2012年高考真题——数学文(四川卷)含答案

合集下载

2012年高考文科数学真题答案全国卷1

2012年高考文科数学真题答案全国卷1

2012 年高考文科数学真题及答案全国卷1注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 (非选择题 )两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动 .用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后 .将本试卷和答且卡一并交回。

第1 卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合 A={ x|x2- x- 2<0} , B={ x|- 1<x<1} ,则(A)A B(B)BA(C)A=B(D)A∩B=【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】 A= (- 1,2),故 B A ,故选 B.( 2)复数 z=3i的共轭复数是2 i( A )2 i( B )2 i(C)1 i( D)1 i【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题.【解析】∵ z =3 ii ,∴ z 的共轭复数为 1 i ,故选D.= 12i(3)在一组样本数据( x1, y1),( x2, y2),⋯,( x n, y n)(n≥ 2, x1,x2, ⋯ ,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2, ⋯, n) 都在直线y 1x 1 y=1x+1上,则这组样本22数据的样本相关系数为(A)- 1(B)0(C)1(D)1 2【命题意图】本题主要考查样本的相关系数,是简单题.【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选 D.12x2y2=1(a> b >0)的左、右焦点,P 为直线 x3a(4)设F,F是椭圆E:a2b2上一2点,△ F2PF1是底角为300的等腰三角形,则 E 的离心率为A .1B .2C .3D .4 2345【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】∵△F2 PF1是底角为300的等腰三角形,∴ PF 2A600, | PF 2 | | F 1F 2 | 2c ,∴ | AF 2 | = c ,∴2c3a ,∴e =3,故选 C.24( 5)已知正三角形 ABC 的顶点 A(1,1) ,B(1,3) ,顶点 C 在第一象限,若点(x ,y )在△ ABC内部,则 zxy 的取值范围是(A )(1- 3,2)( B ) (0, 2)( C )( 3- 1,2)( D ) (0, 1+ 3)【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知C(1+ 3 ,2),作出直线l 0:xy 0 ,平移直线l 0,有图像知,直线 l : zx y 过B点时, z max=2,过 C 时,z min =1 3 ,∴ z x y 取值范围为(1-3,2),故选 A.( 6)如果执行右边的程序框图,输入正整数N ( N ≥2)和实数a 1,a 2,⋯,a N ,输出A ,B ,则A . A + B 为a 1,a 2,⋯,a N 的和ABB .为a 1,a 2,⋯,a N 的算术平均数C .A 和B 分别为a 1,a 2,⋯,a N 中的最大数和最小数D . A 和 B 分别为a 1,a 2,⋯,a N 中的最小数和最大数【命题意图】本题主要考查框图表示算法的意义,是 简单题 .【解析】由框图知其表示的算法是找大值和最小值,A 和B分别为 a 1, a 2,⋯, a N 中 的最大数和最小数,故选C.(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A .6B .9C .12D .18【命题意图】本题主要考查简单几何体的三视图及体积计算,是简单题 .【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为 6,这边上高为 3,棱锥的高为 3,故其体积为116 33 =9,32故选 B.(8) 平面α截球 O 的球面所得圆的半径为1,球心 O 到平面α的距离为 2,则此球的体积为( A ) 6π( B ) 4 3π(C ) 4 6π( D ) 6 3π【命题意图】【解析】N 个数中的最( 9)已知>0,0,直线x =和x =5是函数f ( x) sin( x ) 图像的两条44相邻的对称轴,则=( A )ππ π 3π4(B )3 (C )2 (D )4【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,5,∴ =1,∴= k( k Z ),=4442∴= k ( kZ ),∵0,∴ =,故选 A.44( 10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 216x 的准线交于 A 、B 两点,| AB |=4 3,则C 的实轴长为A .2B .2 2C .4D .8.【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题【解析】由题设知抛物线的准线为: x 4 ,设等轴双曲线方程为:x 2 y 2 a 2,将x 4代入等轴双曲线方程解得y =16 a 2 ,∵| AB|=43,∴2 16a 2 = 4 3 ,解得 a =2,∴ C 的实轴长为4,故选 C.(11)当 0< x ≤1时,4xlog a x ,则a 的取值范围是222(A )(0,2 ) (B )( 2 , 1) (C ) (1, 2) (D ) ( 2,2)【命题意图】本题主要考查指数函数与对数函数的图像与性质及数形结合思想, 是中档题 .0 a12 【解析】由指数函数与对数函数的图像知11,解得a2 ,故选 A.loga242( 12)数列 { a n } 满足a n 1( 1)n a n2n 1 ,则{ a n }的前60项和为( A )3690 (B ) 3660( C ) 1845 ( D ) 1830 【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题 . 【解析】【法 1】有题设知a 2 a 1=1,① a 3a 2=3②a 4 a 3=5③a 5 a 4=7, a 6 a 5=9, a 7 a 6=11, a 8a 7=13, a 9 a 8=15, a 10 a 9=17, a 11a 10=19, a 12a1121 ,⋯⋯∴②-①得 a 1a 3=2,③+②得 a 4 a 2=8,同理可得 a 5 a 7=2, a 6 a 8=24, a 9a 11=2,a10a 12=40,⋯,∴ a 1 a 3,a 5 a 7,a 9 a 11,⋯,是各项均为 2 的常数列,a 2a 4,a 6a 8,a 10a 12,⋯是首项为8,公差为 16 的等差数列,∴ { a n } 的前 60 项和为 15 215 8116 15 14 =1830.2【法 2】可证明:bn 1a4 n 1a4n 2a4 n 3a4 n 4a4 n 3a4n 2a4 n 2a 4n 16b n16b 1a 1a 2 a 3 a 4 1 01 5 1 4 S 1510 1516 18302第Ⅱ卷二.填空题:本大题共 4 小题,每小题 5 分。

2012年高考真题——文数(新课标卷)Word版(附答案)

2012年高考真题——文数(新课标卷)Word版(附答案)

绝密*启用前2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

四川省高考文科数学试卷及答案文数

四川省高考文科数学试卷及答案文数

2012年普通高等学校招生全国统一考试(四川卷)数学(文史类)参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中R 表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{,}A a b=,{,,}B b c d=,则A B=()A、{}bB、{,,}b c d C、{,,}a c d D、{,,,}a b c d2、7(1)x+的展开式中2x的系数是()A、21B、28C、35D、423、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。

若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A、101B、808C、1212D、20124、函数(0,1)xy a a a a=->≠的图象可能是()5、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设a、b都是非零向量,下列四个条件中,使||||a ba b=成立的充分条件是()A 、||||a b =且//a bB 、a b =-C 、//a bD 、2a b =8、若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( )A 、12B 、26C 、28D 、339、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年全国统一高考数学试卷(文科)(新课标)(含解析版)(附详细答案)(20200621145848)

2012年全国统一高考数学试卷(文科)(新课标)(含解析版)(附详细答案)(20200621145848)

2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i2.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A?B B.B?A C.A=B D.A∩B=?3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.(5分)已知向量夹角为45°,且,则= .16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.故选:D.【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.2.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A?B B.B?A C.A=B D.A∩B=?【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B?A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.1【考点】BS:相关系数.【专题】29:规律型.【分析】所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选:D.【点评】本题主要考查样本的相关系数,是简单题.4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)【考点】7C:简单线性规划.【专题】11:计算题.【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】解:设C(a,b),(a>0,b>0)由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2即(a﹣1)2+(b﹣1)2=(a﹣1)2+(b﹣3)2=4∴b=2,a=1+即C(1+,2)则此时直线AB的方程x=1,AC的方程为y﹣1=(x﹣1),直线BC的方程为y﹣3=﹣(x﹣1)当直线x﹣y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1﹣∴故选:A.【点评】考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选:B.【点评】本题考查球的体积的求法,考查空间想象能力、计算能力.9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选:A.【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.11.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【考点】7J:指、对数不等式的解法.【专题】11:计算题;16:压轴题.【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选:B.【点评】本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830【考点】8E:数列的求和.【专题】54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830,故选:D.【点评】本题主要考查数列求和的方法,等差数列的求和公式,注意利用数列的结构特征,属于中档题.二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为y=4x﹣3 .【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.【点评】本题考查导数的几何意义,考查点斜式求直线的方程,属于基础题.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= ﹣2 .【考点】89:等比数列的前n项和.【专题】11:计算题.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣2【点评】本题主要考查了等比数列的求和公式的应用,解题中要注意公比q是否为115.(5分)已知向量夹角为45°,且,则= 3.【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=2 .【考点】3N:奇偶性与单调性的综合.【专题】15:综合题;16:压轴题.【分析】函数可化为f(x)==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f(x)=的最大值与最小值的和.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.【点评】本题考查函数的最值,考查函数的奇偶性,解题的关键是将函数化简,转化为利用函数的奇偶性解题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【考点】HU:解三角形.【专题】11:计算题.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC?(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.【点评】本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【考点】36:函数解析式的求解及常用方法;BB:众数、中位数、平均数;CS:概率的应用.【专题】15:综合题;5I:概率与统计.【分析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:(Ⅰ)当日需求量n≥17时,利润y=85;当日需求量n<17时,利润y=10n﹣85;(4分)∴利润y关于当天需求量n的函数解析式(n∈N*)(6分)(Ⅱ)(i)这100天的日利润的平均数为元;(9分)(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.(12分)【点评】本题考查函数解析式的确定,考查概率知识,考查利用数学知识解决实际问题,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【考点】L2:棱柱的结构特征;LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1?平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1?平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.【点评】本题考查平面与平面垂直的判定,着重考查线面垂直的判定定理的应用与棱柱、棱锥的体积,考查分析,表达与运算能力,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;32:分类讨论;35:转化思想.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f′(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.【点评】本题考查利用导数求函数的最值及利用导数研究函数的单调性,解题的关键是第一小题应用分类的讨论的方法,第二小题将问题转化为求函数的最小值问题,本题考查了转化的思想,分类讨论的思想,考查计算能力及推理判断的能力,综合性强,是高考的重点题型,难度大,计算量也大,极易出错.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈?;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。

2012年高考试卷(四川卷)数学(理工类)试题及答案 word版.

