天资特别适合于哪种类型的题目对他来说,工作中最重要的那部分就是回去再看一下完整的解答. 通过考察他的工作过程和最后的解答形式,他会发现要认识的东西真是千变万化,层出不穷.他可以深思题目的困难之处及决定性的观念,他可以尝试去了解是什么阻碍了他,又是什么最后帮助了他.他可以注意寻找简单直观的念头:你能一眼就看出它来吗?他可以比较和发展各种方法:你能以不同的方式推导这个结果吗?他可以尝试通过将当前的题目和以前的解过的题目作比较以使当前的题目更加清晰. 他可以尝试创造一些新题目,而这些新题目可以根据他刚刚完成的工作解答出来:你能在别的什么题目中利用这个结果或这种方法吗?如果他对解答过的题目尽可能地完全消化吸收,他就可以获得井然有序的知识,以备今后随时调用.和其他所有人一样,未来的数学家通过模仿和练习来学习. 他应该注意寻找正确的模范;他应该觉察到一个能激励人心的教师;他应该和一位能干的朋友竞赛. 然后,可能最重要的是,他不仅应该阅读通用的教材,还应阅读优秀作者的作品,直到他找到一个作者,其方式是他天生倾向于模仿的.他应该欣赏和寻求在他看来简单的或有启发性的或美的东西. 他应该解题,选择适合他思路的那些题目,思考它们的解答,并创造新的题目. 他应该通过这些方法及所有其他方法来努力做出他的第一个重大发现:他应该发现自己的好恶、趣味以及自己的思路.陶哲轩(1975-)澳籍华裔数学家,“菲尔兹”奖获得者. 13岁成为国际奥林匹克数学金牌得主. 20岁获得普林斯顿大学博士学位. 24岁成为加利福尼亚大学洛杉矶分校有史以来最年轻的正教授. 2006年,31岁时获得数学界的诺贝尔奖“菲尔兹”奖•目前已发表超过230篇学术论文.作业 1. 在小于50的数中,与67 除以11 同余的数有哪些?作业2. 一个自然数除以7余3,除以27余5,这个自然数最小是多少?作业3. 2025除以一个两位数,余数是75,这个两位数是多少?作业4. 1986和2011 这两个数除以同一个两位数,得到相同的余数,这个两位数是多少?作业 5. 韩信点兵:有兵四五百,五五数之余三,七七数之余四,九九数之余五.那么这队兵有多少人?第二十二讲物不知数与同余例题1. 答案:(1)17;437.(2)106;216详解:(1)这是一道余同的问题.这个数最小是17,第二小是[21,20] 17 437 .(2)这是一道缺同的问题.这个自然数加上4 即可被11 和10 整除,[11,10] 110 ,因此这个数最小为110 4 106 .第二小的是110 2 4 216 .例题2. 答案:(1)123.(2)115详解:(1)这是一道余同的问题.满足条件的数可表示为[8,12] n 3,其中n 为自然数.要求满足条件的最小三位数,应令n 为5,即[8,12] 5 3 123 .(2)这是一道缺同的问题.满足条件的数可表示为[6,10] n 5,其中n 为自然数.要求满足条件的最小三位数,应令n 为4,即[6,10] 4 5 115 .例题3. 答案:(1)23;(2)165详解:(1)采用逐步满足条件法•满足第二个条件的数为1, 12 , 23,……发现23同时满足第一个条件,因此这个数最小是23;(2)战士的人数除以9余3,除以7余4,满足这两个条件最小的数是39,不断加63,直到满足限制条件,最后得到165.例题4. 答案:(1)77、91;(2)16、8详解:(1)1024 23 1001 ,可知除数是1001 的约数.其中大于23的有77和91;(2)100 84 16,可知除数是16的约数,可能是1、2、4、8和16.但因为余数不为0, 只能是16和8.例题5. 答案:467详解:兔子数除以3余2,除以5余2,除以7余5.所有满足前两个条件的数为2 [3,5] n, 其中n为自然数,即2, 17, 32, 47,……其中47同时满足第三个条件•所有满足条件的数为47 [3,5,7] n,其中n为自然数.n取4时满足条件,为467.例题6. 答案:20 详解:从整体的角度出发考虑问题, 水果总数减去没有分出去的水果数, 得到的数应为学生数的倍数.63 90 130 25 258 , 258 的约数有1、2、3、6、43、86、129、258, 其中43满足条件.苹果剩下20个,桔子剩下4个,梨剩下1个,因此剩下个数最多的水果剩下20 个.练习1. 答案:(1)3.(2)31 简答:(1)这个自然数减去3以后是4和5的公倍数,所以最小是3;(2)这个自然数加上4 以后是5 和7 的公倍数,所以最小是31.练习2. 答案:999 这是一道余同的问题.满足条件的数可表示为[4,6] n 3,其中n 为自然数.要求满足条件的最大三位数,应令n 为83,即[4,6] 83 3 999.练习3. 答案:122简答:使用逐步满足条件法,满足第一个条件的数依次为2、7、12、17,17 正好除以7 余3,那么同时满足两个条件的数最小是17.然后依次为52、87、122.最小是三位数是122.练习4. (1)27、45、135;(2)24、12、6、3简答:(1)150 15 135,除数是135 的约数.其中大于15 的有135、45和27;(2)80 5624 ,除数是24 的约数,可能是1、2、3、4、6、8、12 和24.但要满足余数不为0,除数只能是3、6、12 和24.作业1. 答案:1,12,23,34,45 简答:除以11 的余数都是1.作业2. 答案:59简答:除以27余5的数有5、32、59、…,其中除以7余3的第一个数是59.作业3. 答案:78 简答:这个两位数是2025 75 1950的约数,其中比75 大的只有78.作业4. 答案:25 简答:这个两位数是2011 1986 25 的约数,只能是25.作业5. 答案:473简答:先列出除以9余5的数,从中找除以7余4的数,再从剩下的数中找除以5余3 的数.。

