关于小学一二年级的奥数知识点汇总
小学数学奥数知识点整理
小学数学奥数知识点整理数学奥赛是一项对学生数学能力的综合考验,旨在培养学生的逻辑思维能力、创造力和解决问题的能力。
在小学阶段,数学奥赛是对学生基础知识的考察和拓展,我们需要掌握一些数学奥数知识点。
以下是小学数学奥数知识点的整理。
1. 数与计算1.1 自然数的认识自然数包括正整数和零。
自然数的大小关系,加减法运算及其性质,以及自然数的各种分组形式都是数学奥数的基础。
1.2 分数与小数分数与小数在数学奥数中应用广泛。
分数与小数之间的相互转换,分数的比较与排序,以及分数的加减乘除等运算是数学奥数的重点。
1.3 数的约数与倍数数的约数是能够整除该数的数,倍数是某个数的整数倍。
理解和运用约数和倍数的性质是解决数学奥数题目的重要途径。
1.4 有理数的认识有理数是能够表示为两个整数的比的数,包括正有理数、负有理数和零。
有理数的运算和性质也是数学奥数的重要内容。
2. 几何与图形2.1 平面图形的认识几何图形包括点、线、面、角,其中直线、曲线和封闭曲线均是小学数学奥数的重点内容。
2.2 三角形的性质三角形是几何学中重要的基本图形。
在数学奥数中,需要熟练掌握三角形的分类、边长关系、角度关系和面积计算等内容。
2.3 平移、旋转和对称平移、旋转和对称是小学数学奥数中的重要几何变换。
掌握几何变换的特点和应用是解决几何问题的关键。
3. 数据分析3.1 调查与统计调查与统计是数学奥数中的常见题型,需要学生掌握统计图表的读取、分析和比较,以及数据的整理和处理等技巧。
3.2 概率概率是数学奥数中一种重要的数学思维方式。
掌握概率的基本概念和计算方法,包括事件的概率计算和概率的性质是数学奥数的重点。
4. 等式与方程4.1 算式与等式算式是数学奥数中常见的计算方式,等式是数学表达式中的重要形式。
了解算式和等式的基本概念,以及它们之间的关系和特点对于数学奥数的解题能力至关重要。
4.2 一元一次方程一元一次方程是小学数学奥数中的重要内容。
小学奥数最全面的知识点总结
小学奥数最全面的知识点总结1.和差倍问题和差问题和倍问题差倍问题已知条件:几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围:已知两个数的和,差,倍数关系公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数③和÷(倍数+1)=小数小数x倍数=大数和-小数=大数④差÷(倍数-1)=小数小数x倍数=大数小数+差=大数关键问题:求出同一条件下的和与差、和与倍数、差与倍数。
2.年龄问题年龄问题:已知两个人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数确是每年都在变化的这个关键。
例题:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍。
⑴父子年龄的差是多少?54 –18 = 36(岁)⑵几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶几年前儿子多少岁?36÷6 = 6(岁)⑷几年前父亲年龄是儿子年龄的7倍?18 –6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。
3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;其基本数量关系是: 总量÷份数=每份数(单一量)单一量x份数=总量(正归一)总量÷单一量=份数(反归一)4.植树问题基本类型及基本公式:①在直线或者不封闭的曲线上植树,两端都植树。
基本公式:棵数=段数+1②在直线或者不封闭的曲线上植树,两端都不植树。
基本公式:棵距x段数=总长棵数=段数-1③在直线或者不封闭的曲线上植树,只有一端植树。
汇总小学阶段奥数知识点
汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。
下面为大家汇总小学阶段常见的奥数知识点。
一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。
小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。
3、分数四则运算同分母分数加减法:分母不变,分子相加减。
异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。
分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。
分数除法:除以一个数等于乘这个数的倒数。
二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。
偶数:能被 2 整除的整数。
奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。
合数:除了 1 和它本身还有别的因数的自然数。
1 既不是质数也不是合数。
3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。
倍数:c 就是 a 和 b 的倍数。
4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
最全小学奥数知识要点
同学们、家长朋友们,小学奥数可以分为计算、计数、数论、几何、应用题、行程、组合七大板块,其中必须掌握的三十六个知识点,内容从和差倍问题、年龄问题到循环小数,包含了小学奥数七个模块的知识。
以下是小学奥数知识清单:2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
小学奥数知识点汇总基础知识点
小学奥数知识点汇总基础知识点在小学阶段,奥数作为一门拓展性的学科,能够帮助孩子们培养逻辑思维和解决问题的能力。
下面为大家汇总一些基础的小学奥数知识点。
一、数的认识1、整数整数包括正整数、零和负整数。
需要掌握整数的读法、写法、大小比较以及四则运算。
2、自然数自然数是用以计量事物的件数或表示事物次序的数,即用数码 0,1,2,3,4……所表示的数。
3、奇数和偶数奇数指不能被 2 整除的整数,数学表达形式为:2k+1,奇数可以分为正奇数和负奇数。
偶数是能够被 2 所整除的整数。
若某数是 2 的倍数,它就是偶数,可表示为 2k。
4、质数与合数质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。
合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。
二、数的运算1、四则运算加法、减法、乘法和除法统称四则运算。
在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算原则。
2、运算定律加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c三、图形的认识1、平面图形(1)三角形三角形具有稳定性。
三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形;按边分,可以分为等边三角形、等腰三角形和不等边三角形。
(2)四边形四边形包括平行四边形、长方形、正方形、梯形等。
平行四边形两组对边分别平行且相等。
长方形对边平行且相等,四个角都是直角。
小学阶段奥数知识点总结(33大类)
小学阶段奥数知识点总结(共计33大类)一、年龄问题的三大特征二、归一问题特点三、植树问题总结四、鸡兔同笼问题五、盈亏问题六、牛吃草问题七、平均数问题八、周期循环数九、抽屉原理十、定义新运算十一、数列求和十二、二进制及其应用十三、加法原理十四、质数与合数十五、约数与倍数十六、数的整除十七、余数及其应用十八、余数问题十九、分数与百分数的应用二十、分数大小的比较二十一、完全平方数二十二、比和比例二十三、综合行程问题二十四、工程问题二十五、逻辑推理问题二十六、几何面积二十七、时钟问题—快慢表问题二十八、时钟问题—钟面追及二十九、浓度与配比三十、经济问题三十一、简单方程三十二、不定方程三十三、循环小数一、年龄问题的三大特征年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。