2012年高考试卷(四川卷)数学(理工类)试题及答案 word版.

2012年普通高等学校招生全国统一考试(四川卷数学(理工类参考公式:如果事件互斥,那么球的表面积公式 (((P A B P A P B +=+ 24S R p =如果事件相互独立,那么其中R 表示球的半径 (((P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径((1(0,1,2,,k kn k n n P k C p p k n -=-=…第一部分 (选择题共60分注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1x +的展开式中2x 的系数是(A 、42B 、35C 、28D 、212、复数2(12i i-=( A 、1 B 、1- C 、i 3、函数29,3(3ln(2,3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是(A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=(A BCD 5、函数1(0,1xy a a a a=->≠的图象可能是(6、下列命题正确的是(A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是(A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,M y 。

2012年四川省高考数学试题及答案

2012年四川省高考数学试题及答案

2012年四川省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A .0 B.2- C.1 D.122.计算3()ab 的结果是( )A .3ab B.3a b C.33a b D.3ab 3.图1中几何体的主视图是( )4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩解的是( )A .1- B.0 C.2 D.45.如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE > B. AD BC= C.12D AEC =∠∠ D.ADE CBE △∽△ 6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上 D .不可能有10次正面向上7.如图3,点C 在AOB ∠的OB 边上,用尺规作出了CN OA ∥,作图痕迹中, FG是( )A .以点C 为圆心,OD 为半径的弧 B.以点C 为圆心,DM 为半径弧 C.以点E 为圆心,OD 为半径的弧 D.以点E 为圆心,DM 为半径的 8.用配方法解方程2410x x ++=,配方后的方程是( )A .2(2)3x += B.2(2)3x -= C.2(2)5x -= D.2(2)5x += 9.如图4,在ABCD 中,70A ∠=︒,将ABCD 折叠,使点D C 、分别落在点F 、E处(点,F E 都在AB 所在的直线上),折痕为MN ,则AMF ∠等于( )A .70B.40C.30D.2010.化简22111x x ÷--的结果是( ) A .21x - B.321x - C.21x + D.2(1)x +11.如图5,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b ()a b >,则()a b -等于( )A .7 B.6 C.5 D.412.如图6,抛物线21(2)3y a x =+-与221(3)12y x =-+交于点(13)A ,,过点A 作x 轴的平行线,分别交两条抛物线于点B C ,.则以下结论: ①无论x 取何值,2y 的值总是正数. ②1a =.③当0x =时,214y y -=.④23AB AC =.其中正确结论是( )A .①② B.②③ C.③④ D.①④2012年四川省初中毕业生升学文化课考试数 学 试 卷 卷Ⅱ(非选择题,共9 0分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.5-的相反数是 .14.如图7,AB CD ,相交于点O ,AC CD ⊥于点C ,若BO D∠=38,则A ∠等于 .15.已知1y x =-,则2()()1x y y x -+-+的值为 .16.在12⨯的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报111⎛⎫+ ⎪⎝⎭,第2位同学报112⎛⎫+⎪⎝⎭,第3位同学报113⎛⎫+⎪⎝⎭……这样得到的20个数的积为 . 18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图91-,用n 个全等的正六边形按这种方式拼接,如图92-,若围成一圈后中间也形成一个正多边形,则n 的值为 .三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:021153)6(1)32⎛⎫--+⨯-+- ⎪⎝⎭. 20.(本小题满分8分)如图10,某市A B ,两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD DC CB --.这两条公路转成等腰梯形ABCD ,其中DC AB AB AD DC ∥,::=10:5:2.(1) 求外环公路总长和市区公路长的比;(2) 某人驾车从A 地出发,沿市区公路去B 地,平均速度是40km/h ,返回时沿外环公路行驶,平均速度是80km/h ,结果比去时少用了110h ,求市区公路的长.21.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).(1)a ___________,x 乙=__________;(2)请完成图11中表示乙成绩变化情况的折线;(3)①观察图11,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.22.(本小题满分8分)如图12,四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,.反比例函数(0)my x x=>的图象经过点D ,点P 是一次函数33(0)y kx k k =+-≠的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数33(0)y kx k k =+-≠的图象一定过点C ;(3)对于一次函数33(0)y kx k k =+-≠,当y x 随的增大而增大时,确定点P 横坐标的取值范围(不必写出过程). 23.(本小题满分9分)如图131-,点E 是线段BC 的中点,分别以B C ,为直角顶点的EAB EDC △和△均是等腰直角三角形,且在BC 的同侧.(1)AE ED 和的数量关系为___________,AE ED 和的位置关系为___________;(2)在图131-中,以点E 为位似中心,作EGF △与EAB △位似,点H 是BC 所在直线上的一点,连接GH HD ,,分别得到了图132-和图133-; ①在图132-中,点F 在BE 上,EGF EAB △与△的相似比是1:2,H 是EC的中点.求证:.GH HD GH HD =⊥,②在图133-中,点F 在BE 的延长线上,EGF EAB △与△的相似比是k :1,若2BC =,请直接写出CH 的长为多少时,恰好使得GH HD GH HD =⊥且(用含k 的代数式表示). 24.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:2cm )成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1) 求一张薄板的出厂价与边长之间满足的函数关系式; (2) 已知出厂一张边长为40cm 的薄板,获得的利润是26元(利润=出厂价-成本价).① 求一张薄板的利润与边长之间满足的函数关系式;② 当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.25.(本小题满分10分)如图14,(50)(30).A B --,,,点C 在y 轴的正半轴上,CBO∠=45,CD AB ∥,90CDA = ∠.点P 从点(40)Q ,出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1) 求点C 的坐标;(2) 当15BCP =∠时,求t 的值;(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,当P ⊙与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.26.(本小题满分12分)如图151-和图152-,在ABC △中,51314cos .13AB BC ABC ===,,∠ 探究在如图151-,AH BC ⊥于点H ,则AH =_______,AC =_______, ABC △的面积ABC S △=___________.拓展如图152-,点D 在AC 上(可与点A C ,重合),分别过点A C ,作直线BD 的垂线,垂足为E F ,.设.BD x AE m CF n ===,,(当点D 与点A 重合时,我们认为ABC S △=0. (1)用含x m ,或n 的代数式表示ABD S △及CBD S △;(2)求()m n +与x 的函数关系式,并求()m n +的最大值和最小值.(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现请你确定一条直线,使得A B C ,,三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2012年河北省初中毕业生升学文化课考试数学试题参考答案二、填空题(每小题3分,满分18分) 13.5 14.52 15.1 16.3417.21 18.6 三、解答题(本大题共8小题,共72分)19.解:021153)6(1)32⎛⎫--+⨯-+- ⎪⎝⎭=51(23)1-+-+ ··········································································· 5分 =4. ····························································································· 8分 20.解:(1)设10AB x =km ,则5AD x =km ,2CD x =km .四边形ABCD 是等腰梯形,DC AB ∥, 5.BC AD x ∴==12.AD DC CB x ∴++=∴外环公路总长和市区公路长的比为12x x :10=6:5. ··········································· 3分 (2)由(1)可知,市区公路物长为10x km ,外环公路的总长为12x km .由题意,得10121408010x x =+. ············································································· 6分 解这个方程,得1x =. 1010x ∴=.答:市区公路的长为10km. ··············································································· 8分 21.解:(1)4,6 ··························································································· 2分 (2)如图1 ··································································································· 3分(3)①乙 ····································································································· 4分2222221[(76)(56)(76)(46)(76)]5S =-+-+-+-+-乙=1.6. ································ 5分由于22S S <乙甲,所以上述判断正确. ····································································· 6分 ②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中. ···· 8分22.解:(1)由题意,2AD BC ==,故点D 的坐标为(1,2). ··························· 2分 反比例函数m x 的图象经过点(12)D ,, 2. 2.1m m ∴=∴= ∴反比例函数的解析式为2.y x= ······································································· 4分 (2)当3x =时,333 3.y k k =+-=∴一次函数33(0)y kx k k =+-≠的图象一定过点C . ········································· 6分 (3)设点P 的横坐标为2 3.3a a <<, ································································ 8分 (注:对(3)中的取值范围,其他正确写法,均相应给分)23.解:(1)AE ED AE ED =⊥,. ······························································ 2分(2)①证明:由题意,90.B C AB BE EC DC ===== ∠∠, EGF EAB △与△位似且相似比是1:2,1190.22GFE B GF AB EF EB ∴==== ∠∠,, GFE C ∴=∠∠.12EH HC EC == , 111.222GF HC FH FE EH EB EC BC EC CD ∴==+=+===, HGF DHC ∴△≌△. ···················································································· 5分 .GH HD GHF HDC ∴==,∠∠又9090HDC DHC GHF DHC +=∴+=∠∠,∠∠. .GHD ∴ ∠=90GH HD ∴⊥. ······························································································· 7分 ②CH 的长为k . ···························································································· 9分24.解:(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y kx n =+. ·························································································· 2分由表格中的数据,得50207030.k n k n =+⎧⎨=+⎩, 解得210.k n =⎧⎨=⎩, 所以210.y x =+ ··························································································· 4分(2)①设一张薄板的利润为P 元,它的成本价为2mx 元,由题意,得22210.P y mx x mx =-=+- ·········································································· 5分 将4026x P ==,代入2210P x mx =+-中,得2262401040m =⨯+-⨯. 解得1.25m =所以21210.25P x x =-++ ············································································· 7分 ②因为1025a =-<,所以,当22512225b x a =-=-=⎛⎫⨯- ⎪⎝⎭(在5~50之间)时,221410242535.14425ac b P a ⎛⎫⨯-⨯- ⎪-⎝⎭===⎛⎫⨯- ⎪⎝⎭最大值 即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元. ······················ 9分 (注:边长的取值范围不作为扣分点)25.解:(1)45BCO CBO ==∠∠, 3.OC OB ∴==又 点C 在y 轴的正半轴上,x k b1 . c om∴点C 的坐标为(0,3) ················································································ 2分(2)当点P 在点B 右侧时,如图2.若15BCP = ∠,得30PCO =∠.故tan30OP OC == 4t =······················································ 4分 当点P 在点B 左侧时,如图3,由15BCP = ∠,得60PCO = ∠,故tan60PO OC ==.此时4t =+.t ∴的值为4+4+·········································································· 6分(3)由题意知,若P ⊙与四边形ABCD 的边相切,有以下三种情况:①当P ⊙与BC 相切于点C 时,有90BCP = ∠,从而45OCP = ∠得到3OP =.此时1t =. ···································································································· 7分 ②当P ⊙与CD 相切于点C 时,有PC CD ⊥,即点P 与点O 重合,此时4t =. ···································································································· 8分 ③当P ⊙与AD 相切时,由题意,90DAO =∠, ∴点A 为切点,如图4.22222(9)(4)PC PA t PO t ==-=-,.于是222(9)(4)3t t -=-+.解处 5.6t =.新课 标 第 一 网t ∴的值为1或4或5.6. ················································································ 10分 26.解:探究:12,15,84 ············································································· 3分 拓展:(1)由三角形面积公式,得ABD CBD S mx S nx △△11=,=22. ···························· 4分 (2)由(1)得22ABD CBD S S m n x x==△△,, 22168ABD CBD S S m n x x x∴+=+=△△. ································································· 5分 由于AC 边上的高为22845615155ABC S ⨯==△,x ∴的取值范围是56145x ≤≤. ()m n + 随x 的增大而减小,ww w.xkb1 .com∴当565x =时,()m n +的最大值为15. ····························································· 7分 当14x =时,()m n +的最小值为12. ································································· 8分(3)x 的取值范围是565x =或13x <≤14. ····················································· 10分 发现:AC 所在的直线, ·············································································· 11分 最小值为565. ······························································································ 12分。

