2019-2020学年浙江省温州市苍南县八年级(上)期末数学试卷 (解析版)

合集下载

浙江省温州市2019-2020学年数学八上期末模拟学业水平测试试题(1)

浙江省温州市2019-2020学年数学八上期末模拟学业水平测试试题(1)

浙江省温州市2019-2020学年数学八上期末模拟学业水平测试试题(1)一、选择题1.下列各式从左到右的变形正确的是( )A .22()()a b a b -+-=1 B .221188a a a a ---=-++ C .22x y x y ++=x+y D .0.52520.11y y x x ++=-++ 2.关于x 的方程13x a x -=的解是正数,则a 的取值范围是( ) A.3a >B.3a <C.0<<3aD.0a > 3.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为 ( ) A .3.1×10-8米B .3.1×10-9米C .3.1×109米D .3.1×108米 4.乐乐所在的四人小组做了下列运算,其中正确的是( ) A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .326236a a a ⋅= 5.将29.5变形正确的是( ) A .2229.590.5=+ B .29.5(100.5)(100.5)=+⨯-C .2229.5990.50.5=+⨯+D .2229.5102100.50.5=-⨯⨯+6.下列变形是分解因式的是( ) A .22632x y xy xy = B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+-- 7.如图所示,AB ,CD ,AE 和CE 均为笔直的公路,已知AB ∥CD ,AE 与AB 的夹角∠BAE 为32°,若线段CF 与EF 的长度相等,则CD 与CE 的夹角∠DCE 为( )A .58°B .32°C .16°D .15°8.如图,平行河岸两侧各有一城镇P ,Q ,根据发展规划,要修建一条公路连接P ,Q 两镇,已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )A .B .C .D .9.一个角的余角比它的补角的12少20°,则这个角为( ) A .30° B .40°C .60°D .75°10.如图,在Rt ABC 中,B 90,AC ∠=的垂直平分线交AC 于点D ,交BC 于点E ,若BAE 20∠=,则C ∠的度数为( )A .55B .45C .35D .2511.在Rt △ABC 中,AC =BC ,点D 为AB 中点.∠GDH =90°,∠GDH 绕点D 旋转,DG ,DH 分别与边AC ,BC 交于E ,F 两点.下列结论:①AE+BF =AC ,②AE 2+BF 2=EF 2,③S 四边形CEDF =12S △ABC ,④△DEF 始终为等腰直角三角形.其中正确的是( )A .①②③④B .①②③C .①④D .②③12.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为( )A .B .C .D .13.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°14.现有长为3,5,7,9的四根木条,要选其中的三根组成三角形,选法一共有( )A .2种.B .3种C .4种D .5种15.如图,在△ABC 中,AC=BC ,D 在BC 的延长线上,∠ABC 与∠ACD 的平分线相交于点P ,则下列结论中不一定...正确的是( )A .∠ACD=2∠AB .∠A=2∠PC .BP ⊥ACD .BC=CP 二、填空题16.若,则=_____.17.若非零实数a b 、满足2244a b ab +=,则b a=__________ 【答案】2 18.如图,在平面直角坐标系中,OA=OB=,AB=.若点A 坐标为(1,2),则点B 的坐标为_____.19.在一个八边形中,其中七个内角的和是1000,则第八个角是_____.20.现在全省各大景区都在流行“真人CS“娱乐项目,其中有一个“快速抢点”游戏,游戏规则:如图,用绳子围成的一个边长为10m 的正方形ABCD 场地中,游戏者从AB 边上的点E 处出发,分别先后赶往边BC 、CD 、DA 上插小旗子,最后回到点E.已知EB 3AE =,则游戏者所跑的最少路程是多少______m.三、解答题21.(1)先化简:244411x x x x x x --+⎛⎫-÷ ⎪--⎝⎭,并将x 从0,1,2中选一个合理的数代入求值; (2)解不等式组:()432326x x x x -⎧+≥⎪⎨⎪+>--⎩①②,并把它的解集在如图的数轴上表示出来;22.对于一个两位数,十位数字是a ,个位数字是b ,总有a b ≥,我们把十位上的数与个位上的数的平方和叫做这个两位数的“平方和数”,把十位上的数与个位上的数的平方差叫做“平方差数”。

浙教版2019-2020学年八年级数学上学期期末测试题(含答案)

浙教版2019-2020学年八年级数学上学期期末测试题(含答案)

2019-2020学年八年级数学上学期期末测试卷一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,92.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,rB.C,π,r C.C,πD.C,2π,r5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:18.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤79.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是.14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).15.命题“等腰三角形的两个底角相等”的逆命题是.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n=.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于°.18.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x 轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016=.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,9【考点】三角形三边关系.【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.故选A.2.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】﹣1<x≤2表示不等式x>﹣1与不等式x≤2的公共部分.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由于x>﹣1,所以表示﹣1的点应该是空心点,折线的方向应该是向右.由于x≤2,所以表示2的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为故选B.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,rB.C,π,r C.C,πD.C,2π,r【考点】常量与变量.【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选A.5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【考点】一次函数图象与系数的关系;一次函数的性质.【分析】根据一次函数解析式中k=3>0、b=6>0,结合一次函数图象与系数的关系即可得出结论.【解答】解:∵在一次函数y=3x+6中:k=3>0,b=6>0,∴一次函数y=3x+6的图象经过第一、二、三象限.故选A.6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.【考点】待定系数法求正比例函数解析式.【分析】利用待定系数法把(1,﹣2)代入正比例函数y=kx中计算出k即可得到解析式.【解答】解:∵正比例函数y=kx经过点(1,﹣2),∴﹣2=1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.故选B.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:1【考点】勾股定理.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.8.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤7【考点】解一元一次不等式组.【分析】先解两个不等式得到x>7和x>n,然后根据同大取大可确定n的范围.【解答】解:,解①得x>7,解②得x>n,而不等式组的解集是x>7,所以n≤7.故选D.9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x【考点】作图—基本作图;坐标与图形性质.【分析】根据角平分线的性质以及第二象限点的坐标特点,进而得出答案.【解答】解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米【考点】一次函数的应用.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:.故这次越野跑的全程为:1600+300×2=2200米.故选C.二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:2x+3>1.【考点】由实际问题抽象出一元一次不等式.【分析】x的2倍为2x,大于1即>1,据此列不等式.【解答】解:由题意得,2x+3>1.故答案为:2x+3>1.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=﹣6.【考点】待定系数法求正比例函数解析式.【分析】设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入求出k的值,得出解析式,然后代入x=3,求得y即可.【解答】解:设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入得:4=﹣2k,解得:k=﹣2,所以,y=﹣2x,当x=3时,y=﹣2×3=﹣6,故答案为﹣6.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE(只需写一个,不添加辅助线).【考点】全等三角形的判定.【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.15.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n=10.【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵点A(m,2)向上平移3个单位,向左平移2个单位后得到点B (3,n),∴m﹣2=3,2+3=n,∴m=5,n=5,∴m+n=10,故答案为:10.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于60°.【考点】直角三角形斜边上的中线.【分析】由直角三角形的性质知,中线CE=AE=BE,所以∠EAC=∠ECA,∠B=∠BCE,由三角形内角和即可求得.【解答】解:由直角三角形性质知,∵E为AB之中点,∴CE=AE=BE,(直角三角形斜边上的中线等于斜边的一半)∴∠B=∠BCE=20°,∠EAC=∠ECA=70°,∴∠ACF=70°,又∵AD=DB,∴∠B=∠BAD=20°,∴∠FAC=50°,∴在△ACF中,∠AFC=180°﹣70°﹣50°=60°,∴∠DFE=∠AFC=60°.故答案为,6018.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x 轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016=4037﹣8072a.【考点】一次函数图象上点的坐标特征;等腰三角形的性质.【分析】根据一次函数图象上点的坐标特征,求得点B1、B2、B3的纵坐标,然后由三角形的面积公式求得S1,S2…S n;由此得出规律,即可求得S2017﹣S2016的值.【解答】解:∵B1(1,y1)、B2(2,y2)、B3(3,y3),…,在直线y=2x+3上,∴y1=2×1+3=5,y2=2×2+3=7,y3=2×3+3=9,y4=2×4+3=11,…,y n=2n+3;又∵OA1=a(0<a<1),∴S1=×2×(1﹣a)×5=5(1﹣a);S2=×2×[2﹣a﹣2×(1﹣a)]×7=7a;S3=×2×{3﹣a﹣2×(1﹣a)﹣2×[2﹣a﹣2×(1﹣a)]}×9=9(1﹣a);S4=×2×[1﹣(1﹣a)]×11=11a;…∴S n=(2n+3)(1﹣a)(n是奇数);S n=(2n+3)a(n是偶数),∴S2017﹣S2016=(2×2017+3)(1﹣a)﹣(2×2016+3)a=4037﹣8072a.故答案是:4037﹣8072a.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.【考点】一元一次不等式的整数解;在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示解集,最后求出自然数解即可.【解答】解:去分母得:2x<4﹣x+3,2x+x<4+3,3x<7,x<,在数轴上表示为:,不等式的自然数解为0,1,2.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)【考点】利用轴对称设计图案;坐标与图形性质.【分析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.【解答】解:(1)如图2所示,C点的位置为(﹣1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)把A点坐标分别代入两函数解析式,可求得a、b的值,可求得两函数的解析式;(2)由两函数解析式,可求得B、C两点的坐标,可求得△ABC的面积.【解答】解:(1)把A(﹣2,0)分别代入y=2x+a和y=﹣x+b得,a=4,b=﹣2,∴这两个函数分别为y=2x+4和y=﹣x﹣2;(2)在y=2x+4和y=﹣x﹣2中,令x=0,可分别求得y=4和y=﹣2,∴B(0,4),C(0,﹣2),又∵A(﹣2,0),∴OA=2,BC=6,=OA•BC=×2×6=6.∴S△ABC22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.【考点】一次函数的应用.【分析】(1)根据题意可以求得w关于n的函数关系式,由所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,可以确定n 的取值范围;(2)根据(1)中的函数关系式可以求得w的最小值及此时购买的A和B种两种笔记本的数量.【解答】解:(1)由题意可得,w=12n+8(30﹣n)=4n+240,∵,解得,15<n≤20,即w(元)关于n(本)的函数关系式是w=4n+240(15<n≤20);(2)∵w=4n+240(15<n≤20),n为正整数,∴n=16时,w取得最小值,此时w=4×16+240=304,∴30﹣n=30﹣16=14,即购买A种笔记本16本、B种笔记本14本时,花费最少,此时的花费是304元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.【考点】三角形综合题.【分析】(1)欲证明CD=AE,只要证明△ABE≌△DBC即可.(2)如图②中,取BE中点F,连接DF,证出△DBF是等边三角形,进一步得出∴∠FDE=∠FED=30°,即可证明△BDE是直角三角形.(3)如图③中,连接DC,先利用勾股定理的逆定理证明△DEC是直角三角形,得∠DEC=90°即可解决问题.【解答】(1)证明:∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴CD=AE.(2)证明:如图②中,取BE中点F,连接DF.∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,∴BF=EF=1=BD,∠DBF=60°,∴△DBF是等边三角形,∴DF=BF=EF,∠DFB=60°,∵∠BFD=∠FED+∠FDE,∴∠FDE=∠FED=30°∴∠EDB=180°﹣DEB∠DBE﹣∠DEB=90°.(3)解:如图③中,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.∵DE2+BE2=AE2,BE=CE,∴DE2+CE2=CD2,∴∠DEC=90°,∵∠BEC=60°,∴∠DEB=∠DEC﹣∠BEC=30°.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)首先求得直线y=kx﹣3与y轴的交点,则OC的长度即可求解,进而求得B的坐标,把B的坐标代入解析式即可求得k的值;(2)根据三角形的面积公式即可求解;再利用函数关系式即可得出结论;(3)分三种情况,利用等腰三角形的性质即可得出结论.【解答】解:(1)在y=kx﹣3中,令x=0,则y=﹣3,∴C的坐标是(0,﹣3),OC=3,∵OC=2OB,∴OB=OC=,则B的坐标是:(,0),把B的坐标代入y=kx﹣3,得:k﹣3=0,∴k=2;(2)OB=,则S=×(2x﹣3)=x﹣;∵△AOB的面积为;∴x﹣=,∴x=3,则A的坐标是(3,3);(3)设P(m,0),(m>0)由(1)(2)知,A(3,3),B(,0),∴AB2=(3﹣)2+9=,AP2=(m﹣3)2+9=m2﹣6m+18,BP2=(m﹣)2,∵△ABP为等腰三角形,①当AB=AP时,∴AB2=AP2,∴=m2﹣6m+18,∴m=﹣(舍)或m=,∴P (,0)②当AB=BP 时,∴AB 2=BP 2,∴=(m ﹣)2,∴m=(舍)或m=,∴P (,0) ③当AP=BP 时,AP 2=BP 2,∴m 2﹣6m +18=(m ﹣)2,∴m=,∴P (,0)满足条件的P 的坐标为P (,0)或(,0)或(,0).2017年2月28日。

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)
【解析】 28.(1)证明:连接 OC, ∵DE 与⊙ O 切于点 C, ∴OC⊥ DE. ∵AD⊥ DE,∴ OC∥ AD.∴∠ 2=∠ 3. ∵OA=OC,∴∠ 1=∠ 3. ∴∠ 1=∠ 2,即 AC 平分∠ DAB. (2)解:∵ AB=4, B 是 OE的中点, ∴OB=BE=2, OC=2. ∵CF⊥ OE, ∴∠ CFO= 90o, ∵∠ COF= ∠ EOC,∠ OCE= ∠ CFO, ∴△ OCE∽△ OFC,
第1页共6页
A. 21 B . 15 C . 13 D. 11 9. 某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀 速流出.那么该倒置啤酒瓶内水面高度 h 随水流出的时间 t 变化的图象大致是( )
A.
B.
C.
D.
10. 下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是
D
.﹣ 5+a<﹣ 5+b
33
2. 若点 P 是第二象限内的点,且点 P 到 x 轴的距离是 4,到 y 轴的距离是 3,则点 P 的坐标
是( )
A.(﹣ 4,3) B .( 4,﹣ 3) C .(﹣ 3, 4) D .( 3,﹣ 4)
3. 某种出租车的收费标准:起步价 7 元(即行驶距离不超过 3 千米都需付 7 元车费),超
第4页共6页
22. 不等式组的所有整数解是 1、 2、 3. 23. ( 1) 900, 4 小时两车相遇.( 2)所以线段 BC所表示的 y 与 x 之间的函数关系式为: y=225x ﹣ 900( 4≤ x≤ 6)( 3)第二列快车比第一列快车晚出发 0.75 小时
24.(1) 、 2 13 ; (2) 、 8 ; (3) 、5.5 秒或 6 秒或 6.6 秒 3

浙江省温州市2019-2020八年级上学期期末数学试卷 及答案解析

浙江省温州市2019-2020八年级上学期期末数学试卷 及答案解析

浙江省温州市2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.在下列图标中是轴对称图形的是()A. B. C. D.2.在平面直角坐标系中,点P(−1,2)的位置在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在△ABC中,AB=3cm,AC=5cm.若BC的长为整数,则BC的长可能是()A. 7cmB. 8cmC. 1cmD. 2cm4.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为()A. (−2,3)B. (−2,−3)C. (2,−3)D. (−3,−2)5.函数y=√x−4中自变量x的取值范围是()A. x>4B. x≥4C. x≤4D. x≠46.能说明命题“对于任何实数a,|a|>−a”是假命题的一个反例可以是()C. a=1D. a=√2A. a=−2B. a=137.已知直线y=ax+2(a−3)经过点A(3,4),则()A. a=5B. a=4C. a=3D. a=28.在△ABC中,∠A=35°,∠B=50°,则∠C的度数是()A. 35°B. 95°C. 85°D. 45°9.已知A,B两地相距60km,甲、乙两人沿同一条公路分别从B,A两地出发相向而行,图中l1,l2分别表示甲、乙两人离A地的路程s(km)与时间t(ℎ)的函数关系的图象.则下列结论错误的是().A. 乙比甲晚出发0.5小时B. 甲、乙的速度差为10km/ℎC. 乙出发1.4小时后与甲相遇D. 甲出发1.3小时或1.5小时两人恰好相距5km10.如图,在面积为8cm2的△ABC中,D,E分别为边BC,AB上的中点.则阴影部分△AED的面积是()A. 1cm2B. 2cm2C. 3cm2D. 4cm2二、填空题(本大题共8小题,共24.0分)11.若a≤0,则2a______ a(填<,≤,>,≥).12.若一个三角形的三个内角度数之比为4∶3∶2,则这个三角形的最大内角为________度.13.一次函数y=(2m−1)x+1,若y随x的增大而增大,则m的取值范围是______14.点P(5,−6)可以由点Q(−5,6)通过两次平移得到,即先向_______平移_______个单位长度,再向_______平移_______个单位长度。

2019—2020年最新浙教版八年级数学上学期期末考试达标测试题及答案解析.docx

2019—2020年最新浙教版八年级数学上学期期末考试达标测试题及答案解析.docx

第一学期八年级数学期末考试卷一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求1、一次函数y=3x+6的图象经过( ▲ )A. 第1、2、3象限B. 第2、3、4象限C. 第1、2、4象限D. 第1、3、4象限2、在平面直角坐标系中.点P (1,-2)关于y 轴的对称点的坐标是( ▲ ) A .(1,2) B .(-1,-2) C .(-1,2) D .(-2,1)3、下列各式中,正确的是( ▲ ) A .3222-= B .842= C .()255-= D .2(5)-=-54、.把不等式组的解集表示在数轴上,下列选项正确的是( ▲ )A B C D 5、把方程x 2-4x -6=0配方,化为(x+m )2=n 的形式应为( ▲ ). A.(x -4)2=6 B.(x -2)2=4 C.(x -2)2=10 D.(x -2)2=06、如图所示,在下列条件中,不能证明△ABD ≌△ACD 的是 ( ▲ ) A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC7、不等式2+x <6的正整数解有( ▲ ) 第6题图A 、1个B 、2个C 、3 个D 、4个8、如图,在△ABC 中,∠ACB=90°, D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB. 若∠B=20°,则∠DFE 等于( ▲ ) A .30° B .40° C .50° D .60°第8题图9、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ▲ ) A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠10、一次长跑中,当小明跑了1600米时,小刚跑了1400米, 小明、小刚在此后所跑的路程y (米)与时间t (秒)之间 的函数关系如图,则这次长跑的全程为( ▲ )米. A 、2000米 B 、2100米 C 、2200米 D 、2400米 二、填空题(每小题3分,共24分)11、在Rt △ABC 中,∠C=Rt ∠,∠A=70°,则∠B=__▲ ___. 12、函数5y x =-中自变量x 的取值范围是__▲ _____. 13、边长为2的等边三角形的高为 ▲ .14、方程x 2-6x +8=0的两个根是等腰三角形的底和腰,则这个三角形的周长为____ ▲___.15、如图将一副三角尺如图所示叠放在一起,若AB=4cm ,则阴影部分的面积是__▲___cm 2.16、将正比例函数y=x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是__▲___.第15题图第17题图17、如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为___▲______.18、已知过点()1,1的直线()y ax b a 0=+≠不经过第四象限.设2s a b =+,则s 的取值范围是___▲______ 三、解答题(6小题、共46分)19、(6分) 如图,已知在△ABC 中,∠A=120º,∠B=20º,∠C=40º,请在三角形的边上找一点P ,并过点P 和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)CAB CAB20、(12分)(1) 解不等式: 3x -2(1+2x) ≥1 (2)计算:12)326242731(⋅-+(3) 解方程:2x 2﹣4x ﹣1=021、(5分)如图,已知1011A B -(,),(,),把线段AB 平移,使点B 移动到点D (3,4)处,这时点A 移动到点C 处. (1)写出点C 的坐标___▲____;(2)求经过C 、D 的直线与y 轴的交点坐标.22、(6分)如图,在ABC △中,2C B ∠=∠,D 是BC 上的一点,且AD AB ⊥,ACD EB点E 是BD 的中点,连结AE . (1)说明AEC C ∠=∠成立的理由;(2)若 6.5AC =,5AD =,那么ABE △的周长是多少?23、(8分)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类 别 电视机洗衣机进价(元/台) 1800 1500 售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(不考虑除进价之外的其它费用)(1) 如果商店将购进的电视机与洗衣机销售完毕后获得利润为y 元,购进电视机x 台,求y 与x 的函数关系式(利润=售价-进价) (2)请你帮助商店算一算有多少种进货方案?(3)哪种进货方案待商店将购进的电视机与洗衣机销售完毕后获得利润最多?并求出最多利润.24(9分)如图①所示,直线L :5y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点。

2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)

2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)