高斯小学奥数五年级上册含答案_列方程解应用题

高斯小学奥数五年级上册含答案_列方程解应用题

第二十四讲列方程解应用题---------------------------------------------------------------------方程是分析和解决问题的一种很有用的数学工具,利用方程我们可以解决生活、学习和生产中的很多实际问题.其思想如图所示:实际问题设未知数列方程数学问题(方程)解方程实际问题的答案检验列方程解应用题的方法和步骤数学问题的解步骤审题设元要求读懂题目、弄清题意、找出能够表示应用题全部含义的相等关系,分清已知数和未知数①设未知数②把所求的量用未知数表示③把各个量用含未知数的式子表示要注意的问题审题是分析解题的过程,解题程序中不用体现出来①设未知数一般是问什么,就直接设什么,即直接设元②直接设元有困难,可以间接设元出来列方程根据等量关系列出方程③设未知数时,必须写清未知数的单位方程两边所用的单位需一致解方程检验作答解出这个方程的解,求出未知数的值把方程的解代入方程检验,或根据实际问题进行检验写出答案,作出结论如果是间接设元,求出的未知数还需要利用其他算式得到所求的量检验的步骤在解题程序中不用写出来方程的解要符合实际情况,否则无解这一步在列方程解应用题中必不可少,是一种规范要求(练一练用含有字母的式子填空:1. (1)x 的 5 倍:_______; 2)x 的 k 倍:_______;2. 一块橡皮的单价是 x 元,笔盒的单价是橡皮的单价的 8 倍,那么笔盒的单价是_______元;3. 一辆摩托车的速度是 v 千米/小时,那么它 t 小时行驶的路程为_______千米;4. 某商店原有 5 袋大米,每袋大米为 x 千克,上午卖出 3 袋,下午又购进同样包装的大米 4 袋,进货后这个商店有大米_______千克.选择合适的量设为未知数,并列出方程:5. 环形跑道一周长 400 米,沿跑道跑多少圈,可以跑 3000 米?6. 一个梯形的下底比上底多 2 厘米,高是 5 厘米,面积是 40 平方厘米.求上底.7. 甲种铅笔每枝 0.3 元,乙种铅笔每枝 0.6 元,用 9 元钱买了两种铅笔共 20 枝,两种铅笔各买了多少枝?下来我们就来看看如何用一元一次方程解应用题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - 例题 1.一次考试,小高比萱萱高 6 分,但是比卡莉娅低 3 分,他们 3 人的平均分为 91 分.请问: 小高考了多少分?「分析」列方程的第一步是设未知数,本题中应该设什么为 x ?练习 1.甲数比乙数的 3 倍还少 6,两数的平均数是 43.那么乙数是多少?例题2.阿范和阿统吃饺子,阿范一共要吃90个,而阿统一共要吃100个.如果阿范每分钟吃3个饺子,阿统每分钟吃5个饺子,经过若干分钟后,阿范剩下的饺子数比阿统剩下的饺子数的2倍少5个.请问:这时阿范和阿统各吃了多少个饺子?「分析」如果设吃的饺子数为x,方程就会很不好列.不妨换个角度,设经过的时间为x分钟.练习2.箱子里有红、白两种玻璃球,红球数比白球数的3倍多2只.每次从箱子里取出7只白球和15只红球.经过若干次以后,箱子里剩下3只白球和53只红球.那么箱子里原有红、白球各多少个?例题3.给某班分苹果,第一组每人3个,第二组每人4个,第三组每人5个,第四组每人6个.已知第二组和第三组共有22人,第一组人数是第二组的2倍,第三组和第四组人数相等,总共分出去230个苹果.问该班一共有多少人?「分析」刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂.题目中虽然有四个组,但这四组人数之间有很多联系.如果某一组的人数知道了,其他各组的人数也就知道了.根据这一点,我们可以设出其中一组的人数,列方程求解.练习3.司机小王身上带有1元、2元、5元、10元四种面值的纸币共82元,其中1元与2元纸币共22张,5元和10元纸币共7张,2元纸币的张数是5元纸币张数的2.5倍.问:小王身上有多少张10元纸币?------------------------------------------------------------------------------------------看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会:原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少.只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.有些应用题中,如果只设一个未知数,有些未知量要表示出来就会比较困难.这时就需一个分数,分子与分母的和是 122,如果分子、分母都减去19,得到的分数约简后是 ,那所求的自然数 ……余 4 第一次商……余 1 17 第一次商 ……余 15 第二次商 ……余 7 2a要设两个未知数,列二元一次方程组来解题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题 4.墨莫去超市里买了一些士力架和德芙,共重 266 克,共花了 30 元.已知士力架每块 3 元, 德芙每块 2 元.每块士力架 35 克,每块德芙 14 克.那么墨莫各买了多少块士力架和德芙? 「分析」假设买了 x 块士力架,y 块德芙,那么这两个未知数满足哪些等量关系?练习 4.王老师抓了一群外星人,其中火星人有 2 个头 3 个脚,金星人有 3 个头 5 个脚,王老师数了 数,发现总共有 34 个头、54 个脚.那么请问王老师分别抓了多少个火星人和金星人?例题 5.15么原分数是多少?「分析」设原来的分子是 x ,那原来的分母就是 122 - x .再由另外一个已知条件,不难列 出方程求解.例题 6.如下图的短除式所示,一个自然数被 8 除余 1,所得的商被 8 除也余 1,第二次所得的商被 8 除后余 7,最后得到的商是 a .同时这个自然数被 17 除余 4,所得的商被 17 除余 15,最 后得到的商是 a 的 2 倍.求这个自然数.8 所求的自然数……余 1 1788a「分析」这是一个带余除法的问题,蕴含着等量关系: 被除数=除数 ⨯ 商+余数 .利用这 一等量关系以及图中的两个短除式,不难用字母 a 表示出原来的自然数(有两种不同表示方 式).“多送几份牛奶最近,动物们流行喝鲜奶,都在鲜奶公司定了份牛奶,鲜奶公司每天派小狗早早和巧巧送鲜奶到东西大街,早早负责送东边的住户,巧巧负责送西边的住户,两边住户数目一样多。

高斯小学奥数五年级上册含答案_物不知数与同余

高斯小学奥数五年级上册含答案_物不知数与同余

第二十二讲物不知数与同余- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -故事中的余数问题就是我们今天要研究的“物不知数”问题,也称为中国古余数问题.简单来说,这类问题就是先知道了除数和余数,反求被除数的问题.通常在不同的题目中,余数限制条件的数量也是不同的,但都是从一个条件入手,逐个条件的去满足.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.(1)一个数除以21余17,除以20也余17.这个数最小是多少?第二小是多少?(2)一个数除以11余7,除以10余6.这个数最小是多少?第二小是多少?「分析」(1)这个数除以21和20都余17,那么减去17以后得到的差跟21和20有什么关系呢:(2)除以11和10的余数不一样,所以不能同时减去一个数了.反方向考虑一下?练习1.(1)一个自然数除以4余3,除以5也余3,这个自然数最小是多少?(2)一个自然数除以5余1,除以7余3,这个自然数最小是多少?例题2.(1)一个三位数除以8余3,除以12也余3.这个三位数最小是多少?(2)一个三位数除以6余1,除以10余5.这个三位数最小是多少?「分析」看起来和例题1没有太多区别.不过要小心哦,8和12的最小公倍数是81296⨯=吗?练习2.一个三位数除以4余3,除以6也余3.这个三位数最大是多少?例题3.(1)一个数除以7余2,除以11余1.这个数最小是多少?(2)有一队解放军战士,人数在150人到200人之间,从第一个开始依次按1,2,3,,9的顺序报数,最后一名战士报的数是3;如果按1,2,3,,7的顺序报数,最后一名战士报的数是4.请问:一共有多少名战士?「分析」所求自然数要满足两个余数条件,直接处理并不容易,但我们可以先让它满足其中一个余数条件,在此前提下满足另一个余数条件.一个三位数除以5余2,除以7余3.这个三位数最小是多少?如果两个数除以同一个数,所得的余数相同,我们称这两个数同余.例如195除以9余6,15除以9也余6,我们就说“195和15除以9同余”.我们之前总结的余数性质以及余数的可替代性都是在同余的前提下进行的,例如195与它的数字和除以9是同余的,1135与它的末两位数字除以4是同余的.而处理余数问题的方法,除了用余数性质、余数可替代性以及分解求余几种方法以外,我们还有一个极其有用的手段:转化成整除问题!195与15除以9的时候同余,19515180-=则是9的倍数;1135与35除以4的时候同余,则1135351100-=是4的倍数.也就是说:- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.(1)1024除以一个两位数,余数为23,那么这个两位数可能是多少?(2)100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?被除数除数商余数,被除数是1024,余数是23,说明除数和商要满「分析」(1)由÷=足什么条件?(2)利用同余的定义就可以解决这个问题.练习4.(1)用150除以一个整数,所得余数是15,请问:这个除数可能是多少?(2)80和56除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?例题5.刘叔叔养了400多只兔子.如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里也有2只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?「分析」兔子数量要满足哪些余数条件?把63个苹果,90个桔子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?「分析」这些同学一共分了多少个水果?人数和分掉的水果数有什么关系?未来的数学家——节选自《怎样解题》乔治·波利亚未来的数学家应该是一个聪明的解题者,但仅仅做一个聪明的解题者是不够的.在适当的时候,他应该去解答重大的数学题目,而首先他应该搞清楚他的天资特别适合于哪种类型的题目.对他来说,工作中最重要的那部分就是回去再看一下完整的解答.通过考察他的工作过程和最后的解答形式,他会发现要认识的东西真是千变万化,层出不穷.他可以深思题目的困难之处及决定性的观念,他可以尝试去了解是什么阻碍了他,又是什么最后帮助了他.他可以注意寻找简单直观的念头:你能一眼就看出它来吗?他可以比较和发展各种方法:你能以不同的方式推导这个结果吗?他可以尝试通过将当前的题目和以前的解过的题目作比较以使当前的题目更加清晰.他可以尝试创造一些新题目,而这些新题目可以根据他刚刚完成的工作解答出来:你能在别的什么题目中利用这个结果或这种方法吗?如果他对解答过的题目尽可能地完全消化吸收,他就可以获得井然有序的知识,以备今后随时调用.和其他所有人一样,未来的数学家通过模仿和练习来学习.他应该注意寻找正确的模范;他应该觉察到一个能激励人心的教师;他应该和一位能干的朋友竞赛.然后,可能最重要的是,他不仅应该阅读通用的教材,还应阅读优秀作者的作品,直到他找到一个作者,其方式是他天生倾向于模仿的.他应该欣赏和寻求在他看来简单的或有启发性的或美的东西.他应该解题,选择适合他思路的那些题目,思考它们的解答,并创造新的题目.他应该通过这些方法及所有其他方法来努力做出他的第一个重大发现:他应该发现自己的好恶、趣味以及自己的思路.陶哲轩(1975-)澳籍华裔数学家,“菲尔兹”奖获得者.13岁成为国际奥林匹克数学金牌得主.20岁获得普林斯顿大学博士学位.24岁成为加利福尼亚大学洛杉矶分校有史以来最年轻的正教授.2006年,31岁时获得数学界的诺贝尔奖“菲尔兹”奖.目前已发表超过230篇学术论文.作业1.在小于50的数中,与67除以11同余的数有哪些?作业2.一个自然数除以7余3,除以27余5,这个自然数最小是多少?作业3.2025除以一个两位数,余数是75,这个两位数是多少?作业4.1986和2011这两个数除以同一个两位数,得到相同的余数,这个两位数是多少?作业5.韩信点兵:有兵四五百,五五数之余三,七七数之余四,九九数之余五.那么这队兵有多少人?第二十二讲物不知数与同余例题1.答案:(1)17;437.(2)106;216详解:(1)这是一道余同的问题.这个数最小是17,第二小是[21,20]17437+=.(2)这是一道缺同的问题.这个自然数加上4即可被11和10整除,[11,10]110=,因此这个数最小为1104106⨯-=.-=.第二小的是11024216例题2.答案:(1)123.(2)115详解:(1)这是一道余同的问题.满足条件的数可表示为[8,12]3⨯+,其中n为自然n数.要求满足条件的最小三位数,应令n为5,即[8,12]53123⨯+=.(2)这是一道缺同的问题.满足条件的数可表示为[6,10]5⨯-,其中n为自然数.要求满足条件的最n小三位数,应令n为4,即[6,10]45115⨯-=.例题3.答案:(1)23;(2)165详解:(1)采用逐步满足条件法.满足第二个条件的数为1,12,23,……发现23同时满足第一个条件,因此这个数最小是23;(2)战士的人数除以9余3,除以7余4,满足这两个条件最小的数是39,不断加63,直到满足限制条件,最后得到165.例题4.答案:(1)77、91;(2)16、8详解:(1)1024231001-=,可知除数是1001的约数.其中大于23的有77和91;(2)-=,可知除数是16的约数,可能是1、2、4、8和16.但因为余数不为0,1008416只能是16和8.例题5.答案:467详解:兔子数除以3余2,除以5余2,除以7余5.所有满足前两个条件的数为2[3,5]n+⨯,其中n为自然数,即2,17,32,47,……其中47同时满足第三个条件.所有满足条件的数为47[3,5,7]n+⨯,其中n为自然数.n取4时满足条件,为467.例题6.答案:20详解:从整体的角度出发考虑问题,水果总数减去没有分出去的水果数,得到的数应为学生数的倍数.639013025258++-=,258的约数有1、2、3、6、43、86、129、258,其中43满足条件.苹果剩下20个,桔子剩下4个,梨剩下1个,因此剩下个数最多的水果剩下20个.练习1.答案:(1)3.(2)31简答:(1)这个自然数减去3以后是4和5的公倍数,所以最小是3;(2)这个自然数加上4以后是5和7的公倍数,所以最小是31.练习2.答案:999这是一道余同的问题.满足条件的数可表示为[4,6]3⨯+,其中n为自然数.要求满n足条件的最大三位数,应令n为83,即[4,6]833999⨯+=.练习3.答案:122简答:使用逐步满足条件法,满足第一个条件的数依次为2、7、12、17,17正好除以7余3,那么同时满足两个条件的数最小是17.然后依次为52、87、122.最小是三位数是122.练习4.(1)27、45、135;(2)24、12、6、3简答:(1)15015135-=,除数是135的约数.其中大于15的有135、45和27;(2)-=,除数是24的约数,可能是1、2、3、4、6、8、12和24.但要满足余数805624不为0,除数只能是3、6、12和24.作业1.答案:1,12,23,34,45简答:除以11的余数都是1.作业2.答案:59简答:除以27余5的数有5、32、59、…,其中除以7余3的第一个数是59.作业3.答案:78简答:这个两位数是2025751950-=的约数,其中比75大的只有78.作业4.答案:25简答:这个两位数是2011198625-=的约数,只能是25.作业5.答案:473简答:先列出除以9余5的数,从中找除以7余4的数,再从剩下的数中找除以5余3的数.。

