直流电机继电器控制正反转

合集下载

51单片机直流电机正反转程序

51单片机直流电机正反转程序

51单片机直流电机正反转程序在工业自动化、机器人、电子设备等领域,直流电机是一种常见的电动机。

直流电机具有结构简单、转速范围广、转矩大、控制方便等优点,因此被广泛应用。

在直流电机的控制中,正反转是一种常见的操作。

本文将介绍如何使用51单片机控制直流电机的正反转。

1. 直流电机的原理直流电机是一种将电能转化为机械能的电动机。

它的基本结构由定子、转子、电刷和电枢组成。

当电枢通电时,电枢内部会产生磁场,与定子磁场相互作用,从而产生转矩,使转子转动。

电刷则用来改变电极的极性,使电极的磁场方向与定子磁场方向相互作用,从而使电机正反转。

2. 51单片机控制直流电机的原理51单片机是一种常用的微控制器,具有体积小、功耗低、易于编程等优点。

在控制直流电机时,我们可以使用51单片机来控制电机的正反转。

具体实现方法是通过控制电机的电极极性来改变电机的转向。

3. 51单片机直流电机正反转程序下面是一段使用51单片机控制直流电机正反转的程序:#include <reg52.h>sbit IN1 = P1^0; //定义IN1引脚sbit IN2 = P1^1; //定义IN2引脚void delay(unsigned int t) //延时函数 {unsigned int i, j;for(i=0; i<t; i++)for(j=0; j<125; j++);}void main(){while(1){IN1 = 1; //IN1引脚输出高电平 IN2 = 0; //IN2引脚输出低电平 delay(1000); //延时1秒IN1 = 0; //IN1引脚输出低电平 IN2 = 1; //IN2引脚输出高电平 delay(1000); //延时1秒}```上述程序中,我们使用了P1口的0、1引脚来控制电机的正反转。

当IN1引脚输出高电平、IN2引脚输出低电平时,电机正转;当IN1引脚输出低电平、IN2引脚输出高电平时,电机反转。

PLC实验 3直流电机正反转及能耗制动

PLC实验    3直流电机正反转及能耗制动

3直流电机正反转及能耗制动一、实验目的1.掌握PLC控制的基本原理。

2.掌握直流电机正反转及能耗制动的基本原理及程序设计。

二、实验器材1.ZYE3103B型可编程控制器实验台1台2.ZYPLC02直流电机正反转及能耗制动演示板1块3.PC机或FX-20P-E编程器1台4.编程电缆1根5.连接导线若干三、实验原理与实验步骤1. 面板上K1、K2、KZ分别表示正转、反转、制动,是PLC给电机的三个控制信号。

KM1、KM2、KM3是模拟实际情况中的接触器,用来控制直流电机的正、反转及制动。

2. 控制要求:(1)按下正转按钮K1,KM1闭合,电机正转;按下制动按钮KZ,KMZ延时1秒动作,电机能耗制动。

(2)按下反转按钮K2,KM2闭合,电机反转;按下制动按钮KZ,KMZ延时1秒动作,电机能耗制动。

3. 实验步骤:(1) 打开PLC实验台电源,编程器与PLC连接。

(2) 根据具体情况编制输入程序,并检查是否正确。

(3) 按接线图连线,实验台与ZYPLC02连接,检查连线是否正确。

(4) 按下正转、反转、制动按钮,观察运行结果。

四、设计程序清单1. I/O地址分配清单:输入地址:K1 X1 K2 X2KZ X3输出地址:KM1 Y1 KM2 Y2KMZ Y02. 程序(1) 梯形图(2) 指令表3. 接线图正转Y0X2Y1Y2KMZ COMCOM0-COM724VKM2制动反转P L C 可编程控制器X3X1KM1接线明细表:正转按纽端子K1——X1端子,反转按纽端子K2——X2 端子制动按纽端子KZ——X3端子KM1——Y1 KM2——Y2 KMZ——Y0+24V——电源部分+24V COM——电源部分COM (注:图中所示的PLC上输入口和输出口的COM端实验台内部已连好。