2019-2020学年浙教新版八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>36.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.49.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是.14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=度.15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是cm.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点最近;(2)第四次相遇时甲与最近顶点的距离是厘米.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.参考答案一、选择题(每小题3分.共30分)1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣解:∵函数y=,∴2x+3≥0,∴x≥﹣,故选:B.3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.解:为△ABC中BC边上的高的是A选项.故选:A.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个解:A、2x<6的解集是x<3,故此选项正确;B、﹣x<﹣4的解集是x>4,故此选项错误;C、x<3的整数解有无数个,故此选项正确;D、x<3的正整数解有1,2两个,故此选项正确;故选:B.5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3解:根据一次函数的性质,对于y=(k﹣3)x+2,当k﹣3>0时,即k>3时,y随x的增大而增大.故选:D.6.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个解:当2边长分别为7,6时,1<第3边<7,可取2,3,4,5,6共5个数;当2边长为7,5时,2<第3边<7,可取3,4,5,6共4个数;当2边长为7,4时,3<第3边<7,可取4,5,6共3个数;当2边长为7,3时,4<第3边<7,可取5,6共2个数;当2边长为7,2时,5<第3边<7,可取6共1个数;去掉重合的7,6,5;7,6,4;7,6,3;7,6,2,4组,这样的三角形共有5+4+3+2+1﹣4=11(组).故选:D.8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.4解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤所以x取最大的整数为4,她最多可买4支笔.故选:D.9.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是﹣1<m<2.解:∵点P(m﹣2,m+1)在第二象限,∴,解得,﹣1<m<2,故答案为:﹣1<m<2.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是2x﹣5≥0.解:根据题意,得2x﹣5≥0.故答案是:2x﹣5≥0.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是(1,2).解:联立,解这个方程组得,所以,交点坐标为(1,2).故答案为:(1,2).14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=25度.解:由光的反射可知∠PMC=∠AMN,又PM∥AB,∴∠PMC=∠A,∴∠A=∠AMN,又∠BNM为△AMN的外角,且∠BNM=∠AND,∴∠BNM=∠A+∠AMN=2∠A,即∠AND=2∠A,在△ADN中,∠ADN=105°,则180°﹣∠ADN=∠A+∠AND=3∠A,即3∠A=75°,所以∠A=25°.故答案为:25°15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是2<a≤3cm.解:∵关于x的一元一次不等式x﹣1<a有3个正整数解,∴关于x的一元一次不等式x﹣1<a的3个正整数解,只能是3、2、1,∴a的取值范围是:3<a+1≤4,即2<a≤3.故答案为:2<a≤3.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点C最近;(2)第四次相遇时甲与最近顶点的距离是C厘米.解:(1)设出发x秒后甲乙第一次相遇,根据题意得:x+3x=12×3,解得x=9,所以第一次相遇时甲离顶点C最近;(2)第二次相遇的时间为:9+36÷(2+4)=16(秒),第三次相遇的时间为:16+36÷(3+5)=20.5(秒),第四次相遇的时间为:20.5+36÷(4+5)=24.5(秒),甲所走路程为:9+2×(16﹣9)+3×(20.5﹣16)+4×(24.5﹣20.5)=52.5(cm),52.5﹣12×4=4.5(cm),所以第四次相遇时甲离顶点C最近.故答案为:(1)C;(2)C.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)解:(1)3(x﹣1)+4≥2x,去括号,得3x﹣3+4≥2x,移项及合并同类项,得x≥﹣1,故原不等式的解集是x≥﹣1;(2),由不等式①,得x<8,由不等式②,得x>,故原不等式组的解集是<x<8.18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.解:设一次函数解析式为y=kx+b,将x=3,y=﹣2;x=2,y=﹣3代入得:,解得:k=1,b=﹣5,则一次函数解析式为y=x﹣5.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.【解答】证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.解:(1)∵A(6,0),B(0,8),∴OA=6,OB=8,∴AB ===10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴OM=3,BM=OB﹣OM=5,∴S△ABM =×BM×AO =×5×6=15.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?解:(1)依题意,得600x+400(20﹣x)≥480×20,解得x≥8.∴至少需要购买甲种原料8千克,答:至少需要购买甲种原料8千克.(2)根据题意得:y=9x+5(20﹣x),即y=4x+100,∵k=4>0,∴y随x的增大而增大,∵x≥8,∴当x=8时,y最小,y=4×8+100=132,∴购买甲种原料8千克时,总费用最少,是132元,答:购买甲种原料8千克时,总费用最少,是132元.22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,∴∠ADC=60°,∵∠ADC=∠B+∠BAD,∴∠B=∠BAD=30°,∴DB=DA,∵CD=2AD,∴BC=3BD.(2)解:过点A作AH⊥BC于H.∵AB=AC=20,AH⊥BC,∴BH=CH=16,∵cos∠C==,∴=,∴CD=25,∴BD=BC﹣CD=32﹣25=7.∴CD=BH﹣DH=16﹣9=7.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600),所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲;(3)∵点A(8,120),点O(0,0),∴AB解析式为y=15x,当0<t≤8时,20t﹣15t=20,∴t=4,当8<t<10时,20t﹣(40t﹣200)=20,∴t=9,当10≤t<30时,40t﹣200﹣20t=20,∴t=11,综上所述:当t=4或9或11时,甲乙之间的路程为20米.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.解:(1)如图1中,∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3cm.(2)如图2中,作NT∥OB,过点Q作QR⊥NT于R,过点B作BH⊥NT于H.在Rt△MON中,∵∠OMN=30°,OM=6cm,∴ON=OM•tan30°=2(cm),∵∠NOB=∠ONH=∠BHN=90°,∴四边形OBHN是矩形,∴BH=ON=2(cm),∵NT∥OB,∴∠MNT=∠OMN=30°,∵QR⊥NT,∴QR=NQ,∴2BQ+NQ=2(BQ+NQ)=2(BQ+QR),∵BQ+QR≥BH,∴BQ+QR≥2,∴2BQ+NQ≥4,∴2BQ+NQ的最小值为4.(3)存在,有4种情况:如图3中,①当点P在线段AB上时,点P在AB上运动的时间为s,∵△PEF为等腰三角形,∠PEF=90°,∴PE=EF,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴=t或=t,解得t=或>(故舍去),②当点P在AF上时,若PE=PF时,点P为EF的垂直平分线与AC的交点,此时P为直角三角形PEF斜边AF的中点,∴PF=AP=2t﹣3,∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,∴0<t<3,在直角三角形中,cos30°=,∴=,解得:t=2,若FE=FP,AF===t,则t﹣(2t﹣3)=t,解得:t=12﹣6;③当PE=EF,P在AF上时无解,④当P点在CF上时,AP=2t﹣3,AF=t,则PF=AP﹣AF=t﹣3=EF,所以t﹣3=t,解得t=12+6>3,不合题意,舍去.综上,存在t值为或12﹣6或2时,△PEF为等腰三角形.。

浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)

浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)

2019-2020学年八年级数学上学期期末考试试卷一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,42.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<03.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是.14.在直角三角形中,一个锐角为57°,则另一个锐角为.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是.16.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD=.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为m2.三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.参考答案与试题解析一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2=3,不能组成三角形,故B选项错误;C、1+2>2,能组成三角形,故C选项正确;D、1+2<4,能组成三角形,故D选项错误;故选:C.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<0【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、m≤0时,不等式不成立,故A错误;B、a<0时,不成立,故B错误;C、两边都乘以﹣1,不等号的方向改变,故C错误;D、两边都减a,不等号的方向不变,故D正确;故选:D.3.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)【考点】点的坐标.【分析】笑脸盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.【解答】解:笑脸盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(﹣2,3).故选B.4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【考点】全等三角形的性质.【分析】要求∠F的大小,利用△ABC≌△DEF,得到对应角相等,然后在△DEF 中依据三角形内角和定理,求出∠F的大小.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选B.6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°【考点】等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其顶角的度数.【解答】解:∵等腰三角形的一个底角为80°,∴顶角=180°﹣80°×2=20°.故选A.7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的性质进行判断即可.【解答】解:∵直线y=﹣x﹣2中,k=﹣1<0,b=﹣2<0,∴此函数的图象在二、三、四象限.故选A.8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式x+2<6的正整数解为1,2,3,共3个.故选C.9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.【考点】函数的图象.【分析】由题意,0到20分钟,小明离家越来越远,在20分钟时,离家最远,为900米;在超市购物用了10分钟,即20到30分钟期间,离家距离没变,为900米;15分钟返回家中,即在30到45分钟期间,离家越来越近,在45分钟时,离家距离为0.过程清楚,问题解决.【解答】解:由题意,图形应有三个阶段,①从家到超市,时间为0﹣﹣20分钟;②在超市购物,20﹣﹣30分钟;③从超市到家,30﹣﹣45分钟.A、图显示20到45分钟时,距家都是900米,实际上45分钟时已经到家了,距离应为0;故错误.B、图显示20到45分钟时,离家越来越近,实际上,20到30分钟时一直在超市;故错误.C、图显示不出20到30分钟时,离家一直是900米来,故错误.D、图显示的符合三个阶段,是正确的.综上所述,故选D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①有一个角为60°的等腰三角形是等边三角形,故①正确;②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B.11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.【考点】待定系数法求一次函数解析式;正方形的性质.【分析】直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出点A的坐标,根据待定系数法即可得到该直线l的解析式.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P 作PC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选B.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式进行计算即可求解.【解答】解:根据题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.14.在直角三角形中,一个锐角为57°,则另一个锐角为33°.【考点】直角三角形的性质.【分析】利用直角三角形的两锐角互余可求得答案.【解答】解:∵直角三角形的两锐角互余,∴另一锐角=90°﹣57°=33°,故答案为:33°.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是k <2.5.【考点】一次函数的性质.【分析】根据已知条件“一次函数y=(2k﹣5)x+2中y随x的增大而减小”知,2k ﹣5<0,然后解关于k的不等式即可.【解答】解:∵一次函数y=(2k﹣5)x+2中y随x的增大而减小,∴2k﹣5<0,解得,k<2.5;故答案是:k<2.516.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD= 6.5.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【分析】由△ABC的三边长,利用勾股定理的逆定理判断出三角形为直角三角形,且AC为斜边,再由D为斜边上的中点,得到BD为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出BD的长.【解答】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=25+144=169,AC2=132=169,即AB2+BC2=AC2,∴△ABC为以AC为斜边的直角三角形,又∵D为AC的中点,即BD为斜边上的中线,∴BD=AC=6.5.故答案为:6.5.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=3.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用△ABC的面积列方程求解即可.【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积是45cm2,∴×16•DE+×14•DF=45,解得DE=3cm.故答案为:3.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为8或10m2.【考点】勾股定理的应用;等腰三角形的性质.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AC=CD,②AD=AB,2种情况进行讨论.【解答】解:∵两直角边长为3m,4m,∴由勾股定理得到:AB==5m.①如图1:当AC=CD=8m时;∵AC⊥CB,此时等腰三角形绿地的面积:×4×4=8(m2);②如图2,延长AC到D使AD等于5m,此时AB=AD=5m,此时等腰三角形绿地的面积:×5×4=10(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或10m2;故答案为:8或10三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两不不等式得到x≥﹣1和x<3,再利用数轴表示解集,然后写出不等式组的解集.【解答】解:解不等式(1)得x≥﹣1,解不等式(2)得x<3在数轴上表示为所以不等式组的解集为﹣1≤x<3.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.【考点】全等三角形的判定与性质.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【解答】解:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【考点】作图—应用与设计作图.【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】(1)设这个一次函数的解析式为y=kx+b(k≠0),根据点的坐标利用待定系数法即可求出一次函数解析式;(2)将x=﹣代入一次函数解析式中求出y值即可;(3)由y<1可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)设这个一次函数的解析式为y=kx+b(k≠0),把(﹣4,9)、(6,﹣1)代入y=kx+b中,,解得:,∴这个一次函数的解析式为y=﹣x+5.(2)当x=﹣时,y=﹣(﹣)+5=.(3)∵y=﹣x+5<1,∴x>4.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)如图,证明∠AEC=∠ACE,即可解决问题.(2)如图,作辅助线;求出AG的长度,运用三角形的面积公式,即可解决问题.【解答】(1)证明:如图,∵AB∥CD,∴∠AEC=∠DCE,又∵CE平分∠ACD,∴∠ACE=∠DCE,∴∠AEC=∠ACE,∴△ACE为等腰三角形.(2)过A作AG⊥CE,垂足为G;∵AC=AE,∴CG=EG=CE=12(cm);∵AC=13(cm),由勾股定理得,AG=5(cm);=×24×5=60(cm2).∴S△ACE24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?【考点】一次函数的应用.【分析】(1)设生产甲礼品x万件,乙礼品万件,根据收入=售价×产量列出函数关系式即可;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,根据成本不超过1380万元求出x的取值范围,然后根据利润=(售价﹣成本)×销量,列出函数关系式,求y的最大值;【解答】解:(1)设生产甲礼品x万件,乙礼品万件,由题意得:y=(22﹣15)x+(18﹣12)=x+600;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,由题意得:15x+12≤1380,∴x≤60,利润y=(22﹣15)x+(18﹣12)=x+600,∵y随x增大而增大,∴当x=60万件时,y有最大值660万元.这时应生产甲礼品60万件,乙礼品40万件.25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.【考点】一次函数综合题.【分析】(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣﹣0|,即可得出答案;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0= x0+2,据此可以求得点C的坐标;【解答】解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.【考点】三角形综合题.【分析】(1)由AB∥x轴,可找出四边形ABCO为长方形,再根据△APB为等腰三角形可得知∠OAP=45°,从而得出△AOP为等腰直角三角形,由此得出结论;(2)由全等三角形的性质和等腰三角形的性质可得出结论,注意分类讨论;(3)由等腰直角三角形的性质和全等三角形的性质即可得出结论.【解答】解:(1)过点B作BC⊥x轴于点C,如图1所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.t=4÷1=4(秒),故t的值为4.(2)点M的坐标为(4,7)或(6,﹣4)或(10,﹣1)或(0,4);(3)∠OA'B=45°,不发生变化;理由如下:∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.在△PAO和△BPC中,,∴△PAO≌△BPC(AAS),∴AO=PC,BC=PO.∵点A(0,4),点P(t,0)∴PC=AO=4,BC=PO=t,CO=PC+PO=4+t∴点B(4+t,t);∴点B在直线y=x﹣4上又∵点A关于x轴的对称点为A'(0,﹣4)也在直线y=x﹣4上,∴∠OA'B=45°.2017年2月6日。

浙江省温州市2019-2020学年数学八上期末模拟学业水平测试试题(3)

浙江省温州市2019-2020学年数学八上期末模拟学业水平测试试题(3)

浙江省温州市2019-2020学年数学八上期末模拟学业水平测试试题(3)一、选择题1.关于x 的方程32211x m x x --=++有增根,则m 的值为( ) A.2 B.7- C.5 D.5-2.汉语言文字博大精深,丰富细腻,易于表达.比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等.根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒.将0.013用科学记数法表示应为( )A .21.310-⨯B .31.310-⨯C .31310-⨯D .31.310⨯3.按一定规律排列的一列数:,,,,,,…,若、、依次表示这列数中的连续三个数,猜想、、满足的关系式是( )A. B. C. D. 4.已知a 为任意整数,且()227a a +-的值总可以被n (n 为自然数,且1n ≠)整除,则n 的值为( )A .14B .7C .7或14D .7的倍数 5.已知M =(x+1)(x 2+x ﹣1),N =(x ﹣1)(x 2+x+1),那么M 与N 的大小关系是( ) A .M >N B .M <NC .M≥ND .M≤N 6.下列图形中,不是轴对称图形的是( )A .B .C .D .7.2019年4月28日,北京世界园艺博览会正式开幕。

在此之前,我国已经举办过七次不同类别的世界园艺博览会,下面是北京,西安,锦州,沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A .B .C .D .8.如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为( )A .13B .15C .18D .219.如图,ΔABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,CPE ∠的度数是( )A .30︒B .45︒C .60︒D .90︒10.给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的的个数有( )A .1个B .2个C .3个D .4个 11.如图,点A 、B 、C 、D 在同一条直线上,AE =DF ,CE =BF ,要使得△ACE ≌△DBF ,则需要添加的一个条件可以是( )A .AE ∥DFB .CE ∥BFC .AB =CD D .∠A =∠D 12.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3,4,8B .4,4,9C .5,7,12D .7,8,9 13.多边形每一个外角都是45︒,那么这个多边形是( )A .六边形B .七边形C .八边形D .九边形 14.下列长度的三条线段能组成三角形的是( )A .3,4,8B .4,5,9C .4,5,8D .3a ,3a ,6a (a >0)15.若关于x 的方程3333x m m x x ++=--的解为正数,则m 的取值范围是( ) A.92m <且32m ≠ B.92m < C.94m >-且34m ≠- D.94m >-二、填空题16.若y=1是方程1m y -+32y -=()()112y y --的增根,则m=____. 17.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图()1),把余下的部分沿虚线剪开,拼成一个矩形(如图()2),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是________.(用字母表示)18.如图,在△ABC 中,∠C =90°,AB =10,BC =8,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,则△BED 的周长为_____.19.已知等腰三角形的两边长是5和12,则它的周长是______.20.如图,将一张长方形纸片ABCD 沿EF 折叠,点D 、C 分别落在D′、C′的位置处,若∠1=56°,则∠DEF 的度数是___.三、解答题21.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)作侧面和底面,加工成如图2所示的竖式和横式两种无盖的长方体纸箱.(加工时接缝材料不计)图1 图2(1)若该厂仓库里有1000张正方形纸板和2000张长方形纸板。

2019年温州市八年级数学上期末试题(附答案)

2019年温州市八年级数学上期末试题(附答案)

2019年温州市八年级数学上期末试题(附答案)一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 2.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( )A .18018032x x -=+B .18018032x x -=+C .18018032x x -=-D .18018032x x-=- 3.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .134.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 5.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1 6.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 7.等腰三角形一腰上的高与另一腰的夹角为60o ,则顶角的度数为( )A .30oB .30o 或150oC .60o 或150oD .60o 或120o 8.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .6 9.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0B .x =4C .x ≠0D .x ≠4 10.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D 11.下列计算正确的是( ) A .2a a a +=B .33(2)6a a =C .22(1)1a a -=-D .32a a a ÷= 12.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°二、填空题13.如图,△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件:_____,使△AEH ≌△CEB .14.若一个多边形的内角和是900º,则这个多边形是 边形.15.已知2m =a ,32n =b ,则23m +10n =________.16.若分式11x x --的值为零,则x 的值为______. 17.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n ),且x+1=2128,则n=______.18.如图,在△ABC 中,AB = AC,BC = 10,AD 是∠BAC 平分线,则BD = ________.19.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设 x 管道,那么根据题意,可得方程 .20.分解因式:x 2-16y 2=_______.三、解答题21.为支援灾区,某校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?22.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交A C边于E,两线相交于F 点.(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.23.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=40°,∠DAE=15°,求∠C的度数.24.如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.25.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.D解析:D【解析】【分析】先用x表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x人,根据题意,得:18018032x x-= -.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.3.A解析:A【解析】因为ba b-=14,所以4b=a-b.,解得a=5b,所以ab=55bb=.故选A.4.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A、a2•a3=a5,故此选项错误;B、122a a÷= a10,故此选项错误;C、(a3)3=a9,故此选项错误;D、(-a)6=a6,故此选项正确.故选D.【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.5.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.6.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.7.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60o,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.8.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.9.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.10.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C是轴对称图形,故选C.11.D解析:D【解析】【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【详解】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.12.C解析:C【解析】【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.二、填空题13.AH=CB或EH=EB或AE=CE【解析】【分析】根据垂直关系可以判断△AEH与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=解析:AH=CB或EH=EB或AE=CE.【解析】【分析】根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.14.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15.a3b2【解析】试题解析:∵32n=b∴25n=b∴23m+10n=(2m)3×(25n)2=a3b 2故答案为a3b2解析:a3b2【解析】试题解析:∵32n=b,∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b216.-1【解析】【分析】【详解】试题分析:因为当时分式的值为零解得且所以x=-1考点:分式的值为零的条件解析:-1【解析】【分析】【详解】试题分析:因为当10{-10-=≠xx时分式11xx--的值为零,解得1x=±且1x≠,所以x=-1.考点:分式的值为零的条件.17.64【解析】试题分析:先在前面添加因式(2﹣1)再连续利用平方差公式计算求出x然后根据指数相等即可求出n值解:(1+2)(1+22)(1+24)(1+28)…(1+2n)=(2﹣1)(1+2)(1+解析:64【解析】试题分析:先在前面添加因式(2﹣1),再连续利用平方差公式计算求出x,然后根据指数相等即可求出n值.解:(1+2)(1+22)(1+24)(1+28)…(1+2n),=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n),=(22﹣1)(1+22)(1+24)(1+28)…(1+2n),=(2n﹣1)(1+2n),=22n﹣1,∴x+1=22n﹣1+1=22n,2n=128,∴n=64.故填64.考点:平方差公式点评:本题考查了平方差公式,关键是乘一个因式(2﹣1)然后就能依次利用平方差公式计算了.18.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.19.【解析】因为原计划每天铺设xm管道所以后来的工作效率为(1+20)x根据题意得解析:() 12030012030120%120180 (30)1.2x xx x-+=++=或【解析】因为原计划每天铺设xm管道,所以后来的工作效率为(1+20%)x根据题意,得12030012030(120%)x x-+=+.20.(x+4y)(x-4y)【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y)(x-4y) 解析:(x+4y) (x-4y)【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y) (x-4y).三、解答题21.(1)A型学习用品20元,B型学习用品30元;(2)800.【解析】(1)设A种学习用品的单价是x元,根据题意,得,解得x=20.经检验,x=20是原方程的解.所以x+10=30.答:A、B两种学习用品的单价分别是20元和30元.(2)设购买B型学习用品m件,根据题意,得30m+20(1000-m)≤28000,解得m≤800.所以,最多购买B型学习用品800件.22.(1)115°;(2)证明见解析【分析】(1)根据∠ABF=∠FBD+∠BDF,想办法求出∠FBD,∠BDF即可;(2)只要证明AB=AC,∠ABC=60°即可;【详解】(1)∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣60°﹣70°=50°,∵BE平分∠ABC,∴∠FBD=12∠ABC=25°,∵AD⊥BC,∴∠BDF=90°,∴∠AFB=∠FBD+∠BDF=115°.(2)证明:∵∠ABE=30°,BE平分∠ABC,∴∠ABC=60°,∵BD=DC,AD⊥BC,∴AB=AC,∴△ABC是等边三角形.【点睛】本题考查等边三角形的判定、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.70°【解析】试题分析:由AD是BC边上的高可得出∠ADE=90°.在△ADE中利用三角形内角和可求出∠AED的度数,再利用三角形外角的性质即可求出∠BAE的度数;根据角平分线的定义可得出∠BAC的度数.在△ABC中利用三角形内角和可求出∠C的度数.试题解析:解:∵AD是BC边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°-∠ADE-∠DAE=180°-90°-15°=75°.∵∠B+∠BAE=∠AED,∴∠BAE=∠AED-∠B=75°-40°=35°.∵AE是∠BAC平分线,∴∠BAC=2∠BAE=2×35°=70°.∵∠B+∠BAC+∠C=180°,∴∠C=180°-∠B-∠BAC=180°-40°-70°=70°.点睛:本题考查了三角形内角和定理以及三角形外角的性质,解题的关键是:在△ADE中利用三角形内角和求出∠AED的度数;利用角平分线的定义求出∠BAC的度数.24.32°【解析】【分析】设∠1=∠2=x,根据三角形外角的性质可得∠4=∠3=2x,在△ABC中,根据三角形的内角和定理可得方程2x+x+69°=180°,解方程求得x的值,即可求得∠4、∠3的度数,在△ADC中,根据三角形的内角和定理求得∠DAC的度数即可.设∠1=∠2=x∴∠4=∠3=∠1+∠2=2x,在△ABC中,∠4+∠2+∠BAC=180°,∴2x+x+69°=180°解得x=37.即∠1=∠2=37°,∠4=∠3=37°×2=74°.在△ADC中,∠4+∠3+∠DAC=180°∴∠DAC=180º-∠4-∠3=180°-74°-74°=32º.【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和定理及三角形外角的性质是解题的关键.25.(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.考点:平行线的判定与性质.。