例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍?⑴父子年龄的差是多少?54 –18 = 36(岁)⑵几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶几年前儿子多少岁?36÷6 = 6(岁)⑷几年前父亲年龄是儿子年龄的7倍?18 –6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。
二、归一问题特点归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。
小学奥数各年级知识点
奥数各年级知识点必备手册一年级奥数知识点上册下册认识图形(一)速算与巧算(一)认识图形(二)速算与巧算(二)认识图形(三)数数与计数(一)数一数(一)数数与计数(二)数一数(二)数数与计数(三)动手画画数数与计数(四)摆摆看看填图与拆数(一)做做想想填图与拆数(二)区分图形分组与组式立体平面展开自然数串趣题做立体模型不等与排序图形的整体与部分奇与偶折叠描痕法是与非多个图形的组拼火柴棍游戏(一)一个图形的等积变换火柴棍游戏(二)一个图形的等份分划火柴棍游戏(三)发现图形的变化规律附录点、线、角多边形和扇形长方形、正方形、三角形和圆立体图形的认识二年级奥数知识点上册速算与巧算习题习题解答数数与计数(一)习题习题解答数数与计数(二)习题习题解答认识简单数列习题习题解答自然数列趣题习题习题解答找规律(一)习题习题解答找规律(二)习题习题解答找规律(三)习题习题解答填图与拆数习题习题解答考虑所有可能情况(一)习题习题解答考虑所有可能情况(二)习题习题解答仔细审题习题习题解答猜猜凑凑习题习题解答列表尝试法习题习题解答画图凑数法习题习题解答下册机智与顿悟习题习题解答数数与计数习题习题解答速算与巧算习题习题解答数与形相映习题习题解答一笔画问题习题习题解答七座桥问题习题习题解答数字游戏问题(一)习题习题解答数字游戏问题(二)习题习题解答整数的分拆习题习题解答枚举法习题习题解答找规律法习题习题解答逆序推理法习题习题解答画图显示法习题习题解答等量代换法习题习题解答等式加减法习题习题解答附录重量的认识习题习题解答长度的认识习题习题解答时间的认识习题习题解答三年级奥数知识点上册速算与巧算(一)习题及答案速算与巧算(二)习题及答案上楼梯问题习题及答案植树与方阵问题习题及答案找几何图形的规律习题及答案找简单数列的规律习题及答案填算式(一)习题及答案填算式(二)习题及答案数字谜(一)习题及答案数字谜(二)习题及答案巧填算符(一)习题及答案巧填算符(二)习题及答案火柴棍游戏(一)习题及答案火柴棍游戏(二)习题及答案综合练习题下册从数表中找规律习题及答案从哥尼斯堡七桥问题谈起习题及答案多笔画及应用问题习题及答案最短路线问题习题及答案归一问题习题及答案平均数问题习题及答案和倍问题习题及答案差倍问题习题及答案和差问题习题及答案年龄问题习题及答案鸡兔同笼问题习题及答案盈亏问题习题及答案巧求周长习题及答案从数的二进制谈起习题及答案综合练习四年级奥数知识点上册速算与巧算(三)习题习题解答速算与巧算(四)习题习题解答定义新运算习题习题解答等差数列及其应用习题习题解答倒推法的妙用习题习题解答行程问题(一)习题习题解答几何中的计数问题(一)习题习题解答几何中的计数问题(二)习题习题解答图形的剪拼(一)习题习题解答图形的剪拼(二)习题习题解答讲格点与面积习题习题解答数阵图习题习题解答填横式(一)习题习题解答填横式(二)习题习题解答下册乘法原理习题习题解答加法原理习题习题解答排列习题习题解答组合习题习题解答排列组合习题习题解答排列组合的综合应用习题习题解答行程问题习题习题解答数学游戏习题习题解答有趣的数阵图(一)习题习题解答有趣的数阵图(二)习题习题解答简单的幻方及其他数阵图习题习题解答数字综合题选讲习题习题解答三角形的等积变形习题习题解答简单的统筹规化问题习题习题解答五年级奥数知识点上册数的整除问题习题习题解答质数、合数和分解质因数习题习题解答最大公约数和最小公倍数习题习题解答带余数的除法习题习题解答奇数与偶数及奇偶性的应用习题习题解答能被30 以下质数整除的数的特征习题习题解答行程问题习题习题解答流水行船问题习题习题解答“牛吃草”问题习题习题解答列方程解应用题习题习题解答简单的抽屉原理习题习题解答抽屉原理的一般表述习题习题解答染色中的抽屉原理习题习题解答面积计算习题习题解答下册不规则图形面积的计算(一)习题习题解答不规则图形面积的计算(二)习题习题解答巧求表面积习题习题解答最大公约数和最小公倍数习题习题解答同余的概念和性质习题习题解答不定方程解应用题习题习题解答时钟问题习题习题解答数学游戏习题习题解答逻辑推理(一)习题习题解答逻辑推理(二)习题习题解答容斥原埋习题习题解答简单的统筹规划问题习题习题解答递推方法习题习题解答速算与巧算1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+51.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50 再加49 等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按100 算,再把多加的减去)或99+98+97+96+95=97×5=485(2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=303(2)87+74+85+83+75+77+80+78+81+84=80×10+7-6+5+3-5-3+0-2+1+4=800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=21×4-6=84-6=78方法3:原式=(1+2+3+4+5+6)×3+15=21×3+15=63+15=78数数与计数(一)1.如图2-8 所示,数一数,需要多少块砖才能把坏了的墙补好?2.图2-9 所示的墙洞,用1 号和2 号两种特型砖能补好吗?若能补好,共需几块?3.图2-10 所示为一块地板,它是由1 号、2 号和3 号三种不同图案的瓷砖拼成.问这三种瓷砖各用了多少块?4.如图2-11 所示,一个木制的正方体,棱长为3 寸,它的六个面都被涂成了红色.如果沿着图中画出的线切成棱长为1 寸的小正方体.求:(1)3 面涂成红色的有多少块?(2)2 面涂成红色的有多少块?(3)1 面涂成红色的有多少块?(4)各面都没有涂色的有多少块?(5)切成的小正方体共有多少块?5.图2-12 所示为棱长4 寸的正方体木块,将它的表面全染成蓝色,然后锯成棱长为1 寸的小正方体.问:(1)有3 面被染成蓝色的多少块?(2)有2 面被染成蓝色的多少块?(3)有1 面被染成蓝色的多少块?(4)各面都没有被染色的多少块?(5)锯成的小正方体木块共有多少块?6.图2-13 所示为一个由小正方体堆成的“塔”.如果把它的外表面(包括底面)全部涂成绿色,那么当把“塔”完全拆开时,3 面被涂成绿色的小正方体有多少块?7.图2-14 中的小狗与小猫的身体的外形是用绳子分别围成的,你知道哪一条绳子长吗?(仔细观察,想办法比较出来).1.解:用10 块砖可把墙补好,可以从下往上一层一层地数(发挥想像力):共1+2+2+1+2+2=10(块).如果用铅笔把砖画出来(注意把砖缝对好)就会十分清楚了,如图2-15 所示.2.解:仔细观察,同时发挥想像力可知需1 号砖2 块、2 号砖1 块,也就是共需(如图2-16 所示)1+2=3(块).3.解:因为图形复杂,要特别仔细,最好是有次序地按行分类数,再进行统计:4.解:(1)3 面涂色的有8 块:它们是最上层四个角上的4 块和最下层四个角上的4 块.