小学奥数知识体系之几何计数-四五年级组

小学奥数知识体系之几何计数-四五年级组

几何计数几何计数分类数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形.数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个.【例1】数出右图中有多少条线段练习1:数出右图中有多少个锐角练习2:数一数下面图中各有多少个三角形。

练习3:从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?【例题2】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习1:下图中共有____个正方形.练习2:图中有______个正方形.【例3】下面的55⨯和64⨯图中共有____个正方形.练习1:在图中(单位:厘米): ①一共有几个长方形?②所有这些长方形面积的和是多少?练习2:如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4 厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.【例4】如图,其中同时包括两个☆的长方形有 个.练习1:在下图中,不包含☆的长方形有________个.(6级)练习2:图中含有“※”的长方形总共有________个.(6级)练习3:由20个边长为1的小正方形拼成一个45 长方形中有一格有“☆”图中含有“☆”的所有长方形(含正方形)共有 个,它们的面积总和是 . (第六届走美决赛试题)作业题:1:如图是由18个大小相同的小正三角形拼成的四边形.其中某些相邻的小正三角形可以拼成较大的正三角形若干个.那么,图中包含“*”号的大、小正三角形一共有______个.※※*2:如图AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?3:图中共有多少个三角形?4:下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?。

五年级高斯奥数之几何计数含答案

五年级高斯奥数之几何计数含答案

第6讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?4.如图104和10-5,数一数,两个图形中分别有多少个三角形?5.如图10-6,在一个4x4的方格表中,共有多少个正方形?6.如图10-7,数一数图中一共有多少条线段?多少个矩形?7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?8.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、,、G为顶点且面积为1的三角形共有多少个?拓展篇1.如图10-12,数一数,图中有多少个三角形?2.如图10-13,数一数下面的三个图形中分别有多少个三角形.3.如图10-14,数一数,图中有多少个三角形?4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?7.如图10-18,数一数,图中共有多少个长方形?8.如图10-19,数一数,图中共有多少个平行四边形?9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?10.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?2.如图10-25,数一数,图中共有多少个三角形?3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?第10讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?解:1,4+3+2+1=10段2,4×1+3×2+2×3+1×4=20厘米2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?解:1,(1+2+3+4)×3=30根2,(1+3+5+7)+(1+2+3+1)+(1+2)+1=27个3,27-2-2-1=22个3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?解:1+4+1=6个4.如图104和10-5,数一数,两个图形中分别有多少个三角形?解:5+4+1+1+1=12个6×2+10×2=28个5.如图10-6,在一个4x4的方格表中,共有多少个正方形?解:42+32+22+12=30个6.如图10-7,数一数图中一共有多少条线段?多少个矩形?解:C53×4+C42×5=70条C52×C42=60个7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?解:C52×C42-C52×4=208.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?解:4×6+2×12=48个9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?解:C123-4×3-4-4=200个10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、F、G为顶点且面积为1的三角形共有多少个?解:3×2+4+2+1=13个拓展篇1.如图10-12,数一数,图中有多少个三角形?解:25+10+6+3+1+3=48个2.如图10-13,数一数下面的三个图形中分别有多少个三角形.解:10+4×5+5=35个35-6=29个35+6×2=47个3.如图10-14,数一数,图中有多少个三角形?解:35×2+3×5=85个4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)解:7+2+2+2+3+1=17个5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?解:4×4+3×3+2×2+1×1=30个6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?解:C102×C52=450个2×3×4×6=144个7.如图10-18,数一数,图中共有多少个长方形?解:15×6+21×3-6×3=135个8.如图10-19,数一数,图中共有多少个平行四边形?解:6×3+15+3×2+3+3=45个9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?解12×2+4×2+6×2+2+8+2=5610.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?解:9+4×2+2×2=21个11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?解:10+10+10+5+1=36个12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?解:6×7+8×2+8+4=70个超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?解:等边有:9+3+1+2=15个等腰有:3+2×6+6+3=24个共39个2.如图10-25,数一数,图中共有多少个三角形?解:C72×2+C31×2×4+1=67个3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?解:2×1×3×5=30个3×4×6+4×2×5×3-3×2×5=162个4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?解:4×4=16个5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?解:12×(4+3+2+1)=120个6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?解:4×8+4×4+2×3+4×2+1=63个7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?解:4×6+8×(3+1+3+1)+4×(3+3+2+5+2)=148个8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?解:(1)4个(2)4×10+2×4=48个(3)6×8+4×4+8+4×4+4=92个。