2019-2020学年度第一学期浙教版八年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版八年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版八年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.下面各组线段中,能组成三角形的是()A. 5,11,6B. 8,8,16C. 10,5,4D. 6,9,142.下列命题中,是真命题的是()A. 两直线平行,内错角相等B. 两个锐角的和是钝角C. 直角三角形都相似D. 正六边形的内角和为360°3.等腰三角形腰长10cm,底边16cm,则面积()A. 96cm2B. 48cm2C. 24cm2D. 32cm24.把一块直尺与一块三角板放置,若∠1=50°,则∠2的度数为()A. 115°B. 120°C. 130°D. 140°5.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分,设她答对了x道题,则根据题意可列出不等式为( )A. 10x-5(20-x) ≥90B. 10x-5(20-x)>90C. 10x-(20-x) ≥90D. 10x-(20-x)>906.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有1个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A. 8(x﹣1)<5x+12<8B. 0<5x+12<8xC. 0<5x+12﹣8(x﹣1)<8D. 8x<5x+12<87.下列说法不正确的是()A. 的平方根是B. -9是81的一个平方根;C. 0.2的算术平方根是0.02 ;D.8.函数y=ax2与y=-ax+b的图象可能是()A. B. C. D.9.甲、乙两车从A地匀速驶向B地,甲车比乙车早出发2h,并且甲车在途中休息了0.5h后仍以原速度驶向B地,如图是甲、乙两车行驶的路程y(km)与行驶的时间x(h)之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40km/h,乙车的速度是80km/h;③当甲车距离A地260km时,甲车所用的时间为7h;④当两车相距20km时,则乙车行驶了3h或4h,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个10.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1,y2的值都大于零的x的取值范围是()A. x>-1B. x>2C. x<2D. -1<x<2二、填空题(共6题;共24分)11.如图,已知∠ABD=∠CBD,若以“SAS”为依据判定△ABD≌△CBD,还需添加的一个条件是________.12.解不等式组请结合题意填空和画图,完成本题的解答:解:解不等式①,得________。

浙江省温州市2019-2020学年八年级上学期期末数学试题(解析版)

浙江省温州市2019-2020学年八年级上学期期末数学试题(解析版)

温州市2019学年第一学期八年级(上)学业水平期末测试数学试卷一、选择题(本题有10个小题,每小题3分,共30分)1.下列图标中是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、不是轴对称图形,此项不符题意D、是轴对称图形,此项符合题意故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.2.在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.在△ABC 中, 已知AB=4cm, BC=9cm, 则AC 的长可能是()A. 5 cmB. 12 cmC. 13 cmD. 16 cm【答案】B【解析】【分析】根据三角形的三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边,求出AC 的取值范围,然后逐项判断即可.【详解】4,9AB cm BC cm ==Q 13,5AB BC cm BC AB cm ∴+=-=由三角形的三边关系定理得513cm AC cm <<因此,只有B 选项满足条件故选:B .【点睛】本题考查了三角形的三边关系定理,熟记定理是解题关键.4.在平面直角坐标系中, 点A(2,3)与点B 关于y 轴对称, 则点B 的坐标为()A. (-2,3)B. (-2,-3)C. (2,-3)D. (3,2)【答案】A【解析】【分析】根据平面直角坐标系中,点关于坐标轴对称的规律即可.【详解】点关于y 轴对称的规律:横坐标变为相反数,纵坐标不变则点(2,3)A 关于y 轴的对称点B 的坐标为(2,3)B -故选:A .【点睛】本题考查了平面直角坐标系中,点关于坐标轴对称的规律,熟记对称的规律是解题关键.设某点的坐标为(,)x y ,则有(1)其关于x 轴对称的点坐标为(,)x y -;(2)其关于y 轴对称的点坐标为(,)x y -.5.函数中,自变量x 的取值范围是()A. x>2B. x≥2C. x<2D. 2x≥-【答案】B【解析】【分析】根据二次根式的被开方数的非负性即可.【详解】由二次根式的被开方数的非负性得240x-≥解得2x≥故选:B.【点睛】本题考查了二次根式的被开方数的非负性的应用、求函数自变量的取值范围问题,掌握理解被开方数的非负性是解题关键.6.能说明命题“对于任何实数a, 都有a>-a”是假命题的反例是()A. a=-2B. a12= C. a=1 D. a=2【答案】A【解析】【分析】先根据假命题的定义将问题转化为求四个选项中,哪个a的值使得a a>-不成立,再根据绝对值运算即可得.【详解】由假命题的定义得:所求的反例是找这样的a值,使得a a>-不成立A、22(2)-==--,此项符合题意B、111222=>-,此项不符题意C、111=>-,此项不符题意D、222=>-,此项不符题意故选:A.【点睛】本题考查了命题的定义、绝对值运算,理解命题的定义,正确转为所求问题是解题关键.7.如图, 直线y=kx(k为常数, k≠0)经过点A, 若B是该直线上一点, 则点B的坐标可能是()A. (-2,-1)B. (-4,-2)C. (-2,-4)D. (6,3)【答案】C【解析】【分析】 先根据点A 的坐标求出k 的值,从而可得直线的解析式,再逐项判断即可.【详解】由平面直角坐标系得:点A 的坐标为(2,4)A将(2,4)A 代入直线y kx =得:24k =,解得2k =因此,直线的解析式为2y x =A 、令2x =-,代入直线的解析式得22(2)4y x ==⨯-=-,则点(2,1)--不符题意B 、令4x =-,代入直线的解析式得22(4)8y x ==⨯-=-,则点(4,2)--不符题意C 、令2x =-,代入直线的解析式得22(2)4y x ==⨯-=-,则点(2,4)--符合题意D 、令6x =,代入直线的解析式得22612y x ==⨯=,则点(6,3)不符题意故选:C .【点睛】本题考查了正比例函数的图象与性质,依据图象求出直线的解析式是解题关键.8.如图, 在△ABC 中, 50,130,240A ∠=︒∠=︒∠=︒, ∠D 的度数是()A. 110︒B. 120︒C. 130︒D. 140︒【答案】B【解析】【分析】 先根据角的和差、三角形的内角和定理求出DBC DCB ∠+∠的度数,再根据三角形的内角和定理即可.【详解】由三角形的内角和定理得180A ABC ACB ∠+∠+∠=︒50A ∠=︒Q18050130ABC ACB ∴∠+∠=︒-︒=︒12130240ABC DBC ACB DCB ∠=∠+∠⎧⎪∠=∠+∠⎪⎨∠=︒⎪⎪∠=︒⎩Q 123040130DBC DCB DBC DCB ∴∠+∠+∠+∠=︒+︒+∠+∠=︒60DBC DCB ∴∠+∠=︒再由三角形的内角和定理得180D DBC DCB ∠+∠+∠=︒则18060120D ∠=︒-︒=︒故选:B .【点睛】本题考查了角的和差、三角形的内角和定理,熟记三角形的内角和定理是解题关键. 9.已知A 、B 两地相距12km,甲、乙两人沿同一条公路分别从A 、B 两地出发相向而行,甲, 乙两人离B 地的路程s(km)与时间t(h)的函数关系图象如图所示, 则两人在甲出发后相遇所需的时间是()A. 1.2hB. 1.5hC. 1.6hD. 1.8h【答案】C【解析】【分析】 先根据图象求出甲、乙两人的s 与t 的函数关系式,再联立求出交点坐标即可得出答案.【详解】设甲的s 与t 的函数关系式为s mt a =+由图象可知,点(2,0)、(0,12)在s mt a =+的图象上则2012m a a +=⎧⎨=⎩,解得612m a =-⎧⎨=⎩故甲的s 与t 的函数关系式为612s t =-+设乙的s 与t 的函数关系式为s nt b =+由图象可知,点(1,0)、(4,12)在s nt b =+的图象上则0412n b n b +=⎧⎨+=⎩,解得44n b =⎧⎨=-⎩ 故乙的s 与t 的函数关系式为44s t =-联立61244s t s t =-+⎧⎨=-⎩,解得 1.62.4t s =⎧⎨=⎩即两人在甲出发后相遇所需的时间为1.6h故选:C .【点睛】本题考查了一次函数的实际应用,依据图象求出甲、乙两人的s 与t 的函数关系式是解题关键. 10.活动课上, 小华将两张直角三角形纸片如图放置, 已知AC=8,O 是AC 的中点, △ABO 与△CDO 的面积之比为4:3, 则两纸片重叠部分即△OBC 的面积为()A. 4B. 6C.D.【答案】D【解析】【分析】 先根据直角三角形的性质可求出OB 、OC 、OA 的长、以及ABO ∆的面积等于OBC ∆的面积,再根据题中两三角形的面积比可得OD 的长,然后由勾股定理可得CD 的长,最后根据三角形的面积公式可得出答案.【详解】在Rt ABC ∆中,908,A C C AB ∠=︒=,O 是AC 的中点142OB OC OA AC ∴==== ABO ∴∆的面积等于OBC ∆的面积ABO ∆Q 与CDO ∆的面积之比为4:3OBC ∴∆与CDO ∆的面积之比为4:3又CD BD ⊥Q11,22O BC CD O S OB CD S OD CD ∆∆∴=⋅=⋅ ::4:3CDO OBC S S OB OD ∆∆∴==,即4:4:3OD =3OD ∴=在Rt CDO ∆中,CD ===11422OBC S OB CD ∆∴=⋅=⨯=故选:D .【点睛】本题考查了直角三角形的性质(斜边上的中线等于斜边的一半)、勾股定理等知识点,根据已知的面积之比求出OD 的长是解题关键.非选择题部分二、填空题(本题有8个小题,每小题3分,共24分)11.若m>n, 则m -n _____0 . (填“>”“<”“=”)【答案】>【解析】【分析】根据不等式的性质即可得.【详解】m n >两边同减去n 得,m n n n ->-,即0m n ->故答案为:>.【点睛】本题考查了不等式的性质:两边同减去一个数,不改变不等号的方向,熟记性质是解题关键. 12.已知一个三角形的三个内角度数之比为2:3:5,则它的最大内角等于_____度.【答案】90【解析】【分析】利用三角形的内角和定理即可得.【详解】设最小角的度数为2x ,则另两个角的度数分别为3x ,5x ,其中5x 为最大内角由三角形的内角和定理得:235180x x x ++=︒解得:18x =︒则551890x =⨯︒=︒故答案为:90.【点睛】本题考查了三角形的内角和定理、一元一次方程的几何应用,依据题意正确建立方程是解题关键. 13.已知一次函数y=(k -4)x+2,若y 随x 的增大而增大,则k 的值可以是_____ (写出一个答案即可).【答案】5【解析】【分析】根据一次函数的性质列出一个关于k 的不等式,再写出一个符合条件的k 值即可.【详解】因y 随x 的增大而增大则40k ->解得4k >因此,k 的值可以是5故答案为:5.(注:答案不唯一)【点睛】本题考查了一次函数的性质:增减性,根据函数的增减性求出k 的取值范围是解题关键. 14.在平面直角坐标系中, 点B(1,2)是由点A(-1,2)向右平移a 个单位长度得到,则a 的值为______【答案】2【解析】分析】根据平面直角坐标系中,点坐标的平移规律即可得.【详解】Q 点(1,2)A -向右平移a 个单位长度得到(1,2)B 11a ∴-+=解得2a =故答案为:2.【点睛】本题考查了平面直角坐标系中,点坐标的平移规律,掌握点坐标的平移规律是解题关键.设某点坐标为(,)x y ,则有:(1)其向右平移a 个单位长度得到的点坐标为(,)x a y +;(2)其向左平移a 个单位长度得到的点坐标为(,)x a y -;(3)其向上平移b 个单位长度得到的点坐标为(,)x y b +;(4)其向下平移b 个单位长度得到的点坐标为(,)x y b -,规律总结为“左减右加,上加下减”.15.如图, 在△ABC 中, ∠ACB=81°, DE 垂直平分AC, 交AB 于点D,交AC 于点E.若CD=BC, 则∠A 等于【_____度.【答案】33【解析】【分析】先根据垂直平分线的性质得出AD CD =,再根据等腰三角形的性质、三角形的外角性质可得2B A ∠=∠,最后利用三角形的内角和定理即可得.【详解】DE Q 垂直平分ACAD CD ∴=A ACD ∴∠=∠2CDB A ACD A ∴∠=∠+∠=∠又CD BC =QCDB B ∴∠=∠2B A ∴∠=∠在ABC ∆中,180,81ACB A B ACB ∠+∠+∠=︒∠=︒则812180A A ︒+∠+∠=︒解得33A ∠=︒故答案为:33.【点睛】本题考查了垂直平分线的性质、等腰三角形的性质(等边对等角)、三角形的内角和定理等知识点,利用等腰三角形的性质和外角的性质求出A ∠与B Ð的等量关系是解题关键.16.如图, 在△ABC 中, ∠ACB 的平分线交AB 于点D, DE ⊥AC 于点E, F 为BC 上一点,若DF=AD, △ACD 与△CDF 的面积分别为10和4, 则△AED 的面积为______【答案】3【解析】【分析】如图(见解析),过点D 作DG BC ⊥,根据角平分线的性质可得DE DG =,再利用三角形全等的判定定理得出,CDE CDG ADE FDG ∆≅∆∆≅∆,从而有,CDE CDG ADE FDG S S S S ∆∆∆∆==,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D 作DG BC ⊥CD Q 平分ACB ∠,DE AC ⊥DE DG ∴=CD CD =Q()CDE CDG HL ∴∆≅∆CDE CDG S S ∆∆∴=又AD FD =Q()ADE FDG HL ∴∆≅∆ADE FDG S S ∆∆∴=104ACD ADE CDE CDECDG CDF FDG ADE S S S S S S S S ∆∆∆∆∆∆∆∆=+=⎧∴⎨==+=+⎩ 则410ADE ADE S S ∆∆++=解得3ADE S ∆=故答案为:3.【点睛】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.17.如图, 在平面直角坐标系中, 一次函数的图象与x 轴交于点A, 与y 轴交于点B, 点P 在线段AB 上, PC ⊥x 轴于点C, 则△PCO 周长的最小值为_____【答案】3【解析】【分析】先根据一次函数列出PCO ∆周长的式子,再根据垂线公理找到使周长最小时点P 的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【详解】由题意,可设点P 的坐标为(,0)a a a +<,OC a PC a ∴=-=+PCO ∴∆周长为OC PC OP a a OP OP ++=-++=则求PCO ∆周长的最小值即为求OP 的最小值如图,过点O 作⊥OD AB由垂线公理得,OP 的最小值为OD ,即此时点P 与点D 重合由直线y x =+(A B -,则OA OB ==BAO ∴∆是等腰直角三角形,45BAO ∠=︒DAO ∴∆是等腰直角三角形,OD AD OA ===解得3OD =则PCO ∆周长的最小值为3OP OD ==故答案为:3.【点睛】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出PCO ∆周长的式子,从而找到使其最小的点P 位置是解题关键.18.如图是高空秋千的示意图, 小明从起始位置点A 处绕着点O 经过最低点B, 最终荡到最高点C 处,若∠AOC=90°, 点A 与点B 的高度差AD=1米, 水平距离BD=4米,则点C 与点B 的高度差CE 为_____米.【答案】45【解析】【分析】如图(见解析),过点A 作AH OB ⊥,过点C 作CG OB ⊥,先利用勾股定理求出OA 的长,再根据三角形全等的判定定理与性质求出OG 的长,最后根据线段的和差即可得.【详解】如图,过点A 作AH OB ⊥,过点C 作CG OB ⊥,则四边形ADBH 和四边形CEBG 都是矩形 由题意得,OA OB OC ==由矩形的性质得,4,1,AH BD BH AD CE BG ===== .在Rt AHO ∆中,222OH AH OA +=,即222()OB BH AH OA -+=则222(1)4OA OA -+=,解得178.52OA == 231390∠+∠=∠+∠=︒Q21∴∠=∠又90,OGC AHO OC OA ∠=∠=︒=Q()OGC AHO AAS ∴∆≅∆4OG AH ∴==8.54 4.5BG OB OG OA OG ∴=-=-=-=则 4.5CE BG ==(米)故答案为:4.5.【点睛】本题考查了勾股定理、三角形全等的判定定理与性质、矩形的判定与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.三、解答题(本题有6小题,共46分)19.如图, AB=AC, AD=AE, ∠BAD=∠CAE, 求证: BE=CD.【答案】证明见解析【解析】【分析】先根据角的和差求出BAE CAD ∠=∠,再根据三角形全等的判定定理与性质即可得证.【详解】BAD CAE ∠=∠QBAD DAE CAE DAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠在ABE ∆与ACD ∆中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩()ABE ACD SAS ∴∆≅∆BE CD ∴=.【点睛】本题考查了三角形全等的判定定理与性质,熟记判定定理与性质是解题关键.20.解不等式组:()232x 13x x -≥-⎧⎪⎨-<+⎪⎩①② ,并把它的解集在数轴上表示出来. 【答案】15x -≤<,数轴图见解析.【解析】【分析】先分别求出不等式①和②的解,再找出两个解的公共部分即可得出不等式组的解集,然后根据数轴的定义将其表示出来即可.【详解】不等式①,移项合并得:1x ≥-不等式②,去括号得:223x x -<+移项合并得:5x <故原不等式组的解集是15x -≤<,将其在数轴上表示出来如下:【点睛】本题考查了一元一次不等式组的解法、数轴的定义,掌握不等式组的解法是解题关键. 21.如图, 在方格纸中, 每一个小正方形的边长为1, 按要求画一个三角形,使它的顶点都在小方格的顶点上. (1)在图甲中画一个以AB 为边且面积为3的直角三角形(2)在图乙中画一个等腰三角形, 使AC 在三角形的内部(不包括边界)【答案】(1)答案见解析;(2)答案见解析.【解析】【分析】(1)根据直角三角形的面积公式可知,AB 只能是一条直角边,从而可知另一条直角边的边长为3,由此即可画出图形;(2)在正方形网格中,先利用勾股定理画出相等的两条边,再连接即可得出符合条件的等腰三角形.【详解】(1)以AB 为边且面积为3直角三角形作图结果如下:(二选一)(2)使AC 在三角形的内部的等腰三角形的作图结果如下:(三选一)【点睛】本题考查了直角三角形的定义、等腰三角形的定义、勾股定理,掌握定义是解题关键.22.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连结CD,DE,已知∠EDB=∠ACD , (1)求证:△DEC 是等腰三角形. (2)当∠BDC=5∠EDB, BD=2时,求EB 长.【答案】(1)证明见解析;(21.【解析】【分析】的(1)先根据等边三角形的性质可得60ABC ACB ∠=∠=︒,再根据角的和差、外角的性质可得E DCE ∠=∠,然后根据等腰三角形的判定定理即可得证;(2)先根据角的和差倍分求出E ∠的度数,从而可得DEF ∆是等腰直角三角形,再利用直角三角形的性质、等边三角形的性质求出,BF DF 的长,然后由线段的和差即可得.【详解】(1)ABC ∆Q 是等边三角形60A ABC ACB ∴∠=∠=∠=︒E ABC EDB ∠=∠-∠QE ACB EDB ∴∠=∠-∠EDB ACD ∠=∠QE ACB ACD DCE ∴∠=∠-∠=∠DEC ∴∆是等腰三角形;(2)如图,过点D 作DF BC ⊥于点F6055BDC A ACD ACD BDC EDB ACD ∠=∠+∠=︒+∠⎧⎨∠=∠=∠⎩Q 15ACD ∴∠=︒45E DCE ACB ACD ∴∠=∠=∠-∠=︒DEF ∴∆是等腰直角三角形DF EF ∴=60,90,2DBF DFB BD ∠=︒∠=︒=Q11,2BF BD DF ∴====1EB EF BF DF BF ∴=-=-=故EB 1.【点睛】本题考查了等边三角形的性质、等腰三角形的判定定理、直角三角形的性质等知识点,较难的是题(2),通过作辅助线,构造一个等腰直角三角形是解题关键.23.某超市每天都用360元从批发商城批发甲乙两种型号“垃圾分类”垃圾桶进行零售,批发价和零售价如下表所示:若设该超市每天批发甲型号“垃圾分类”垃圾桶x 个,乙型号“垃圾分类”垃圾桶y 个,(1)求y 关于x 的函数表达式.(2)若某天该超市老板想将两种型号的“垃圾分类”垃圾桶全部售完后,所获利润率不低于30%,则该超市至少批发甲型号“垃圾分类”垃圾桶多少个?(利润率=利润/成本).【答案】(1)0.412y x =-+;(2)23.【解析】【分析】 (1)根据甲、乙两型号垃圾桶的批发价和个数、总花费列出等式,再进行等式变形即可得;(2)先根据表格中的数据求出利润的表达式,再根据“利润率=利润/成本”得出一个不等式,然后结合题(1)求解即可.【详解】(1)由题意得:1230360x y +=整理得:0.412y x =-+故y 关于x 的函数表达式为0.412y x =-+;(2)由甲、乙型号垃圾桶的价格表得:全部售完后的利润为(1612)(3630)46x y x y -+-=+ 由题意得:4630%360x y +≥ 将(1)的结论代入得:46(0.412)30%360x x +-+≥ 解得:22.5x ≥,x y Q 都是正整数∴ x 最小为23答:该超市至少批发甲型号垃圾桶23个,所获利润率不低于30%.【点睛】本题考查了一次函数的实际应用,一元一次不等式的实际应用,依据题意正确列出不等式是解题关键.24.如图,在平面直角坐标系中,已知点A 的坐标为(15,0),点B 的坐标为(6,12),点C 的坐标为(0,6), 直线AB 交y 轴于点D, 动点P 从点C 出发沿着y 轴正方向以每秒2个单位的速度运动, 同时,动点Q 从点A 出发沿着射线AB 以每秒a 个单位的速度运动设运动时间为t 秒,(1)求直线AB 的解析式和CD 的长.(2)当△PQD 与△BDC 全等时,求a 的值.(3)记点P 关于直线BC 的对称点为'P ,连结'QP 当t=3,'//QP BC 时, 求点Q 的坐标.【答案】(1)4203y x =-+,14;(2)a 的值为5.5或3.25或2.5;(3)6060,77⎛⎫ ⎪⎝⎭. 【解析】【分析】 (1)先利用待定系数法求出直线AB 的解析式,再令0x =求出点D 的坐标,从而可得出CD 的长; (2)先利用点坐标求出BD 、AD 的长,分点P 在CD 上和点P 在CD 延长线上,再利用三角形全等的性质求出DP 、DQ 的长,最后利用线段的和差即可得;(3)如图4(见解析),连结BP ,过点Q 作'QE CP ⊥,交'CP 延长线于点E ,先求出CP 的长,再根据点B 的坐标可推出BP OD ⊥,然后可求出BP 的长,从而可求出45BCP ∠=︒,根据点的对称性可得'45BCP ∠=︒,又根据平行线的性质可得'45QP E ∠=︒,最后根据等腰三角形的性质、一次函数的性质即可求出答案.【详解】(1)设直线AB 的解析式为y kx b =+把点()(),15,06,12A B 代入得150612k b k b +=⎧⎨+=⎩ 解得4320k b ⎧=-⎪⎨⎪=⎩故直线AB 的解析式为4203y x =-+ 令0x =,代入得20y =则点D 的坐标为(0,20)D故20614CD =-=; (2)(150),(612),(020)A B D Q ,,,10,25BD AD ∴==== ①如图1,当点P 在CD 上时,点P 只能与点B 是对应点 则DPQ DBC ∆≅∆10,14DP DB DQ DC ∴====14104,251411CP CD DP AQ AD DQ ∴=-=-==-=-= 2411CP t AQ at ==⎧∴⎨==⎩解得25.5t a =⎧⎨=⎩;②如图2,当点P 在CD 延长线上,并且点P 与点B 是对应点时 则DPQ DBC ∆≅∆10,14DP BD DQ DC ∴====141024,251439CP CD DP AQ AD DQ ∴=+=+==+=+= 22439CP t AQ at ==⎧∴⎨==⎩解得123.25t a =⎧⎨=⎩;③如图3,当点P 在CD 延长线上,并且点P 与点C 是对应点时 则DPQ DCB ∆≅∆14,10DP DC DQ BD ∴====141428,251035CP CD DP AQ AD DQ ∴=+=+==+=+= 22835CP t AQ at ==⎧∴⎨==⎩解得142.5t a =⎧⎨=⎩;综上,a 的值为5.5或3.25或2.5;(3)如图4,连结BP ,过点Q 作'QE CP ⊥,交'CP 延长线于点E (612),(06),3B C t =Q ,,26CP t ∴==6612OP OC CP ∴=+=+=,与点B 的纵坐标相等BP OD ∴⊥6BP ∴=,即BP CP =45BCP ∴∠=︒∵点P 与点'P 关于直线BC 对称''45,6BCP BCP CP CP ∴∠=∠=︒=='//QP BC Q''45QP E BCP ∴∠=∠=︒'QP E ∴∆是等腰直角三角形,且'P E QE =设QE m =,则点Q 的坐标为''(,)CP P E OC QE ++,即(6,6)m m ++将(6,6)m m ++代入4203y x =-+得,46(6)203m m +=-++ 解得6067m += 故点Q 的坐标为6060(,)77. 【点睛】本题考查了利用待定系数法求函数的解析式、三角形全等的性质、点的对称性、等腰三角形的性质等知识点,较难的是题(3),通过作辅助线,推出'P E QE =是解题关键.。