(2)2 面涂色的有12 块:它们是上、下两层每边中间的那块共8 块和中层四角的4 块.(3)1 面涂色的有6 块:它们是各面(共有6 个面)中心的那块.(4)各面都没有涂色的有一块:它是正方体中心的那块.(5)共切成了3×3×3=27(块).或是如下计算:8+12+6+1=27(块).5.解:同上题(1)8 块;(2)24 块;(3)24 块;(4)8 块;(5)64 块.6.解:3 面被涂成绿色的小正方体共有16 块,就是图2—18 中有“点”的那些块(注意最下层有2 块看不见).7.解:分类数一数可知,围成小猫的那条绳子比较长.因为小狗身体的外形是由32 条直线段和6 条斜线段组成;小猫身体的外形是由32 条直线段和8 条斜线段组成.数数与计数(二)例 1 数一数,图3-1 中共有多少点?解:(1)方法1:如图3-2 所示从上往下一层一层数:第一层1 个第二层2 个第三层3 个第四层4 个第五层5 个第六层6 个第七层7 个第八层8 个第九层9 个第十一层9 个第十二层8 个第十三层7 个第十四层6 个第十五层5 个第十六层4 个第十七层3 个第十八层2 个第十九层1 个总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1)=55+45=100(利用已学过的知识计算).(2)方法2:如图3-3 所示:从上往下,沿折线数第一层1 个第二层3 个第三层5 个第五层9 个第六层11 个第七层13 个第八层15 个第九层17 个第十层19 个总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算).(3)方法3:把点群的整体转个角度,成为如图3-4 所示的样子,变成为10 行 1 0 列的点阵.显然点的总数为10×10=100(个).想一想:①数数与计数,有时有不同的方法,需要多动脑筋.②由方法1 和方法3 得出下式:1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想:1=1×11+2+1=2×21+2+3+2+1=3×31+2+3+4+3+2+1=4×41+2+3+4+5+4+3+2+1=5×51+2+3+4+5+6+5+4+3+2+1=6×61+2+3+4+5+6+7+6+5+4+3+2+1=7×71+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×81+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×91+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10这样的等式还可以一直写下去,能写出很多很多.同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.③由方法2 和方法3 也可以得出下式:1+3+5+7+9+11+13+15+17+19=10×10.即从1 开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:1+3=2×21+3+5=3×31+3+5+7=4×41+3+5+7+9=5×51+3+5+7+9+11=6×61+3+5+7+9+11+13=7×71+3+5+7+9+11+13+15=8×81+3+5+7+9+11+13+15+17=9×91+3+5+7+9+11+13+15+17+19=10×10还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.例 2 数一数,图3-5 中有多少条线段?解:(1)我们已知,两点间的直线部分是一条线段.以 A 点为共同端点的线段有:AB AC AD AE AF 5 条.以 B 点为共同左端点的线段有:BC BD BE BF 4 条.以 C 点为共同左端点的线段有:CD CE CF 3 条.以 D 点为共同左端点的线段有:DE DF 2 条.以 E 点为共同左端点的线段有:EF1 条.总数5+4+3+2+1=15 条.(2)用图示法更为直观明了.见图3-6.总数5+4+3+2+1=15(条).想一想:①由例2 可知,一条大线段上有六个点,就有:总数=5+4+3+2+1 条线段.由此猜想如下规律(见图3-7):还可以一直做下去.总之,线段总条线是从1 开始的一串连续自然数之和,其中最大的自然数比总数小1.我们又发现了一条规律.它说明了点数与线段总数之间的关系.②上面的事实也可以这样说:如果把相邻两点间的线段叫做基本线段,那么一条大线段上的基本线段数和线段总条数之间的关系是:线段总条数是从1 开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见图3-8).基本线段数线段总条数还可以一直写下去,同学们可以自己试试看.例 3 数一数,图3-9 中共有多少个锐角?解:(1)我们知道,图中任意两条从O 点发出的射线都组成一个锐角.所以,以OA 边为公共边的锐角有:∠LAOB,∠AOC,∠AOD,∠AOE,∠AOF 共 5 个.以OB 边为公共边的锐角有:∠BOC,∠BOD,∠BOE,∠BOF 共 4 个.以OC 边为公共边的锐角有:∠COD,∠COE,∠COF 共 3 个.以OD 边为公共边的锐角有:∠DOE,∠DOF 共 2 个.以OE 边为一边的锐角有:∠EOF 只 1 个.锐角总数5+4+3+2+1=15(个).②用图示法更为直观明了:如图3-10 所示,锐角总数为:5+4+3+2+1=15(个).想一想:①由例3 可知:由一点发出的六条射线,组成的锐角的总数=5+4+3+2 +1(个),由此猜想出如下规律:(见图3-11~15)两条射线1 个角(见图3-11)三条射线2+1 个角(见图3-12)四条射线3+2+1 个角(见图3-13)五条射线4+3+2+1 个角(见图3-14)六条射线5+4+3+2+1 个角(见图3-15)总之,角的总数是从1 开始的一串连续自然数之和,其中最大的自然数比射线数小1.②同样,也可以这样想:如果把相邻两条射线构成的角叫做基本角,那么有共同顶点的基本角和角的总数之间的关系是:角的总数是从1 开始的一串连续自然数之和,其中最大的自然数等于基本角个数.③注意,例2 和例3 的情况极其相似.虽然例2 是关于线段的,例3 是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力..解:方法1:从左往右一摞一摞地数,再相加求和:10+11+12+13+14+15+14+13+12+11+10=135(本).方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.长方形中的书10×11=110三角形中的书1+2+3+4+5+4+3+2+1=25总数:110+25=135(本).2.解:因为棋孔较多,应找出排列规律,以便于计数.仔细观察可知,图中大三角形ABC 上的棋孔的排列规律是(从上往下数):1,2,3,4,5,6,7,8,9,10,11,12,13,另外还有三个小三角形中的棋孔的排列规律是1,2,3,4,所以棋孔总数是:(1+2+3+4+5+6+7+8+9+10+11+12+13)+(1+2+3+4)×3=91+10×3=121(个).3.解:方法1:按图3-22 所示方法数(图中只画出了一部分)线段总数:7+6+5+4+3+2+1=28(条).方法2:基本线段共7 条,所以线段总数是:7+6+5+4+3+2+1=28(条).4.解:按图3-23 的方法数:角的总数:7+6+5+4+3+2+1=28(个).5.解:方法1:(1)三角形是由三条边构成的图形.