高斯小学奥数五年级上册含答案_余数的性质与计算

高斯小学奥数五年级上册含答案_余数的性质与计算

第二十一讲余数的性质与计算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -这一讲我们来学习余数问题.在整数的除法中,只有能整除和不能整除两种情况.当不能整除时,就会产生余数.一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r(也就是a b q r=⨯+), 0≤r<b;r=时,我们称a能被b整除;当0r≠时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商当0余数问题和整除问题是有密切关系的,因为只要我们去掉余数,就能和整除问题联系在一起了.余数有如下一些重要性质.基本性质:被除数=除数×商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)÷商;商=(被除数-余数)÷除数.余数小于除数.理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.用一个自然数去除另一个整数,商40,余数是16,被除数、除数的和是877,求被除数和除数各是多少?「分析」如果设除数为a,被除数可以表示为什么?练习1.甲、乙两数的和是2014,甲数除以乙数商99余14,求甲、乙两数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -我们之前学过一些特殊数(如2、3、4、5、7、8、9、11、13、25、99、125)的整除特性.这些数的整除特性稍加改造,即可成为求解余数的一类简便算法:(1)一个数除以2或5的余数,等于这个数的个位数字除以2或5的余数;一个数除以4或25的余数,等于这个数的末两位数除以4或25的余数;一个数除以8或125的余数,等于这个数的末三位数除以8或125的余数;(2)一个数除以3或9的余数,等于这个数的各位数字和除以3或9的余数;一个数除以99(包括11、33)的余数,等于将它两位截断再求和之后的余数;此外,求3和9的余数还可应用乱切的方法.(3)一个数除以11的余数,等于它的奇位数字和减去偶位数字和除以11的余数,如果奇位数字和比偶位数字和小,则先加上若干个11再减即可.(4)一个数除以7、11和13的余数,等于将它三位截断之后,奇数段之和减去偶数段之和除以7、11和13的余数,如果奇数段之和比偶数段之和小,则加上若干个7、11或13再减即可.这种利用整除特性来计算余数的方法叫做特性求余法......- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题2.(1)20132013除以4和8的余数分别是多少?(2)20142014除以3和9的余数分别是多少?「分析」根据4、8、3、9的特性,可以很快计算出结果.练习2.(1)20121221除以5和25的余数分别是多少?(2)20130209除以3和9的余数分别是多少?例题3.(1)123456789除以7和11的余数分别是多少?87654321呢?(2)360360360除以99的余数是多少?「分析」根据7、1、99的特性,可以计算出结果.在截断的时候要特别小心.练习3.201420132012除以13和99的余数分别是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -为了更好地了解余数的其它一些重要性质,我们再来做几个练习:(1)211除以9的余数是______;(2)137除以9的余数是______;(3)211137+的和除以9的余数是______; (4)211137-的差除以9的余数是______;(5)211137⨯的积除以9的余数是______; (6)2137除以9的余数是______. 比较上面的结果,我们发现余数还有一些很好的性质:这三条性质分别称为余数的可加性...、可减性...和可乘性....在计算一个算式的结果除以某个数的余数时,可以利用上述性质进行简算.例如计算33371580+⨯-的结果除以7的余数就可以像右侧这样计算.这一简算方法又称替换求余法...... 需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数.例如:在计算423317+除以6的余数时,利用“和的余数等于余数的和”,结果就变成了358+=,86>,所以还需要再次计算8除以6的余数是2,才是423317+除以6最后的余数.再比如:在计算423317⨯除以6的余数时,也会遇到35156⨯=>的情况,同样的还需要计算15除以6的余数是3,才是最终的结果.(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数或除数的倍数即可.例如:在计算423317-除以6的余数时,会发现结果变成了35-不够减.此时,只要再加上6,用6354+-=来计算即可.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.一年有365天,轮船制造厂每天都可以生产零件1234个.年终将这些零件按6个一包的规格打包,最后一包不够6个.请问:最后一包有多少个零件?「分析」最后一包的零件数实际上就是零件总数除以19的余数.33371580+⨯- 5213+⨯- 每个数都用它除以7的练习4.++除以111的余数是多少?(1)123456789-的结果除以22余数是多少?(2)2244686678- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -如果我们将“特性求余法”和“替换求余法”相结合,便可大大简化余数的计算.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题5.+⨯除以4、9的余数分别是多少?(1)877844923581368⨯除以7、11、13的余数分别是多少?(2)365366+367368369370「分析」要把结果算出来,再求余数,计算量很大.看看如何利用“替换求余”以及“特性求余”的方法来进行求解.例题6.(1)1002的个位数字是多少?20143除以10的余数是多少?(2)20143除以7的余数是多少?「分析」一个数的个位数字就是它除以10的余数,大家来找一下个位数字的变化规律.小熊分粽子今天是端午节,猴爸爸一大早就领着猴儿们去观看龙舟比赛。

高斯小学奥数五年级上册含答案_第12讲_几何计数

高斯小学奥数五年级上册含答案_第12讲_几何计数

第十二讲几何计数漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。

旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。

分割田地大概有 3 条横线、 4 条竖线左右,可适当增减。

人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。

后面给出问题:在图中,有多少个“井”字?几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.三角形应该是很简单的几何图形了,我们先从三角形数起吧.例题1下列图形中各有多少个三角形?「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无目的的举例,一定要注意按照一定的顺序来枚举, 并注意寻找规律?那么,本题应该按照怎样的顺序去枚举呢?下图中有多少个三角形?例题2 ?右图中共有多少个三角形?「分析」对于这道题目,我们也首先想到枚举法. 应该按照怎样的顺序去枚举呢?你能发现其中的规律吗?练习2:.请数出这个图形中有多少个三角形.下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解决问题的规律和方法?例题3.下列图形中,分别有多少个正方形?「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?例题4.在右图中(下列各小题中,长方形均包括正方形)(1 )一共有多少个长方形?(2)包含“★”的长方形共多少个?(3)包含“☆”的长方形共多少个?(4)两个五角星都包含的长方形共多少个?(5)至少包含一个五角星的长方形共多少个?(6)两个五角星都不包含的长方形共多少个?「分析」如果还用枚举法处理这道题目,就会越数越复杂?那有没有好一点的方法?我们换一个角度来思考这个问题?同学们可以想想看,怎样才能在图中画出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以了,也就是只需要画出两条横线和两条竖线?如右图所示?因此,长方形的个数就是选择两条横线和两条竖线的所有方法数.下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.例题5.右图中共有多少个长方形?(注意:长方形包括正方形)「分析」我们可以考虑下方3拓的长方形和右边6疋的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的. 哪些重复计算了?容易看出来重复计算的是右下角重叠的3X2的部分,那么把这部分中的长方形减去就能得到最后答案.例题6?右图中有多少个平行四边形?「分析」题目中要求数出平行四边形的个数, 那么你能发现图中有几类平行四边形吗?如何数出每一种的数量呢?“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”?)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”?这阿基米德(公元前287 年—公元前212年)一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:是一句既刻划螺线性质又象征他对数学热爱的双关语.“不要弄坏我的圆”?)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻阿基米德(公元前287 年—公元前212年)一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”?这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287 年—公元前212年)一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二. 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献. 甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287年—公元前212年)一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”?)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”?这阿基米德(公元前287 年—公元前212年)一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:是一句既刻划螺线性质又象征他对数学热爱的双关语.“不要弄坏我的圆”?)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一阿基米德(公元前287 年—公元前212年)一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”?这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287 年—公元前212年)。

【K12学习】五年级全套(上下册)名校奥数教程教案及试题(含答案)

【K12学习】五年级全套(上下册)名校奥数教程教案及试题(含答案)

五年级全套(上下册)名校奥数教程教案及试题(含答案)文第一讲数的整除问题数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b,除得的商c正好是整数而没有余数,我们就说,a能被b整除。

记作b|a.否则,称为a不能被b整除,,记作ba。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|。

例如:如果2|10,2|6,那么2|,并且2|。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b 与c的积能整除a。

即:如果b|a,c|a,且=1,那么bc|a。

例如:如果2|28,7|28,且=1, 那么|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

文例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数.下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3整除的数的特征:各个数位数字之和能被3整除。