2012年四川高考数学文科试题及答案(Word全解析版)-精品

2012年四川高考数学文科试题及答案(Word全解析版)-精品

绝密★启用前2012年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第1部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案打在答题卡上,在本试题卷.草稿纸上答题无效,满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.参考公式:如果事件A .B 互斥,那么 球是表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A .B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn kn n P k C P P -=-第一部分(选择题 共60分)1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本大题共12小题,每小题5分,共60分.一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.设集合{,}A a b =,{,,}B b c d =,则A B =(A ){}b(B ){,,}b c d(C ){,,}a c d(D ){,,,}a b c d2.7(1)x +的展开式中2x 的系数是(A )21(B )28(C )35(D )423.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为 (A )101(B )808(C )1212(D )20124.函数(0,1)x y a a a a =->≠的图象可能是5.如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC .ED 则sin CED ∠= (A (B(C (D6.下列命题正确的是(A )若两条直线和同一个平面所成的角相等,则这两条直线平行 (B )若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 (C )若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 (D )若两个平面都垂直于第三个平面,则这两个平面平行 7.设a 、b 都是非零向量,下列四个条件中,使||||=a ba b 成立的充分条件是 (A )a ∥b 且||||=a b (B )=-a b(C )a ∥b (D )2=a b8.若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是(A )12 (B )26 (C )28 (D )339.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM =(A )(B )(C )4(D )10.如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45 角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠= ,则A 、P 两点间的球面距离为(A)R (B )4Rπ(C)R(D )3R π11.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有(A )28条 (B )32条 (C )36条(D )48条12.设函数3()(3)1f x x x =-+-,{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则127a a a ++⋅⋅⋅+=(A )0(B )7(C )14(D )21第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二.填空题:本大题共4小题,每小题4分,共16分.13.函数()f x =的定义域是____________.(用区间表示)14.如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________.15.椭圆2221(5x y a a +=为定值,且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ∆的周长的最大值是12,则该椭圆的离心率是_________. 16.设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<;②若111b a-=,则1a b -<;③若1=,则||1a b -<;④若33||1a b -=,则||1a b -<. 其中的真命题有____________.(写出所有真命题的编号)三.解答题:本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p . (Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.18.(本小题满分12分)已知函数21()cos sin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若()f α,求sin 2α的值.19.(本小题满分12分)如图,在三棱锥P ABC -中,90APB ∠= ,60PAB ∠= ,AB BC CA ==,点P 在平面ABC 内的射影O 在AB 上.(Ⅰ)求直线PC 与平面ABC 所成的角的大小; (Ⅱ)求二面角B AP C --的大小.20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10a >,100λ=,当n 为何值时,数列1{lg }na 的前n 项和最大?21.(本小题满分12分)如图,动点M 与两定点(1,0)A -、(1,0)B 构成M AB ∆,且直线MA MB 、的斜率之积为4,设动点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设直线(0)y x m m =+>与y 轴交于点P ,与轨迹C 相交于点Q R 、,且||||PQ PR <,求||||PR PQ 的取值范围.22.(本小题满分14分)已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距.(Ⅰ)用a 和n 表示()f n ; (Ⅱ)求对所有n 都有()1()11f n nf n n -≥++成立的a 的最小值;(Ⅲ)当01a <<时,比较111(1)(2)(2)(4)()(2)f f f f f n f n ++⋅⋅⋅+---与(1)(1)6(0)(1)f f n f f -+⋅-的大小,并说明理由.参考答案一.选择题1【答案】选D .【解析】∵{,}A a b =,{,,}B b c d =,∴A B = {,,,}a b c d . 2【答案】选A .【解析】7234567(1)17213535217x x x x x x x x +=+++++++,2x 的系数是21. 3【答案】选B .【解析】根据题意,任何一名驾驶员被抽取到的概率为121968=,则这四个社区驾驶员的总人数1(12212543)8088N =+++÷=.4【答案】选C .【解析】函数x y a a =-过定点(1,0),故C 项满足条件.5【答案】选B .【解析】45CED CEB ∠=-∠ ,sin sin )CED CEB CEB ∠=∠-∠==. 6 【答案】选C .【解析】根据线面关系可知C 项正确.7 【答案】选D .【解析】||||=a b a b 表示a 与b 是同向的非零单位向量,则||||=a ab b 的一个充分条件是λ=a b ,其中0λ>. 8【答案】选C .【解析】作出该不等式组表示的平面区域,当34z x y =+表示的直线过点(4,4)时,z 最大,即min 344428z =⨯+⨯=. 9【答案】选B .【解析】设抛物线的方程为22y px =(0p >),焦点(0)2p F ,,准线:2pl x =-.∵抛物线上的点0(2)M y ,到:2p l x =-的距离等于它到焦点(0)2p F ,的距离, ∴122pp -=-⇒=,24y x =,故(2M 或(2M -,,||OM =10【答案】选A .【解析】由题意可知,AOB BCD ⊥平面平面,则cos cos cos AOP AOB BOP AOP ∠=∠∠=∠= AP R = 11 【答案】选B .【解析】首先,00a b ≠≠,;其次,2a b c ,,没有大于1的公约数.①当0c =时,方程化为22b y x a =,{2123}a b ∈-,,,,,即2{2123}{149}a b ∈-∈,,,,,,,如下:222222222221(i)1{223}:4(ii)2{123}:4(iii)2{2131112234423}:24b a y x a b a y x a y x y x y x y x y x y x y b a y x a x y x =-====∈-==-∈==∈-====-=,,,,,,,,,,;,,;,,,,,243y x =,22229(iv)3{2999122},2:.b a y x a y x y x y x =-===∈-=,,,,;,这类中,不同的抛物线有110N =条.②当0c ≠时,方程化为22b x cy a+=,{2123}a b c ∈-,,,,,, 即2{2123}{149}a c b ∈-∈,,,,,,,, 抛物线有如下5类:2222222(i)1{22232322222233}:3x x x x x x y y y y x c b a y y c ay ++-+-+===+=∈-====--,,,;,;,,,,;22222224(ii)2{123}42434143414211:2233x x x x x x x cb ac y y y ay y y y ++++++======∈=+=-,,,,,,;,;,.222224(iii)2{24143424321213}1:x x cb ac x x x y y ay y y +++=∈-=-+====--,,,;,,,,22424133x x y y -+==;,.22222229(iv)3{212}91929292929122:1122x x x x x x y y x c b a y y y c y ay ++-+-+====+=∈--=-==,,,,,,;,;,.这类中,不同的抛物线有222N =条. 共有102232N =+=条. 12【答案】选D .【解析】函数3()(3)1f x x x =-+-关于点(3,2)对称,即当126x x +=时,12()()4f x f x +=,∵{}n a 是公差不为0的等差数列,∴17263542a a a a a a a +=+=+=,猜想:当43a =时,{}n a 满足127()()()14f a f a f a ++⋅⋅⋅+=,故此时12721a a a ++⋅⋅⋅+=.二.填空题13【答案】填1(,)2-∞.【解析】由120x ->得12x <,故1(,)2x ∈-∞.14【答案】填2π. 【解析】取CN 中点K ,连接1MK A K 、,则1//2MK DN MK DN =,.设正方体的棱长为a,则1132DN MK A M a A K ====,,,,22219541cos 0a a a A MK +-∠==,190A MK ∠= . 15【答案】填23.【解析】设椭圆的右焦点为F ',连接F A F B ''、,则FAB ∆的周长|||||||||||'||'|412l FA FB AB FA FB F A F B a =++≤+++==,(当且仅当A 、F '、B 共线时“=”成立).此时3a =,则离心率23e =.16【答案】填①④.【解析】因为,a b 为正实数,由221a b -=知1a >,则11a b a b -=<+,①正确;由111b a-=,不妨取4a =,45b =,则1a b ->,②错误;由1=,取4a =,1b =,则||1a b ->,③错误;由33||1a b -=,不妨设0a b >>,则3311a b =+>,则221||1a b a ab b-=<++,④正确.三.解答题17【解析】本题主要考查相对独立事件、独立重复事件、互斥事件等概念及相关运算,考查运用概率知识和方法解决实际问题的能力.(Ⅰ)设“至少有一个系统不发生故障”为事件C ,那么.149()1()11050P C P C p =-=-⨯=,解得15p =. (或111149()(1)(1)(1)(1)11010101050P C p p p p =--+-+-=-=,解得15p =.)(Ⅱ)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么2233111972243()C (1)(1)1010101000250P D =⋅-+-==. 答:系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率243250.18【解析】本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识、考查运算能力,考查化归与转化等数学思想.(Ⅰ)21()cos sin cos 2222x x x f x =--111(1cos )sin 222x x =+--)4x π=+.所以函数()f x 的最小正周期是2π,值域为[.(Ⅱ)由(Ⅰ)知,())4f παα=+=,所以3cos()45πα+=. 所以sin 2cos(2)cos2()24ππααα=-+=-+218712cos ()142525πα=-+=-=.19【解析】本小题主要考查线面关系、直线与平面所成的角、二面角等基础知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题的能力. 连接OC ,∠OPC 为直线PC 与平面ABC 所成的角,设AB 的中点为D ,连接PD 、CD .因为AB BC CA ==,所以CD AB ⊥,因为90APB ∠= ,60PAB ∠= ,所以PAD ∆为等边三角形不妨设PA=2,则1,4OD OP AB ===.所以CD =,OC =,在R tO C ∆中,9t a n PO OCD CO ∠===即直线PC 与ABC 平面所成的角等于(. (Ⅱ)过D 作DE AP ⊥于E ,连结CE .由已知可得CD ⊥平面PAB .所以CED ∠为B AP C--的平面角.由(Ⅰ)知DE Rt CDE ∆中,tan 2CD CED DE ∠===,,二面角B AP C --的大小为arctan 2(或.20【解析】本小题主要考查等比数列、等差数列、对数等基础知识,考查思维能力、运算能力、分析问题和解决问题的能力,并考查方程、分类与整合、化归与转化等数学思想.(Ⅰ)取1n =,得211122a S a λ==,11(2)0a a λ-=,若10a =,则0n S =.当2n ≥时,1000n n n a S S -=-=-=,所以0n a =. 若10a ≠,则12a λ=.当2n ≥时,22n n a S λ=+,1122n n a S λ--=+,两式相减得122n n n a a a --=, 所以12(2)n n a a n -=≥,从而数列{}n a 是等比数列,所以1112222nn n n a a λλ--=⋅=⋅=.综上,当10a =时,0n a =;当10a ≠时,2nn a λ=.(Ⅱ)当10a >,100λ=时,令1lgn n b a =,由(Ⅰ)有,100lg 2lg 22n n b n ==-. 所以数列{}n b 是单调递减的等差数列(公差为lg 2-).1266100100lg lg lg10264b b b >>>==>= ,当7n >时,77100100lg lg lg102128n b b <==<=,故数列1{lg }n a 的前6项和最大.21【解析】本小题主要考查直线、双曲线、轨迹方程的求法等基础知识,考查思维能力、运算能力,考查函数、分类与整合等数学思想,并考查思维的严谨性.(Ⅰ)设M 的坐标为(,)x y ,当1x =-时,直线MA 的斜率不存在;当1x =时,直线MB 的斜率不存在,于是1x ≠±.此时,MA 的斜率为1y x +,MB 的斜率为1y x -. 由题意,有1y x +41yx ⋅=-,化简可得,22440x y --=. 故动点M 的轨迹为C 的方程为22440x y --=(1x ≠±).(Ⅱ)联立22,440y x m x y =+⎧⎨--=⎩消去y ,可得223240x mx m ---=.(*) 对于方程(*),其判别式222(2)12(4)16480m m m ∆=----=+>, 而当-1或1为方程(*)的根时,m 的值为-1或1. 结合题设(0m >)可知,0m >且1m ≠.设Q R 、的坐标分别为(,)Q Q x y 、(,)R R x y ,则Q x 、R x 为方程(*)的两根. 因为||||PQ PR <,所以||||Q R x x <,Q x =R x所以||||1||||R Q x PR PQ x ===+,12,所以113<<,且513≠, 所以||||13||||R Q x PR PQ x <=<,且||||5||||3R Q x PR PQ x =≠. 综上所述,||||PR PQ 的取值范围是55(1,)(,3)33.22【解析】本小题主要考查导数的运用、不等式、数列等基础知识,考查思维能力、运算能力、分析和解决问题的能力和创新意识,考查函数、化归与转化、特殊与一般等数学思想方法.(Ⅰ)令202na x -+=,得x x ==A .由'2y x =-知,点A 处的切线方程为y x =-.令0x =,得n y a =,∴()n f n a =. (Ⅱ)由(Ⅰ)知()n f n a =,则()1()11f n nf n n -≥++成立的充要条件是21n a n ≥+,即知,21n a n ≥+对于所有的n 成立,特别地,取n =1得到3a ≥.当3a =,n ≥1时,13(12)1221n n n na C n ==+=+⋅+≥+ .当n =0时,21n a n =+.故3a =时,()1()11f n nf n n -≥++对所有n 都成立.所以满足条件的a 的最小值为3. (Ⅲ)由(Ⅰ)知()k f k a =. 下面证明:111(1)(1)6(1)(2)(2)(4)()(2)(0)(1)f f n f f f f f n f n f f -+++⋅⋅⋅+>⋅----.首先证明:当01x <<时,216x x x >-, 设函数2()6()1g x x x x =-+,01x <<,则2()18()3g x x x '=-.当203x <<时,()0g x '<;当213x <<时,()0g x '>. 故()g x 在(0,1)上的最小值min 21()()039g x g ==>,所以当01x <<时,()0g x >,即得216x x x >-. 由01a <<知*01()k a k <<∈N ,因此216k k ka a a>-,从而 111(1)(2)(2)(4)()(2)f f f f f n f n +++---2242111n na a a a a a =+++--- 12(1)(1)6()661(0)(1)n na a f f n a a a a f f +--+>+++=⋅=⋅-- .。

2012年四川省高考理科数学试卷及解析答案(word版)

2012年四川省高考理科数学试卷及解析答案(word版)

D CAE B2012年普通高等学校招生全国统一考试(四川卷)数 学(理类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010 B 、1010 C 、510 D 、5155、函数1(0,1)xy a a a a=->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年高考真题及答案详解(四川省)

2012年高考真题及答案详解(四川省)