以OA 边为左公共边构成的三角形有:△OAB,△OAC,△OAD,△OAE,△OAF,△OAG,△OAH,共7 个;以OB 边为左公共边构成的三角形有:△OBC,△OBD,△OBE,△OBF,△OBG,△OBH,共6 个;以OC 边为左公共边构成的三角形有:△OCD,△OCE,△OCF,△OCG,△OCH,共5 个;以OD 边为左公共边构成的三角形有:△ODE,△ODF,△ODG,△ODH,共4 个;以OE 边为左公共边构成的三角形有:△OEF,△OEG,△OEH,共3 个;以OF 边为左公共边构成的三角形有:△OFG,△OFH,共2 个;以OG 边和OH,GH 两边构成的三角形仅有:△OGH1 个;三角形总数:7+6+5+4+3+2+1=28(个).(2)方法2:显然底边AH 上的每一条线段对应着一个三角形,而基本线段是7 条,所以三角形总数为:7+6+5+4+3+2+1=28(个).6.解:最小的正方形有25 个,由 4 个小正方形组成的正方形16 个;由9 个小正方形组成的正方形9 个;由16 个小正方形组成的正方形4 个;由25 个小正方形组成的正方形1 个;正方形总数:25+16+9+4+1=55 个.认识简单数列1.从1 开始,每隔两个数写出一个自然数,共写出十个数来.2.从1 开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1 以外出现的最小的相同的数是几?4.自2 开始,隔两个数写一个数:2,5,8, (101)可以看出,2 是这列数的第一项,5 是第二项,8 是第三项,等等.问101 是第几个数?5.如图4-1 所示,“阶梯形”的最高处是4 个正方形叠起来的高度,而且整个图形包括了10 个小正方形.如果这个“阶梯形”的高度变为12 个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6.如图4-2 所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?7.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4 个星期后,这个小组共有多少组员?8.图4-3 所示为细胞的增长方式.就是说一个分裂为两个,再次分裂变为4 个,第三次分裂为8 个,……照这样下去,问经过10 次分裂,一个细胞变成几个?9.图4-4 所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问(1)盒子里有多少珠子?(2)这串珠子共有多少个?1.解:可以先写出从1 开始的自然数列,再按题目要求删去那些不应该出现的数,就得到答案了:即1,4,7,10,13,16,19,22,25,28可以看出,这是一个等差数列,后面一个数比前面一个数大3.2.解:仿习题1,先写前面的几个数如下:可以看出,1,8,15,22,……也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10 个数:1,8,15,22,29,36,43,50,57,64.3. 解:观察习题一和习题二两个数列:可见两个数列中最小的相同数是22.4.解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4))再仔细观察可知:第二项=第一项+1×公差,即5=2+1×3;第三项=第一项+2×公差,即8=2+2×3;第四项=第一项+3×公差,即11=2+3×3;第五项=第一项+4×公差,即14=2+4×3;…………由于101=2+33×3;可见,101 是第34 项,即第34 个数.5.解:仔细观察可发现,这个“阶梯形”图形最高处是4 个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.所以最高处是12 个小正方形时,它必有12 个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个).6.解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5)):所以六层小立方体的总数为:1+3+6+10+15+21=56(个).7.解:列表如下:4 个星期后小组的总人数:1+2+4+8=15(人).8.解:列表如下:一个细胞经过10 次分裂变为1024 个.9.解:仔细观察可知,这串珠子的排列规律是:白黑白黑白黑白黑白黑白黑白黑白1, 1,1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1,①在盒子里有:4+1+4=9(个).②这一串珠子总数是:1+1+1+2+1+3+1+4+1+5+1+6+1+7+1=1+2+3+4+5+6+7+(1+1+1+1+1+1+1+1)=28+8=36(个).。
小学奥数必须掌握的30个知识模块汇总(详细版)
小学奥数知识点回顾1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学数学奥数知识点
小学数学奥数知识点数学奥数作为一门重要的学科竞赛,对学生的数学能力和思维训练起到了很大的促进作用。
在小学阶段,学习奥数并不仅仅是为了应对竞赛,更是为了培养学生的逻辑思维和问题解决能力。
以下是小学数学奥数的一些重要知识点:1. 数和运算:1.1. 自然数:小学奥数的基础,包括正整数和零。
1.2. 数的读法:学生要掌握从个位到千位数的正确读法,能够正确理解数的大小。
1.3. 加法和减法:掌握加法和减法的运算规则,尤其是进位和借位的概念。
1.4. 乘法和除法:理解乘法和除法的意义和运算法则,掌握基础的口诀和计算技巧。
2. 算式的变形和简化:2.1. 分配律和结合律:运用分配律和结合律简化算式,加快计算速度。
2.2. 等式和不等式:理解等式和不等式的概念,并能够运用它们进行简单的推理和计算。
3. 分数和小数:3.1. 分数的基本概念:掌握分数的表示方法和意义,理解分子、分母的含义。
3.2. 分数的大小比较和运算:学会比较分数的大小,能够进行分数的加减乘除运算。
3.3. 小数和分数的转换:掌握小数和分数的相互转换方法,灵活运用。
4. 平方和立方:4.1. 平方数和立方数:了解平方数和立方数的概念,能够计算小范围内的平方和立方。
4.2. 平方根和立方根:初步了解平方根和立方根的概念,能够进行简单的开方运算。
5. 图形和几何:5.1. 平面图形:认识并能够画出常见的平面图形,如正方形、长方形、三角形、圆等。
5.2. 空间几何体:了解并能够画出常见的空间几何体,如球体、立方体、长方体等。
5.3. 图形的特征:掌握图形的周长、面积和体积的计算方法,能够解决相关问题。
5.4. 坐标系和直角坐标:初步了解二维坐标系和直角坐标表示,能够进行简单的点的定位和图形的移动。
6. 数据和统计:6.1. 数据的收集和整理:掌握数据的收集和整理方法,能够制作简单的统计图表。
6.2. 数据的分析和推理:能够对数据进行分析,提炼有用信息,并进行简单的推理和判断。
小学奥数知识点总结
小学奥数知识点总结
小学奥数知识点总结包括以下内容:
1. 数的认识:正整数、负整数、零、分数、小数的概念及其表示方法。
2. 数的四则运算:加法、减法、乘法和除法的基本运算规则。
3. 数的性质:数的大小比较、数的倍数、约数和公约数等基本概念。
4. 分数运算:分数的加减乘除及化简。
5. 实际问题的数学建模:如使用代数式求解问题、利用比例关系求解问题。
6. 平方与平方根:正整数的平方、平方根的计算。
7. 逻辑推理与证明:利用逻辑推理解决问题的基本方法和技巧。
8. 数列与模式:数列的概念及其性质,找规律解题的方法。
9. 几何学基础知识:平行线、相交线、角、三角形、四边形等基本概念和性质。
10. 计量单位和换算:长度、面积、体积、重量、时间等计量单位及其换算方法。
以上是小学奥数的基本知识点总结,不同年级和不同难度的竞赛可能会有一些更加高级的题型和概念。
建议在学习奥数时,要结合习题和实际问题进行练习,提高解题能力和应用能力。
小学奥数知识点及公式总汇(必背)