)1降压启动一、实验目的1. 掌握PLC控制的基本原理2.掌握降压启动的基本原理及程序设计。

二、实验器材1.ZYE3103B型可编程控制器实验台1台2.ZYPLC03串电阻降压启动演示板1块3.PC机或FX-20P-E编程器1台4.编程电缆1根5.连接导线若干三、实验原理与实验步骤1. 实验原理本实验采用直流电机模拟交流电机的运行,通过实验使学生了解实际交流电机的降压启动过程,图中K0是启动按钮,KM1-KM3是三个继电器,用来代替现实中应用的接触器(注:现实中的继电器和接触器的用法是不同的)。

直流电动机正反转原理

直流电动机正反转原理

直流电动机正反转原理
直流电动机正反转原理是通过改变电流的方向和大小来实现的。

直流电动机是由永磁体和电枢组成的,电枢上通过一对刷子与电源相连。

当电源正极的电流进入电枢后,刷子与电枢接触,电流通过电枢产生磁场。

然后,刷子与电源的负极接触,电流改变方向,磁场极性也发生改变。

这样,磁场与永磁体之间会产生作用力,使得电枢开始旋转。

当电枢旋转到一定角度时,刷子与电枢断开,电流中断,电枢将继续以惯性运动。

此时,直流电机进入自动励磁状态,因为电枢的旋转产生的感应电动势会使电流重新流过电枢,重新激励磁场。

然后,刷子再次接触电枢,电流更新,电枢方向发生改变,在感应力的作用下,电枢再次旋转。

为了改变直流电动机的转向,只需改变电流的方向即可。

例如,如果交换电源引线的连接方式,即将正极连接到原先的负极,负极连接到原先的正极,电流的方向就会改变。

这样,电枢的感应力的方向也会改变,使电枢旋转的方向也随之改变。

因此,通过改变电流的方向和大小,可以实现直流电动机的正反转。

L298N控制直流电机正反转

L298N控制直流电机正反转

98推 介Design L298N控制直流电机正反转文/张天鹏 徐磊 北京林业大学工学院摘要:在分析了直流电机驱动芯片 L298N 的性能、结构的基础上,结合 SPCE061A EMU BOARD单片机(61板),介绍实现驱动直流电机的转正反一种简单方法.文中给出了控制原理图,还给出来了控制直流电机正反转驱动程序。

实际测试表明,利用该方法设计的直流电机驱动系统具有硬件结构简单、软件编程容易。

关键词:直流电机 单片机 L298N一、背景介绍(一)预备知识1.熟悉凌阳单片机的工作原理。

2.熟悉键盘扫描原理和L298n驱动电机原理。

3.熟悉汇编语言及C语言。

(二)直流电机控制原理对于普通直流电机,其控制方法比较简单,只需给电机的两根控制线加上适当的电压即可使电机转动起来,电压越高则电机转速越高。

对于直流电机的速度调节,可以采用改变电压的方法,也可采用PWM调速方法。

PWM调速就是使加在直流电机两端的电压为方波形式,加在电机两端的电压就在VLoad和0V之间不停的跳变,对应的电机电压波形如图 1 所示:图1 PWM调速原理图此时加在电机两端的平均电压Uo=Th/(Th+Tl)*VLoad,可以通过调整PWM的占空比来改变Th和Tl的比值。

这样就可以通过PWM调节加在电机两端的平均电压,从而改变电机的转速。

与步进电机类似,不能将单片机的I/O直接与直流电机的引线相接,而要在二者之间增加驱动电路。

也可利用L298N电机驱动芯片实现直流电机驱动(注:我们小组在本次试验中采用L298N芯片驱动直流电机正反转)。

(三)L298N芯片资料恒压恒流桥式2A驱动芯片L298N:L298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。

可以方便的驱动两个直流电机,或一个两相步进电机。

L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,输出电压最高可达50V ,可以直接通过电源来调节输出电压;可以直接用单片机的I O口提供信号;而且电路简单,使用比较方便。