8.对下列句子丨加点词癿解释,丌正确癿一 项是 A.习丼子业辄鄙乀曰 鄙:以为羞耻。 B.自劾求退 劾:检丼揭发。 C.必宥尔,无恐 宥:宽恕。 D.上官按乀丌得实 按:查验。 8.A 【解析】本题考查理解常见文言实词在 文中的意义的能力。根据上下文语境,都推 测许曾裕应当为朝廷重用。鄙:轻视,看丌 起。
4.B【解析】考查辨析幵修改病 句癿能力。A项语序丌当,“许 多有眼光癿国际大商人”改为 “国际上许多有眼光癿大商人”。 C项搭配丌当,“植被覆盖率” 不“十分严重,令人担忧”丌搭 配,关联词“但是”使用也丌当。 D项成分残缺。
二、(9分,每小题3分) 阅读下面癿文字,完成5~7题。 警惕汞污染 1953年,日本水俣湾附近发现了一种“怪病”,称为“水俣病”。这种病症最实出现在猫身上,病猫步态丌 稳,抽搐、麻痹,甚至跳海而死。丌丽,陆续发现了患这种病症癿人。患者步履蹒跚,手足麻痹乃至变 形,神经错乤甚至死亡。后来发现,这丌是传染病,而是工业废水排放污染造成癿公害病。水俣湾一家 化工厂生产氯乙烯呾醋酸忆烯使用了含汞癿催化剂,排放癿废水丨含有大量癿汞。其丨有癿是甲基汞, 有癿是无机汞,而无机汞会不水体戒水生物癿有机物反应生成甲基汞。甲基汞癿脂溶性非常强,可以在 生物体内逐渐富集幵通过食物链最终迚入人体,被肠胃吸收,侵害人癿丨枞神经细胞。公叵呾政府对水 俣病癿认定叧考虑直接接触甲基汞所导致癿症状,而这种症状不甲基汞通过食物链迚入人体所导致癿症 状丌完本相同。因此,叧有部分水俣病患者获得认定。 水体丨汞污染是人类健庩癿隐患。因为水丨癿微 量汞,经过水丨食物链(如:浮游植物浮游动物小鱼大鱼)癿逐级转秱,在食物链顶级生物体内可以富 集到数千至数十万倍。以美国金枟鱼罐头为例,1953年含汞量为0.08PPM[注],到了2005年就增长 至1.79PPM。对以鳌鱼呾鲸为主要食物来源癿法罗群岛居民癿追踪调查发现,他们癿血汞含量可能是全 丐界人群丨最高癿,达到6PPM。鱼类体内癿汞主要为甲基汞,其百分比随着鱼龄增加而增加,一年生 癿鱼所含汞丨癿甲基汞癿31%—35%,8—12年癿鱼所含汞丨癿甲基汞为67%—100%。在一般情况下调查 呾监测鱼类癿含示量,对亍了解水域汞污染程度十分必要。 目前全球人为活动向大气排放癿汞达2000 吨/年。汞径容易蒸发到大气丨,幵丏能够随着穸气团作全球范围癿迁秱,在大气丨停留几丧月甚至一 年。在丌同癿条件下,它会发生沉陈,幵在当地食物链生物体内聚积。由亍汞癿这种属性,它被联合国 环境觃划署列为全球性污染物,是除了温室气体外唯一一种对全球范围产生影响癿化孜物质。 我国是汞 生产呾消费大国,十分重规汞污染防治研究。有研究表明:丨国汞污染癿健庩影响途徂不其他国家丌同, 丌能照搬欧美研究成果评价丨国汞污染情况,如在北美呾北欧地区,某些鱼类体内癿汞浓度具有一定癿 指标性意丿,但我国贵州即使在汞污染较严重癿地区,鱼体内汞含量却相对较低。另有研究发现:汽车 尾气丨癿汞迚入到穸气丨后,可以被植物吸收,因此路旁植物丨汞癿含量要高亍公园丨癿植物;北京市 汞污染癿主要来源是煤呾汽油燃烧癿汞释放、化工厂癿汞排放,贵阳市癿汞污染原因则是土壤高汞背景 值以及原煤汞含量高。 垃圾焚烧是汞污染癿又一丧主要来源。垃圾丨癿汞主要来自电池、体温计、日光 灯等,如果能对含汞废弃物采取比一般生活垃圾更严格癿处理措施,将有利亍减少汞污染。 [注]PPM:即百万分乀一。

2012年高考文科数学四川卷-答案

2012年高考文科数学四川卷-答案

2012年普通高等学校招生全国统一考试(四川卷)【提示】(1)求出“至少有一个系统不发生故障”的对立事件的概率,利用至少有一个系统不发生故障的概率为4950,可求p的值。

【提示】(1)将21cos sin cos 222()2x x x x f =--化为π()24f x x ⎛⎫=+ ⎪⎝⎭即可求得()f x 的最小正周期和值19.【答案】(1)解:连接OC 。

由已知,OCP ∠为直线PC 与平面ABC 所成的角。

设AB 的中点为D ,连接.PD CD 、因为AB BC CA ==,所以CD AB ⊥.因为9060APB PAB ∠=︒∠=︒,,所以PAD △为等边三角形,不妨设2PA =,则14OD OP AB ===,.所以CD =,OC ===【提示】(1)连接OC 。

由已知,OCP ∠为直线PC 与平面ABC 所成的角。

设AB 的中点为D ,连接.PD CD 、可设2PA =,则14OD OP AB ===,.在Rt OCP △中求解。

(2)利用三垂线定理可得CED ∠为二面角B AP C --的平面角。

在Rt CDE △中求解。

【提示】(1)由题意,1n =时,由已知可知11(2)0a a λ-=,分类讨论:由10a =,及10a ≠,结合数列的【提示】(1)设M 的坐标为(,)x y ,表示出两线的斜率,利用其乘积为4,建立方程化简即可得到点M 的轨迹方程。

(2)直线y x m =+与22440x y --=(1)x ≠±联立,消元可得223240.x mx m ---=结合题设(0)m >可知,【提示】(1)根据抛物线212ny x a =-+与x 轴正半轴相交于点A ,可得A 的坐标为⎫⎪⎪⎭,进一步可求抛物线在点A 处的切线方程,从而可得()f n 。

2012年高考真题——文数(新课标卷)Word版 含答案

2012年高考真题——文数(新课标卷)Word版 含答案

绝密*启用前2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A∩B=∅(2)复数z =-3+i 2+i(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1(B )0(C )12(D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为()(A )12(B )23(C )34(D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是(A )(1-3,2)(B )(0,2)(C )(3-1,2)(D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π(B )43π(C )46π(D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4(B )π3(C )π2(D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A )2(B )22(C )4(D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22)(B )(22,1)(C )(1,2)(D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690(B )3660(C )1845(D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

2012年高考真题——文数(新课标卷)Word版 含答案

2012年高考真题——文数(新课标卷)Word版   含答案

绝密*启用前2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =-3+i2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i 3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( ) (A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则 (A )A+B 为a 1,a 2,…,a N 的和(B )A +B2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

2012高考四川文科数学试题及答案(高清版)

2012高考四川文科数学试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学文史类(四川卷)参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事件A恰好发生k 次的概率P n(k)=C knp k(1-p)n-k(k=0,1,2,…,n)球的表面积公式S=4πR2其中R表示球的半径球的体积公式V=43πR3其中R表示球的半径第一部分(选择题共60分)本部分共12小题,每小题5分,共60分.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={a,b},B={b,c,d},则A∪B=()A.{b} B.{b,c,d}C.{a,c,d} D.{a,b,c,d}2.(1+x)7的展开式中x2的系数是()A.42 B.35 C.28 D.213.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1 212 D.2 0124.函数y=a x-a(a>0,且a≠1)的图象可能是()5.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC,ED,则sin∠CED =()A.10 B10C10D156.下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行7.设a ,b 都是非零向量,下列四个条件中,使||||=a ba b 成立的充分条件是( ) A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a |=|b |8.若变量x ,y 满足约束条件321221200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,,,,,则z =3x +4y 的最大值是( )A .12B .26C .28D .339.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( )A. B. C .4 D.10.如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足∠BOP =60°,则A ,P 两点间的球面距离为()A.arccos 4R B .π4R C.arccos3R D .π3R11.方程ay =b 2x 2+c 中的a ,b ,c ∈{-2,0,1,2,3},且a ,b ,c 互不相同.在所有这些方程所表示的曲线中,不同的抛物线共有( )A .28条B .32条C .36条D .48条12设函数f (x )=(x -3)3+x -1,{a n }是公差不为0的等差数列,f (a 1)+f (a 2)+…+f (a 7)=14,则a 1+a 2+…+a 7=( )A .0B .7C .14D .21第二部分 (非选择题 共90分)本部分共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分。

2012年普通高等学校招生全国统一考试文科数学(四川卷)

2012年普通高等学校招生全国统一考试文科数学(四川卷)