小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数101112131415161718192021222324252627282930313233.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差78闰年平年9②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
小学奥数知识点汇总
小学奥数知识点汇总小学奥数是小学数学的拓展和延伸,对于培养孩子的逻辑思维、创新能力和解决问题的能力都有着重要的作用。
以下是对小学奥数常见知识点的汇总。
一、计算类1、速算与巧算速算与巧算主要运用加法交换律、结合律,乘法交换律、结合律、分配律等运算定律,以及凑整、拆数等方法,使计算简便快捷。
例如:25×32×125 = 25×(4×8)×125 =(25×4)×(8×125)= 100×1000 =100000 。
2、等差数列等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
求和公式为:和=(首项+末项)×项数 ÷ 2 。
例如:1 + 3 + 5 + 7 +······+ 99 ,首项是 1 ,末项是 99 ,公差是 2 ,项数=(99 1)÷ 2 + 1 = 50 ,和=(1 + 99)× 50 ÷ 2 = 2500 。
3、定义新运算定义新运算就是给出一种新的运算规则,按照这个规则进行计算。
例如:规定 a△b = a×b + a + b ,那么 3△2 = 3×2 + 3 + 2 = 11 。
二、数论类1、整除整除是指整数 a 除以自然数 b 除得的商正好是整数而余数是零。
能被 2 整除的数的特征是个位是 0、2、4、6、8 ;能被 3 整除的数的特征是各位数字之和能被 3 整除;能被 5 整除的数的特征是个位是 0 或5 。
2、质数与合数质数是指一个大于 1 的自然数,除了 1 和它自身外,不能被其他自然数整除的数。
合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。
最小的质数是 2 ,最小的合数是 4 。
3、公因数与公倍数公因数是指几个整数共有约数中最大的一个。
小学一二年级奥数汇总
小学一二年级奥数汇总1、美美有18支铅笔,送给明明3支后,两个人的铅笔同样多。
明明原来有几支铅笔?2、学校有10个足球,16个篮球,足球比篮球少多少个?3、小云今年8岁,奶奶说:“你长到12岁的时候,我62岁。
”奶奶今年多少岁?4、一只猫吃一只老鼠用5分钟吃完,5只猫同时吃5只同样大小的老鼠,需要几分钟才能吃完?5、一只小黑羊排在小白羊队伍里,从前面数小黑羊是第7只,从后面数小黑羊是第4只。
这队小羊一共有多少只?6、明明从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。
布袋里原来有多少个白皮球,多少个花皮球?7、小明暑假和父母去北京旅游,他们和旅游团的每一个人合照一次像,一共照了15张照片,参加旅游团的共有多少人?8、学校开运动会,在操场走道两边插红旗,每边长8米,每隔1米插一面彩旗,走道的起点终点都要插,一共要插多少面彩旗?9、小强他们班有48人,数学测试时,小强考了第15名,你知道如果倒数小强这次考试成绩应排第几名?10、海盗抓小孩去无人岛,一共抓了15个小孩,他让小孩排队报数,第一次把报单数的孩子都送去了无人岛,接着让剩下的孩子报数,又把报单数的孩子送去了无人岛,把其他孩子放回了家。
问强盗放多少个孩子回家?11、不计算,想一想,每一题中哪个括号里填的数大?(1)24+()=45;24+()=78(2)37-()=18;37-()=1412、有一筐桃,2个2个地拿,最后正好拿完,1个也不剩,这筐梨的个数是单数还是双数?13、(1)31+32+33+34+35+15+16+17+18+19=13、(2)2+13+25+44+18+37+56+75=14、用小正方体拼出一个大的正方体,最少要()个。
15、动物园里有只长颈鹿,它的年龄数是用最大的两位数减去最小的两位数,再减去最大的一位数后所得的数。
这只长颈鹿有多少岁?16、小兰和小绿都有10块橡皮,小兰给小绿2块后,现在小绿比小兰多几块橡皮?17、虎王召开森林大会,一共有29只小动物参加会议,如果老虎想坐在中间,他应该坐第几位呢?18、学校举行合唱比赛,第一排有9人,亮亮的左边站3人,亮亮的右边站几人19、学校开运动会,主席台后面插一排彩旗。
小学奥数各年级知识点
奥数各年级知识点必备手册一年级奥数知识点上册下册认识图形(一)速算与巧算(一)认识图形(二)速算与巧算(二)认识图形(三)数数与计数(一)数一数(一)数数与计数(二)数一数(二)数数与计数(三)动手画画数数与计数(四)摆摆看看填图与拆数(一)做做想想填图与拆数(二)区分图形分组与组式立体平面展开自然数串趣题做立体模型不等与排序图形的整体与部分奇与偶折叠描痕法是与非多个图形的组拼火柴棍游戏(一)一个图形的等积变换火柴棍游戏(二)一个图形的等份分划火柴棍游戏(三)发现图形的变化规律附录点、线、角多边形和扇形长方形、正方形、三角形和圆立体图形的认识二年级奥数知识点上册速算与巧算习题习题解答数数与计数(一)习题习题解答数数与计数(二)习题习题解答认识简单数列习题习题解答自然数列趣题习题习题解答找规律(一)习题习题解答找规律(二)习题习题解答找规律(三)习题习题解答填图与拆数习题习题解答考虑所有可能情况(一)习题习题解答考虑所有可能情况(二)习题习题解答仔细审题习题习题解答猜猜凑凑习题习题解答列表尝试法习题习题解答画图凑数法习题习题解答下册机智与顿悟习题习题解答数数与计数习题习题解答速算与巧算习题习题解答数与形相映习题习题解答一笔画问题习题习题解答七座桥问题习题习题解答数字游戏问题(一)习题习题解答数字游戏问题(二)习题习题解答整数的分拆习题习题解答枚举法习题习题解答找规律法习题习题解答逆序推理法习题习题解答画图显示法习题习题解答等量代换法习题习题解答等式加减法习题习题解答附录重量的认识习题习题解答长度的认识习题习题解答时间的认识习题习题解答三年级奥数知识点上册速算与巧算(一)习题及答案速算与巧算(二)习题及答案上楼梯问题习题及答案植树与方阵问题习题及答案找几何图形的规律习题及答案找简单数列的规律习题及答案填算式(一)习题及答案填算式(二)习题及答案数字谜(一)习题及答案数字谜(二)习题及答案巧填算符(一)习题及答案巧填算符(二)习题及答案火柴棍游戏(一)习题及答案火柴棍游戏(二)习题及答案综合练习题下册从数表中找规律习题及答案从哥尼斯堡七桥问题谈起习题及答案多笔画及应用问题习题及答案最短路线问题习题及答案归一问题习题及答案平均数问题习题及答案和倍问题习题及答案差倍问题习题及答案和差问题习题及答案年龄问题习题及答案鸡兔同笼问题习题及答案盈亏问题习题及答案巧求周长习题及答案从数的二进制谈起习题及答案综合练习四年级奥数知识点上册速算与巧算(三)习题习题解答速算与巧算(四)习题习题解答定义新运算习题习题解答等差数列及其应用习题习题解答倒推法的妙用习题习题解答行程问题(一)习题习题解答几何中的计数问题(一)习题习题解答几何中的计数问题(二)习题习题解答图形的剪拼(一)习题习题解答图形的剪拼(二)习题习题解答讲格点与面积习题习题解答数阵图习题习题解答填横式(一)习题习题解答填横式(二)习题习题解答下册乘法原理习题习题解答加法原理习题习题解答排列习题习题解答组合习题习题解答排列组合习题习题解答排列组合的综合应用习题习题解答行程问题习题习题解答数学游戏习题习题解答有趣的数阵图(一)习题习题解答有趣的数阵图(二)习题习题解答简单的幻方及其他数阵图习题习题解答数字综合题选讲习题习题解答三角形的等积变形习题习题解答简单的统筹规化问题习题习题解答五年级奥数知识点上册数的整除问题习题习题解答质数、合数和分解质因数习题习题解答最大公约数和最小公倍数习题习题解答带余数的除法习题习题解答奇数与偶数及奇偶性的应用习题习题解答能被30以下质数整除的数的特征习题习题解答行程问题习题习题解答流水行船问题习题习题解答“牛吃草”问题习题习题解答列方程解应用题习题习题解答简单的抽屉原理习题习题解答抽屉原理的一般表述习题习题解答染色中的抽屉原理习题习题解答面积计算习题习题解答下册不规则图形面积的计算(一)习题习题解答不规则图形面积的计算(二)习题习题解答巧求表面积习题习题解答最大公约数和最小公倍数习题习题解答同余的概念和性质习题习题解答不定方程解应用题习题习题解答时钟问题习题习题解答数学游戏习题习题解答逻辑推理(一)习题习题解答逻辑推理(二)习题习题解答容斥原埋习题习题解答简单的统筹规划问题习题习题解答递推方法习题习题解答速算与巧算1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+51.