电机正反转控制原理

电机正反转控制原理

电机正反转控制原理电机正反转控制是指控制电机转动方向的一种技术。

在实际应用中,电机正反转控制常常被用于机械设备、自动化生产线、机器人等领域。

电机正反转控制的实现原理主要是通过改变电机的电流方向来实现电机的正反转。

电机正反转控制的实现原理电机正反转控制的实现原理主要是通过改变电机的电流方向来实现电机的正反转。

在直流电机中,电机的正反转控制可以通过改变电机的电极极性来实现。

在交流电机中,电机的正反转控制可以通过改变电机的相序来实现。

直流电机的正反转控制直流电机的正反转控制可以通过改变电机的电极极性来实现。

在直流电机中,电极极性的改变可以通过改变电机的电源极性来实现。

当电机的电源极性与电机的电极极性相同时,电机正转;当电机的电源极性与电机的电极极性相反时,电机反转。

交流电机的正反转控制交流电机的正反转控制可以通过改变电机的相序来实现。

在交流电机中,电机的相序是指电机的三相电源的相序。

当电机的三相电源的相序为ABC时,电机正转;当电机的三相电源的相序为CBA时,电机反转。

电机正反转控制的应用电机正反转控制在实际应用中有着广泛的应用。

在机械设备中,电机正反转控制可以用于控制机械设备的正反转,从而实现机械设备的正常运转。

在自动化生产线中,电机正反转控制可以用于控制自动化生产线上的机械设备的正反转,从而实现自动化生产线的自动化运行。

在机器人中,电机正反转控制可以用于控制机器人的运动方向,从而实现机器人的自动化运动。

电机正反转控制是一种重要的技术,它可以用于控制电机的正反转,从而实现机械设备、自动化生产线、机器人等领域的自动化运行。

【精品】电动机的正反转控制

【精品】电动机的正反转控制

【精品】电动机的正反转控制
电动机是一种将电能转化为机械能的装置,其正反转控制是其基本控制方式之一,常用于工业生产中的各种机械设备控制。

正反转控制实现电动机在正、反方向旋转,可通过电路控制选通不同的电源极性实现。

一般电动机正常情况下只能单方向旋转,要实现正反转控制,则需更换或重构控制电路。

以下是两种控制电路:
1. 交流电动机的正反转控制
交流电动机正反转控制需要借助变极性交流电源供电,如使用三相电源,可通过变换三相电源中的两相的连接来改变电机的运动方向。