12四川(文)1.(2012四川,文1)设集合A={a,b},B={b,c,d},则A∪B=( ).A.{b}B.{b,c,d}C.{a,c,d}D.{a,b,c,d}D A∪B={a,b}∪{b,c,d}={a,b,c,d},故选D.2.(2012四川,文2)(1+x)7的展开式中x2的系数是( ).A.21B.28C.35D.42A因为含x2项是二项式展开式中的第三项T3=27C x2=21x2,所以x2的系数是21,故选A.3.(2012四川,文3)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( ).A.101B.808C.1212D.2012B四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,9612=101N,解得N=808.故选B.4.(2012四川,文4)函数y=a x-a(a>0,且a≠1)的图象可能是( ).C当a>1时,y=a x是增函数,-a<-1,则函数y=a x-a的图象与y轴的交点在x轴下方,故选项A不正确;y=a x-a的图象与x轴的交点是(1,0),故选项B不正确;当0<a<1时,y=a x是减函数,y=a x-a的图象与x轴的交点是(1,0),故选项C正确;若0<a<1,则-1<-a<0,y=a x-a的图象与y轴的交点在x轴上方,故选项D不正确.5.(2012四川,文5)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC,ED,则si n∠CED=( ).A31010B1010C510D515B因为四边形ABCD是正方形,且AE=AD=1,所以∠AED=π4.又因为在Rt△EBC中,EB=2,BC=1,所以sin∠BEC55cos∠BEC255于是sin∠CED=sinπBEC4∠⎛⎫-⎪⎝⎭=sinπ4cos∠BEC-cosπ4si n∠BEC222552 2551010故选B.6.(2012四川,文6)下列命题正确的是( ).A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行C若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交.选项A 错;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,则经过这三个点的平面与这个平面相交,选项B 不正确;如图,平面α∩β=b ,a ∥α,a ∥β,过直线a 作平面ε∩α=c ,过直线a 作平面γ∩β=d ,∵a ∥α,∴a ∥c ,∵a ∥β,∴a ∥d ,∴d ∥c ,∵c ⊂α,d ⊄α,∴d ∥α,又∵d ⊂β,∴d ∥b ,∴a ∥b ,选项C 正确;若两个平面都垂直于第三个平面,则这两个平面可平行、可相交,选项D 不正确. 7.(2012四川,文7)设a ,b 都是非零向量.下列四个条件中,使a |a |=b |b |成立的充分条件是( ).A .|a |=|b |且a ∥bB .a =-bC .a ∥bD .a =2bD 若a |a |=b |b |,则向量a |a |与b |b |是方向相同的单位向量,所以a 与b 应共线同向,故选D .8.(2012四川,文8)若变量x ,y 满足约束条件x y 3,x 2y 12,2x y 12,x 0,y 0,-≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩则z =3x +4y 的最大值是( ). A .12B .26C .28D .33C 作出可行域如图五边形OABCD 边界及其内部,作直线l 0:3x +4y =0,平移直线l 0经可行域内点B 时,z 取最大值.由x 2y 12,2x y 12,+=⎧⎨+=⎩得B (4,4),于是z max =3×4+4×4=28,故选C .9.(2012四川,文9)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦3,则|OM |=( A .2B .3C .4 D .5B 由抛物线定义知,p 2+2=3,所以p =2,抛物线方程为y 2=4x .因为点M (2,y 0)在此抛物线上,所以20y =8,于是|OM 204y +3故选B .10.(2012四川,文10)如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点∠BOP =60°,则A ,P 两点间的球面距离为( ). A .R 24B .R 4πC .R 33D .R 3πA 过点A 作AH ⊥平面BCD .∵平面BCD 与底面所成角为45°,AO ⊥平面α,在交线上,点B 与平面α的距离最大,为4.∴点H 在OB 上,且∠AOB =45°.过点H 作HM ⊥OP ,垂足为M ,连接AM ,在等腰直角三角形AOH中,AH =OH 2.在Rt △HOM 中,∠HOP =60°,∴HM =OH 24R .在Rt △AHM 中,AM 4R ,∴sin ∠AOM =44∴cos ∠AOM 4∴∠AOP =4∴A ,P 两点间的球面距离为R 411.(2012四川,文11)方程ay =b 2x 2+c 中的a ,b ,c ∈{-2,0,1,2,3},且a ,b ,c 互不相同.在所有这些方程所表示的曲线中,不同的抛物线共有( ). A .28条 B .32条 C .36条 D .48条B 因为a ,b 不能为0,先安排a ,b ,有24A 种,c 有13C 种,所以表示的抛物线共有2143A C =36(条).又因为当b =±2时,b 2都为4,所以重复的抛物线有1122C C =4(条).所以这些方程所表示的曲线中,不同的抛物线共有36-4=32(条).故选B .12.(2012四川,文12)设函数f (x )=(x -3)3+x -1,{a n }是公差不为0的等差数列,f (a 1)+f (a 2)+…+f (a 7)=14,则a 1+a 2+…+a 7=( ). A .0 B .7 C .14 D .21D 由f (a 1)+f (a 2)+…+f (a 7)=14知,(a 1-3)3+(a 2-3)3+…+(a 7-3)3+(a 1+a 2+…+a 7)-7=14.因为{a n }是公差不为0的等差数列,所以(a 1-3)3+(a 2-3)3+…+(a 7-3)3+7(a 4-3)=0.因为(a 1-3)3+(a 7-3)3=[(a 1-3)+(a 7-3)][(a 1-3)2+(a 7-3)2-(a 1-3)(a 7-3)]=2(a 4-3)2217713(a 3)-(a 3)(a 3)24⎧⎫⎪⎪⎡⎤--+-⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭=2(a 4-3)22177133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 令222177133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=M 1>0, 同理(a 2-3)3+(a 6-3)3=2(a 4-3)22266133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=(a 4-3)·M 2, (a 3-3)3+(a 5-3)3=2(a 4-3)22355333a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=(a 4-3)·M 3, (a 4-3)3=(a 4-3)(a 4-3)2,其中M 2>0,M 3>0,所以(a 1-3)3+(a 2-3)3+…+(a 7-3)3+7(a 4-3)=(a 4-3)M 1+(a 4-3)M 2+(a 4-3)M 3+(a 4-3)(a 4-3)2+7(a 4-3) =(a 4-3)[M 1+M 2+M 3+(a 4-3)2+7]=0,因为M 1+M 2+M 3+(a 4-3)2+7>0恒成立,所以a 4-3=0,a 4=3,而a 1+a 2+…+a 7=7a 4=21.故选D . 13.(2012四川,文13)函数f (x.(用区间表示)1,2⎛⎫-∞ ⎪⎝⎭ ∵1-2x >0,∴x <12,∴f (x )的定义域为1,2⎛⎫-∞ ⎪⎝⎭.14.(2012四川,文14)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是 .90° 如图所示,以点D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立坐标系D -xyz ,设正方体的棱长为2,则1M A =(2,-1,2),D N =(0,2,1),于是1M A ·D N=0,故异面直线A 1M 与DN 所成的角为90°.15.(2012四川,文15)椭圆22x a+2y 5=1(a 为定值,且a 5的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,△FAB 的周长的最大值是12,则该椭圆的离心率是 .23如图所示,设椭圆右焦点为F 1,AB 与x 轴交于点H ,则|AF |=2a -|AF 1|,△ABF 的周长为2|AF |+2|AH |=2(2a -|AF 1|+|AH |),∵△AF 1H 为直角三角形,∴|AF 1|>|AH |,仅当|AF 1|=|AH |,即F 1与H 重合时,△AFB 的周长最大,即最大周长为2(|AF |+|AF 1|)=4a =12,∴a =3,而b 5∴c =2,离心率e =c a=23.16.(2012四川,文16)设a ,b 为正实数.现有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b-1a=1,则a -b <1;③若a b 1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有 .(写出所有真命题的编号) ①④ ①a 2=b 2+1,∵b 2>0,∴a 2>1,故a >1,而a -b =1a b+,∵a >1,b >0,∴a +b >1,∴1a b+<1,∴①正确;②1b-1a=1,∵当b =23,a =2时,满足1b-1a=32-12=1,而此时a -b >1,∴②不正确;③∵a ,b 为正实数,且a b 1.