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50再加49等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按100算,再把多加的减去)或99+98+97+96+95=97×5=485 (2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=303(2)87+74+85+83+75+77+80+78+81+84=80×10+7-6+5+3-5-3+0-2+1+4 =800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=21×4-6=84-6=78方法3:原式=(1+2+3+4+5+6)×3+15=21×3+15=63+15=78数数与计数(一)1.如图2-8所示,数一数,需要多少块砖才能把坏了的墙补好?2.图2-9所示的墙洞,用1号和2号两种特型砖能补好吗?若能补好,共需几块?3.图2-10所示为一块地板,它是由1号、2号和3号三种不同图案的瓷砖拼成.问这三种瓷砖各用了多少块?4.如图2-11所示,一个木制的正方体,棱长为3寸,它的六个面都被涂成了红色.如果沿着图中画出的线切成棱长为1寸的小正方体.求:(1)3面涂成红色的有多少块?(2)2面涂成红色的有多少块?(3)1面涂成红色的有多少块?(4)各面都没有涂色的有多少块?(5)切成的小正方体共有多少块?5.图2-12所示为棱长4寸的正方体木块,将它的表面全染成蓝色,然后锯成棱长为1寸的小正方体.问:(1)有3面被染成蓝色的多少块?(2)有2面被染成蓝色的多少块?(3)有1面被染成蓝色的多少块?(4)各面都没有被染色的多少块?(5)锯成的小正方体木块共有多少块?6.图2-13所示为一个由小正方体堆成的“塔”.如果把它的外表面(包括底面)全部涂成绿色,那么当把“塔”完全拆开时,3面被涂成绿色的小正方体有多少块?7.图2-14中的小狗与小猫的身体的外形是用绳子分别围成的,你知道哪一条绳子长吗?(仔细观察,想办法比较出来).1.解:用10块砖可把墙补好,可以从下往上一层一层地数(发挥想像力):共1+2+2+1+2+2=10(块).如果用铅笔把砖画出来(注意把砖缝对好)就会十分清楚了,如图2-15所示.2.解:仔细观察,同时发挥想像力可知需1号砖2块、2号砖1块,也就是共需(如图2-16所示)1+2=3(块).3.解:因为图形复杂,要特别仔细,最好是有次序地按行分类数,再进行统计:4.解:(1)3面涂色的有8块:它们是最上层四个角上的4块和最下层四个角上的4块.(2)2面涂色的有12块:它们是上、下两层每边中间的那块共8块和中层四角的4块.(3)1面涂色的有6块:它们是各面(共有6个面)中心的那块.(4)各面都没有涂色的有一块:它是正方体中心的那块.(5)共切成了3×3×3=27(块).或是如下计算:8+12+6+1=27(块).5.解:同上题(1)8块;(2)24块;(3)24块;(4)8块;(5)64块.6.解:3面被涂成绿色的小正方体共有16块,就是图2—18中有“点”的那些块(注意最下层有2块看不见).7.解:分类数一数可知,围成小猫的那条绳子比较长.因为小狗身体的外形是由32条直线段和6条斜线段组成;小猫身体的外形是由32条直线段和8条斜线段组成.数数与计数(二)例1 数一数,图3-1中共有多少点?解:(1)方法1:如图3-2所示从上往下一层一层数:第一层1个第二层2个第三层3个第四层4个第五层5个第六层6个第七层7个第八层8个第九层9个第十一层9个第十二层8个第十三层7个第十四层6个第十五层5个第十六层4个第十七层3个第十八层2个第十九层1个总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1)=55+45=100(利用已学过的知识计算).(2)方法2:如图3-3所示:从上往下,沿折线数第一层1个第二层3个第三层5个第五层9个第六层 11个第七层 13个第八层 15个第九层 17个第十层 19个总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算).(3)方法3:把点群的整体转个角度,成为如图3-4所示的样子,变成为10行1 0列的点阵.显然点的总数为10×10=100(个).想一想:①数数与计数,有时有不同的方法,需要多动脑筋.②由方法1和方法3得出下式:1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想:1=1×11+2+1=2×21+2+3+2+1=3×31+2+3+4+3+2+1=4×41+2+3+4+5+4+3+2+1=5×51+2+3+4+5+6+5+4+3+2+1=6×61+2+3+4+5+6+7+6+5+4+3+2+1=7×71+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×81+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×91+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10这样的等式还可以一直写下去,能写出很多很多.同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.③由方法2和方法3也可以得出下式:1+3+5+7+9+11+13+15+17+19=10×10.即从1开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:1+3=2×21+3+5=3×31+3+5+7=4×41+3+5+7+9=5×51+3+5+7+9+11=6×61+3+5+7+9+11+13=7×71+3+5+7+9+11+13+15=8×81+3+5+7+9+11+13+15+17=9×91+3+5+7+9+11+13+15+17+19=10×10还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.例2 数一数,图3-5中有多少条线段?解:(1)我们已知,两点间的直线部分是一条线段.以A点为共同端点的线段有:AB AC AD AE AF 5条.以B点为共同左端点的线段有:BC BD BE BF 4条.以C点为共同左端点的线段有:CD CE CF 3条.以D点为共同左端点的线段有:DE DF 2条.以E点为共同左端点的线段有:EF1条.总数5+4+3+2+1=15条.(2)用图示法更为直观明了.见图3-6.总数5+4+3+2+1=15(条).想一想:①由例2可知,一条大线段上有六个点,就有:总数=5+4+3+2+1条线段.由此猜想如下规律(见图3-7):还可以一直做下去.总之,线段总条线是从1开始的一串连续自然数之和,其中最大的自然数比总数小1.我们又发现了一条规律.它说明了点数与线段总数之间的关系.②上面的事实也可以这样说:如果把相邻两点间的线段叫做基本线段,那么一条大线段上的基本线段数和线段总条数之间的关系是:线段总条数是从1开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见图3-8).基本线段数线段总条数还可以一直写下去,同学们可以自己试试看.例3 数一数,图3-9中共有多少个锐角?解:(1)我们知道,图中任意两条从O点发出的射线都组成一个锐角.