如图所示,直接把电机接在交流电源上,其转动方向只能是一个方向。

而通过切换电源相序,在不同的相序下,电机的转动方向也会相应都发生改变。

2. 直流电动机的正反转控制
直流电动机正反转控制的实现可通过两个方法。

第一个是通过磁场的电流方向控制转子的运动方向;第二是通过切换电机转接板上两个接线端子的连接关系,改变电机的电流方向而控制。

如图所示,直接把电机用正(负)极接正(负)电源,电机就会朝一个方向转动。

如需反方向运动,则切换电机转接板上正(负)极的接线端子,电流方向就会改变,进而改变电机的运动方向。

以上是两种电动机正反转控制的基本方法,实际控制时应视具体情况采用不同的控制方式来实现。

电动机正反转控制-电工培训

电动机正反转控制-电工培训

电动机正反转控制-电工培训首先,我们来了解一下电动机正反转的基本原理。

电动机正反转的控制需要通过控制电动机的供电电路来实现。

在直流电动机中,通过控制电极的接线方式可以实现正反转的切换。

在交流电动机中,通过控制交流电源的相序来实现正反转控制。

所以说,控制电动机的正反转本质上就是控制电机的供电电路。

其次,我们来了解一下电动机正反转控制的具体方法。

在直流电动机中,可以通过改变电机的电极接线方式来实现正反转。

在接线方式上,通过交换两端子的接线,可以改变电机的旋转方向。

在接线上,需要使用特定的继电器或者开关来实现接线的切换。

在交流电动机中,可以通过改变交流电源的相序来实现正反转控制。

在相序上,需要使用特定的交流电源控制装置来实现相序的切换。

通过改变电机的供电电路,可以实现电动机的正反转控制。

最后,我们来了解一下电动机正反转控制的应用。

电动机正反转控制在工业生产中有着广泛的应用。

比如在输送带系统中,需要控制输送带的正反转来实现物料的输送和停止。

在机械装置中,需要控制电机的正反转来实现机械装置的前进和后退。

在自动化生产线中,需要控制电机的正反转来实现自动化生产线的启动和停止。

电动机正反转控制在工业生产中有着非常重要的地位,掌握了这一技能可以为工业生产提供有效的控制手段。

总之,电动机正反转控制是电工培训中一个非常重要的知识点,需要掌握的知识包括电动机正反转的基本原理、具体方法和应用。

通过学习和实践,可以掌握电动机正反转控制的技能,为工业生产提供有效的控制手段。

希望大家在学习中能够认真对待,掌握这一技能,为今后的工作打下坚实的基础。

电动机正反转控制是电工培训中的基础技能,但是在实际操作中需要更加深入地了解控制方法和技术。

以下将继续探讨电动机正反转控制的具体方法、控制技术和相关的应用场景。

首先,我们来了解一些电动机正反转控制的具体方法:1. 控制电动机正反转的常用方法之一是通过电磁继电器或者接触器来实现。

这些继电器或接触器可以控制电动机的供电开闭,从而实现电动机的正反转。

用一个继电器控制直流电机正反转

用一个继电器控制直流电机正反转

S4
到现场电机
接线图
阀门关闭时
仪表(+) 1 2 3 4 常闭点 5 6 7 8 常开点
阀门打开时
仪表(-) 1
2
3
567
4 仪表(+) 8
9 10 11 12 0V
+24V
公共点 9
10 11 12 +24V
1234
仪表(-)
5678 0V
9 10 11 12
序言
曾经遇到过这样的一个开关阀控制电路,即:使用一个具有4个常开和 4个常闭点的继电器控制一个直流电机的正反转,进而控制阀门的开和关。
刚开始看着继电器的接线,觉得有点复杂,了解其工作原理之后,倒 觉得没什么,画出电路原理图也就一目了然。
话说回来,这样的设计觉得很新颖,似乎也可以节约成本,但有个问 题又不容忽视,那就是总有一种状态下电机一直处于一直得电状态(即: 转到位卡住之后电机还处于得电状态,电机又不能转)。
控制原理图
24VΒιβλιοθήκη S0说明: ①QS开关闭合。 ②当DCS给开的信号时,S0 闭合,继电器得电,S2、 S4断开,S1、S3闭合,送 正向24V使阀门打开; ③当DCS给关的信号时,S0 断开,继电器失电,S1、 S3断开,S2、S4闭合,送 反向24V使阀门关闭。
+24V
0V
FU QS
S1
S2
S3

L298N控制直流电机正反转

L298N控制直流电机正反转

98推 介Design L298N控制直流电机正反转文/张天鹏 徐磊 北京林业大学工学院摘要:在分析了直流电机驱动芯片 L298N 的性能、结构的基础上,结合 SPCE061A EMU BOARD单片机(61板),介绍实现驱动直流电机的转正反一种简单方法.文中给出了控制原理图,还给出来了控制直流电机正反转驱动程序。

实际测试表明,利用该方法设计的直流电机驱动系统具有硬件结构简单、软件编程容易。

关键词:直流电机 单片机 L298N一、背景介绍(一)预备知识1.熟悉凌阳单片机的工作原理。

2.熟悉键盘扫描原理和L298n驱动电机原理。

3.熟悉汇编语言及C语言。

(二)直流电机控制原理对于普通直流电机,其控制方法比较简单,只需给电机的两根控制线加上适当的电压即可使电机转动起来,电压越高则电机转速越高。

对于直流电机的速度调节,可以采用改变电压的方法,也可采用PWM调速方法。

PWM调速就是使加在直流电机两端的电压为方波形式,加在电机两端的电压就在VLoad和0V之间不停的跳变,对应的电机电压波形如图 1 所示:图1 PWM调速原理图此时加在电机两端的平均电压Uo=Th/(Th+Tl)*VLoad,可以通过调整PWM的占空比来改变Th和Tl的比值。