2019-2020学年浙江省温州市八年级(上)期末数学试卷

2019-2020学年浙江省温州市八年级(上)期末数学试卷

2019-2020 学年浙江省温州市八年级(上)期末数学试卷题号 得分一二三总分第 I 卷(选择题)一、选择题(本大题共 10 小题,共 30.0 分) 1. 下列“Q Q 表情”中属于轴对称图形的是( ).A.B. C. D.2. 点− 1, + 1)在平面直角坐标系中的位置如图所示,则坐标为+ 1, − 1)的点是( )A. B. = 4,B. C. D. 点点点 点DP B C 3. 在△中,= 10,则第三边 的长可能是( )A CA. C. D. D. D. 57 14 16 4. 已知点 与点M关于 轴对称,那么点 的坐标为( )x M A. B. C. (−2,5)(2,5) (−2, −5) (2, −5)5. 函数 = − 3 + 7 − 中自变量 的取值范围是( ) √ x√ A. B. C. ≥ 3 ≤ 7 3 ≤ ≤ 7 ≤ 3或 ≥ 76. 能说明命题“关于 的一元二次方程 2 ++ 4 = 0,当 < −2时必有实数解”x 是假命题的一个反例为( )A.B.C.D.= −4= −3= −2= 4= 27. 已知直线 = +− 3)经过点 ,则( )A. B. C. D. D. = 5= 4= 38. 在△中,= 35°,= 45°,则的度数是( )A. B. C. 35° 45° 80° 100°9. 甲、乙两车分别从 , 两地同时出发,沿同一条公路相向而行,相遇时甲、乙所A B走路程的比为2︰3,甲、乙两车离 中点 的路程 千米)与甲车出发时间 时)的CAB 关系图象如图所示,则下列说法错误的是( )A. B. C. D. , 两地之间的距离为 180 千米A B乙车的速度为 36 千米/时的值为3.75a 当乙车到达终点时,甲车距离终点还有 30 千米的中点,若△的A D A. B. C. D. 45 50 60 75第 II 卷(非选择题)二、填空题(本大题共 8 小题,共 24.0 分)11. 若 > ,则 − 3_________ − 3(填“>”或“<”). 12. 三角形三个内角的和等于_____° 13. 在一次函数 =+ 2中,若 随 的增大而增大,则它的图象不经过第______象y x限. 14. 点位长度,再向_______平移_______个单位长度。

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案) 学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题(题型注释)1.如果a >b ,下列各式中不正确的是( ) A .a ﹣4>b ﹣4 B .﹣3a <﹣3bC .﹣2a <﹣2bD .﹣5+a <﹣5+b 2.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(﹣4,3)B .(4,﹣3)C .(﹣3,4)D .(3,﹣4) 3.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米B .7千米C .8千米D .15千米4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y=x+4与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移k 个单位,当点C 落在△EOF 的内部时(不包括三角形的边),k 的值可能是( )A .2B .3C .4D .5 5.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 A .B .C .D .8.如图在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF=3,BC=8,则△EFM 的周长是( )A .21B .15C .13D .119.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是( )A .B .C .D .10.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6B.2,2,4C.1,2,3D.2,3,4 11.如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有( )..3对 C .4对 D .5对评卷人 得分二、填空题(题型注释)12.已知实数x ,y 满足084=-+-y x ,则以x ,y 的值为两边长的等腰三角形的周长是 .13.请写出定理:“等腰三角形的两个底角相等”的逆定理_______________.14.如图点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=3,则点P 到AB 的距离是 .15.在Rt △ABC 中,∠C=90°,∠B=30°,AB=16,则AC= .16.已知函数y=2x+b 经过点A (2,1),将其图象绕着A 点旋转一定角度,使得旋转后的函数图象经过点B (﹣2,7).则①b= ;②旋转后的直线解析式为 .17.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为 .18.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有______对全等三角形.19.如图,△ABC 中,∠A=40°,∠B=70°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF= 度.20.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 .21.不等式组211{213xx+>-+<的整数解是________.三、计算题(题型注释)22.解不等式组:并写出它的所有的整数解.23.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示y与x之间的函数关系.(1)甲、乙两地之间的距离为千米;图中点B的实际意义是;(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?24.如图,已知△ABC中,∠B=90°,AB=8cm, BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.四、解答题(题型注释)y=mx+2的图像经过点(-2,6).(1)求m 的值;(2)画出此函数的图像;26.解不等式组()3321318x x x x -⎧+≥⎪⎨⎪---⎩①②,并将解集在数轴上表示出来.27.如果一个三角形有一边上的中线与这边的长相等,那么称这个三角形为“和谐三角形”.(1)请用直尺和圆规在图1中画一个以线段AB 为一边的“和谐三角形”;(2)如图2,在△ABC 中,∠C=90°,AB=7,BC=3,请你判断△ABC 是否是“和谐三角形”?证明你的结论;(3)如图3,已知正方形ABCD 的边长为1,动点M ,N 从点A 同时出发,以相同速度分别沿折线AB ﹣BC 和AD ﹣DC 向终点C 运动,记点M 经过的路程为S ,当△AMN 为“和谐三角形”时,求S 的值.28.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB 的延长线交切线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.答案1.D2.C3.C4.B5.B6.B7.A8.D9.A10.D11.C.12.20. 13.有两个角相等的三角形是等腰三角形.14.3.15.816.﹣3,y=﹣x+417.(600,4).18.319.7520.421.0,122.不等式组的所有整数解是1、2、3.23.(1)900,4小时两车相遇.(2)所以线段BC 所表示的y 与x 之间的函数关系式为:y=225x ﹣900(4≤x ≤6)(3)第二列快车比第一列快车晚出发0.75小时 24.(1)、213;(2)、38;(3)、5.5秒或6秒或6.6秒 25.(1) m=-2;(2)作图见解析. 【解析】25.试题分析:(1)把点(-2,6)代入函数解析式,利用方程来求m 的值;(2)由“两点确定一条直线”来作图;试题解析:(1)将x=-2,y=6代入y=mx+2,得 6=-2m+2, 解得m=-2;(2)由(1)知,该函数是一次函数:y=-2x+2, 令x=0,则y=2; 令y=0,则x=1,所以该直线经过点(0,2),(1,0).其图象如图所示: .考点:1.一次函数的图象;2.一次函数图象上点的坐标特征. 26.﹣2<x ≤3,作图详见解析. 【解析】26.试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以在数轴上表示不等式组的解集.试题解析:()3321318x x x x -⎧+≥⎪⎨⎪---⎩①②, 解不等式①,得x ≤3, 解不等式②,得x >﹣2,不等式①、②的解集在数轴表示如下图所示,故原不等式组的解集为:﹣2<x ≤3.考点:解一元一次不等式组;在数轴上表示不等式的解集. 27.(1)作图见解析;(2)△ABC 是“和谐三角形”,理由见解析; (3)当△AMN 为“和谐三角形”时,S 的值为43或5 【解析】27.解:(1)如图1, 作线段AB 的中点O ,②以点O 为圆心,AB 长为半径画圆,③在圆O 上取一点C (点E 、F 除外),连接AC 、BC .∴△ABC 是所求作的三角形.(2)如图2,∠C=90°,2AC=,CD=1,在Rt△BCD中,2BD==,∴中线BD=边AC,∴△ABC是“和谐三角形”;(3)易知,点M在AB上时,△AMN是等腰直角三角形,不可能是“和谐三角形”,当M在BC上时,连接AC交MN于点E,(Ⅰ)当底边MN的中线AE=MN时,如图,有题知(2-s),(2-S),())222s s-=-,S=43,(Ⅱ)当腰Am与它的中线NG相等,即AM=GN=AN时,作NH⊥AM于H,如图∵NG=NA, NH⊥AM, ∴GH=AH=12GN=14AM,在Rt△NHA中,NH AM ===在Rt△NHM中,tan∠HMN=434AMHNMH AM==在Rt△AME中, tan∠AME)22sAE sME s-===-;2SS=-5s=。

每日一学:浙江省温州市苍南县2019-2020学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省温州市苍南县2019-2020学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省温州市苍南县2019-2020学年八年级上学期数学期末考试试卷_压轴题解答答案浙江省温州市苍南县2019-2020学年八年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2020苍南.八上期末) 如图,直角坐标系中,直线y=kx+b 分别与x 轴、y 轴交于点A(3,0),点B(0,-4),过D(0,8)作平行x 轴的直线CD ,交AB 于点C ,点E(0,m)在线段OD 上,延长CE 交x 轴于点F ,点G 在x 轴正半轴上,且AG=AF 。

(1) 求直线AB 的函数表达式。

(2) 当点E 恰好是OD 中点时,求△ACG 的面积。

(3) 是否存在m ,使得△FCG 是直角三角形?若存在,直接写出m 的值;若不存在,请说明理由。

考点: 坐标与图形性质;待定系数法求一次函数解析式;直角三角形的性质;~~ 第2题 ~~(2020苍南.八上期末) 如图,在直角坐标系中,点A(0,4),B(-3,0),C 是线段AB 的中点,D 为x 轴上一个动点,以AD 为直角边作等腰直角△ADE(点A ,D ,E 以顺时针方向排列),其中∠DAE=90°,则点E 的横坐标等于________,连结CE ,当CE 达到最小值时,DE 的长为________。

~~ 第3题 ~~(2020苍南.八上期末) 直角坐标系中,我们定义横、纵坐标均为整数的点为整点在0<x<3内,直线y=x+2和y=-x 所围成的区域中,整点一共有( )A . 8个 B . 7个 C . 6个 D . 5个浙江省温州市苍南县2019-2020学年八年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:答案:解析:~~ 第3题 ~~答案:A解析:。