所以,以OA边为公共边的锐角有:∠LAOB,∠AOC,∠AOD,∠AOE,∠AOF共5个.以OB边为公共边的锐角有:∠BOC,∠BOD,∠BOE,∠BOF共4个.以OC边为公共边的锐角有:∠COD,∠COE,∠COF共3个.以OD边为公共边的锐角有:∠DOE,∠DOF共2个.以OE边为一边的锐角有:∠EOF只1个.锐角总数5+4+3+2+1=15(个).②用图示法更为直观明了:如图3-10所示,锐角总数为:5+4+3+2+1=15(个).想一想:①由例3可知:由一点发出的六条射线,组成的锐角的总数=5+4+3+2 +1(个),由此猜想出如下规律:(见图3-11~15)两条射线1个角(见图3-11)三条射线2+1个角(见图3-12)四条射线3+2+1个角(见图3-13)五条射线4+3+2+1个角(见图3-14)六条射线5+4+3+2+1个角(见图3-15)总之,角的总数是从1开始的一串连续自然数之和,其中最大的自然数比射线数小1.②同样,也可以这样想:如果把相邻两条射线构成的角叫做基本角,那么有共同顶点的基本角和角的总数之间的关系是:角的总数是从1开始的一串连续自然数之和,其中最大的自然数等于基本角个数.③注意,例2和例3的情况极其相似.虽然例2是关于线段的,例3是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力..解:方法1:从左往右一摞一摞地数,再相加求和:10+11+12+13+14+15+14+13+12+11+10=135(本).方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.长方形中的书 10×11=110三角形中的书 1+2+3+4+5+4+3+2+1=25总数:110+25=135(本).2.解:因为棋孔较多,应找出排列规律,以便于计数.仔细观察可知,图中大三角形ABC上的棋孔的排列规律是(从上往下数):1,2,3,4,5,6,7,8,9,10,11,12,13,另外还有三个小三角形中的棋孔的排列规律是1,2,3,4,所以棋孔总数是:(1+2+3+4+5+6+7+8+9+10+11+12+13)+(1+2+3+4)×3=91+10×3=121(个).3.解:方法1:按图3-22所示方法数(图中只画出了一部分)线段总数:7+6+5+4+3+2+1=28(条).方法2:基本线段共7条,所以线段总数是:7+6+5+4+3+2+1=28(条).4.解:按图3-23的方法数:角的总数:7+6+5+4+3+2+1=28(个).5.解:方法1:(1)三角形是由三条边构成的图形.以OA边为左公共边构成的三角形有:△OAB,△OAC,△OAD,△OAE,△OAF,△OAG,△OAH,共7个;以OB边为左公共边构成的三角形有:△OBC,△OBD,△OBE,△OBF,△OBG,△OBH,共6个;以OC边为左公共边构成的三角形有:△OCD,△OCE,△OCF,△OCG,△OCH,共5个;以OD边为左公共边构成的三角形有:△ODE,△ODF,△ODG,△ODH,共4个;以OE边为左公共边构成的三角形有:△OEF,△OEG,△OEH,共3个;以OF边为左公共边构成的三角形有:△OFG,△OFH,共2个;以OG边和OH,GH两边构成的三角形仅有:△OGH1个;三角形总数:7+6+5+4+3+2+1=28(个).(2)方法2:显然底边AH上的每一条线段对应着一个三角形,而基本线段是7条,所以三角形总数为:7+6+5+4+3+2+1=28(个).6.解:最小的正方形有25个,由4个小正方形组成的正方形 16个;由9个小正方形组成的正方形9个;由16个小正方形组成的正方形4个;由25个小正方形组成的正方形1个;正方形总数:25+16+9+4+1=55个.认识简单数列1.从1开始,每隔两个数写出一个自然数,共写出十个数来.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?4.自2开始,隔两个数写一个数:2,5,8, (101)可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?5.如图4-1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6.如图4-2所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?7.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小组共有多少组员?8.图4-3所示为细胞的增长方式.就是说一个分裂为两个,再次分裂变为4个,第三次分裂为8个,……照这样下去,问经过10次分裂,一个细胞变成几个?9.图4-4所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问(1)盒子里有多少珠子?(2)这串珠子共有多少个?1.解:可以先写出从1开始的自然数列,再按题目要求删去那些不应该出现的数,就得到答案了:即1,4,7,10,13,16,19,22,25,28可以看出,这是一个等差数列,后面一个数比前面一个数大3.2.解:仿习题1,先写前面的几个数如下:可以看出,1,8,15,22,……也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10个数:1,8,15,22,29,36,43,50,57,64.3. 解:观察习题一和习题二两个数列:可见两个数列中最小的相同数是22.4.解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4))再仔细观察可知:第二项=第一项+1×公差,即5=2+1×3;第三项=第一项+2×公差,即8=2+2×3;第四项=第一项+3×公差,即11=2+3×3;第五项=第一项+4×公差,即14=2+4×3;…………由于101=2+33×3;可见,101是第34项,即第34个数.5.解:仔细观察可发现,这个“阶梯形”图形最高处是4个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个).6.解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5)):所以六层小立方体的总数为:1+3+6+10+15+21=56(个).7.解:列表如下:4个星期后小组的总人数:1+2+4+8=15(人).8.解:列表如下:一个细胞经过10次分裂变为1024个.9.解:仔细观察可知,这串珠子的排列规律是:白黑白黑白黑白黑白黑白黑白黑白 1, 1,1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1,①在盒子里有:4+1+4=9(个).②这一串珠子总数是:1+1+1+2+1+3+1+4+1+5+1+6+1+7+1=1+2+3+4+5+6+7+(1+1+1+1+1+1+1+1)=28+8=36(个).。
小学一二年级的奥数知识点总结
小学一二年级的奥数知识点总结
小学一二年级的奥数知识点总结如下:
1. 数字概念:学会认识数字,掌握数字的大小关系和顺序。
2. 算术运算:掌握简单的加法和减法,熟练运用加法和减法进行计算。
3. 排列组合:学会对一组事物进行排列和组合,如:将若干物品摆放在一起,有多少种排列方式。
4. 分数概念:认识简单的分数,了解分数的含义和用途。
5. 几何图形:学会认识基本的几何形状,如:正方形、长方形、圆形等;并能够识别和辨认各种几何图形。
6. 数量关系:掌握数字之间的数量关系,如:相等、比较大小、倍数和约数等。
7. 逻辑推理:培养逻辑思维能力,能够进行简单的逻辑推理和问题解答。
8. 空间想象:培养空间想象能力,能够观察和描述物体的形状、大小和位置等。
这些知识点仅是一二年级奥数的基础内容,实际上奥数的知识点还涉及到更深入和复杂的内容。
对于小学一二年级的孩子来说,培养对数学的兴趣和基本的数学思维能力更为重要。
小学奥数所有的知识点归纳