④能被4整除的数的特征:末两位数能被4整除。

例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.⑤能被8整除的数的特征:末三位数能被8整除。

小学奥数:几何计数一.专项练习及答案解析

小学奥数:几何计数一.专项练习及答案解析

7-8-1几何计数(一)教课目的掌握数常用方法;熟一些数公式及其推方法;依据不一样目灵巧运用数方法行数.本主要介了数的常用方法枚法、数法、形法、插板法、法等,并渗透分数和用容斥原理的数思想.知识重点一、几何计数在几何形中,有多风趣的数,如算段的条数,足某种条件的三角形的个数,若干个分平面所成的地区数等等.看起来仿佛没有什么律可循,可是通真分析,是能够找到一些理方法的.常用的方法有枚法、加法原理和乘法原理法以及推法等.n条直最多将平面分红223⋯⋯n(n2n2)个部分;n个2最多分平面的部分数n(n-1)+2;n个三角形将平面最多分红3n(n-1)+2部分;n个四形将平面最多分红4n(n-1)+2部分⋯⋯在其余数中,也常用到枚法、加法原理和乘法原理法以及推法等.解需要仔、合所学知点逐渐求解.摆列不与参加摆列的事物相关,并且与各事物所在的先后序相关;合与各事物所在的先后序没关,只与两个合中的元素相关.二、几何计数分类数段:假如一条段上有n+1个点(包含两个端点)(或含有n个“基本段”),那么n+1个点把条段一共分红的段数n+(n-1)+⋯+2+1条数角:数角与数段相像,段形中的点似于角形中的.数三角形:可用数段的方法数如右所示的三角形(法),因DE上有15条段,每条段的两头点与点A相,可构成一个三角形,共有15个三角形,同一在BC上的三角形也有15个,所以中共有30个三角形.数方形、平行四形和正方形:一般的,于随意方形(平行四形),若其横上共有n 条段,上共有条段,中共有方形(平行四形)个.m mn例题精讲模块一、简单的几何计数【例1】七个同的如右搁置,它有_______条称.7-8-1.几何计数(一).题库题库版page1of10【考点】简单的几何计数【难度】1星【题型】填空【重点词】迎春杯,六年级,初赛,试题【分析】如图:6条.【答案】6条【例2】下边的表情图片中:,没有对称轴的个数为()(A)3(B)4(C)5(D)6【考点】简单的几何计数【难度】2星【题型】选择【重点词】华杯赛,初赛,第1题【分析】经过观察可知,第1,2,5这三张图片是有对称轴的,其余的5张图片都没有对称轴,所以没有对称轴的个数为5,正确答案是C。

高斯小学奥数五年级上册含答案_比例应用题

高斯小学奥数五年级上册含答案_比例应用题

第十七讲比例应用题在研究两个量之间的关系时,经常用到和的关系、差的关系以及倍数关系.之前我们学过的和差倍问题就是关于这些关系的.而倍数关系还有一种比较常见的表现形式,就是比的关系.比如,甲有3个苹果,乙有2个苹果,我们可以说甲的苹果是乙的1.5倍,也可以说甲和乙的苹果数之比是3:2,读作3比2.如果甲有6个苹果,乙有4个苹果,甲的苹果仍然是乙的1.5倍,甲和乙的苹果数之比是6:4.我们发现,比的关系和倍数关系可以如下转化:由此可见,比的概念与除法的概念密切相关,我们定义:两个数相除又叫做这两个数的比.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以比的后项所得的商叫做比值.例如:请你想一想:比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数(0除外),比值不变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2.像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项,分别是两个内项和两个外项.在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.在任意一个比例中,两个外项的积等于两个内项的积.即:3:7比的后项比号比的前项比值3377=÷=比值通常用分数表示,也可以用小数或整数表示.比的关系 3:2 6:4倍数关系 1.5倍 1.5倍64 1.5÷=在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5份,哈密瓜有4份.(1)卡莉娅和萱萱一共买了50块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200克的草,那么小山羊吃了多少克的草?1. 求比值:2:5 =________;7:3 =________;10:4=________.2. 把比化成最简整数比:6:15 =________;8:12=________;0.2:0.5 =________.3. 如果34a b ,那么a :b =( ):( );4. 我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128厘米,则长是________厘米.练一 练例题2.红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」如何通过师生的人数比求出学生的总人数?又如何利用男、女比例,求出男、女生各有多少?把这两个问题搞清楚了,本题也就解决了.512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系,还可以表示多个量之间的倍数关系.我们把两个数之间的比称为简单比,多个数的比称为连比.简单比与连比之间可以互相转化.如果甲:乙=2:3,乙:丙=5:4,那么甲:乙:丙是多少?例题3.机器人制造厂一月份与二月份生产机器人的个数比为4:5.后来改进生产技术,三月份生产的机器人的个数与二月份的产量之比为5:3. (1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了78个机器人.请问,这家工厂第一季度共生产多少个机器人?「分析」题目中给出了两个比,这两个比之间存在什么样的关系呢?你能通过这两个比求出一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学甲 乙 丙 2 : 35 : 410 : 15 : 12甲:乙:丙=10:15:12五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题,我们通常要从题中找到不变量,根据它来统一份数.我们来看看下面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题4.慢羊羊村长开了一间学校,招了好多小羊和小狼,上学期小羊和小狼的数量比为1:3,新学期时又转来了20只小羊,导致开学的时候小羊和小狼的数量比变为3:5,那么开学时一共有多少只小羊?「分析」题目中也给出了两个比,这两个比之间存在什么样的关系?我们能像例1那样,把上学期的小羊和小狼设成1份和3份,这学期的设成3份和5份吗?史蒂文森高中去年男生和女生的人数比为5:3,今年转来了200名男生,使得女生和男生的人数比变为1:2,那么今年史蒂文森高中一共有多少名学生?例题5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是360厘米.甲木棒在水面上、下的长度之比为3:1,乙木棒在水面上、下的长度之比为4:3,丙木棒在水面上、下的长度之比为2:3.请问:水深是多少厘米?甲乙丙水面水深「分析」题目中的三个比涉及到了甲、乙、丙三根木棒的水上部分和水下部分,它们之间有公共的量吗?例题6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

高斯小学奥数五年级上册含答案_直线形计算中的倍数关系

高斯小学奥数五年级上册含答案_直线形计算中的倍数关系

迄今为止,同学们已经学会了很多图形计算面积的方法. 在计算这些面积的时候, 只要 知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形 的长和宽即可利用长方形的面积 长 宽进行计算•但很多时候,题目中并不给出长和宽, 那怎么来求面积呢?我们来看下面这个例题.例题1.如图,有9个小长方形,其中的 5个小长方形的面积分别为 4、 12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗? 对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于 它们宽(长)之比.例如:如图所示的长方形 ABCD 与长方形BEFC 宽BC 相同,那么 长方形ABCD 的面积:长方形BEFC 的面积 AB: BE .如图,有7个小长方形,其中的 5个小长方形的面积分别为 20, 4, 6, 8,10平方厘米.求阴影长方形的面积是多少平方厘米? 2046 810从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利 用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异. 我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.F rz 丄 r D 20n 8、过三角形一个顶点的直线将三角形分为两个小三角形, 则这两个小三角形面积之比等于该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍.那么三角形ABE的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC中,D为AB的中点,E为BC的中点,ABC的面积是120平方厘米,那么三角形DEF的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分. 比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3.如图,把三角形DEF的各边分别向外延长1倍后得到三角形ABC,已知三角形DEF的面积为1,那么三角形ABC的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系•但是我们所求的是三角形DEF的面积,而已知的是三角形ABC的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?三角形ABD的面积:三角形ADC的面积BD : DCF为BE中点,如果三角形如图,把三角形DEF的各边分别向外延长1倍、2倍、3倍后得到三角形ABC,已知三角形DEF 的面积为1,那么三角形ABC的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4.如图,E是AB上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC的面积是“1”份,那么梯形ABCD的面积就是“5”份•接着可以看看“E是AB上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边 BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系. 例题5.把一个正方形的相邻两边分别增加 2厘米和4厘米,结果面积增加了 50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、 ③三个长方形•其中,③的长和宽分别为 4、2,可以求出它的面积•那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6.如图,直角三角形 ABC 套住了一个正方形 CDEF , E 点恰好 在AB 边上.又已知直角边 AC 长20厘米,BC 长12厘米,那么 正方形的边长为多少厘米?「分析」注意到EF 垂直于AC , ED 垂直于BC .我们可以连接 CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而 它们的高相等.我们的目标就是求这个高. ①② ③4欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。