温州市八年级(上)期末数学试卷含答案

温州市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A. B. C. D.2.在平面直角坐标系中,点P(-3,2)关于x轴的对称点的坐标为()A. (2,-3)B. (-2,3)C. (-3,2)D. (-3,-2)3.若m>n,则下列不等式正确的是()A. m-2<n-2B.C. 6m<6nD. -8m>-8n4.若线段AP,AQ分别是△ABC边上的高线和中线,则()A. AP>AQB. AP≥AQC. AP<AQD. AP≤AQ5.以下命题的逆命题为真命题的是()A. 对顶角相等B. 同旁内角互补,两直线平行C. 若a=b,则a2=b2D. 若a>0,b>0,则a2+b2>06.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.7.如图,AD是等腰△ABC底边BC边上的中线,BE平分∠ABC,交AD于点E,AC=12,DE=3,则△ABE的面积是()A. 16B. 18C. 32D. 368.△ABC的三边分别为a,b,c,满足下列条件的△ABC不是直角三角形的是()A. c2-a2=b2B. ∠A-∠C=∠BC. a:b:c=20:21:29D. ∠A:∠B:∠C=2:3:49.如图,△ABC的两条内角平分线BD与CD交于点D,设∠A的度数为x,∠BDC的度数为y,则y关于x的函数图象是()A. B.C. D.10.对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5).已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则△ABC的面积是()A. 12B. 14C. 16D. 18二、填空题(本大题共8小题,共24.0分)11.请用不等式表示“x的3倍与1的和大于2”:______.12.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__.13.如图是轰炸机机群的一个飞行队形,若最后两架轰炸机的平面坐标分别为A(-2,3)和B(-2,-1),则第一架轰炸机C的平面坐标是______.14.如果一次函数y=kx-3(k是常数,k≠0))的图象经过点(1,0),那么y的值随x的增大而______(填“增大”或“减小”).15.如图,△ABC中,D是BC上一点,AC=AD=BD,∠BAC=108°,则∠ADC的度数是______.16.把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A,另外三角板的锐角顶点B,C,D在同一直线上,若AB=,则BD=______.17.如图,在直角坐标系中,点A的坐标为(0,),点B为x轴的正半轴上一动点,作直线AB,△ABO与△ABC关于直线AB对称,点D,E分别为AO,AB的中点,连结DE并延长交BC所在直线于点F,连结CE,当∠CEF为直角时,则直线AB 的函数表达式为______.18.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的面积为17.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是______(不包括17).三、解答题(本大题共6小题,共46.0分)19.利用数轴,解一元一次不等式组.20.如图,∠A=∠B=50°,P为AB的中点,点E为射线AC上(不与点A重合)的任意一点,连结EP,并使EP的延长线交射线BD于点F.(1)求证:△APE≌△BPF.(2)当EF=2BF时,求∠BFP的度数.21.△ABC的三个顶点A,B,C的坐标分别为A(0,-3),B(-4,3),C(4,5).(1)在直角坐标系中画出△ABC.(2)以y轴为对称轴,作△ABC的轴对称图形△A′B′C′,并写出△A′B′C′各个顶点的坐标.22.已知,如图,∠ABC=∠ADC=90°,∠BAD=60°,BD=6,E为AC的中点,EF⊥BD.(1)求证:BF=DF.(2)求EF的长.23.某省A,B两市遭受严重洪涝灾害,2万人被迫转移,邻近县市C,D获知A,B两市分别急需救灾物资250吨和350吨的消息后,决定调运物资支援灾区,已知C市有救灾物资280吨,D市有救灾物资320吨,现将这些救灾物资全部调往A,B两市.已知从C市运往A,B两市的费用分别为每吨20元和25元,从D市运往A,B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表.A市(吨)B市(吨)合计(吨)C市______ ______ 280D市______ x320总计(吨)250350600(2)设C,D两市的总运费为y元,求y与x之间的函数表达式,并写出自变量x 的取值范围.(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),其余路线运费不变.若C,D两市的总运费的最小值不小于12360元,求a的取值范围.24.如图,在长方形ABCO中,点O为坐标原点,点B的坐标为(8,6),点A,C在坐标轴上,直线y=2x-6与AB交于点D,与y轴交于点E.(1)分别求点D,E的坐标.(2)求△CDE的面积.(3)动点P在BC边上,点Q是坐标平面内的点.①当点Q在第一象限,且在直线y=2x-6上时,若△APQ是等腰直角三角形,求点Q的坐标.②若△APQ是以点Q为直角顶点的等腰直角三角形,直接写出整个运动过程中点Q的纵坐标t的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.2.【答案】D【解析】解:点P(-3,2)关于x轴的对称点的坐标为:(-3,-2).故选:D.利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.3.【答案】B【解析】解:A、将m>n两边都减2得:m-2>n-2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以-8,得:-8m<-8n,此选项错误;故选:B.将原不等式两边分别都减2、都除以4、都乘以6、都乘以-8,根据不等式得基本性质逐一判断即可得.本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.【答案】D【解析】解:如图,∵PA⊥BC,∴根据垂线段最短可知:PA≤AQ,故选:D.根据垂线段最短即可判断.本题考查三角形的高,中线,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】B【解析】解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故A选项错误;B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故B选项正确;C、若a=b,则a2=b2的逆命题为若a2=b2,则a=b,此逆命题为假命题,故C选项错误;D、若a>0,b>0,则a2+b2>0的逆命题为若a2+b2>0,则a>0,b>0,此逆命题为假命题,故D选项错误.故选:B.根据逆命题与原命题的关系,先写出四个命题的逆命题,然后依次利用对顶角的定义、平行线的性质、有理数的性质进行判断.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.考查逆命题是否为真命题,关键先找出逆命题,再进行判断.6.【答案】D【解析】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.利用线段垂直平分线的性质以及圆的性质分别分得出即可.此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.7.【答案】B【解析】解:作EH⊥AB于H,∵AB=AC=12,AD是BC边上的中线,∴AD⊥BC,∵BE平分∠ABC,ED⊥BC,EH⊥AB,∴EH=ED=3,∴△ABE的面积=×AB×EH=18,故选:B.作EH⊥AB于H,根据等腰三角形的性质得到AD⊥BC,根据角平分线的性质求出EH,根据三角形的面积公式计算,得到答案.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.【答案】D【解析】解:A、∵c2-a2=b2,∴c2=b2+a2,∴△ABC是直角三角形,故本选项不符合题意;B、∵∠A-∠C=∠B,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项不符合题意;C、∵202+212=292,∴△ABC是直角三角形,故本选项不符合题意;D、∵∠A:∠B:∠C=2:3:4,∠A+∠B+∠C=180°,∴∠A=40°,∠B=60°,∠C=80°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.根据勾股定理的逆定理判断A、C即可;根据三角形内角和定理判断B、D即可.本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.9.【答案】B【解析】解:∵△ABC的两条内角平分线BD与CD交于点D∴∠DBC=∠ABC,∠DCB=∠ACB∴∠BDC=180°-∠DBC-∠DCB=180°-=180°-=90°+∵∠A>0°且180°>90°+>0°∴解得0°<∠A<90°即:y=90+,0<x<90故选:B.在△DBC中应用三角形内角和表示∠BDC,再根据角平行线定义,转化为∠ABC、∠ACB 表示∠BDC,再次应用三角形内角和用∠A表示∠BDC.本题考查了三角形内角和和一次函数图象,解答问题时注意讨论自变量取值范围.10.【答案】A【解析】解:连接CQ,如图:由中心对称可知,AQ=BQ,由轴对称可知:BQ=CQ,∴AQ=CQ=BQ,∴∠QAC=∠ACQ,∠QBC=∠QCB,∵∠QAC+∠ACQ+∠QBC+∠QCB=180°,∴∠ACQ+∠QCB=90°,∴∠ACB=90°,∴△ABC是直角三角形,延长BC交x轴于点E,过C点作CF⊥AE于点F,如图,∵A(2,0),C(8,6),∴AF=CF=6,∴△ACF是等腰直角三角形,∵∠ACE=90°,∴∠AEC=45°,∴E点坐标为(14,0),设直线BE的解析式为y=kx+b,∵C,E点在直线上,可得:,解得:,∴y=-x+14,∵点B由点A经n次斜平移得到,∴点B(n+2,2n),由2n=-n-2+14,解得:n=4,∴B(6,8),∴△ABC的面积=S△ABE-S△ACE=×12×8-×12×6=12,故选:A.连接CQ,根据中心和轴对称的性质和直角三角形的判定得到∠ACB=90,延长BC交x 轴于点E,过C点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.此题考查几何变换问题,关键是根据中心和轴对称的性质和直角三角形的判定分析,同时根据待定系数法得出直线的解析式.11.【答案】3x+1>2【解析】解:x的3倍表示为3x,与1的和表示为3x+1,由题意得:3x+1>2,故答案为:3x+1>2.首先表示x的3倍,再表示“与1的和”,然后根据不大于2列出不等式即可.此题主要考查了由实际问题列一元一次不等式,关键是抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.12.【答案】5【解析】【分析】此题主要是考查了三角形的三边关系,同时注意整数这一条件.根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】解:根据三角形的三边关系,得4<第三边<6.又第三条边长为整数,则第三边是5.故答案为5.13.【答案】(2,1)【解析】解:由点A和点B的坐标可建立如图所示坐标系:由坐标系知,点C的坐标为(2,1),故答案为:(2,1).由点A和点B的坐标可建立坐标系,再结合坐标系可得答案.此题考查坐标问题,关键是根据点A和点B的坐标建立平面直角坐标系.14.【答案】增大【解析】解:把点(1,0)代入一次函数y=kx-3得:k-3=0,解得:k=3,即一次函数的解析式为:y=3x-3,∵一次函数x的系数为正数,∴y的值随着x的增大而增大,故答案为:增大.把点(1,0)代入一次函数y=kx-3得到关于k的一元一次方程,解之,通过k的正负情况即可得到答案.本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握代入法和一次函数图象的增减性是解题的关键.15.【答案】48°【解析】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=108°,∴∠DAC=108°-,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+108°-=180°,解得:α=48°.故答案为:48°.设∠ADC=α,然后根据AC=AD=DB,∠BAC=108°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.16.【答案】1+【解析】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴△ABC是等腰直角三角形,∴BC=AB=2,BF=AF=BC=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴BD=BF+DF=1+,故答案为:1+.过点A作AF⊥BC于F,先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.此题主要考查了勾股定理,等腰直角三角形的判定与性质,全等三角形的性质,正确作出辅助线是解本题的关键.17.【答案】y=【解析】解:∵点E是AB的中点,∴CE=BE∴∠ECF=∠EBC当∠CEF为直角时,有∠CEF=∠ACB=90°∴Rt△CEF∽Rt△BCA∴∠CFE=∠BAC而点D,E分别为AO,AB的中点∴DF∥OB∴∠CFE=∠CBO=2∠CBA=2∠ABO∵△ABO与△ABC关于直线AB对称∴△ABO≌△ABC∴∠OAB=∠CAB=2∠ABO∴∠ABO=30°而点A的坐标为(0,),即OA=∴OB=3即点B的坐标为(3,0)于是可设直线AB的函数表达式为y=kx+b,代入A、B两点坐标得解得k=-,b=故答案为y=-x+.因为∠CEF=90°,而△BCA也是直角三角形,容易引起相似的猜测,从而得到∠CFE=∠BAC,通过角的转换,可得∠BAC=∠CBO=2∠CBA,于是可知∠CBA=∠ABO=30°,得出OB=3即可求出直线AB的函数表达式.本题考查的是三角形的全等与相似的应用,并考查了用待定系数法求函数解析式,找到两个已知点的坐标是解决本题的关键.18.【答案】1或45或49【解析】解:当DG=9,CG=2时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH 的面积为49.当DG=,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为45.当DG=6,CG=7时,此时HG=1,四边形EFGH的面积为1.(如图)综上所述,满足条件的正方形EFGH的面积的所有可能值是1或45或49.故答案为1或45或49.利用数形结合的思想解决问题即可.本题考查作图-应用与设计、全等三角形的判定、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.19.【答案】解:,由①去括号、移项、合并得:2x>-4,解得:x>-2;由②去分母、移项、合并得:-3x>-9,解得:x<3,在数轴上表示为:所以不等式组的解集为-2<x<3.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)证明:∵P是AB的中点,∴PA=PB,在△APE和△BPF中,∴△APE≌△BPF(ASA);(2)由(1)得:△APE≌△BPF,∴PE=PF,∴EF=2PF,∵EF=2BF,∴BF=PF,∴∠BPF=∠B=50°,∴∠BFP=180°-50°-50°=80°.【解析】(1)根据AAS证明:△APE≌△BPF;(2)由(1)中的全等得:EF=2PF,所以PF=BF,由等边对等角可得结论.本题考查了三角形全等的判定以及等腰三角形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作,A′(0,-3)\B′(4,3)、C′(-4,5).【解析】(1)利用点A、B、C的坐标描点即可得到△ABC;(2)先利用关于y轴对称的点的坐标特征写出A′、B′、C′的坐标,然后描点即可得到△A′B′C′.本题考查了作图-轴对称变换:作轴对称后的图形的依据是轴对称的性质,基本作法是:先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点.22.【答案】(1)证明:连接BE,DE,如图所示:∵∠ABC=∠ADC=90°,点E是AC的中点,∴BE=AC,DE=AC∴BE=DE∵EF⊥BD,∴BF=DF;(2)解:∵∠ABC=∠ADC=90°,∴∠ABC+∠ADC=180°,∴A、B、C、D四点共圆,圆心为E,∴∠BED=2∠BAD=120°,∵BE=DE,∴∠EBF=∠EDF=30°,∵BF=DF,∴BF=DF=3,在Rt△BEF中,∠EFB=90°,∠EBF=30°,∴BF=EF=3,∴EF=.【解析】(1)根据直角三角形斜边上的中线等于斜边的一半,可求BE=DE,根据等腰三角形的性质,可得结论;(2)根据题意证出A、B、C、D四点共圆,圆心为E,由圆周角定理得出∠BED=2∠BAD=120°,由等腰三角形的性质得出∠EBF=∠EDF=30°,由直角三角形的性质和勾股定理得出BF=EF,即可得出结果.本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,四点共圆,圆周角定理等知识,证明BE=DE是解题的关键.23.【答案】解:(1)x-70,350-x,320-x;(2)由题意可得,y=20(x-70)+25(350-x)+15(320-x)+30x=10x+12150,∵x≤320且320-x≤250,∴70≤x≤320,即y与x之间的函数表达式是y=10x+12150(70≤x≤320);(3)∵从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),∴y=20(x-70)+25(350-x)+15(320-x)+(30-a)x=(10-a)x+12150,当0<a<10时,则当x=70时,总费用最少,(10-a)×70+12150≥12360,解得,0<a≤7;当a≥10时,则x=320时,总费用最少,(10-a)×320+12150≥12360,解得,a≤9(舍去),由上可得,a的取值范围为0<a≤7.【解析】【分析】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.(1)根据题意可以将表格中的数据填写完整;(2)根据表格中的数据可以得到y与x之间的函数表达式,并写出自变量x的取值范围;(3)根据题意和表格中的数据可以得到关于a的不等式,利用分类讨论的方法即可求得a的取值范围.【解答】解:(1)由题意可得,D市运往B市x吨,则D市运往A市(320-x)吨,C市运往A 市:250-(320-x)=(x-70)吨,C市运往B市280-(x-70)=(350-x)吨.故答案为x-70,350-x,320-x;(2)见答案;(3)见答案.24.【答案】解:(1)∵在长方形ABCO中,点B的坐标为(8,6),直线y=2x-6与AB交于点D,与y轴交于点E,把y=6代入y=2x-6中,x=6,所以点D的坐标为(6,6),把x=0代入y=2x-6中,y=-6,所以点E的坐标为(0,-6);(2)如图1,把y=0代入y=2x-6中,可得:x=3,所以点F的坐标为(3,0),∴FC=8-3=5,∴△CDE的面积=,(3)①(a)若点A为直角顶点时,点Q在第一象限,连接AC,如图2,∠APB>∠ACB >45°,∴△APQ不可能为等腰直角三角形,∴点Q不存在;(b)若点P为直角顶点时,点Q在第一象限,如图3,过点Q作QH⊥CB,交CB的延长线于点H,则Rt△ABP≌Rt△PHQ,∴AB=PH=8,HQ=BP,设Q(x,2x-6),则HQ=x-8,∴2x-6=8+6-(x-8),∴x=,∴Q(,),(c)若点Q为直角顶点,点Q在第一象限,如图4,设Q'(x,2x-6),过点Q'作Q'G'⊥OA于点G',交BC于点H',则Rt△AG'Q'≌Rt△Q'H'P,∴AG'=Q'H'=6-(2x-6),∴x+6-(2x-6)=8,∴x=4,∴Q'(4,2),设Q“(x,2x-6),同理可得x+2x-6-6=8,∴x=,∴Q“(,),综上所述,点Q的坐标可以为(,),(4,2),(,);②当点Q为直角顶点时,点Q在第一象限,t的取值范围为7≤t≤10当点Q为直角顶点时,点Q在第一象限,t的取值范围为-1≤t≤2.综上所述,t的取值范围为7≤t≤10或-1≤t≤2.【解析】(1)把y=6代入解析式得出点D的坐标,把x=0代入解析式得出点E的坐标即可;(2)把y=0代入解析式得出直线DE与x轴的交点坐标,利用三角形面积公式解答即可;(3)①分三种情况,利用等腰直角三角形的性质解答即可;②根据等腰直角三角形的性质解答即可.本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.。

2019—2020年最新浙教版八年级数学上学期期末评估检测及答案解析.doc

2019—2020年最新浙教版八年级数学上学期期末评估检测及答案解析.doc

八年级(上)期末学业水平检测数 学 试 卷【温馨提示】本卷满分100分,附加题10分。

考试时间100分。

一、仔细选一选(每小题3分,共30分)1、在平面直角坐标系中,点P (-2,3)在……………………………………( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、如图,已知直线m ∥n ,则下列结论成立的是……( ) A 、∠1=∠4 B 、∠1=∠2 C 、∠3=∠4 D 、∠1=∠3 3、下列各几何体中,直棱柱的个数是( )A 、5B 、4C 、3D 、24、下列函数中,属于一次函数的是………………………………………………( ) A 、y=32x +200 B 、y=x200 C 、y=2x 2 D 、y = 8 5、已知a >b ,则下列不等式中,正确的是………………………………………( )A 、-3a >-3bB 、-3a >-3bC 、a-3>b-3D 、3-a >3-b 6、茶叶厂用甲、乙两台包装机分装质量为400克的茶叶,从它们各自分装的茶叶中分别随机抽取10盒,测得它们实际质量的平均数和标准差分别如表所示,则包装茶叶质量较稳定的包装机为( )A 、甲B 、乙C 、甲和乙D 、无法确定7、如图,△ABC 的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC 的形状是………………………………………………………………………………( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形 8、由4个相同的小立方块塔成的几何体如图所示,它的左视图是……………( )9、如图,已知一次函数y=k x +b 的图象经过第一、三、四象限,则k 、b 的符号为………………( ) A 、k >0,b >0 B 、k >0,b <0 C 、k <0,b <0 D 、k <0,b >0 10、已知等边△ABC ,点A 在坐标原点,B 点的坐标为 (6,0),则点C 的坐标为………………( ) A 、(3,3) B 、(3,23) C 、(23,3) D 、(3,33)二、细心填一填(每小题4分,共32分)11、如图,若∠1=∠2,则 ∥ 。