不妨设a >b ,则a -b a b a b a b a b 1>1,∴a -b a b 1,∴③不正确;④∵a ,b 是正实数,不妨设a >b ,∴a 3-b 3=(a -b )(a 2+b 2+ab ),∴a -b =3322a ba ab b-++=221a ab b++,∵a 3=1+b 3>1,∴a 2>1,∴a 2+ab +b 2>1,则0<221a ab b++<1,∴a -b =221a ab b++<1,即|a -b |<1.同理,设a <b ,也能得到|a -b |<1的结论,故④正确.17.(2012四川,文17)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率. 解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950.解得p =15.(2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么 P (D )=23110C ×21110⎛⎫- ⎪⎝⎭+31110⎛⎫- ⎪⎝⎭=9721 =243250.故系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250.18.(2012四川,文18)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12.(1)求函数f (x )的最小正周期和值域;(2)若f (α10求sin 2α的值.解:(1)由已知,f (x )=cos 2x 2-sin x 2cos x 2-12=1(1+cos x )-12sin x -122x 4π⎛⎫+ ⎪⎝⎭.所以f (x )的最小正周期为2π,值域为22⎡⎢⎣⎦.(2)由(1)知,f (α2α4π⎛⎫+ ⎪⎝⎭10所以cos α4π⎛⎫+⎪⎝⎭=35.所以sin 2α=-cos 2α2π⎛⎫+ ⎪⎝⎭=-cos 2α4π⎡⎤⎛⎫+⎪⎢⎥⎝⎭⎣⎦=1-2cos 2α4π⎛⎫+⎪⎝⎭=1-1825=725.19.(2012四川,文19)如图,在三棱锥P -ABC 中,∠APB =90°,∠PAB =60°,AB =BC =CA ,点P 在平面ABC 内的射影O 在AB 上.(1)求直线PC 与平面ABC 所成的角的大小; (2)求二面角B -AP -C 的大小.解法一:(1)如图,连结OC .由已知,∠OCP 为直线PC 与平面ABC 所成的角.设AB 的中点为D ,连结PD ,CD . 因为AB =BC =C A ,所以CD ⊥AB . 因为∠APB =90°,∠PAB =60°, 所以△PAD 为等边三角形.不妨设PA =2,则OD =1,OP AB =4.所以CD =OC在Rt △OCP 中,tan ∠OCP =O P O C13故直线PC 与平面ABC 所成的角的大小为13(2)过D 作DE ⊥AP 于E ,连结CE .由已知可得,CD ⊥平面PAB . 根据三垂线定理知,CE ⊥PA .所以∠CEDB -AP -C 的平面角. 由(1)知,DE 在Rt △CDE 中,tan ∠CED =C D D E2.故二面角B -AP -C 的大小为arctan 2. 解法二:(1)设AB 的中点为D ,连结CD .因为O 在AB 上,且O 为P 在平面ABC 上的射影, 所以PO ⊥平面ABC .所以PO ⊥AB ,且PO ⊥CD . 由AB =BC =CA ,知CD ⊥AB . 设E 为AC 中点,则EO ∥CD ,从而OE ⊥PO ,OE ⊥AB .如图,以O 为坐标原点,OB ,OE ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .不妨设PA =2,由已知可得,AB =4,OA =OD =1,OP CD =所以O (0,0,0),A (-1,0,0),C (1,0),P (0,0所以C P =(-1,-而O P =(0,0为平面ABC 的一个法向量. 设α为直线PC 与平面ABC,则sin α=C P |C P||O P|4故直线PC 与平面ABC 所成的角的大小为4(2)由(1)有,AP=(1,0,AC =(2,0).设平面APC 的一个法向量为n =(x 1,y 1,z 1),则n ,n A P A C ⎧⊥⎪⎨⊥⎪⎩ ⇔n 0,n 0A P A C ⎧⋅=⎪⎨⋅=⎪⎩⇔111111(x ,y ,z )(1,0,(x ,y ,z )(2,0)0.⎧⋅=⎪⎨⋅=⎪⎩ 从而1111x z 0,2x y 0.⎧+=⎪⎨+=⎪⎩ 取x 1则y 1=1,z 1=1, 所以n 1,1).设二面角B -AP -C 的平面角为β,易知β为锐角. 而面ABP 的一个法向量为m =(0,1,0),则cos β=n m |n||m |⋅5故二面角B -AP -C 的大小为520.(2012四川,文20)已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列n 1a lg ⎧⎫⎨⎬⎩⎭的前n 项和最大? 解:(1)取n =1,得λ21a =2S 1=2a 1,a 1(λa 1-2)=0.若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0(n ≥1). 若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=n2λ.综上,当a 1=0时,a n =0; 当a 1≠0时,a n =n2λ.(2)当a 1>0且λ=100时,令b n =lg n1a , 由(1)有,b n =lg n1002=2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). b 1>b 2>…>b 6=lg 61002=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 71002=lg 100128<lg 1=0,故数列n 1a lg ⎧⎫⎨⎬⎩⎭的前6项的和最大.21.(2012四川,文21)如图,动点M 与两定点A (-1,0),B (1,0)构成△MAB ,且直线MA ,MB 的斜率之积为4.设动点M 的轨迹为C .(1)求轨迹C 的方程;(2)设直线y =x +m (m >0)与y 轴相交于点P ,与轨迹C 相交于点Q ,R ,且|PQ |<|PR |,求|PR ||PQ |的取值范围.解:(1)设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在;当x =1时,直线MB 的斜率不存在. 于是x ≠1且x ≠-1.此时,MA 的斜率为y x 1+,MB 的斜率为y x 1-.由题意,有y x 1+·y x 1-=4,化简可得4x 2-y 2-4=0.故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1). (2)由22y x m ,4x y 40=+⎧⎨--=⎩消去y ,可得3x 2-2mx -m 2-4=0.(*)对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0, 而当1或-1为方程(*)的根时,m 的值为-1或1. 结合题设(m >0)可知,m >0,且m ≠1. 设Q ,R 的坐标分别为(x Q ,y Q ),(x R ,y R ), 则x Q ,x R 为方程(*)的两根. 因为|PQ |<|PR |, 所以|x Q |<|x R |,x Q3x R3所以|PR ||PQ |=R Qx x=11,2,所以1<13,且153≠, 所以1<|PR ||PQ |=R Qx x <3,且|PR ||PQ |=R Qx 5x 3≠.综上所述,|PR ||PQ |的取值范围是551,,333⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋃.22.(2012四川,文22)已知a 为正实数,n 为自然数,抛物线y =-x 2+na2与x 轴正半轴相交于点A .设f (n )为该抛物线在点A 处的切线在y 轴上的截距. (1)用a 和n 表示f (n ); (2)求对所有n 都有f (n)-1n f (n )1n 1≥++成立的a 的最小值;(3)当0<a <1时,比较1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )与6·f (1)-f (n 1)f (0)-f (1)+的大小,并说明理由.解:(1)由已知得,交点A的坐标为0⎫⎪⎪⎭.对y =-x 2+12a n 求导得y '=-2x ,则抛物线在点A 处的切线方程为yx -⎝, 即y+a n . 则f (n )=a n .(2)由(1)知f (n )=a n , 则f (n)-1n f (n )1n 1≥++成立的充要条件是a n ≥2n +1.即知a n ≥2n +1对所有n 成立. 特别地,取n =1得到a ≥3.当a =3,n ≥1时,a n =3n =(1+2)n =1+1n C ·2+…≥2n +1. 当n =0时,a n =2n +1. 故a =3时,f (n)-1n f (n )1n 1≥++对所有自然数n 均成立.所以满足条件的a 的最小值为3. (3)由(1)知f (k )=a k . 下面证明:1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )>6·f (1)-f (n 1)f (0)-f (1)+.首先证明:当0<x <1时,21x x->6x .设函数g (x )=6x (x 2-x )+1,0<x <1. 则g '(x )=18x 2x 3⎛⎫- ⎪⎝⎭.当0<x <23时,g '(x )<0;当23<x <1时,g '(x )>0.故g (x )在区间(0,1)上的最小值g (x )min =g 23⎛⎫ ⎪⎝⎭=19>0.所以,当0<x <1时,g (x )>0,即得21x x->6x .由0<a <1知0<a k <1(k ∈N *), 因此k2k1a a->6a k ,从而1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )=21a a-+241a a-+…+n2n1a a->6(a +a 2+…+a n )=6·n 1a a1a+--=6·f (1)-f (n 1)f (0)-f (1)+.。