小学奥数所有的知识点归纳对于小学生来说,参加奥数是提高数学能力和思维能力的绝佳途径。
小学奥数涉及的知识点广泛而深入,涵盖了数学的各个方面。
下面将对小学奥数的知识点进行归纳总结。
一、基础知识点1.1 数的认识和比较小学奥数的基础知识点之一是数的认识和比较。
包括数的读写、数的加减法运算、数的大小比较等。
1.2 整数的四则运算整数的四则运算是小学奥数必备的基础知识点,包括整数的加减乘除运算、负数的加减乘除运算等。
1.3 分数和小数的基本运算分数和小数的基本运算也是小学奥数的核心知识点之一。
包括分数的加减乘除运算、分数与整数的混合运算、小数的加减乘除运算等。
1.4 平方根和立方根的计算平方根和立方根的计算是小学奥数的一项重要知识点。
要求学生能够计算非负整数的平方根和立方根,并应用于实际问题中。
二、应用问题2.1 算术题小学奥数中,包含了各类应用算术题,如速算、面积体积计算、运算顺序等。
此类问题要求学生具备计算能力和分析解决问题的能力。
2.2 类比题类比题是小学奥数中的经典题型之一,它要求学生能够发现和分析事物之间的相似关系,并运用到具体问题中。
2.3 推理与判断题推理与判断题是小学奥数中较为复杂的类型,它要求学生通过逻辑思维和推理能力来解答问题。
这类题目既考察了学生的思维能力,又培养了他们的逻辑思维能力。
三、数学思维3.1 抽象思维小学奥数培养学生的数学抽象思维能力,使学生能够将数学问题具象化,提高解决问题的能力。
3.2 推理思维推理思维是解决数学问题的重要能力之一。
小学奥数中的推理题要求学生能够发现问题的规律,并运用推理能力进行解答。
3.3 分析思维分析思维是解决复杂数学问题的关键能力。
小学奥数中的分析题要求学生能够分析问题的结构和关系,并找出解题的关键点。
以上是小学奥数知识点的简要归纳。
通过学习这些知识点,可以提高小学生的数学能力和思维能力,为他们将来更高阶段的数学学习打下坚实基础。
希望同学们能够充分利用好奥数学习的机会,努力提高自己的数学水平!。
1至六年级数学奥数知识点
1至六年级数学奥数知识点数学奥数是对学生数学思维和解决问题能力的锻炼,涵盖了广泛的数学知识点。
在一至六年级,学生们开始接触和学习基础的数学概念和技巧。
下面将介绍一至六年级数学奥数的常见知识点。
一年级:1. 数的认识与操作学生们需要通过认识和操作1至100以内的数,包括数字的读写、比较大小、加减法运算等。
2. 简单的几何图形学生们需要学习认识和画出简单的几何图形,如正方形、矩形、三角形、圆形等,并能辨别它们的特征。
3. 计量单位学生们需要学习认识和运用基本的计量单位,如长度、质量和容量的比较和转换。
二年级:1. 运算技巧学生们需要进一步掌握加减法的运算技巧,包括进位与退位的概念和应用,以及多位数的加减法运算。
2. 分数的认识学生们需要学习认识和理解分数的概念,包括分数的读法、基本性质和简单的分数计算。
3. 二维几何图形学生们需要学习认识和描述二维几何图形的特征,如平行线、垂直线、直角和平行四边形等。
三年级:1. 乘法与除法学生们需要学习掌握乘法和除法的基本概念和技巧,包括乘法口诀表的背诵与应用,以及简单的多位数的乘除法运算。
2. 数据与图表学生们需要学习收集和整理数据,并能够用表格、条形图和折线图等形式来展示数据。
3. 三角形和四边形学生们需要进一步学习认识和分类三角形和四边形,并能够判断它们的特征和性质。
四年级:1. 小数学生们需要学习认识和理解小数的概念,包括小数的读写、大小比较和简单的小数计算。
2. 算式的变形与应用学生们需要学习利用基本运算法则进行算式的变形和简化,以及将数学知识应用到实际问题中。
3. 扇形和圆形学生们需要学习认识和描述扇形和圆形的特征和性质,如圆心角、弦和弧长等。
五年级:1. 整数学生们需要学习认识和理解整数的概念,包括整数的正负、大小比较和简单的整数计算。
2. 比例与百分数学生们需要学习比例和百分数的概念和应用,包括比例关系的表示、解决比例问题和百分数的转化与计算。
3. 平行线和相交线学生们需要学习认识和描述平行线和相交线的特征和性质,如对顶角、同位角和同旁内角等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于小学一二年级的奥数知识点汇总
一、数与代数方面
数与代数在一、二年级的学习中占了很大比重,比如:认识万以内的数、找数的规律、奇数和偶数、速算和巧算、等量代换、简单的排列和组合问题、数的拆分、数字谜、数阵图、简单的周期问题等,通过这些内容的学习让学生初步建立数感,提高计算、估算的能力,开拓思维,培养学生多元化解答的数理逻辑发散思维。
具体内容如下:
1、数的认识:主要学习万以内数的认识,包括数的组成,如何把数拆分,如何判断奇数和偶数等。
2、找数的规律:主要内容包括让学生认识简单的等差数列、等比数列,能通过一列数来发现这一列数的规律,并能继续往下填写,还能发现简单数阵的规律。
3、速算和巧算:主要学习凑整法、带符号搬家、减法的巧算、找基准数等方法。
4、数字谜和数阵图:这部分的内容包括巧填算符,会填三四位数加减法算式谜,能通过找简单的重叠数填数阵图。
5、简单的周期问题:这部分将引导学生提前学习有余数的除法,通过有余数除法的计算来解决一些简单的周期问题。
6、另外:我们还会在一年级提前学习100以内进位加减法,在一年级升二年级时提前学习乘除法,整个代数方面我们会和学校教材紧密结合,即巩固基础又提高能力。
二、空间与图形方面
围绕这个教学目标,我们设置了如下内容:如认识简单立体和平面图形,感受平移、旋转、对称等现象,学会描绘物体相对的位置,会按一定的方法来数各种图形,会找到各种图形之间的内在联系,进行图形的分割和拼组,简单的图形周长的计算等。
通过这些内容的学习,学生能建立初步的空间观念,为更高年级的几何学习打好基础。
具体内容如下:
1、认识立体图形和平面图形:主要让学生认识常见的立体图形和平面图形,了解它们的特点,并能知道它们的组成。
2、图形的计数:在认识图形的基础上我们继续学习怎样计数,主要内容包括数线段、三角形、长方形、小方块,掌握数图形的一般方法,并能数一些较复杂的图形。
3、图形的拼组:这部分内容主要是通过剪、拼的办法来实现各种图形之间形状的变化,培养学生的动手操作能力。
在一二年级的秋寒春暑四期都有不同侧重的锻炼。
4、图形的周长:在二年级春季时我们会提前学习图形的周长,让学生理解周长的概念,并能进行简单的计算。
三、动手实践活动方面
动手操作能力对于低年级孩子说是很重要的能力之一。
在这一方面,我们安排了大量学生可动手操作的内容,如探究水杯的浓度问题、摆火柴棒游戏、必胜策略问题、数学游戏、逻辑推理、七巧板游戏等,在这些活动中,使学生学会去探究,使学生的动手操作能力不断提高。
四、解决问题方法
应用类题型的解答可以很好的培养孩子的思维能力,而对于应用类题型解答方法的训练,需要从小培养。
在一、二年级的教学中,我们就安排了大量的重要专题内容,如:两到三步应用题、简单的间隔问题(植树问题)、简单的年龄问题、排队与方阵、倍数问题、时间的计算、智力趣题等。
通过这些应用题知识的学习,让学生找到一些解决问题的好方法,如枚举法、画图法、假设法等。
这些方法的积累对于更高年级的学生极其重要。
应用类题型专题主要内容包括:
1、在二年级秋季提前学习三步计算的应用类题型:让学生掌握解答应用题的一般方法,了解各种不同类型的应用题,如条件多余、重叠问题等。
2、简单的植树问题:主要让学生掌握不同情况下间隔的变化,并能根据不同的间隔情况解答一些简单问题,为三年级的学习奠定基础。
从一年级春季的引入到二年级寒假的拓展,层层深入。
3、简单的年龄问题:主要研究年龄差不变的问题。
4、排队与方阵:从一年级开始到二年级我们将从单列排队到方阵问题一一解答。
5、倍数问题:主要学习简单的和差和和倍问题,将在二年级寒假进行重点学习。
6、时间的计算:对时间的认识是学生在低年级比较薄弱的知识点。
我们将在一年级秋季和二年级春季分两个层次来学习,前者学习钟表的认识,后者学习怎样计算单位内的时间。
7、数学方法的学习:如通过付钱的方法来学习枚举法,通过鸡兔同笼问题来学习画图法等。