这样就可以通过PWM调节加在电机两端的平均电压,从而改变电机的转速。

与步进电机类似,不能将单片机的I/O直接与直流电机的引线相接,而要在二者之间增加驱动电路。

也可利用L298N电机驱动芯片实现直流电机驱动(注:我们小组在本次试验中采用L298N芯片驱动直流电机正反转)。

(三)L298N芯片资料恒压恒流桥式2A驱动芯片L298N:L298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。

可以方便的驱动两个直流电机,或一个两相步进电机。

L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,输出电压最高可达50V ,可以直接通过电源来调节输出电压;可以直接用单片机的I O口提供信号;而且电路简单,使用比较方便。

无刷直流电机正反转逻辑

无刷直流电机正反转逻辑

无刷直流电机正反转逻辑无刷直流电机(BLDC)是一种常见的电机类型,它通过无刷电子换向器来实现电机的正反转控制。

在控制无刷直流电机的正反转时,需要考虑到电机的转子位置和电流的流动方向,以实现准确的控制。

无刷直流电机的正反转逻辑主要包括以下几个步骤:1. 转子位置检测:在控制无刷直流电机的正反转之前,需要通过传感器或者电机内部的霍尔元件来检测电机转子的位置。

传感器可以提供准确的转子位置信息,从而确定电流的流动方向。

2. 电流控制:无刷直流电机的正反转是通过控制电流的流动来实现的。

在正转时,电流从电源的正极流入电机的A相,然后流入B相,最后流入C相,形成一个顺时针的电流环路。

在反转时,电流的流动方向与正转相反,形成一个逆时针的电流环路。

3. 电子换向器控制:电子换向器是控制无刷直流电机正反转的关键部件。

它根据转子位置和电流的流动方向,来控制电流的切换。

在正转时,电子换向器按照顺时针的顺序依次将电流切换到下一个相位,从而推动电机正转。

在反转时,电子换向器按照逆时针的顺序依次将电流切换到下一个相位,从而推动电机反转。

4. 速度控制:除了实现无刷直流电机的正反转之外,还可以通过控制电流的大小来实现电机的速度控制。

电流越大,电机转速越快;电流越小,电机转速越慢。

通过改变电流的大小,可以实现电机的加速和减速。

5. 保护措施:在控制无刷直流电机的正反转过程中,还需要考虑到电机的保护措施。

例如,当电机过载或者温度过高时,需要及时停止电机的运行,以避免电机损坏。

总结起来,无刷直流电机的正反转逻辑是通过转子位置检测、电流控制、电子换向器控制、速度控制和保护措施等步骤来实现的。

掌握无刷直流电机的正反转逻辑,可以实现对电机的准确控制,广泛应用于各种工业和家用设备中。

直流无刷电机如何控制正反转

直流无刷电机如何控制正反转

直流无刷电机如何控制正反转直流无刷电机如何控制正反转直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能。

我们知道直流无刷电机在许多场合不但要求电机具有良好的起动和调节特性,而且要求电机能够正反转。

那么如何实现直流无刷电机的正反转?通常采用改变逆变器开关管的逻辑关系,使电枢绕组各相导通顺序变化来实现电机的正反转。

为了使电机正反转均能产生最大平均电磁转矩以保证对称运行,必须设计转子位置传感器与转子主磁极和定子各相绕组的相互位置关系,以及正确的逻辑关系。

正/反转控制(DIR)通过控制端子“DIR”与端子“COM”的通、断可以控制电机的运转方向。

端子“DIR”内部以电阻上拉到+12,可以配合无源触点开关使用,也可以配合集电极开路的PLC等控制单元;当“DIR”与端子“COM”不接通时电机顺时针方向运行(面对电机轴),反之则逆时针方向运转;为避免直流无刷驱动器的损坏,在改变电机转向时应先使电机停止运动后再操作改变转向,避免在电机运行时进行运转方向控制。