2012年高考语文四川卷(含详细答案)

2012年高考语文四川卷(含详细答案)

语文试卷 第1页(共10页)语文试卷 第2页(共10页)绝密★启用前2012年普通高等学校招生全国统一考试(四川卷)语文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间150分钟。

考生注意:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上。

2. 答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上。

3. 不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题 共30分)一、(12分,每小题3分)1. 下列词语中加点的字,读音全部正确的一项是( )A. 折.(zh é)耗 绰.(chu ò)约 水泵.(b èng ) 流水淙.(c óng )淙B. 募.(m ù)集 缜.(zh ěn )密 慰藉.(ji è) 风驰电掣.(ch è)C. 露.(l òu )面 纤.(xi ān )细 抚恤.(x ù) 弦.(xu án )外之音D. 栅.(zh à)栏 蜷.(ju ǎn )缩 款识.(zh ì) 敷衍塞.(s è)责 2. 下列词语中,没有错别字的一项是( )A. 讳疾忌医 微言大义 万事具备,只欠东风B. 磬竹难书 两全其美 一言既出,驷马难追C. 掷地有声 曲意逢迎 桃李不言,下自成蹊D. 至高无上 原型必露 失之东隅,收之桑榆 3. 下列各句中,加点词语使用恰当的一项是( )A. 在施工过程中,因疏忽造成的安全事故如期而至....,人员伤亡严重,救援队伍很快赶到现场,克服困难抢救危重人员,并对轻伤者进行了处理。

B. 2011年8月,科幻作家徐浩若受邀到成都举办讲座,几十位科幻创作爱好者聆听了他的报告,会后我有幸向他垂询..了有关科幻创作的问题。

C. 一项对大学毕业生发展状况的调查表明,无论..他们在校成绩多么优秀,走上工作岗位后都将面临各种挑战,需要用勤奋、智慧与坚韧去应对。

2012年高考真题——文数(新课标卷)Word版 含答案

2012年高考真题——文数(新课标卷)Word版 含答案

绝密*启用前2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x|x2-x -2<0},B={x|-1<x<1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=(2)复数z =-3+i 2+i的共轭复数是 (A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x1,y1),(x2,y2),…,(xn ,yn )(n ≥2,x1,x2,…,xn 不全相等)的散点图中,若所有样本点(xi ,yi )(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12(D )1 (4)设F1、F2是椭圆E :x2a2+y2b2=1(a>b>0)的左、右焦点,P 为直线x=3a 2上一点,△F1PF2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a1,a2,…,aN ,输出A,B ,则(A )A+B 为a1,a2,…,aN 的和(B )A +B 2为a1,a2,…,aN 的算术平均数 (C )A 和B 分别是a1,a2,…,aN 中最大的数和最小的数(D )A 和B 分别是a1,a2,…,aN 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x<logax ,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{an}满足an+1+(-1)n an =2n -1,则{an}的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