高思五上第十二讲例题四思路

高思五上第十二讲例题四思路

高思五上第十二讲例题四思路
高思数学五上第十二讲例题四是一道关于分数乘法的题目。

题目要求找出所有分子为1,分母为正整数,且值为负数的分数。

假设这个分数是 1/n,其中 n 是一个正整数。

根据题目,我们可以建立以下方程:
1. 分子是 1,即 1/n 的分子是 1。

2. 分母是正整数,即 n > 0。

3. 值为负数,即 1/n < 0。

用数学方程,我们可以表示为:
1) 分子 = 1
2) 分母 = n > 0
3) 值 = 1/n < 0
现在我们要来解这个方程组,找出符合条件的 n 的值。

计算结果为: [{n: -1}]
所以,所有分子为1,分母为正整数,且值为负数的分数是:1/-1。

高斯小学奥数五年级上册含答案_整除问题进阶

高斯小学奥数五年级上册含答案_整除问题进阶

第二讲整除问题进阶例题1. 答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有□2 0 O是99的倍数,只能是99 •两个空中先后要填1和7.例题2. 答案:123483789详解:设这个九位数为1234ab789,两位截断求和1 23 b7 89 160 ba是99 的倍数,只能是198 .所以a=8, b=3.例题3.答案:6详解:利用7的整除特性,口89 59 □30能被7整除,只能填6.例题4.答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|兀帀就可以了.空格中要填5.例题5. 答案:768768详解:形如abcabc一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6. 答案:20999详解:利用数字谜,从后往前逐位确定.313913 232323239 f39 f 739626269 999 99999999练习1. 答案:6237简答:两位截断后的和是99 .练习2. 答案:12327678简答:两位截断后的和是198.练习3.答案:5712 或5782简答:利用7的整除特性,右2与5的差是7的倍数,空格中可以填1或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下匚•它是13的倍数, 那么空格中只能填0.作业1.答案:7 的倍数有7315, 58674, 360360; 13 的倍数有325702, 360360简答:牢记7和13的判断方法.作业2.答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知和6能被7整除,框中填5满足条件.作业4.答案:9简答:应用三位截断,可知8C 能被7和13整除,即8C 是91的倍数,框中填9 满足条件.作业5.答案:3简答:应用三位截断,可知口3能被7整除,框中填3满足条件.第二讲整除问题进阶厂我只能填在中同、怎样才能保证是11的倍数呢7 /"我翌填在白位和、个位上+怎么填才好呢?墨莫和小高在黑板前玩一个填三位数的游戏.如果填岀的三位数是H的倍数,那么小高就ST, 如果不是11的倍数则墨莫嬴.观察小高和墨英的话,逆冇必胜的策略上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等•现在我们再来学习一些新的判断方法.一、截断作和六位数L_l2003LJ能冋时被9和11整除.这个六位数是多少?皿U 能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数23 能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数123口口678能被99整除,这个八位数是多少?、截断作差阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小咼写一个一位数放在59与89之间辩需一金右佶豹kal I PQ估徂仪金右佶貓■台次朮7敕阵洁白•小直官的貓■具虫/卜:【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.四位数5^[2能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.25个5 25个9变得简短一些.因为 1001是13的倍数,而555555、999999分别是555、999与1001的乘 积,说明它们都是13的倍数.那我们是不是可以去掉这个 51位数上的一些5和9,并仍然 保证它能被13整除?已知多位数[1L 1 {33L 3能被13整除,那么中间方格内的数字是多少?2010 个 12010 个 3【分析】能被6, 7, 8整除的数有什么特点呢?最难把握的在于这个六位数能被 7整除, 我们应该怎样安排数字才能使得它的前三位与后三位的差能被 7整除呢?题目只要求我们 写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.【分析】在本题中,55L 35^992L39能被13整除.这个数的位数太多,我们可以想办法使它用数字6, 7, 8各两个,要组成能同时被6, 7, 8整除的六位数.请写出一个满足要求的六位数.【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑•我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积•接下来,大家想到该怎么办了吗?枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946〜1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业i1. 在7315, 58674, 325702 , 96723 , 360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33 能同时被9和11整除,这个四位数是多少?3. 四位数2^8能被7整除,那么这个四位数是多少?4. 已知多位数81口154258切2l§8 (2012个258)能同时被7和13整除,方格内的数字是2012 个258多少?5. 已知多位数[1L 1 03L 3能被7整除,那么中间方格内的数字是多少?2011 个1 2011 个3。

高斯小学奥数五年级上册含答案_分数应用题

高斯小学奥数五年级上册含答案_分数应用题

22第十六讲 分数应用题在三、四年级的时候, 同学们学习了 “和差倍”问题.在这一讲,继续来学习 “和差倍” 问题.但不同的是,今天的学习中,我们将引入“分数倍”的概念.和“整数倍”一样, “分 数倍”也是一种倍数关系,唯一的区别是用分数来表示.我们举一个例子:卡莉娅买了 20 个苹果, 10 个桔子,容易知道,卡莉娅买的苹果数量是桔子的 2 倍,那桔子是苹果的几倍 11 呢?同样的,用一个除法算式来计算: 10 20 ,即桔子的数量是苹果的 倍,或者桔22 11子的数量是苹果的 1 .我们把分数倍,比如前面的“ 1 ”,称为 分率 .221注意,每一个分率都有一个对应的总量.例如,桔子的数量是苹果的 1 ,在这里,分211率“ 1 ”所对应的总量是苹果总数, “ 1 ”表示的是苹果总数的一半.如果我们将苹果的数量设为“ 1”份,那桔子的数量就为“ 1”份.通常,将分率所对应的总量设为“1”份,2也就是此分率所对应的单位“ 1”.在计算分数应用题的时候,一定要首先找到分率所对应的单位“ 1”.当知道单位“ 1”的数量时,计算分率的对应数量很容易.例如,卡莉娅有20 个苹果,11她的桔子数量是苹果数量的,那卡莉娅就拥有20 10 个桔子.那知道了分率的对应22量,如何来求单位“ 1”呢?请熟记公式:单位“1”= 分率对应量分率2 例如,小高有30 张动物卡,他的动物卡是植物卡数量的2,那么他的植物卡有多少张52呢?列算式计算:30 2 75张,即小高有75 张植物卡.一般来说,每一个分率都会有一5个数量和它对应(包括单位“ 1”),我们将这种对应关系称为量率对应.找到量率对应,是解决分数应用题的关键.(1)小高有100个梨,他把其中的21送给了墨莫,那么小高送给了墨莫 __________ 个梨.(2)卡莉娅有20 个苹果,她把其中的4送给了萱萱,那么卡莉娅送给了萱萱5_______ 个苹果.(3)小高有高思积分360 分,是墨莫的积分的3,则墨莫有高思积分___________分.(4)卡莉娅今年10 岁,是小山羊的2,那么小山羊今年____________ 岁.54例题 1.小高买来一些巧克力,和墨莫、卡莉娅一起吃,不一会便把所有巧克力吃光了.墨 23莫吃了全部巧克力的 2 ,卡莉娅吃了全部巧克力的 3 ,小高吃了 9 块.请问小高一共买来5 10多少块巧克力?「分析」 小高吃的巧克力占全部的几分之几呢?口袋里装着红、黄、绿三种颜色的球.其中红球占总球数的 1 ,黄球占总球数的 1,绿34 球有 50 个.口袋里一共有几个球?在例题 1 中,容易找到分率与数量的对应. 但有的题目并不直接给出分率所对应的数量, 那就需要同学们仔细寻找和计算,完成量率对应.11例题 2.有一堆砖,搬走总数的 1 后又运来 306 块.这时这堆砖比最开始还多了 1.这堆砖 45 原来有多少块?「分析」 这道题中只有一个具体的量: 306 块砖,那么我们就应该去寻找它所对应的分率.1小言在练毛笔字.第 1 个小时结束的时候,还差 1才完成练字计划.第 2 个小时,小31言又写了 84 个毛笔字, 结果总的练字数超过了练字计划的 1.那么小言计划写多少个字?五年级原来有学生325人,新学期男生增加25人,女生减少了1,结果总人数增加了16 人.请「分析」题目条件虽然比较多,好在分率只有一个,同学们能不能看出“ 1”这个分率是20相对于哪个单位“ 1”来说的?它对应的又是哪个量呢?上届校运动会共有250 名同学报名参加.本届校运动会的报名统计显示,男生减少了1人,而总人数却增加了 4 人,原因是女生增加了1.那么本届校运动会有多少女同学报名?20在上面的分数应用题中,每题中分率所对应的单位“1”都是统一的,便于我们进行分率的加减.但如果题目中出现的分率所对应的单位“1”并不统一,又该如何处理呢?甲、乙两城相距多少千米?22分析」第二天走的“ 2”是全部路程的2吗?如果不是,它应该是全部路程的几分之几?33小明看一本书,第一天看了全书的1,第二天看了剩下的2,还剩下144页没有看.问35这本书共有多少页?现有苹果、桔子、梨三种水果各若干个,苹果的数目是其它两种水果总数的5是其它两种水果总数的5,梨有26 个.这些水果一共有多少个?163 ;玩了若干局后,阿5 呆赢了阿瓜的20张牌,此时阿呆手里的牌数反而是阿瓜手里牌数的7.请问:11,桔子的数目6阿呆和阿瓜一起玩游戏牌.开始时阿呆手里的牌数是阿瓜手里牌数的分析」已知条件中又有好几个分率,它们对应的单位“1”也不一样,需要将它们统阿呆此时一共5多少张牌?「分析」题目中的两个分率,都是以墨莫手里的牌数作为单位“ 1”,但墨莫手里的牌数前后不一样,需要将两个分率统一.丢番图的墓志铭古希腊的大数学家丢番图。