2020-2021学年浙江省温州市2019-2020八年级上学期期末数学复习题 及答案解析

2020-2021学年浙江省温州市2019-2020八年级上学期期末数学复习题 及答案解析

2020-2021学年浙江省温州市2019-2020八年级上学期期末数学复习题一、选择题(本大题共10小题,共30.0分)1.在下列图标中是轴对称图形的是()A. B. C. D.2.在平面直角坐标系中,点P(−1,2)的位置在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在△ABC中,AB=5,AC=8,则BC长不可能是()A. 4B. 8C. 10D. 134.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为()A. (−2,3)B. (−2,−3)C. (2,−3)D. (−3,−2)5.函数y=√x−4中自变量x的取值范围是()A. x>4B. x≥4C. x≤4D. x≠46.能说明命题“对于任何实数a,|a|>−a”是假命题的一个反例可以是()C. a=1D. a=√2A. a=−2B. a=137.若点(3,1)在一次函数y=kx−2的图象上,则常数k=()A. 5B. 4C. 3D. 18.在△ABC中,∠A=35°,∠B=45°,则∠C的度数是()A. 35°B. 45°C. 80°D. 100°9.已知A,B两地相距60km,甲、乙两人沿同一条公路分别从B,A两地出发相向而行,图中l1,l2分别表示甲、乙两人离A地的路程s(km)与时间t(ℎ)的函数关系的图象.则下列结论错误的是().A. 乙比甲晚出发0.5小时B. 甲、乙的速度差为10km/ℎC. 乙出发1.4小时后与甲相遇D. 甲出发1.3小时或1.5小时两人恰好相距5km10.如图,D为BC的中点,E为AD的中点,若△ABC的面积为48,则△ABE的面积为()A. 24B. 16C. 14D.12二、填空题(本大题共8小题,共24.0分)11.若a>b,则a−3_________b−3(填“>”或“<”).12.在△ABC中,三个内角的度数之比为2:3:5,则这个三角形的最大内角为______ 度.13.在一次函数y=(k−1)x+5中,y随x的增大而增大,则k的取值范围是.14.将点M(2,−3)向左平移2个单位长度,得到的点的坐标为___________.15.如图,已知∠BAC=130°,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=______ 度.16.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为52和20,则△EDF的面积为________.17.如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB、y轴上的动点,则△CDE周长的最小值是______.18. 《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC +AB =10,BC =3,求AC 的长,如果设AC =x ,则可列方程为______.三、解答题(本大题共6小题,共46.0分)19. 如图,AB =AD ,AC =AE ,∠BAE =∠DAC.求证:∠C =∠E .20. 解不等式组{11−2(x −1)≥3(x +1)①2x+53<x +2②,并把解集表示在数轴上.21.如图1,图2,图3,图4均为8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,图中均有线段AB.按要求画图:(1)在图1中,以格点为顶点,AB为腰画一个锐角等腰三角形;(2)在图2中,以格点为顶点,AB为底边画一个锐角等腰三角形;(3)在图3中,以格点为顶点,AB为腰画一个等腰直角三角形;(4)在图4中,以格点为顶点,AB为一边画一个正方形.22.如图,ΔABC是等边三角形,BD是中线,延长BC至E,使CE=CD.求证:DB=DE.23.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,商品名称甲乙进价(元/件)80100售价(元/件)160240设其中甲种商品购进x件(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.24.已知在平面直角坐标系中,过点A(2,2)向x轴作垂线,垂足为点M,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接AF,过点A作AE⊥AF交y轴于点E,设点F运动的时间是t秒(t>0).(1)若点E在y轴的负半轴上(如图所示),求证:AE=AF;(2)如果点F运动时间是4秒.①求直线AE的表达式;②若直线AE与x轴的交点为B,C是y轴上一点,使AC=BC,求出C的坐标;(3)在点F运动过程中,设OE=m,OF=n,试用含m的代数式表示n.-------- 答案与解析 --------1.答案:D解析:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念求解.解:A.不是轴对称图形,故本选项错误;.B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.2.答案:B解析:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).解:∵点P(−1,2)的横坐标−1<0,纵坐标2>0,∴点P在第二象限.故选B.3.答案:D解析:本题考查了三角形三边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.解:∵AB=5,AC=8,∴8−5<BC<8+5,∴3<BC<13.故选D.4.答案:A解析:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.解:点A(2,3)关于y轴对称点的坐标为B(−2,3).故选A.5.答案:B解析:解:x−4≥0解得x≥4,故选:B.因为当函数表达式是二次根式时,被开方数为非负数,所以x−4≥0,可求x的范围.此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.6.答案:A解析:解:说明命题“对于任何实数a,|a|>−a”是假命题的一个反例可以是a=−2,故选:A.反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.答案:D解析:解:将(3,1)代入y=kx−2,得3k−2=1,解得k=1,故选:D.根据图象上的点满足函数解析式,利用待定系数法,可得答案.本题考查了一次函数图象上点的坐标特征,利用利用待定系数法是解题关键.8.答案:D解析:解:∠C=180°−∠A−∠B=100°,故选D.根据三角形内角和定理可得:∠C=180°−∠A−∠B.本题考查三角形的内角和定理:三角形三个内角和为180度.9.答案:C解析:本题考查了一次函数的应用.对于A观察图象即可知道乙的函数图象为l2,对于B,C根据速度,路程,时间的关系式,利用图中信息即可解决问题;对于D分相遇前或相遇后两种情形分别列出方程即可解决问题.解:A.从横坐标上可以看出乙比甲晚出发0.5小时,此选项正确;B.从图形可以看出甲的速度为60÷2=30,乙的速度为60÷3=20,所以甲、乙的速度差为10km/ℎ,故此选项正确;C.设乙的解析式为y2=kx+b,把(0.5,0)(3.5,60)代入到解析式中可得k=20,b=−10,所以y2= 20x−10,同理,得y1=−30x+60,当y1=y2时,得x=1.4,乙出发1.4−0.5=0.9小时与甲相遇,故此选项错误;D.由C可得:当y2−y1=5时,x=1.5,当y1−y2=5时,x=1.3,故此选项正确.故选C.10.答案:D解析:此题考查了三角形的面积和三角形的中线,中线能把三角形的面积平分,利用这个结论求出三角形的面积是解答此题的关键.由于AD是△ABC的中线,那么△ABD和△ACD的面积相等,又BE是△ABD 的中线,由此得到△ABE和△DBE的面积相等,而△ABC的面积为48,由此即可求出△ABE的面积,可得结果.解:∵AD是△ABC的中线,S△ABD=S△ACD=12S△ABC=12×48=24,∵BE是△ABD的中线,∴S△ABE=S△DBE=12S△ABD=12×24=12,故选D.11.答案:>解析:本题考查不等式的性质,根据不等式的性质1,不等式的两边都加或减同一个整式,不等号的方向不变,可得答案.解:∵a>b,∴a−3>b−3,故答案为:>.12.答案:90解析:本题考查了三角形的内角和定理,理解定理是关键.根据三角形的内角和是180度即可求解.解:这个三角形的最大内角是:180°×52+3+5=90°.故答案是:90.13.答案:k>1解析:本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.根据一次函数图象的增减性来确定(k−1)的符号,从而求得k的取值范围.解:∵在一次函数y=(k−1)x+5中,y随x的增大而增大,∴k−1>0,∴k>1.故答案为k>1.14.答案:(0,−3)解析:本题考查图形的平移,将M(2,−3)向左平移2个单位长度,则横坐标变为2−2=0,纵坐标不变,即得到的点的坐标为(0,−3).解:将M(2,−3)向左平移2个单位长度,则横坐标变为2−2=0,纵坐标不变,所以得到的点的坐标为(0,−3).故答案为(0,−3).15.答案:50解析:解:∵DE是AC的垂直平分线,∴AD=CD,∴∠C=∠CAD,∵AB=AC,∴∠B=∠C,在△ABC中,∠BAC+∠B+∠C=180°,∴130°+2∠C=180°,解得∠C=25°,∴∠ADB=∠CAD+∠C=25°+25°=50°.故答案为:50.根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,再根据等边对等角可得∠C=∠CAD,∠B=∠C,然后利用三角形内角和定理列式求出∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并利用三角形的内角和定理列出方程是解题的关键.解析:本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据全等得到S△ADF=S△ADH,列出方程求解即可.解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,{DE=DGDF=DH∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,在Rt△ADF和Rt△ADH中,,{DF=DHAD=AD∴Rt△ADF≌Rt△ADH(HL),∴S△ADF=S△ADH,设△EDF的面积为S,即52−S=20+S,解得S=16.故答案为16.解析:本题考查轴对称−最短路线问题,解题的关键是利用对称性找到△CDE周长最小时点D、点E的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.作点C关于AB的对称点F,关于AO的对称点G,连接DF,BF,EG,由轴对称的性质,可得DF=DC,EC=EG,故当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,依据勾股定理即可得到FG的长,进而得到△CDE周长的最小值.解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接DF,BF,EG,∵直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,∴B(−2,0),C(−1,0),A(0,2)∴BO=2,OG=1,BG=3,易得∠ABC=45°,∴△BCF是等腰直角三角形,∴BF=BC=1,由轴对称的性质,可得DF=DC,EC=EG,当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,∵Rt△BFG中,FG=√BF2+BG2=√12+32=√10,∴△CDE周长的最小值是√10.故答案为√10.18.答案:x2+32=(10−x)2解析:解:设AC =x ,∵AC +AB =10,∴AB =10−x .∵在Rt △ABC 中,∠ACB =90°,∴AC 2+BC 2=AB 2,即x 2+32=(10−x)2.故答案为:x 2+32=(10−x)2.设AC =x ,可知AB =10−x ,再根据勾股定理即可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.答案:证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE ,∴∠CAB =∠EAD ,在△ABC 和△ADE 中,{AB =AD ∠CAB =∠EAD AC =AE, ∴△ABC≌△ADE(SAS)∴∠C =∠E .解析:本题考查了全等三角形的判定和性质,证明∠CAB =∠EAD 是本题的关键.先证∠CAB =∠EAD ,由“SAS ”可证△ABC≌△ADE ,可得∠C =∠E .20.答案:解:{11−2(x −1)≥3(x +1)①2x+53<x +2②, 解不等式①得:x ≤2;解不等式②得:x >−1;所以不等式组的解集是:−1<x ≤2,把解集表示在数轴上为:.解析:先求出两个不等式的解集,再求其公共解.本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.答案:解:(1)如图1,△ABC为所求以AB为腰的锐角等腰三角形;(2)如图2,△ABC为所求以AB为底边的锐角等腰三角形;(3)如图3,△ABC为所求以AB为腰的等腰直角三角形;(4)如图4,四边形ABCD为以AB为一边的正方形.解析:本题考查了作图−应用与设计作图、勾股定理、三角形的作法、正方形的性质、等腰三角形的性质、直角三角形的性质等知识点,熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.(1)根据勾股定理,结合网格结构,作出两腰长为2√5,底长为4的等腰三角形即可;(2)根据勾股定理,结合网格结构,作出两腰长为5,底长为2√5的等腰三角形即可;(3)根据勾股定理逆定理,结合网格结构,作出两腰长为2√5,斜边长为2√10的等腰三角形即可;(4)根据勾股定理逆定理,结合网格结构,作出边长为2√5的正方形.22.答案:证明:∵△ABC是等边三角形,BD是中线,∠ABC=30°(等腰三角形三线合一),∴∠ABC=∠ACB=60°,∠DBC=12又∵CE=CD,∴∠CDE=∠CED,又∵∠BCD=∠CDE+∠CED,∠BCD=30°,∴∠CDE=∠CED=12∴∠DBC=∠DEC,∴DB=DE(等角对等边).解析:本题主要考查学生对等边三角形的性质、等腰三角形的判定及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.23.答案:解:(1)甲种商品购进x件,乙种商品购进了200−x件,由已知得:80x+100(200−x)=17900,解得:x=105,200−x=200−105=95(件).答:购进甲种商品105件,乙种商品95件.(2)①由已知可得:y=(160−80)x+(240−100)(200−x)=−60x+28000(0≤x≤200).②由已知得:80x+100(200−x)≤18000,解得:x≥100,∵y=−60x+28000,在x取值范围内单调递减,∴当x=100时,y有最大值,最大值为−60×100+28000=22000.故该商场获得的最大利润为22000元.(3)y=(160−80+a)x+(240−100)(200−x),即y=(a−60)x+28000,其中100≤x≤120.①当50<a<60时,a−60<0,y随x的增大而减小,∴当x=100时,y有最大值,即商场应购进甲、乙两种商品各100件,获利最大.②当a=60时,a−60=0,y=28000,即商场应购进甲种商品的数量满足100≤x≤120的整数件时,获利都一样.③当60<x<70时,a−60>0,y岁x的增大而增大,∴当x=120时,y有最大值,即商场应购进甲种商品120件,乙种商品80件获利最大.解析:(1)甲种商品购进x件,乙种商品购进了200−x件,由总价=甲的单价×购进甲种商品的数量+乙的单价×购进乙种商品的数量,可得出关于x的一元一次方程,解出方程即可得出结论;(2)①根据利润=甲商品的单件利润×数量+乙商品的单件利润×数量,即可得出y关于x的函数解析式;②根据总价=甲的单价×购进甲种商品的数量+乙的单价×购进乙种商品的数量,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据y关于x函数的单调性即可解决最值问题;(3)根据利润=甲商品的单件利润×数量+乙商品的单件利润×数量,可得出y关于x的函数解析式,分x的系数大于0、小于0以及等于0三种情况考虑即可得出结论.本题考查了一次函数的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)根据数量关系找出y关于x的函数关系式;(3)根据一次函数的系数分类讨论.本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.24.答案:解:(1)点F的坐标为(2+t,0),直线AE交x轴于点B,将点A 、F 坐标代入一次函数表达式:y =kx +b 得:{0=k(t +2)+b 2=2k +b ,解得:{k =−2t b =2−t, ∵AE ⊥AF ,∴直线AE 表达式中的k 值为t 2,则直线AE 的表达式为:y =t 2x +(2−t)…①,则点B 的坐标为(2t−4t ,0),点E 的坐标为(2−t),AE =√22−(2−2+t)2=√t 2+4,同理可得:AF =√t 2+4=AE ;(2)①把t =4代入①式并解得:直线AE 的表达式为:y =2x −2,②如图取AB 的中点H ,过点H 作直线AE 的垂线交y 轴于点C ,则直线CH 表达式中的k 值为:−12,点B 的坐标为(1,0),中点H 的坐标为(32,1),则设:直线CH 的表达式为:y =−12x +ℎ,将点H 坐标代入上式并解得:ℎ=74,即点C 的坐标为(0,74);(3)OE =t −2=m ,OF =t +2=n ,则:n =m +4.解析:(1)点F 的坐标为(2+t,0),求出点E 的坐标为(2−t),即可求解;(2)①把t =4代入①式,即可求解,②求出直线CH 的表达式即可求解;(3)OE =t −2=m ,OF =t +2=n ,即可求解.本题考查的是一次函数综合运用,关键是处理好函数表达式与点坐标的相互求解,难度不大.。

2019-2020学年浙江省温州市苍南县八年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省温州市苍南县八年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省温州市苍南县八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)下列长度的三条线段能组成三角形的是( )A .1cm ,1cm ,3cmB .1cm ,2cm ,3cmC .1cm ,2cm ,2cmD .1cm ,4cm ,2cm2.(3分)在平面直角坐标系中,点(1,2)-在( )A .第一象限B .第二象限C .第三象限D .第四象限3.(3分)在直角坐标系中,已知点(2,)b -在直线2y x =上,则b 的值为( )A .1B .1-C .4D .4-4.(3分)对不等式a b >进行变形,结果正确的是( )A .0a b -<B .22a b ->-C .22a b <D .11a b ->-5.(3分)如图,DE AC ⊥,BF AC ⊥,垂足分别是E ,F ,且DE BF =,若利用“HL ”证明DEC BFA ∆≅∆,则需添加的条件是( )A .EC FA =B .DC BA = C .D B ∠=∠ D .DCE BAF ∠=∠6.(3分)下列选项中,可以用来证明命题“若||2a >,则2a >”是假命题的反例的是( )A .3a =B .0a =C .2a =-D .3a =-7.(3分)如图,在边长为4的等边三角形ABC 中,点D ,E 分别是边BC ,AC 的中点,DF AB ⊥于点F ,连接EF ,则EF 的长为( )A 5B .2.5C 7D .38.(3分)已知点1(A x ,)a ,1(1B x +,)b 都在函数23y x =-+的图象上,下列对于a ,b 的关系判断正确的是()A.2a b-=B.2a b-=-C.2a b+=D.2a b+=-9.(3分)如图,在ABC∆中,点D是BC边上任一点,点F,G,E分别是AD,BF,CF 的中点,连结GE,若FGE∆的面积为8,则ABC∆的面积为()A.32B.48C.64D.7210.(3分)直角坐标系中,我们定义横、纵坐标均为整数的点为整点在03x<<内,直线2y x=+和y x=-所围成的区域中,整点一共有()A.8个B.7个C.6个D.5个二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)函数31yx=-中的自变量x的取值范围是.12.(3分)“x的3倍减去y的差是正数”用不等式表示为.13.(3分)点(3,2)P-关于x轴对称的点的坐标是.14.(3分)如图,Rt ABC∆中,90ACB∠=︒,28A∠=︒,D是AB的中点,则DCB∠=度.15.(3分)如图,在ABC∆中,AB AC=,50BAC∠=︒,D是边BC的中点,DE垂直AC 于点E,则EDC∠=度.16.(3分)如图,直角坐标系中,直线2y x=+和直线y ax c=+相交于点(,3)P m,则方程组2y xy ax c=+⎧⎨=+⎩的解为.17.(3分)如图,BD是ABC∆的角平分线,AE BD⊥,垂足为F,且交线段BC于点E,连结DE,若50C∠=︒,设ABC x∠=︒,CDE y∠=︒,则y关于x的函数表达式为.18.(3分)如图,在直角坐标系中,点(0,4)A,(3,0)B-,C是线段AB的中点,D为x轴上一个动点,以AD为直角边作等腰直角ADE∆(点A,D,E以顺时针方向排列),其中90DAE∠=︒,则点E的横坐标等于,连结CE,当CE达到最小值时,DE的长为.三、解答题(本大题共6小题,共46分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)解不等式组2532(1)13x x +⎧⎪-⎨<⎪⎩并把它的解集在数轴上表示出来.20.(6分)在44⨯的正方形网格中建立如图1、2所示的直角坐标系,其中格点A ,B 的坐标分别是(0,1),(1,1)--.(1)请图1中添加一个格点C ,使得ABC ∆是轴对称图形,且对称轴经过点(0,1)-.(2)请图2中添加一个格点D ,使得ABD ∆也是轴对称图形,且对称轴经过点(1,1).21.(6分)已知:如图,ACB DCE ∠=∠,AC BC =,CD CE =,AD 交BC 于点F ,连结BE .(1)求证:ACD BCE ∆≅∆.(2)延长AD 交BE 于点H ,若30ACB ∠=︒,求BHF ∠的度数.22.(8分)如图,直角坐标系中,点C 是直线12y x =上第一象限内的点,点(1,0)A ,以AC 为边作等腰Rt ACB ∆,AC BC =,点B 在x 轴上,且位于点A 的右边,直线BC 交y 轴于点D .(1)求点B ,C 的坐标;(2)点A 向上平移m 个单位落在OCD ∆的内部(不包括边界),求m 的取值范围.23.(8分)“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买A,B两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C 类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)24.(10分)如图,直角坐标系中,直线y kx bA,点(0,4)B-,=+分别与x轴、y轴交于点(3,0)过(0,8)E m在线段OD上,延长CE交x轴D作平行x轴的直线CD,交AB于点C,点(0,)于点F,点G在x轴正半轴上,且AG AF=.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求ACG∆的面积.(3)是否存在m,使得FCG∆是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选均不给分)1.(3分)下列长度的三条线段能组成三角形的是()A.1cm,1cm,3cm B.1cm,2cm,3cm C.1cm,2cm,2cm D.1cm,4cm,2cm 解:根据三角形任意两边的和大于第三边,得A、113+<,不能组成三角形;B、123+=,不能组成三角形;+>,能够组成三角形;C、122D、1234+=<,不能组成三角形.故选:C.2.(3分)在平面直角坐标系中,点(1,2)-在()A.第一象限B.第二象限C.第三象限D.第四象限解:点(1,2)-在第二象限.故选:B.3.(3分)在直角坐标系中,已知点(2,)b=上,则b的值为()-在直线2y xA.1B.1-C.4D.4-解:当2==-.b xx=-时,24故选:D.4.(3分)对不等式a b>进行变形,结果正确的是()A.0<D.11->-a ba b->-C.22-<B.22a ba b解:a b>,∴->,a b∴选项A不符合题意;>,a b∴->-,a b22∴选项B符合题意;a b >,22a b ∴>,∴选项C 不符合题意;a b >,a b ∴-<-,11a b ∴-<-,∴选项D 不符合题意.故选:B .5.(3分)如图,DE AC ⊥,BF AC ⊥,垂足分别是E ,F ,且DE BF =,若利用“HL ”证明DEC BFA ∆≅∆,则需添加的条件是( )A .EC FA =B .DC BA = C .D B ∠=∠ D .DCE BAF ∠=∠ 解:DE AC ⊥,BF AC ⊥,90DEC BFA ∴∠=∠=︒,DE BF =,∴当添加条件DC BA =时,可利用“HL ”证明DEC BFA ∆≅∆.故选:B .6.(3分)下列选项中,可以用来证明命题“若||2a >,则2a >”是假命题的反例的是( )A .3a =B .0a =C .2a =-D .3a =- 解:可以用来证明命题“若||2a >,则2a >”是假命题的反例的是:3a =-. 故选:D .7.(3分)如图,在边长为4的等边三角形ABC 中,点D ,E 分别是边BC ,AC 的中点,DF AB ⊥于点F ,连接EF ,则EF 的长为( )A .5B .2.5C .7D .3 解:如图,在边长为4的等边三角形ABC 中,点D ,E 分别是边BC ,AC 的中点, 4AB ∴=,60B ∠=︒,2BD CD ==,DE 是ABC ∆的中位线,//DE AB ∴且122DE AB ==. DF AB ⊥,90DFB ∴∠=︒,DF DE ⊥,30BDF ∴∠=︒,112BF BD ∴==, 2222213DF BD BF ∴=-=-=.在直角DEF ∆中,根据勾股定理得到:22347EF FD DE =+=+=. 故选:C .8.(3分)已知点1(A x ,)a ,1(1B x +,)b 都在函数23y x =-+的图象上,下列对于a ,b 的关系判断正确的是( )A .2a b -=B .2a b -=-C .2a b +=D .2a b +=- 解:点1(A x ,)a ,1(1B x +,)b 都在函数23y x =-+的图象上,123a x ∴=-+,121b x =-+,2a b ∴-=.故选:A .9.(3分)如图,在ABC ∆中,点D 是BC 边上任一点,点F ,G ,E 分别是AD ,BF ,CF 的中点,连结GE ,若FGE ∆的面积为8,则ABC ∆的面积为( )A .32B .48C .64D .72解: G ,E 分别是BF ,CF 的中点,GE ∴是BFC ∆的中位线, 12GE BC ∴=, FGE ∆的面积为8,BFC ∴∆的面积为32,点F 是AD 的中点,ABF BDF S S ∆∆∴=,FDC AFC S S ∆∆=,ABC ∴∆的面积2BFC =∆的面积64=,故选:C .10.(3分)直角坐标系中,我们定义横、纵坐标均为整数的点为整点在03x <<内,直线2y x =+和y x =-所围成的区域中,整点一共有( )A .8个B .7个C .6个D .5个 解:当1x =时,23y x =+=,1y x =-=-,∴横坐标为1的整点有3个,分别为(1,0),(1,1),(1,2);当2x =时,24y x =+=,2y x =-=-,∴横坐标为2的整点有5个,分别为(2,1)-,(2,0),(2,1),(2,2),(2,3). ∴在03x <<内,直线2y x =+和y x =-所围成的区域中整点一共有8个. 故选:A .二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)函数31y x =-中的自变量x 的取值范围是 1x ≠ .解:根据题意得:10x -≠解得:1x ≠.12.(3分)“x 的3倍减去y 的差是正数”用不等式表示为 30x y -> . 解:“x 的3倍减去y 的差是正数”用不等式表示为30x y ->, 故答案为:30x y ->.13.(3分)点(3,2)P -关于x 轴对称的点的坐标是 (3,2) . 解:根据轴对称的性质,得点(3,2)P -关于x 轴对称的点的坐标为(3,2).14.(3分)如图,Rt ABC ∆中,90ACB ∠=︒,28A ∠=︒,D 是AB 的中点,则DCB ∠= 62 度.解:90ACB ∠=︒,D 是AB 的中点,12CD AB AD ∴==, 28ACD A ∴∠=∠=︒,902862DCB ∴∠=︒-︒=︒,故答案为:62.15.(3分)如图,在ABC ∆中,AB AC =,50BAC ∠=︒,D 是边BC 的中点,DE 垂直AC 于点E ,则EDC ∠= 25 度.解:AB AC =,50BAC ∠=︒,1(18050)652C ∴∠=︒-︒=︒, DE 垂直AC ,90DEC∴∠=︒,906525CDE∴∠=︒-︒=︒,故答案为:25.16.(3分)如图,直角坐标系中,直线2y x=+和直线y ax c=+相交于点(,3)P m,则方程组2y xy ax c=+⎧⎨=+⎩的解为13xy=⎧⎨=⎩.解:直线2y x=+过点(,3)P m,32m∴=+,1m=,(1,3)P∴,∴方程组2y xy ax c=+⎧⎨=+⎩的解为:13xy=⎧⎨=⎩.故答案为:13xy=⎧⎨=⎩.17.(3分)如图,BD是ABC∆的角平分线,AE BD⊥,垂足为F,且交线段BC于点E,连结DE,若50C∠=︒,设ABC x∠=︒,CDE y∠=︒,则y关于x的函数表达式为80(080)y x x=-<<.解:AE BD⊥,90BFA BFE∴∠=∠=︒,ABF EBF∠=∠,BF BF=,()BFA BFE ASA ∴∆≅∆,BA BE ∴=,DA DE =,BAE BEA ∴∠=∠,DAE DEA ∠=∠,EDC y DAE DEA ∠=︒=∠+∠, 12DAE y∴∠=︒, 1502BEA BAE C DAE y ∴∠=∠=∠+∠=︒+︒, 2180ABC AEB ∠+∠=︒,100180x y ∴++=,80(080)y x x ∴=-<<.18.(3分)如图,在直角坐标系中,点(0,4)A ,(3,0)B -,C 是线段AB 的中点,D 为x 轴上一个动点,以AD 为直角边作等腰直角ADE ∆(点A ,D ,E 以顺时针方向排列),其中90DAE ∠=︒,则点E 的横坐标等于 4- ,连结CE ,当CE 达到最小值时,DE 的长为 .解:如图,把线段AC 绕点A 逆时针旋转90︒,得到AC ',连接C D ',则C '为定点5(2,)2, 在ACE ∆和△AC D '中AC AC C AD CAE AD AE ='⎧⎪∠'=∠⎨⎪=⎩ACE ∴∆≅△()AC D SAS 'C D CE ∴'=.当C D OD '⊥时,C D '最小,CE 最小值为52, 2OD ∴=, 过E 作EG OA ⊥于G ,EH x ⊥轴于H ,则四边形EHOG是矩形,EG OH∴=,90AGE AOD EAD∠=∠=∠=︒,90 AEG EAO EAO OAD∴∠+∠=∠+∠=︒,AEG OAD∴∠=∠,AE AD=,()AEG DAO AAS∴∆≅∆,2AG OD∴==,4EG OA==,∴点E的横坐标等于4-,2EH OG∴==,246DH=+=,2226210DE∴=+=,故答案为:4-,210.三、解答题(本大题共6小题,共46分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)解不等式组2532(1)13xx+⎧⎪-⎨<⎪⎩并把它的解集在数轴上表示出来.解:()2532113xx+⎧⎪⎨-<⎪⎩①②由①得:1x-由②得: 2.5x<,∴原不等式组的解为:1 2.5x-<,在数轴上表示为:20.(6分)在44⨯的正方形网格中建立如图1、2所示的直角坐标系,其中格点A,B的坐标分别是(0,1),(1,1)--.(1)请图1中添加一个格点C,使得ABC∆是轴对称图形,且对称轴经过点(0,1)-.(2)请图2中添加一个格点D,使得ABD∆也是轴对称图形,且对称轴经过点(1,1).解:(1)如图,点C即为所求.(2)如图,点D即为所求.21.(6分)已知:如图,ACB DCE=,CD CE=,AD交BC于点F,连结∠=∠,AC BCBE.(1)求证:ACD BCE∆≅∆.(2)延长AD交BE于点H,若30∠的度数.ACB∠=︒,求BHF【解答】证明:(1)ACB DCE∠=∠,∴∠+∠=∠+∠,ACB DCB DCE DCB即ACD BCE∠=∠,在ACD∆中,∆和BCEAC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴∆≅∆;(2)ACD BCE ∆≅∆,A B ∴∠=∠,BFH AFC ∠=∠,BHF ACB ∴∠=∠,30ACB ∠=︒,30BHF ∴∠=︒.22.(8分)如图,直角坐标系中,点C 是直线12y x =上第一象限内的点,点(1,0)A ,以AC 为边作等腰Rt ACB ∆,AC BC =,点B 在x 轴上,且位于点A 的右边,直线BC 交y 轴于点D .(1)求点B ,C 的坐标;(2)点A 向上平移m 个单位落在OCD ∆的内部(不包括边界),求m 的取值范围.解:(1)设点1(,)2C a a , 过点C 作CE x ⊥轴,垂足为E ,由题意得ACE ∆为等腰直角三角形,AE CE EB ==,且点B 在点A 的右边,即112a a -=,解得2a =,(2,1)C ∴,(3,0)B ,(2)设直线BD 的解析式为y kx b =+,代入(2,1)C ,(3,0)B 得2130k b k b +=⎧⎨+=⎩, 解得13k b =-⎧⎨=⎩, ∴直线BD 的解析式3y x =-+过A 作x 轴的垂线交直线OC 于点P ,交直线CD 于Q ,解得P 的坐标为1(1,),2Q 的坐标为(1,2) 即122m <<.23.(8分)“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买A ,B 两类垃圾桶,已知A 类桶单价20元,B 类桶单价40元,设购入A 类桶x 个,B 类桶y 个. (1)求y 关于x 的函数表达式.(2)若购进的A 类桶不少于B 类桶的2倍.①求至少购进A 类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A 类桶调换成另一种C 类桶,且调换后C 类桶的数量不少于B 类桶的数量,已知C 类桶单价30元,则按这样的购买方式,B 类桶最多可买 18 个.(直接写出答案)解:(1)根据题意,得20402000x y +=得1502y x =-+. 答:y 关于x 的函数表达式为1502y x =-+; (2)①购进的A 类桶不少于B 类桶的2倍,2x y ∴,即12(50)2x x -+. 解得50x .答:至少购进A 类桶50个;②设购入A 类桶x 个,B 类桶y 个,C 类桶c 个,根据题意,得2040302000x y c ++=将c y ,2x y 代入有20240302000x y y y ⨯++,解得18.1y (近似值),因y 为正整数,故y 最大取18.所以B 类最多买18个.或者:由200234x c y --=. 调换后C 类桶的数量不少于B 类桶的数量, 200234x c c --∴. 解得20027x c-. A 类桶不少于B 类桶的2倍.2x y ∴ 2002324x c x --∴⨯. 解得20043x c -. ∴20027x -.20043x -=. 解得40011x =x 、y 、c 为正整数,所以A 类至少买36个,所以B 类最多买18个.故答案为18.24.(10分)如图,直角坐标系中,直线y kx b =+分别与x 轴、y 轴交于点(3,0)A ,点(0,4)B -,过(0,8)D 作平行x 轴的直线CD ,交AB 于点C ,点(0,)E m 在线段OD 上,延长CE 交x 轴于点F ,点G 在x 轴正半轴上,且AG AF =.(1)求直线AB 的函数表达式.(2)当点E 恰好是OD 中点时,求ACG ∆的面积.(3)是否存在m ,使得FCG ∆是直角三角形?若存在,直接写出m 的值;若不存在,请说明理由.解:(1)将点A 、B 的坐标代入函数表达式:y kx b =+并解得: 43k =,4b =-, 故直线的表达式为:443y x =-;(2)当8y =时,4483x -= 解得9x =,∴点C 的坐标为(9,8),9CD ∴=, E 是OD 中点,DE OE ∴=,则()EDC EOF AAS ∆≅∆,9OF CD ∴==,12AG AF OF OA ∴==+=,过点C 作CH x ⊥轴于点H ,∴111284822ACG S AG CH ∆=⨯⨯=⨯⨯=;(3)①当90FCG ∠=︒时, AG AF =,则AC 是中线,则226810AF AC ==+=, 故点(7,0)F -,由点C 、F 的坐标可得:直线CF 的表达式为:1(7)2y x =+, 故点7(0,)2E ,则72m =; ②当90CGF ∠=︒时,则点(9,0)G , 则6AF AG ==, 故点(3,0)F -,同理直线CF 的表达式为:2(3)3y x =+, 故2m =; 综上,72m =或2.。