转速信号输出(SPEED)直流无刷驱动器通过端子SPEED~COM为用户提供与电机转速成比例的脉冲信号。

每转脉冲数=6×电机极对数,SPEED频率(Hz)=每转脉冲数×转速(转/分)÷60。

例:4对极电机,每转24个脉冲,当电机转速为500转/分时,端子SPEED的输出频率为200Hz。

直流无刷电机foc控制技术解决方案从能耗角度来看,消费类电子产品和工业设备从传统的AC 马达过渡到体积更小、更为高效的BLDC 电机具有重大意义,但设计BLDC 控制算法的复杂性阻止了工程师们实现这种过渡的积极性。

从手机中的小型振动马达到家用洗衣机和空调中使用的更复杂的马达,马达已成为消费领域中的日常装置。

马达同样也是工业领域中的一个重要组成部分,在很多应用中广泛运用,如驱动风扇、泵等各种机械设备。

这些马达的能量消耗是非常巨大的:研究表明,仅在中国,马达所消耗的能源占工业总能耗的60% 至70%,其中风扇和泵所消耗的能源占中国整体功耗的近四分之一。

分享一种简易的直流电机正反转限位电路

分享一种简易的直流电机正反转限位电路

分享⼀种简易的直流电机正反转限位电路
早开始之前做电机控制的项⽬,需要改造电机内部限位电路,就把电机给拆开,看了电路后,发现,这个电路挺实⽤,使⽤的元器件较少。

今天没事翻开笔记本,翻到此处,看到⾃⼰画的电路,于是乎,就分享出来。

电路分为四个阶段,即正、正转限位、反转、反转限位。

⼀、正转
看上述电路,其中S1和S2是两限位开关(轻触开关),D1和D2普通⼆极管(1N4007),当接通电源后,电流流向如上图图中蓝⾊箭头⽅向,假设此时电机正转,由于常闭开关S1和S2闭合,把D1和D2短路,电流直接通过两开关流过,电机正转;
⼆、正转限位
当电机正转到限位处,碰到限位开关S1后,轻触开关S1由常闭断开,此时⼆极管D1阴极接在VCC,电流流不过⼆极管D1,此时电机停⽌;
三、反转
当电机电源反接后,电流流向如上图蓝⾊箭头,电流通过直流电机、S2、D1流向GND,形成闭合回路,电机反转,当电机反转后,S1从断开状态,恢复到常闭状态;
四、反转限位
当电机反转到,开关S2后,把S2常闭触点断开,此刻电流流不过D2,电机停⽌;
以上就是这个电机限位电路的⼀个循环。

直流电机正反转控制

直流电机正反转控制

(课程设计说明书(2015/2016 学年第二学期)课程名称:单片机应用技术课程设计题目:直流电机正反转控制专业班级:电气工程及其自动化1321班学生姓名:学号: 1指导教师:设计周数:两周设计成绩:2016年6月24日目录一、课程设计目的-----------------------------------3二、课程设计任务及要求-----------------------------3原始数据及主要任务------------------------------------------3技术要求----------------------------------------------------3三、单片机简介-------------------------------------3四、软件设计---------------------------------------4系统分析及应用种类-------------------------------------------4系统设计-----------------------------------------------------5五、电路设计---------------------------------------5电机驱动电路设计------------- -----------------------------5显示电路设计-------------------------------------------------6按键设计-----------------------------------------------------6Proteus 仿真图-----------------------------------------------6Protel 99se 原理图-------------------------------------------7六、程序设计---------------------------------------7七、操作控制--------------------------------------12八、心得体会--------------------------------------12九、参考文献--------------------------------------12一、课程设计目的通过长达两周的课程设计,加深对《单片机》课程所学理论知识的理解,运用所学理论知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档