高斯小学奥数五年级上册含答案_直线形计算中的比例关系

高斯小学奥数五年级上册含答案_直线形计算中的比例关系

J望 昆大侠 溝了!这个故事 说起来就久远 了■ ■ ■ ■ 1■律!□-5T L不打里思与蔡川因为这一战攀道剑鮒眾翳胡请1乍亦第十八讲 直线形计算中的比例关系很久以前.青一场n惊江 鬭的人战.匚 原大侠望昆与 魔救蹌一高手 黎川相约在华 山之昴决斗.苓苓「这个飞繚是 怎么来的呼这就是 ■小黎飞镖" 的来由了!望昆用尽力■击出一 劃”正好打在•小養飞 *JT 上,井在无星不轉 的飞傑上留下了一道削*决斗的情况十幷滋 熱.熾后黎川发出了自 己的绝招•小柴飞象, 打向了箋昆.在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系, 中的基本结论.当两个三角形同高或等高的时候,它们面积的比等于对应底之比.如图所示,对于三角形ABD与三角形BDC ,它们有共同的高BH ,可知三角形ABD的面积AD 三角形BDC的面积DC °例题1.如图,AE:EB=3:2, CD:DB=7:5,三角形ABC的面积是60,求三角形AED的面积.「分析」图中是否有等高的三角形?练习1.如图,CE : AE 2:5 , CD : DB 7:5三角形ABC面积为120,求三角形AED的面积.在前面的漫画中我们认识了“小黎飞镖” •把“飞镖”立起来(如图),标好字母,A 会发现两个三角形:三角形ADE与三角形ABC •这两个三角形有一个公共的角A,并且■'角A的两边AD、AE分别在AB、AC上.对于符合这种情况的三角形ADE与三角形ABC, 我们称之为“共角三角形” . DF面我们复习一下其AB对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:在“小黎飞镖”中,有三角形ADE的面积AD AE .(同学们,可以想一想如何来证明这三角形ABC的面积AB AC个结论.提示:连结四边形BDEC的一条对角线)例如:如果在“小黎飞镖”中,D点是AB上靠近B的3等分点,E点是AC上靠近AAD 2 AE 1的3等分点,那么,,那么三角形ADE的面积就是三角形ABC面积的AB 3 AC 32 1 23 3 9 .有了这个结论,在解决一些问题时,就方便很多了•请看下面的问题.例题2.如图,在三角形ABC中,AD的长度是BD的3倍,AC的长度是EC的3倍.三角形AED的面积是10,那么三角形ABC的面积是多少?「分析」△ ADE占厶ABC的几分之几?应该怎么利用鸟头模型来计算?练习2. 积是8, 三角形ABC中,BD的长度是AB的丄,AE的长度是AC的1 .三角形AED的面4那么三角形ABC的面积是多少?例题3•如图,已知长方形ADEF的面积是16, BE=3BD, CE=CF .请问:三角形BEC的面积是多少?「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?练习3 .如图,长方形 ABCD 的面积是48, BE:CE=3:5 , DF:CF=1:2 .三角形CFE 的面积是接着,我们来看一看在任意四边形中三角形之间的面积关系. 如图,对于一个任意的四边形ABCD ,连结对角线 AC 和BD ,将整个四边形分成 本结论,我们可以得到如下关系:例题4.如图,某公园的外轮廓是四边形 ABCD ,被对角线AC 、BD 分成4个部分.三角形BOC 的面积是2平方千米,三角形 COD 的面积是3平方千米,三角形 AOB 的面积是1平 方千米.如果公园由大小为 6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多 少平方千米? 「分析」△ BOC 、A COD 和厶AOB 的面积都知道了,那么△ AOC 的面积是多少呢?练习4.四边形ABCD 中,AC 、BD 两条对角线交于 O 点,三角形 ABO 的面积为6,三角 形AOD 的面积为8,三角形BOC 的面积是15,那么四边形 ABCD 的面积是多少?4个小三角形,由等高三角形的基BO DO§S2 §4 §3AO S ( S, CO S 4§3§i S 4 §2 §3 3 S 2 §1 S 3§1 S 3§>§4D「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?例题6 .图中四边形 ABCD 的对角线AC 和BD 交于0点,如果△ ABD 的面积是30平方厘 米,△ ABC 的面积是48平方厘米,△ BCD 的面积是50平方厘米.请问:△ BOC 的面积是 多少? 「分析」题目中给出了 3个大三角形的面积, 能不能找出四个小三角形之间的面积关系呢?1例题5.如图,△ ABC 的面积是36,并且AE AC , CD3的面积.1BC , BF 】AB ,试求△ DEF 4 5BC 0三角形中的五心重心:三角形各边上的中线交于一点,称为三角形重心;垂心:三角形各边上的高交于一点,称为三角形垂心;外心:三角形各边上的垂直平分线交于一点,称为三角形外心;内心:三角形三内角平分线交于一点,称为三角形内心;旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.锐箱三劑形金第三箱形註第三垢形三角形的垂心三角形的旁心三角形的内心三朿形附W21.如图,△ ABC 中,BD 的长度是AB 的,如果△ ABC 的面积为15,那么3△ ADC 的面积是多少?如图所示,在长方形 ABCD 中,DE CE , CF 2BF ,如果长方 形ABCD 的面积为18,那么阴影部分的面积是多少?如图,四边形 ABCD 中,AC 、BD 两条对角线交于 0点,△ ADO的面积为30, △ ABO 的面积为6,^ DOC 的面积是20,那么四边形 ABCD 的面积是多少?2. 3. 如图,AE : EB 4:3 , CD : DB 形AED 的面积是多少?如图,AD:DB 1:4 , AE: EC ADE 的面积是多少?3:1 ,三角形ABC 的面积是84,1:5,如果△ ABC 的面积是120, 三角那么△4.5.B F C第十八讲直线形计算中的比例关系例题1.答案:15详解:因为三角形ACD与三角形ADB同高,所以S ACD :S ADB CD: DB 7:5,所以角形ADB面积为25 ;同理,三角形AED与三角形BED等高,所以S AED : S BED AE:EB 3: 2,所以三角形AED面积为15.例题2.答案:20详解:AD是AB的3, AE是AC的-.根据鸟头模型,有厶ADE面积是△ ABC面积的4 33 2 1.那么△ ABC的面积是20.4 3 2例题3.答案:3详解:连结DF,根据鸟头模型,可知△ BCE面积是△ DEF面积的1 3.那么△4 2 81 3BCE的面积是16 3 .2 8例题4.答案:0.6详解:由题意,S BOC : S COD BO :OD S BOA : S DOA ,三角形BOC面积为2平方千米,三角形COD面积为3平方千米,三角形BOA面积为1平方千米,则三角形AOD面积是1.5平方千米,陆地总面积 6.9平方千米,则人工湖面积为 2 3 1 1.5 6.9 0.6平方千米.例题5.答案:15详解:由鸟头模型可得,S AEF36 4 148S BFD 36—3275 35545124827SCDE36 -6, S DEF 36615 .4355例题6.答案:30详解:AO:CO §AB D:S BCD 3:5,所以S BOC S ABC 8 30平万厘米练习1. 答案:50简答:△ ACD的面积是1207 5 7 70 ,△ AED的面积是70 2 5 5 50.练习2. 答案:32简答:83 - 32 .4 3练习3.答案:10简答:4815 2“10 .2 8 3练习4. 答案:49简答:△ COD的面积是8 15 6 20,四边形ABCD的面积为6 8 15 20 49.作业1.答案:52 1简答:由BD的长度是AB的—得AD: AB 1:3,那么三角形ADC的面积为15 - 5 .3 3作业2. 答案:12简答:由于CD:DB 3:1,三角形ABC的面积是84,可知三角形ADB的面积为84 (3 1) 21,又由于AE : EB 4:3,可知三角形AED的面积为21 (4 3) 4 12. 作业3.答案:4简答:由已知条件得AD : AB 1:5 , AE : AC 1:6,利用“共角三角形”得三角形AED1 1的面积是120 - - 4.5 6作业4.答案:6简答:由于长方形ABCD的面积为18,可知三角形BCD的面积为9,三角形CEF为三12 1 1角形BCD的--1,那么阴影部分的面积是9 (1 J) 6.2 3 3 3作业5. 答案:60简答:利用任意四边形的结论得三角形BOC的面积是:6 20 30 4,所以四边形ABCD的面积是6 20 30 4 60.。