2019-2020学年浙江省温州市八年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省温州市八年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省温州市八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)下列图标中是轴对称图形的是( )A .B .C .D .2.(3分)在平面直角坐标系中,点(1,2)P -的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限3.(3分)在ABC ∆中,已知4AB cm =,9BC cm =,则AC 的长可能是( )A .5cmB .12cmC .13cmD .16cm4.(3分)在平面直角坐标系中,点(2,3)A 与点B 关于y 轴对称,则点B 的坐标为( )A .(2,3)-B .(2,3)--C .(2,3)-D .(3,2)--5.(3分)函数24y x =-中自变量x 的取值范围是( )A .2x >B .2xC .2xD .2x ≠6.(3分)能说明命题“对于任何实数a ,||a a >-”是假命题的一个反例可以是( )A .13a =B .2a =-C .1a =D .2a =7.(3分)如图,直线(y kx k =为常数,0)k ≠经过点A ,若B 是该直线上一点,则点B 的坐标可能是( )A .(2,1)--B .(4,2)--C .(2,4)--D .(6,3)8.(3分)如图,在ABC ∆中,50A ∠=︒,130∠=︒,240∠=︒,D ∠的度数是( )A .110︒B .120︒C .130︒D .140︒9.(3分)已知A 、B 两地相距12km .甲、乙两人沿同一条公路分别从A 、B 两地出发相向而行,甲、乙两人离B 地的路程()s km 与时间()t h 的函数关系图象如图所示,则两人在甲出发后相遇所需的时间是( )A .1.2hB .1.5hC .1.6hD .1.8h10.(3分)活动课上,小华将两张直角三角形纸片如图放置,已知8AC =,O 是AC 的中点,ABO ∆与CDO ∆的面积之比为4:3,则两纸片重叠部分即OBC ∆的面积为( )A .4B .6C .25D .27二、填空题(本题有8个小题,每小题3分,共24分)11.(3分)若m n >,则m n - 0(填“>”或“=”或“<” ).12.(3分)已知一个三角形的三个内角度数之比为2:3:5,则它的最大内角等于 度.13.(3分)已知一次函数(4)2y k x =-+,若y 随x 的增大而增大,则k 的值可以是 .(写出一个答案即可)14.(3分)在平面直角坐标系中,点(1,2)B 是由点(1,2)A -向右平移a 个单位长度得到,则a 的值为 .15.(3分)如图,在ABC ∆中,81ACB ∠=︒,DE 垂直平分AC ,交AB 于点D ,交AC 于点E .若CD BC =,则A ∠等于 度.16.(3分)如图,在ABC ∆中,ACB ∠的平分线交AB 于点D ,DE AC ⊥于点E .F 为BC 上一点,若DF AD =,ACD ∆与CDF ∆的面积分别为10和4,则AED ∆的面积为 .17.(3分)如图,在平面直角坐标系中,一次函数32y x =+的图象与x 轴交于点A ,与y 轴交于点B ,点P 在线段AB 上,PC x ⊥轴于点C ,则PCO ∆周长的最小值为 .18.(3分)如图是高空秋千的示意图,小明从起始位置点A 处绕着点O 经过最低点B .最终荡到最高点C 处,若90AOC ∠=︒,点A 与点B 的高度差1AD =米,水平距离4BD =米,则点C 与点B 的高度差CE 为 米.三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程)19.(6分)如图,AB AC =,AD AE =,BAD CAE ∠=∠,求证:BE CD =.20.(6分)解不等式组:232(1)3xx x--⎧⎨-<+⎩并把它的解集在数轴上表示出来.21.(6分)如图,在方格纸中,每一个小正方形的边长为1,按要求画一个三角形,使它的顶点都在小方格的顶点上.(1)在图甲中画一个以AB为边且面积为3的直角三角形.(2)在图乙中画一个等腰三角形,使AC在三角形的内部(不包括边界).22.(8分)如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知EDB ACD∠=∠.(1)求证:DEC∆是等腰三角形.(2)当5BDC EDB∠=∠,2BD=时,求EB的长.23.(8分)某超市每天都用360元从批发商城批发甲乙两种型号“垃圾分类“垃圾桶进行零售,批发价和零售价如下表所示:批发价(元/个) 零售价(元/个) 甲型号垃圾桶12 16 乙型号垃圾桶 30 36若设该超市每天批发甲型号“垃圾分类“垃圾桶x 个,乙型号“垃圾分类“垃圾桶y 个.(1)求y 关于x 的函数表达式.(2)若某天该超市老板想将两种型号的“垃圾分类“垃圾桶全部售完后,所获利润率不低于30%,则该超市至少批发甲型号“垃圾分类“垃圾桶多少个?(利润率)=利润成本24.(12分)如图,在平面直角坐标系中,已知点A 的坐标为(15,0),点B 的坐标为(6,12),点C 的坐标为(0,6),直线AB 交y 轴于点D ,动点P 从点C 出发沿着y 轴正方向以每秒2个单位的速度运动,同时,动点Q 从点A 出发沿着射线AB 以每秒a 个单位的速度运动,设运动时间为t 秒.(1)求直线AB 的解析式和CD 的长.(2)当PQD ∆与BDC ∆全等时,求a 的值.(3)记点P 关于直线BC 的对称点为P ',连接QP ',当3t =,//QP BC '时,求点Q 的坐标.参考答案一、选择题(本题有10个小题,每小题了分,共30分)1.(3分)下列图标中是轴对称图形的是( )A .B .C .D .解:A 、不是轴对称图形,故本选项不合题意;B 、不是轴对称图形,故本选项不合题意;C 、不是轴对称图形,故本选项不合题意;D 、是轴对称图形,故本选项符合题意.故选:D .2.(3分)在平面直角坐标系中,点(1,2)P -的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限 解:点(1,2)P -的横坐标10-<,纵坐标20>,∴点P 在第二象限.故选:B .3.(3分)在ABC ∆中,已知4AB cm =,9BC cm =,则AC 的长可能是( )A .5cmB .12cmC .13cmD .16cm 解:由题意得:9494AC -<<+,则513AC <<,故选:B .4.(3分)在平面直角坐标系中,点(2,3)A 与点B 关于y 轴对称,则点B 的坐标为()A .(2,3)-B .(2,3)--C .(2,3)-D .(3,2)-- 解:点(2,3)A 关于y 轴对称点的坐标为(2,3)B -.故选:A .5.(3分)函数24y x =-x 的取值范围是( )A .2x >B .2xC .2xD .2x ≠解:依题意有:240x -,解得2x .故选:B .6.(3分)能说明命题“对于任何实数a ,||a a >-”是假命题的一个反例可以是( )A .13a =B .2a =-C .1a =D .2a = 解:命题“对于任何实数a ,||a a >-”是假命题,反例要满足0a ,如2a =-. 故选:B .7.(3分)如图,直线(y kx k =为常数,0)k ≠经过点A ,若B 是该直线上一点,则点B 的坐标可能是( )A .(2,1)--B .(4,2)--C .(2,4)--D .(6,3) 解:点(2,4)A ,将点A 的坐标代入:y kx =得,42k =,解得:2k =,故直线表达式为:2y x =,当2x =-时,4y =-,当4x =-时,8y =-,当2x =-时,4y =-,故选:C .8.(3分)如图,在ABC ∆中,50A ∠=︒,130∠=︒,240∠=︒,D ∠的度数是( )A .110︒B .120︒C .130︒D .140︒ 解:50A ∴∠=︒,18050130ABC ACB ∴∠+∠=︒-︒=︒,12130304060DBC DCB ABC ACB ∴∠+∠=∠+∠-∠-∠=︒-︒-︒=︒, 180()120BDC DBC DCB ∴∠=︒-∠+∠=︒,故选:B .9.(3分)已知A 、B 两地相距12km .甲、乙两人沿同一条公路分别从A 、B 两地出发相向而行,甲、乙两人离B 地的路程()s km 与时间()t h 的函数关系图象如图所示,则两人在甲出发后相遇所需的时间是( )A .1.2hB .1.5hC .1.6hD .1.8h 解:设甲对应的函数解析式为y ax b =+,1220b a b =⎧⎨+=⎩,解得612a b =-⎧⎨=⎩, ∴甲对应的函数解析式为612y x =-+,设乙对应的函数解析式为y cx d =+,0412c d c d +=⎧⎨+=⎩,解得44c b =⎧⎨=-⎩, 即乙对应的函数解析式为44y x =-,61244y x y x =-+⎧⎨=-⎩,解得 1.62.4x y =⎧⎨=⎩,∴甲出发1.6小时后两人相遇.故选:C .10.(3分)活动课上,小华将两张直角三角形纸片如图放置,已知8AC =,O 是AC 的中点,ABO ∆与CDO ∆的面积之比为4:3,则两纸片重叠部分即OBC ∆的面积为( )A .4B .6C .25D .27解:点O 是直角ABC ∆斜边AC 的中点,ABO CBO S S ∆∆∴=,OB OA OC ==,ABO ∆与CDO ∆的面积之比为4:3,CBO ∴∆与CDO ∆的面积之比为4:3,:4:3OB OD ∴=,设4OB x =,则3OD x =,4OA OC x ∴==,8AC =,448x x ∴+=,解得1x =,在Rt ODC ∆中,3OD =,4OC =,22437CD ∴=-=,137372ODC S ∆∴=⨯= 而CBO ∆与CDO ∆的面积之比为4:3,437273OBC S ∆∴== 故选:D .二、填空题(本题有8个小题,每小题3分,共24分)11.(3分)若m n >,则m n - > 0(填“>”或“=”或“<” ). 解:不等式m n >两边都减去n ,得0m n ->.故答案为:>.12.(3分)已知一个三角形的三个内角度数之比为2:3:5,则它的最大内角等于 90 度.解:三个内角之比为2:3:5,∴设三个内角分别为2k、3k、5k,∴++=︒,k k k235180解得18k=︒,k=⨯︒=︒.∴最大的角是551890故答案为90.13.(3分)已知一次函数(4)2=-+,若y随x的增大而增大,则k的值可以是5.(写y k x出一个答案即可)解:一次函数(4)2y k x=-+的图象中,y随x的增大而增大,∴->,解得4k>,k40∴可以取5.k故答案为5.14.(3分)在平面直角坐标系中,点(1,2)A-向右平移a个单位长度得到,则aB是由点(1,2)的值为2.解:如图所示,点(1,2)A-向右平移2个单位长度得到,B是由点(1,2)则a的值为2.故答案为2.15.(3分)如图,在ABC∠=︒,DE垂直平分AC,交AB于点D,交AC于∆中,81ACB点E.若CD BC∠等于33度.=,则A解:设A x∠=︒,DE垂直平分AC,∴=,DA DC∴∠=∠=︒,ACD A x∴∠=∠=︒,22CDB A x=,CD CB∴∠=∠=︒,B CDB x2∠=︒,ACB81∴∠=-︒,DCB x(81)x x x∴++-=,2281180∴=,x33∴∠=︒,A33故答案为33.16.(3分)如图,在ABC⊥于点E.F为BC∠的平分线交AB于点D,DE AC∆中,ACB上一点,若DF AD∆的面积为3.=,ACD∆的面积分别为10和4,则AED∆与CDF解:如图,过点D作DH BC⊥于H,⊥,⊥,DH BCCD平分ACB∠,DE ACDE DH ∴=,DE DH =,DF AD =,Rt ADE Rt FDH(HL)∴∆≅∆ADE FDH S S ∆∆∴=,ACD ∆与CDF ∆的面积分别为10和4,3ADE S ∆∴=,故答案为:3.17.(3分)如图,在平面直角坐标系中,一次函数32y x =+的图象与x 轴交于点A ,与y 轴交于点B ,点P 在线段AB 上,PC x ⊥轴于点C ,则PCO ∆周长的最小值为 332+ .解:设点(,32)P m m +,则32PC m =+,OC m =-,PCO ∆周长3232OP OC PC OP m m OP PO =++=++-+=+,即PCO ∆周长取得最小值时,只需要OP 最小即可,故点O 作OD AP ⊥,当点D 、P 重合时,()OP OD 最小,AOB ∆为等腰直角三角形,则BOD 也为等腰三角形,设:OD a =,则DO BD a ==,由勾股定理得:222(32)a =,解得:3a OD OP ===,故PCO ∆周长的最小值32332PO =+=+,故答案为:332+.18.(3分)如图是高空秋千的示意图,小明从起始位置点A 处绕着点O 经过最低点B .最终荡到最高点C 处,若90AOC ∠=︒,点A 与点B 的高度差1AD =米,水平距离4BD =米,则点C 与点B 的高度差CE 为 4.5 米.解:作AF BO ⊥于F ,CG BO ⊥于G ,90AOC AOF COG ∠=∠+∠=︒,90AOF OAF ∠+∠=︒,COG OAF ∴∠=∠,在AOF ∆与OCG ∆中,AFO OGC OAF COG AO OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOF OCG AAS ∴∆≅∆,4OG AF BD ∴===米,设AO x =米,在Rt AFO ∆中,222AF OF AO +=,即2224(1)x x +-=,解得8.5x =.则8.54 4.5CE GB OB OG ==-=-=(米).故答案为:4.5.三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程)19.(6分)如图,AB AC =,AD AE =,BAD CAE ∠=∠,求证:BE CD =.【解答】证明:BAD CAE ∠=∠,BAE CAD ∴∠=∠,在ABE ∆和ACD ∆中,AB AC BAE CAD AD AE =⎧⎪∠=∠⎨⎪=⎩()ABE ACD SAS ∴∆≅∆BE CD ∴=.20.(6分)解不等式组:232(1)3x x x --⎧⎨-<+⎩并把它的解集在数轴上表示出来.解:()23213x x x --⎧⎪⎨-<+⎪⎩①②, 解不等式①,可得1x -不等式②,可得5x <∴不等式组的解集为15x -<在数轴上表示出来为:21.(6分)如图,在方格纸中,每一个小正方形的边长为1,按要求画一个三角形,使它的顶点都在小方格的顶点上.(1)在图甲中画一个以AB为边且面积为3的直角三角形.(2)在图乙中画一个等腰三角形,使AC在三角形的内部(不包括边界).解:(1)如图甲中,ABC∆即为所求.(2)如图乙中,DEF∆即为所求.22.(8分)如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知EDB ACD∠=∠.(1)求证:DEC∆是等腰三角形.(2)当5BD=时,求EB的长.∠=∠,2BDC EDB【解答】(1)证明:ABC∆是等边三角形,∴∠=∠=︒,60ABC ACB60E EDB ABC ∠+∠=∠=︒,60ACD DCB ∠+∠=︒,EDB ACD ∠=∠,E DCE ∴∠=∠,DE DC ∴=,DEC ∴∆是等腰三角形;(2)解:设EDB α∠=,则5BDC α∠=,60E DCE α∴∠=∠=︒-,66060180ααα∴+︒-+︒-=︒,15α∴=︒,45E DCE ∴∠=∠=︒,90EDC ∴∠=︒,过D 作DH CE ⊥于H ,2BD =,60DBH ∠=︒, 112BH BD ∴==,223DH BD BH =-=,3DH EH ==, 31BE EH BH ∴=-=-.23.(8分)某超市每天都用360元从批发商城批发甲乙两种型号“垃圾分类“垃圾桶进行零售,批发价和零售价如下表所示:批发价(元/个) 零售价(元/个) 甲型号垃圾桶12 16 乙型号垃圾桶 30 36若设该超市每天批发甲型号“垃圾分类“垃圾桶x 个,乙型号“垃圾分类“垃圾桶y 个.(1)求y 关于x 的函数表达式.(2)若某天该超市老板想将两种型号的“垃圾分类“垃圾桶全部售完后,所获利润率不低于30%,则该超市至少批发甲型号“垃圾分类“垃圾桶多少个?(利润率)=利润成本解:(1)3601230xy-=,即2125y x=-+;(2)根据题意得:2(1612)(3630)(12)530%360x x-+-⨯-+,解得1222x,x为整数,∴该超市至少批发甲型号“垃圾分类“垃圾桶23个.24.(12分)如图,在平面直角坐标系中,已知点A的坐标为(15,0),点B的坐标为(6,12),点C的坐标为(0,6),直线AB交y轴于点D,动点P从点C出发沿着y轴正方向以每秒2个单位的速度运动,同时,动点Q从点A出发沿着射线AB以每秒a个单位的速度运动,设运动时间为t秒.(1)求直线AB的解析式和CD的长.(2)当PQD∆与BDC∆全等时,求a的值.(3)记点P关于直线BC的对称点为P',连接QP',当3t=,//QP BC'时,求点Q的坐标.解:(1)将点A、B的坐标代入一次函数表达式得:150612k bk b+=⎧⎨+=⎩,解得:4320kb⎧=-⎪⎨⎪=⎩,故直线AB的表达式为:4203y x=-+,故点(0,20)D;20614CD=-=;(2)点A、B、D的坐标分别为:(15,0)、(6,12)、(0,20);故10BD=,25AD=,①如图1,过点P 在CD 上时,点P 只能和点B 是对应点,则()DPQ DBC SAS ∆≅∆,故10DP DB ==,14DQ DC ==,14104CP CD DP =-=-=,251411AQ AD DQ =-=-=; 则2411CP t AQ at ==⎧⎨==⎩,解得:25.5t a =⎧⎨=⎩; ②如图2,当点P 在CD 的延长线时,并且点P 与点B 对应时,则()DPQ DBC SAS ∆≅∆,10DP BD ==,14DQ DC ==,141024CP CD DP ∴=+=+=,251439AQ AD DQ =+=+=, 则22439CP t AQ at ==⎧⎨==⎩,解得:123.25t a =⎧⎨=⎩; ③当点P 在CD 的延长线上,且点P 与点C 对应时,则()DPQ DCB SAS ∆≅∆,则14DC DC ==,10DQ BD ==,141428CP CD DP =+=+=,35AQ AD DQ =+=, 故22835CP t AQ at ==⎧⎨==⎩,解得:142.5t a =⎧⎨=⎩; 综上,a 的值为:5.5或3.25或2.5;(3)如图4,连接BP ,过点Q 作QE CP ⊥'交于点E ,点(6,12)B 、点(0,6)C ,3t =,故26CP t ==,6612OP OC CP =+=+=,与B 点的纵坐标相等, 故BP OD ⊥,故6BP =,即BP CP =,故45BCP ∠=︒,点P 、P '关于直线BC 对称,45BCP BCP ∴∠'=∠=︒,6CP CP '==,//QP BC ',45QP E BCP ∴∠'=∠'=︒,故△QP E '为等腰直角三角形,且P E QE '=, 设QE m =,则点(,)Q CP P E CO QE '+'+,即(6,6)m m ++,将点Q 的坐标代入直线AB 的表达式得:46(6)203m m +=-++, 解得:6067m +=, 故点Q 的坐标为:60(7,60)7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省温州市苍南县八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)下列长度的三条线段能组成三角形的是( )A .1cm ,1cm ,3cmB .1cm ,2cm ,3cmC .1cm ,2cm ,2cmD .1cm ,4cm ,2cm2.