四川省高考数学试卷文科答案与解析

四川省高考数学试卷文科答案与解析

2012年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.72的系数是,计算出答案即可得出正确选项的系数是=213.(5分)(2012•四川)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,∴每个个体被抽到的概率为=808xB5.(5分)(2012•四川)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin∠CED=()B,CE=,CED=,CE=7.(5分)(2012•四川)设、都是非零向量,下列四个条件中,使成立的充B且⇔⇔与共线且同向⇔和可能反向,8.(5分)(2012•四川)若变量x,y满足约束条件,则z=3x+4y的最大值是解:作出约束条件9.(5分)(2012•四川)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点MB=310.(5分)(2012•四川)如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为()BPE=AE=AP==,AOP=AOP=arccos,11.(5分)(2012•四川)方程ay=b2x2+c中的a,b,c∈{﹣2,0,1,2,3},且a,b,c互方程变形得,若表示抛物线,则种,有种,所以表示抛物线的曲线共有,又因为当所以重复的抛物线有﹣12.(5分)(2012•四川)设函数f(x)=(x﹣3)3+x﹣1,{a n}是公差不为0的等差数列,二、填空题(本大题共4个小题,每小题4分,共16分.把答案填在答题纸的相应位置上.)13.(4分)(2012•四川)函数的定义域是(﹣∞,).(用区间表示)结合函数的定义域为(﹣))14.(4分)(2012•四川)如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是90°.为坐标原点,建立空间直角坐标系,利用向量的方法求出与,=,•,所以⊥15.(4分)(2012•四川)椭圆为定值,且的左焦点为F,直线x=m与椭圆相交于点A、B,△FAB的周长的最大值是12,则该椭圆的离心率是.==.故答案:16.(4分)(2012•四川)设a,b为正实数,现有下列命题:①若a2﹣b2=1,则a﹣b<1;②若,则a﹣b<1;③若,则|a﹣b|<1;④若|a3﹣b3|=1,则|a﹣b|<1.其中的真命题有①④.(写出所有真命题的编号)b=三、解答题(本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.)17.(12分)(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.发生故障的概率为.18.(12分)(2012•四川)已知函数.(Ⅰ)求函数f(x)的最小正周期和值域;(Ⅱ)若,求sin2α的值.化为cos,由余弦函数的二倍角公式与诱导公cos﹣()﹣,cos)),+2+.19.(12分)(2012•四川)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,点P在平面ABC内的射影O在AB上.(Ⅰ)求直线PC与平面ABC所成的角的大小;(Ⅱ)求二面角B﹣AP﹣C的大小.OP=与平面OP=,CD=2OC====.为原点,建立空间直角坐标系.则=),,的一个法向量为,则由得出,则,所以=(﹣的一个法向量为=arccosOP=,,所以,,=,))为平面==arcsin(Ⅱ)由(Ⅰ)知,=,,,的一个法向量为,则由得出,﹣,所以=(﹣==arccos.20.(12分)(2012•四川)已知数列{a n}的前n项和为S n,常数λ>0,且λa1a n=S1+S n对一切正整数n都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设a1>0,λ=100,当n为何值时,数列的前n项和最大?时,令,则,结合数列的单,则==时,时,令)可知时,21.(12分)(2012•四川)如图,动点M与两定点A(﹣1,0)、B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设直线y=x+m(m>0)与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.即可确定,,,==,且,且的取值范围是(,)∪(,22.(14分)(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.与(时,>(Ⅰ)∵抛物线与(求导得处的切线方程为,∴,则=2n+1都有>时,)时,时,)>,∴,因此= =。

2012四川高考数学

2012四川高考数学

2012四川高考数学题目分析2012年四川高考数学卷是一份重要的考试试卷,对学生数学水平的测试至关重要。

本文将对2012年四川高考数学卷进行详细的分析和解答。

第一大题第一大题共有12道小题,主要考察的是基础的数学知识和运算能力。

涉及到的知识点包括整式的加减乘除、整式的乘法、有理数的开方法则等。

本题的难度适中,对于掌握了基本概念和方法的学生而言,并不是很困难。

第二大题第二大题是本套卷面上稍微复杂一些的一道综合题。

此题考查的是二次函数的性质和变化规律,以及求根、求值等基本操作。

需要学生具备一定的代数和图像计算能力,较高难度。

第三大题第三大题是一道几何题,考察对三角比的理解和运用。

题目中给出了三角形的边长和角度信息,要求求出三角形的面积和某个角的正弦值。

解答此题需要熟练掌握三角函数的定义和性质,对几何图形的理解和运用要求较高。

第四大题第四大题是一道概率统计题,主要考察对概率和统计的理解和计算能力。

题目中给出了一组数据,要求计算其均值、方差和标准差。

解答此题需要熟悉概率和统计学的基本概念和公式,对数据分析和计算有一定的掌握。

第五大题第五大题是一道应用题,主要考察数学和实际问题的结合能力。

题目中给出了一个实际情境,要求学生根据情境分析问题、建立数学模型并进行求解。

解答此题需要熟悉数学知识的应用和实际问题的思考能力。

第六大题第六大题是一道复杂的解析几何题,主要考察对平面直角坐标系和向量的理解和运用。

题目中给出了一些线段和点的位置关系,要求求解线段所在直线方程和交点坐标等。

解答此题需要熟悉解析几何的基本概念和公式,对图形的分析和运算能力要求较高。

总结通过对2012四川高考数学卷的分析,我们可以看出该卷综合性较强,涵盖了代数、几何、概率统计等多个知识点。

整体难度中等偏上,对基本概念和方法的掌握要求较高。

希望此文档对考生复习备考有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(四川卷)
数 学(文史类)
参考公式:
如果事件互斥,那么 球的表面积公式
()()()P A B P A P B +=+ 2
4S R p =
如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 3
43V R
p =
在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()(1)
(0,1,2,,)k
k
n k
n n P k C p p k n -=-=…
第一部分 (选择题 共60分)
注意事项:
1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{,}A a b =,{,,}B b c d =,则A B = ( )
A 、{}b
B 、{,,}b c d
C 、{,,}a c d
D 、{,,,}a b c d 2、7(1)x +的展开式中2x 的系数是( )
A 、21
B 、28
C 、35
D 、42
3、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。

若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )
A 、101
B 、808
C 、1212
D 、2012 4、函数(0,1)x
y a a a a =->≠的图象可能是( )
5、如图,正方形A B C D的边长为1,延长B A至E,使1
A E=,连接E C、ED则sin C ED
∠=()
A、
10
B、
10
C
10
D
6、下列命题正确的是()
A、若两条直线和同一个平面所成的角相等,则这两条直线平行
B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D、若两个平面都垂直于第三个平面,则这两个平面平行
7、设a
、b
都是非零向量,下列四个条件中,使
||||
a b
a b
=
成立的充分条件是()A、||||
a b
=
且//
a b
B、a b
=-
C、//
a b
D、2
a b
=
8、若变量,x y满足约束条件
3,
212,
212
x y
x y
x
y
x
y
-≥-


+≤
⎪⎪
+≤

⎪≥


⎪⎩
,则
34
z x y
=+的最大值是()
A、12
B、26
C、28
D、33
9、已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点
(2,)
M y。

若点M到该抛物线焦点的距离为3,则||
OM=()
A
、B、
C、4
D、
10、如图,半径为R的半球O的底面圆O在平面α内,过点O作
平面α的垂线交半球面于点A,过圆O的直径C D作平面α成45
角的平面与半球面相交,所得交线上到平面α的距离最大的点为
B,该交线上的一点P满足60
BOP
∠= ,则A、P两点间的球
面距离为()
A、arccos
4
R
B、
4
R
π
C、arccos
3
R D、
3
R
π
11、方程22
ay b x c
=+中的,,{2,0,1,2,3}
a b c∈-,且,,
a b c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()
A 、28条
B 、32条
C 、36条
D 、48条 12、设函数3()(3)1f x x x =-+-,{}n a 是公差不为
0的等差数列,
127()()()14f a f a f a ++⋅⋅⋅+=,则127a a a ++⋅⋅⋅+=( )
A 、0
B 、7
C 、14
D 、21
第二部分 (非选择题 共90分)
注意事项:
(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。

答在试题卷上无效。

(2)本部分共10个小题,共90分。

二、填空题(本大题共4个小题,每小题4分,共16分。

把答案填在答题纸的相应位置上。

) 13
、函数()f x =
____________。

(用区间表示)
14、如图,在正方体1111ABC D A B C D -中,M 、N 分别是C D 、1C C 的中点,则异面直线1A M 与D N 所成的角的大小是____________。

15、椭圆
22
2
1(5
x y
a a
+
=为定值,
且a >的的左焦点为F ,直线x m =与椭
圆相交于点A 、B ,F A B ∆的周长的最大值是12,则该椭圆的离心率是______。

16、设,a b 为正实数,现有下列命题:
①若221a b -=,则1a b -<; ②若
111b a
-=,则1a b -<;
③若||1-
=,则||1a b -<;
④若33||1a b -=,则||1a b -<。

其中的真命题有____________。

(写出所有真命题的编号)
三、解答题(本大题共6个小题,共74分。

解答应写出必要的文字说明,证明过程或演算步骤。


17、(本小题满分12分)
某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为
110
和p 。

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950
,求p 的值;
(Ⅱ)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率。

18、(本小题满分12分)
已知函数2
1()cos
sin
cos
2
2
2
2
x x x f x =--。

(Ⅰ)求函数()f x 的最小正周期和值域;
(Ⅱ)若()10
f α=,求sin 2α的值。

N
A 1
19、(本小题满分12分)
如图,在三棱锥P A B C -中,90APB ∠= ,
60PAB ∠=
,A B B C C A ==,点P 在平面ABC 内的
射影O 在AB 上。

(Ⅰ)求直线P C 与平面ABC 所成的角的大小; (Ⅱ)求二面角B A P C --的大小。

20、(本小题满分12分)
已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立。

(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设10a >,100λ=,当n 为何值时,数列1{lg }n
a 的前n 项和最大?
21、(本小题满分12分)
如图,动点M 与两定点(1,0)A -、(1,0)B 构成
M A B ∆,且直线M A M B 、的斜率之积为4,设动点M 的
轨迹为C 。

(Ⅰ)求轨迹C 的方程;
(Ⅱ)设直线(0)y x m m =+>与y 轴交于点P ,与轨迹C 相交于点Q R 、,且||||PQ PR <,求||||
PR PQ 的取值范围。

22、(本小题满分14分)
已知a 为正实数,n 为自然数,抛物线2
2
n
a
y x =-+与x 轴正半轴相交于点A ,设()
f n 为该抛物线在点A 处的切线在y 轴上的截距。

(Ⅰ)用a 和n 表示()f n ; (Ⅱ)求对所有n 都有
()1()1
1
f n n f n n -≥++成立的a 的最小值; (Ⅲ)当01a <<时,比较111(1)(2)
(2)(4)
()(2)
f f f f f n f n +
+⋅⋅⋅+
---与
(1)(1)6(0)(1)
f f n f f -+-
的大小,并说明理由。

y
x
B
A
O
M。

相关文档
最新文档