高斯小学奥数五年级上册含答案_整除问题初步

高斯小学奥数五年级上册含答案_整除问题初步

第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论. 什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中, 探索出很 多奇妙的数学规律,正是这些富有魅力的规律, 吸引了古往今来的许多数学家, 于是就出现 了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质一一整除开始,一起在数论的海洋中遨游吧.X:: 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过: “数学是科学的皇后,数;论是数学的皇冠” •整除的定义「丁 M 丄[EfiAI邑九牛城帀,琴百捨 吧円样的方式冉境 OOOKH3C01B.以G 、乩出卞城布 可胯号毀離00001 'oooowjja 序谏 次脫锂A- B- C, 懵快.軒iHflt 反应境 闻瞭面丈旳埠茶逾稲 伸只记聲车壇忙¥2. 鼻、4. $、隔一亍・ 貝侔的推列浚记件yrmir =Flf 面丈谥氓功了毡 豪酊r.舌方境 出了颯珂停!* w<«帀的T /整除的一些基本性质:1. 尾数判断法3.奇偶位求差法|能被ii 整除的数的特征:“奇位和”与“偶位和”的差能被ii 整除HI 我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位, ,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和” 把“偶数位上的数字之和”简称为“偶位和”.F 面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487, 3568, 8875, 6765, 5880, 7538, 198954, 6512, 93625, 864, 407 (1) 这些数中,有哪些数能被 4整除?哪些数能被 8整除? (2) 哪些数能被25整除?哪些数能被125整除? (3) 哪些数能被3整除?哪些数能被 9整除? (4) 哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不 妨根据整除特性判断一下.练习 1.在数列 3124、312、3823、45235、5289、5588、661、7314 中哪些数能被 4 整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被 3整除;同样的, 如果将其中能被11整除的数相加或相减, 会发现得到的结果同样能被 11整除.从中我们可以总结出如下规律:(1) (2) (3)2.例题2. 17石是一个四位数•文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在2S 的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题•下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上•但是记账的那张纸破了两个洞,上面只剩下“ 6dd ”,其中方框表示破了的洞. 牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除•我们没有学过被45整除的数的特征.但注意到45 5 9,于是6dd应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数CC 能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是45 5 9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然45 3 15,但是在考虑能否被45整除时,不能只考虑被3和15 整除•你能想明白为什么吗?例题4. 一天,王经理去电信营业厅为公司安装一部电话. 服务人员告诉他,目前只有形如“ 1234 口6口8 ”的号码可以申请•也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动. 王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位Q8是8的倍数•想一下,这样的三位数是唯一的吗?练习4.七位数22 333 能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多. 如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、&….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞一一大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况. 比如要在200 □匚的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1. 下面有9 个自然数:48, 75, 90, 122, 650, 594, 4305, 7836, 4100 .其中能被4 整除的有哪些?能被25整除的有哪些?2. 有如下5个自然数:12345, 189, 72457821, 333666, 54289•其中能被9整除的有哪些?3. 有如下5个自然数:3124, 3823, 45235, 5289, 5588 •其中能被11整除的有哪些?4. 是一个四位数•王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除• ”问:王老师在方框中先后填入的3个数字之和是多少?5. 阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:匚111.C 元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1. 答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864 .(2)能被25 整除的有8875、93625 ;能被125 整除的有8875、93625 . ( 3) 能被 3 整除的有23487、6765、5880、198954、864;能被9 整除的有198954、864. (4) 能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7 •要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8•要想让四位数能被8整除,需要后三位即7C 是8的倍数,空格中要填6 .三个数字之和是21 .例题3. 答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1 .例题 4. 答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8 .要满足号码能被11整除对应的千位数字只能是5、1、&例题 5. 答案:10395; 98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5 •先来看最小的数•要让前面数位上的数字尽量小,可以是1CD5 •要满足它是9的倍数且最小,应该是10395 •再来看最大,要让前面数位上的数字尽量大,可以是98口口5或9CD0 •要满足它是9的倍数且最大,应该是98730.例题6. 答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28 , 而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为& 5、1,奇位为7、4、3.练习1. 答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314 ; 能被11整除的数有3124、5588.练习2. 答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被 4 整除,空格中可填 2 或6.要想被 5 整除,空格中可填0或5.练习 3. 答案:3132 或3636简答:要想被36整除,这个四位数要既是4的倍数, 也是9的倍数. 要想是 4 的倍数, 个位上的空格中可填 2 或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习 4. 答案:2213332 或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是 4 的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业 1. 答案:48, 7836, 4100;75, 650, 4100简答: 4 和25 看末两位.作业 2. 答案:189, 72457821, 333666简答:被9 整除看数字和.作业 3. 答案:3124, 5588简答:被11 整除看奇位和与偶位和的差.作业4. 答案:11简答:填入的三个数字分别为1, 4, 6,数字和为11.作业 5. 答案:811.44 元简答:72 8 9 ,分别考虑8和9的整除特性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二讲几何计数
漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。

旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。

分割田地大概有 3 条横线、 4 条竖线左右,可适当增减。

人的耕作情况要符合西周时的实际情况,
比如不能有拖拉机,不能有牛耕。

后面给出问题:在图中,有多少个“井”字?
几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的
个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.
三角形应该是很简单的几何图形了,我们先从三角形数起吧.
例题1下列图形中各有多少个三角形?
「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无
目的的举例,一定要注意按照一定的顺序来枚举, 并注意寻找规律?那么,本题应该按照怎
样的顺序去枚举呢?
下图中有多少个三角形?
例题2 ?右图中共有多少个三角形?
「分析」对于这道题目,我们也首先想到枚举法. 应该按照怎样的顺序去枚举呢?你能发现
其中的规律吗?
练习2:.请数出这个图形中有多少个三角形.
下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解
决问题的规律和方法?
例题3.下列图形中,分别有多少个正方形?
「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.
围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?
例题4.在右图中(下列各小题中,长方形均包括正方形)
(1 )一共有多少个长方形?
(2)包含“★”的长方形共多少个?
(3)包含“☆”的长方形共多少个?
(4)两个五角星都包含的长方形共多少个?
(5)至少包含一个五角星的长方形共多少个?
(6)两个五角星都不包含的长方形共多少个?
「分析」如果还用枚举法处理这道题目,就会越数越复杂?那有没有好一点的方法?
我们换一个角度来思考这个问题?同学们可以想想看,怎样才能在图中画
出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以
了,也就是只需要画出两条横线和两条竖线?如右图所示?因此,长方形
的个数就是选择两条横线和两条竖线的所有方法数.
下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:
(1)从中可以数出多少个长方形?
(2)从中可以数出包含黑点的长方形有多少个?
通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.
例题5.右图中共有多少个长方形?(注意:长方形包括正方形)
「分析」我们可以考虑下方3拓的长方形和右边6疋的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的. 哪些重复计算了?容易
看出来重复计算的是右下角重叠的3X2的部分,那么把这部分中的长方形减去就能得到最
后答案.
例题6?右图中有多少个平行四边形?
「分析」题目中要求数出平行四边形的个数, 那么你能发现图中有几类平行四边形吗?如何
数出每一种的数量呢?
“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图
形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,
后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这
是一句既刻划螺线性质又象征他对数学热爱的双关语.
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
“不要弄坏我的圆”?)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图
形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”?这
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
是一句既刻划螺线性质又象征他对数学热爱的双关语.
“不要弄坏我的圆”?)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图
形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”?这是一句既刻划螺线性质又象征他对数学热爱的双关语.
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二. 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献. 甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.
阿基米德(公元前287年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
“不要弄坏我的圆”?)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图
形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”?这
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
是一句既刻划螺线性质又象征他对数学热爱的双关语.
“不要弄坏我的圆”?)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图
形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷?伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”?这是一句既刻划螺线性质又象征他对数学热爱的双关语.
阿基米德(公元前287 年—公元前212年)。

相关文档
最新文档