(3分)在平面直角坐标系中,点(1,2)-在( )A .第一象限B .第二象限C .第三象限D .第四象限3.(3分)在直角坐标系中,已知点(2,)b -在直线2y x =上,则b 的值为( )A .1B .1-C .4D .4-4.(3分)对不等式a b >进行变形,结果正确的是( )A .0a b -<B .22a b ->-C .22a b <D .11a b ->-5.(3分)如图,DE AC ⊥,BF AC ⊥,垂足分别是E ,F ,且DE BF =,若利用“HL ”证明DEC BFA ∆≅∆,则需添加的条件是( )A .EC FA =B .DC BA = C .D B ∠=∠ D .DCE BAF ∠=∠6.(3分)下列选项中,可以用来证明命题“若||2a >,则2a >”是假命题的反例的是( )A .3a =B .0a =C .2a =-D .3a =-7.(3分)如图,在边长为4的等边三角形ABC 中,点D ,E 分别是边BC ,AC 的中点,DF AB ⊥于点F ,连接EF ,则EF 的长为( )A 5B .2.5C 7D .38.(3分)已知点1(A x ,)a ,1(1B x +,)b 都在函数23y x =-+的图象上,下列对于a ,b 的关系判断正确的是()A.2a b-=B.2a b-=-C.2a b+=D.2a b+=-9.(3分)如图,在ABC∆中,点D是BC边上任一点,点F,G,E分别是AD,BF,CF 的中点,连结GE,若FGE∆的面积为8,则ABC∆的面积为()A.32B.48C.64D.7210.(3分)直角坐标系中,我们定义横、纵坐标均为整数的点为整点在03x<<内,直线2y x=+和y x=-所围成的区域中,整点一共有()A.8个B.7个C.6个D.5个二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)函数31yx=-中的自变量x的取值范围是.12.(3分)“x的3倍减去y的差是正数”用不等式表示为.13.(3分)点(3,2)P-关于x轴对称的点的坐标是.14.(3分)如图,Rt ABC∆中,90ACB∠=︒,28A∠=︒,D是AB的中点,则DCB∠=度.15.(3分)如图,在ABC∆中,AB AC=,50BAC∠=︒,D是边BC的中点,DE垂直AC 于点E,则EDC∠=度.16.(3分)如图,直角坐标系中,直线2y x=+和直线y ax c=+相交于点(,3)P m,则方程组2y xy ax c=+⎧⎨=+⎩的解为.17.(3分)如图,BD是ABC∆的角平分线,AE BD⊥,垂足为F,且交线段BC于点E,连结DE,若50C∠=︒,设ABC x∠=︒,CDE y∠=︒,则y关于x的函数表达式为.18.(3分)如图,在直角坐标系中,点(0,4)A,(3,0)B-,C是线段AB的中点,D为x轴上一个动点,以AD为直角边作等腰直角ADE∆(点A,D,E以顺时针方向排列),其中90DAE∠=︒,则点E的横坐标等于,连结CE,当CE达到最小值时,DE的长为.三、解答题(本大题共6小题,共46分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)解不等式组2532(1)13x x +⎧⎪-⎨<⎪⎩并把它的解集在数轴上表示出来.20.(6分)在44⨯的正方形网格中建立如图1、2所示的直角坐标系,其中格点A ,B 的坐标分别是(0,1),(1,1)--.(1)请图1中添加一个格点C ,使得ABC ∆是轴对称图形,且对称轴经过点(0,1)-.(2)请图2中添加一个格点D ,使得ABD ∆也是轴对称图形,且对称轴经过点(1,1).21.(6分)已知:如图,ACB DCE ∠=∠,AC BC =,CD CE =,AD 交BC 于点F ,连结BE .(1)求证:ACD BCE ∆≅∆.(2)延长AD 交BE 于点H ,若30ACB ∠=︒,求BHF ∠的度数.22.(8分)如图,直角坐标系中,点C 是直线12y x =上第一象限内的点,点(1,0)A ,以AC 为边作等腰Rt ACB ∆,AC BC =,点B 在x 轴上,且位于点A 的右边,直线BC 交y 轴于点D .(1)求点B ,C 的坐标;(2)点A 向上平移m 个单位落在OCD ∆的内部(不包括边界),求m 的取值范围.23.(8分)“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买A,B两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C 类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)24.(10分)如图,直角坐标系中,直线y kx bA,点(0,4)B-,=+分别与x轴、y轴交于点(3,0)过(0,8)E m在线段OD上,延长CE交x轴D作平行x轴的直线CD,交AB于点C,点(0,)于点F,点G在x轴正半轴上,且AG AF=.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求ACG∆的面积.(3)是否存在m,使得FCG∆是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选均不给分)1.(3分)下列长度的三条线段能组成三角形的是()A.1cm,1cm,3cm B.1cm,2cm,3cm C.1cm,2cm,2cm D.1cm,4cm,2cm 解:根据三角形任意两边的和大于第三边,得A、113+<,不能组成三角形;B、123+=,不能组成三角形;+>,能够组成三角形;C、122D、1234+=<,不能组成三角形.故选:C.2.(3分)在平面直角坐标系中,点(1,2)-在()A.第一象限B.第二象限C.第三象限D.第四象限解:点(1,2)-在第二象限.故选:B.3.(3分)在直角坐标系中,已知点(2,)b=上,则b的值为()-在直线2y xA.1B.1-C.4D.4-解:当2==-.b xx=-时,24故选:D.4.(3分)对不等式a b>进行变形,结果正确的是()A.0<D.11->-a ba b->-C.22-<B.22a ba b解:a b>,∴->,a b∴选项A不符合题意;>,a b∴->-,a b22∴选项B符合题意;a b >,22a b ∴>,∴选项C 不符合题意;a b >,a b ∴-<-,11a b ∴-<-,∴选项D 不符合题意.故选:B .5.(3分)如图,DE AC ⊥,BF AC ⊥,垂足分别是E ,F ,且DE BF =,若利用“HL ”证明DEC BFA ∆≅∆,则需添加的条件是( )A .EC FA =B .DC BA = C .D B ∠=∠ D .DCE BAF ∠=∠ 解:DE AC ⊥,BF AC ⊥,90DEC BFA ∴∠=∠=︒,DE BF =,∴当添加条件DC BA =时,可利用“HL ”证明DEC BFA ∆≅∆.故选:B .6.(3分)下列选项中,可以用来证明命题“若||2a >,则2a >”是假命题的反例的是( )A .3a =B .0a =C .2a =-D .3a =- 解:可以用来证明命题“若||2a >,则2a >”是假命题的反例的是:3a =-. 故选:D .7.(3分)如图,在边长为4的等边三角形ABC 中,点D ,E 分别是边BC ,AC 的中点,DF AB ⊥于点F ,连接EF ,则EF 的长为( )A .5B .2.5C .7D .3 解:如图,在边长为4的等边三角形ABC 中,点D ,E 分别是边BC ,AC 的中点, 4AB ∴=,60B ∠=︒,2BD CD ==,DE 是ABC ∆的中位线,//DE AB ∴且122DE AB ==. DF AB ⊥,90DFB ∴∠=︒,DF DE ⊥,30BDF ∴∠=︒,112BF BD ∴==, 2222213DF BD BF ∴=-=-=.在直角DEF ∆中,根据勾股定理得到:22347EF FD DE =+=+=. 故选:C .8.(3分)已知点1(A x ,)a ,1(1B x +,)b 都在函数23y x =-+的图象上,下列对于a ,b 的关系判断正确的是( )A .2a b -=B .2a b -=-C .2a b +=D .2a b +=- 解:点1(A x ,)a ,1(1B x +,)b 都在函数23y x =-+的图象上,123a x ∴=-+,121b x =-+,2a b ∴-=.故选:A .9.(3分)如图,在ABC ∆中,点D 是BC 边上任一点,点F ,G ,E 分别是AD ,BF ,CF 的中点,连结GE ,若FGE ∆的面积为8,则ABC ∆的面积为( )A .32B .48C .64D .72解: G ,E 分别是BF ,CF 的中点,GE ∴是BFC ∆的中位线, 12GE BC ∴=, FGE ∆的面积为8,BFC ∴∆的面积为32,点F 是AD 的中点,ABF BDF S S ∆∆∴=,FDC AFC S S ∆∆=,ABC ∴∆的面积2BFC =∆的面积64=,故选:C .10.(3分)直角坐标系中,我们定义横、纵坐标均为整数的点为整点在03x <<内,直线2y x =+和y x =-所围成的区域中,整点一共有( )A .8个B .7个C .6个D .5个 解:当1x =时,23y x =+=,1y x =-=-,∴横坐标为1的整点有3个,分别为(1,0),(1,1),(1,2);当2x =时,24y x =+=,2y x =-=-,∴横坐标为2的整点有5个,分别为(2,1)-,(2,0),(2,1),(2,2),(2,3). ∴在03x <<内,直线2y x =+和y x =-所围成的区域中整点一共有8个. 故选:A .二、填空题(每题3分,满分24分,将答案填在答题纸上)11.(3分)函数31y x =-中的自变量x 的取值范围是 1x ≠ .解:根据题意得:10x -≠解得:1x ≠.12.(3分)“x 的3倍减去y 的差是正数”用不等式表示为 30x y -> . 解:“x 的3倍减去y 的差是正数”用不等式表示为30x y ->, 故答案为:30x y ->.13.(3分)点(3,2)P -关于x 轴对称的点的坐标是 (3,2) . 解:根据轴对称的性质,得点(3,2)P -关于x 轴对称的点的坐标为(3,2).14.(3分)如图,Rt ABC ∆中,90ACB ∠=︒,28A ∠=︒,D 是AB 的中点,则DCB ∠= 62 度.解:90ACB ∠=︒,D 是AB 的中点,12CD AB AD ∴==, 28ACD A ∴∠=∠=︒,902862DCB ∴∠=︒-︒=︒,故答案为:62.15.(3分)如图,在ABC ∆中,AB AC =,50BAC ∠=︒,D 是边BC 的中点,DE 垂直AC 于点E ,则EDC ∠= 25 度.解:AB AC =,50BAC ∠=︒,1(18050)652C ∴∠=︒-︒=︒, DE 垂直AC ,90DEC∴∠=︒,906525CDE∴∠=︒-︒=︒,故答案为:25.16.(3分)如图,直角坐标系中,直线2y x=+和直线y ax c=+相交于点(,3)P m,则方程组2y xy ax c=+⎧⎨=+⎩的解为13xy=⎧⎨=⎩.解:直线2y x=+过点(,3)P m,32m∴=+,1m=,(1,3)P∴,∴方程组2y xy ax c=+⎧⎨=+⎩的解为:13xy=⎧⎨=⎩.故答案为:13xy=⎧⎨=⎩.17.(3分)如图,BD是ABC∆的角平分线,AE BD⊥,垂足为F,且交线段BC于点E,连结DE,若50C∠=︒,设ABC x∠=︒,CDE y∠=︒,则y关于x的函数表达式为80(080)y x x=-<<.解:AE BD⊥,90BFA BFE∴∠=∠=︒,ABF EBF∠=∠,BF BF=,()BFA BFE ASA ∴∆≅∆,BA BE ∴=,DA DE =,BAE BEA ∴∠=∠,DAE DEA ∠=∠,EDC y DAE DEA ∠=︒=∠+∠, 12DAE y∴∠=︒, 1502BEA BAE C DAE y ∴∠=∠=∠+∠=︒+︒, 2180ABC AEB ∠+∠=︒,100180x y ∴++=,80(080)y x x ∴=-<<.18.(3分)如图,在直角坐标系中,点(0,4)A ,(3,0)B -,C 是线段AB 的中点,D 为x 轴上一个动点,以AD 为直角边作等腰直角ADE ∆(点A ,D ,E 以顺时针方向排列),其中90DAE ∠=︒,则点E 的横坐标等于 4- ,连结CE ,当CE 达到最小值时,DE 的长为 .解:如图,把线段AC 绕点A 逆时针旋转90︒,得到AC ',连接C D ',则C '为定点5(2,)2, 在ACE ∆和△AC D '中AC AC C AD CAE AD AE ='⎧⎪∠'=∠⎨⎪=⎩ACE ∴∆≅△()AC D SAS 'C D CE ∴'=.当C D OD '⊥时,C D '最小,CE 最小值为52, 2OD ∴=, 过E 作EG OA ⊥于G ,EH x ⊥轴于H ,则四边形EHOG是矩形,EG OH∴=,90AGE AOD EAD∠=∠=∠=︒,90 AEG EAO EAO OAD∴∠+∠=∠+∠=︒,AEG OAD∴∠=∠,AE AD=,()AEG DAO AAS∴∆≅∆,2AG OD∴==,4EG OA==,∴点E的横坐标等于4-,2EH OG∴==,246DH=+=,2226210DE∴=+=,故答案为:4-,210.三、解答题(本大题共6小题,共46分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)解不等式组2532(1)13xx+⎧⎪-⎨<⎪⎩并把它的解集在数轴上表示出来.解:()2532113xx+⎧⎪⎨-<⎪⎩①②由①得:1x-由②得: 2.5x<,∴原不等式组的解为:1 2.5x-<,在数轴上表示为:20.(6分)在44⨯的正方形网格中建立如图1、2所示的直角坐标系,其中格点A,B的坐标分别是(0,1),(1,1)--.(1)请图1中添加一个格点C,使得ABC∆是轴对称图形,且对称轴经过点(0,1)-.(2)请图2中添加一个格点D,使得ABD∆也是轴对称图形,且对称轴经过点(1,1).解:(1)如图,点C即为所求.(2)如图,点D即为所求.21.(6分)已知:如图,ACB DCE=,CD CE=,AD交BC于点F,连结∠=∠,AC BCBE.(1)求证:ACD BCE∆≅∆.(2)延长AD交BE于点H,若30∠的度数.ACB∠=︒,求BHF【解答】证明:(1)ACB DCE∠=∠,∴∠+∠=∠+∠,ACB DCB DCE DCB即ACD BCE∠=∠,在ACD∆中,∆和BCEAC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴∆≅∆;(2)ACD BCE ∆≅∆,A B ∴∠=∠,BFH AFC ∠=∠,BHF ACB ∴∠=∠,30ACB ∠=︒,30BHF ∴∠=︒.22.(8分)如图,直角坐标系中,点C 是直线12y x =上第一象限内的点,点(1,0)A ,以AC 为边作等腰Rt ACB ∆,AC BC =,点B 在x 轴上,且位于点A 的右边,直线BC 交y 轴于点D .(1)求点B ,C 的坐标;(2)点A 向上平移m 个单位落在OCD ∆的内部(不包括边界),求m 的取值范围.解:(1)设点1(,)2C a a , 过点C 作CE x ⊥轴,垂足为E ,由题意得ACE ∆为等腰直角三角形,AE CE EB ==,且点B 在点A 的右边,即112a a -=,解得2a =,(2,1)C ∴,(3,0)B ,(2)设直线BD 的解析式为y kx b =+,代入(2,1)C ,(3,0)B 得2130k b k b +=⎧⎨+=⎩, 解得13k b =-⎧⎨=⎩, ∴直线BD 的解析式3y x =-+过A 作x 轴的垂线交直线OC 于点P ,交直线CD 于Q ,解得P 的坐标为1(1,),2Q 的坐标为(1,2) 即122m <<.23.(8分)“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买A ,B 两类垃圾桶,已知A 类桶单价20元,B 类桶单价40元,设购入A 类桶x 个,B 类桶y 个. (1)求y 关于x 的函数表达式.(2)若购进的A 类桶不少于B 类桶的2倍.①求至少购进A 类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A 类桶调换成另一种C 类桶,且调换后C 类桶的数量不少于B 类桶的数量,已知C 类桶单价30元,则按这样的购买方式,B 类桶最多可买 18 个.(直接写出答案)解:(1)根据题意,得20402000x y +=得1502y x =-+. 答:y 关于x 的函数表达式为1502y x =-+; (2)①购进的A 类桶不少于B 类桶的2倍,2x y ∴,即12(50)2x x -+. 解得50x .答:至少购进A 类桶50个;②设购入A 类桶x 个,B 类桶y 个,C 类桶c 个,根据题意,得2040302000x y c ++=将c y ,2x y 代入有20240302000x y y y ⨯++,解得18.1y (近似值),因y 为正整数,故y 最大取18.所以B 类最多买18个.或者:由200234x c y --=. 调换后C 类桶的数量不少于B 类桶的数量, 200234x c c --∴. 解得20027x c-. A 类桶不少于B 类桶的2倍.2x y ∴ 2002324x c x --∴⨯. 解得20043x c -. ∴20027x -.20043x -=. 解得40011x =x 、y 、c 为正整数,所以A 类至少买36个,所以B 类最多买18个.故答案为18.24.(10分)如图,直角坐标系中,直线y kx b =+分别与x 轴、y 轴交于点(3,0)A ,点(0,4)B -,过(0,8)D 作平行x 轴的直线CD ,交AB 于点C ,点(0,)E m 在线段OD 上,延长CE 交x 轴于点F ,点G 在x 轴正半轴上,且AG AF =.(1)求直线AB 的函数表达式.(2)当点E 恰好是OD 中点时,求ACG ∆的面积.(3)是否存在m ,使得FCG ∆是直角三角形?若存在,直接写出m 的值;若不存在,请说明理由.解:(1)将点A 、B 的坐标代入函数表达式:y kx b =+并解得: 43k =,4b =-, 故直线的表达式为:443y x =-;(2)当8y =时,4483x -= 解得9x =,∴点C 的坐标为(9,8),9CD ∴=, E 是OD 中点,DE OE ∴=,则()EDC EOF AAS ∆≅∆,9OF CD ∴==,12AG AF OF OA ∴==+=,过点C 作CH x ⊥轴于点H ,∴111284822ACG S AG CH ∆=⨯⨯=⨯⨯=;(3)①当90FCG ∠=︒时, AG AF =,则AC 是中线,则226810AF AC ==+=, 故点(7,0)F -,由点C 、F 的坐标可得:直线CF 的表达式为:1(7)2y x =+, 故点7(0,)2E ,则72m =; ②当90CGF ∠=︒时,则点(9,0)G , 则6AF AG ==, 故点(3,0)F -,同理直线CF 的表达式为:2(3)3y x =+, 故2m =; 综上,72m =或2.。

相关文档
最新文档