金属切削过程及其物理现象

合集下载

第二章第1节-金属切削过程及切屑类型分析

第二章第1节-金属切削过程及切屑类型分析

lfi
lfo
切屑与前刀面的摩擦
第一节 金属切削过程及切屑类型
积屑瘤
在切削速度不高而又能形成连续切屑的情况下,加工一般钢
料或其它塑性材料时,常常在前刀面处粘着一块剖面呈三角
状的硬块,称为积屑瘤。
它的硬度很高,通常是
工件材料的2—3倍,在
切屑
处于比较稳定的状态时,
能够代替刀刃进行切削。
积屑瘤
刀具
积屑瘤
切屑的种类
名称
带状切屑
切屑类型及形成条件
挤裂切屑
单元切屑
崩碎切屑
简图
形态 变形
形成 条件
影响
带状,底面光滑 ,背面呈毛茸状
剪切滑移尚未达 到断裂程度
加工塑性材料, 切削速度较高, 进给量较小, 刀具前角较大
切削过程平稳, 表面粗糙度小, 妨碍切削工作, 应设法断屑
节状,底面光滑有裂 纹,背面呈锯齿状
变形程度表示方法
变形系数
切削层经塑性变形后,厚度增加,长度缩小,宽度基本 不变。可用其表示切削层的变形程度。
◆ 厚度变形系数
h
hch hD
◆ 长度变形系数
L
LD Lch
Lch LD
切屑与切削层尺寸
第一节 金属切削过程及切屑类型
根据体积不变原理,则
h
lc lch
hch hDOMຫໍສະໝຸດ sin(90 OM sin
第二章 金属切削基本理论及应用
第一节 金属切削过程及切屑类型
金属切削过程是指在刀具和切削力的作用下形成切屑的过 程,在这一过程中,始终存在着刀具切削工件和工件材料抵抗切 削的矛盾,产生许多物理现象,如切削力、切削热、积屑瘤、刀 具磨损和加工硬化等。

第三节金属切削过程中的变形

第三节金属切削过程中的变形

2、第二变形区(纤维化) 第二变形区(纤维化)
(2)剪切角Φ与前刀面上摩擦角β的关系 作用在切屑上的力有 前刀面上的法向力Fn、摩擦力Ff、剪切面上的正压力Fns和剪应力Fs。 简化后作用在切屑上的力 Fr为切削合力、 Φ为剪切角、 β是Fn与Fr之间的夹角摩擦角、Fz是切 削运动方向的分力、和Fy是与运动方向垂直的分力。
a)积屑瘤的形成 切削加工时,切屑与前刀面发生强烈摩擦而形成新鲜表面接触。当接触面具 有适当的温度和较高的压力时就会产生粘结(冷焊)。于是,切屑底层金属 与前刀面冷焊而滞留在前刀面上。连续流动的切屑从粘在刀面的底层上流过 时,在温度、压力适当的情况下,也会被阻滞在底层上。使粘结层逐层在前 一层上积聚,最后长成积屑瘤。 所以积屑瘤的产生以及它的积聚高度与 金属材料的硬化性质有关,也与刃前区 演示1 积屑瘤形成过程 演示2 演示3 的温度和压力分布有关。一般说来,塑 性材料的加工硬化倾向愈强,愈易产生 积屑瘤;温度与压力太低,不会产生积 屑瘤;反之,温度太高,产生弱化作用, 也不会产生积屑瘤。走刀量保持一定时, 积屑瘤高度与切削速度有密切关系。
二、切削层金属的变形
以直角自由切削方式切削塑性材料为基础模型研究切屑形成过程。
大量的实验和理论分析证明,塑性金属切削过程中切 屑的形成过程就是切削层金属的变形过程。
二、切削层金属的变形
1、变形区划分 2、第一变形区(剪切滑移) 第一变形区(剪切滑移) 3、第二变形区(纤维化) 第二变形区(纤维化) 4、第三变形区(纤维化与加工硬化) 第三变形区(纤维化与加工硬化)
1、变形区划分
根据实验,切削层金属在刀具作用下变成切屑的形态大体可划分为三个变形区 第一变形区(剪切滑移) 第二变形区(纤维化) 第三变形区(纤维化与加工硬化)

金属切削过程

金属切削过程

(3)单元切屑 (3)单元切屑
在挤裂切屑的剪切面上,裂纹 扩展到整个面上,则整个单 元被切离,成为梯形单元切 屑。 如果改变挤裂切屑条件,进一 步减小前角,减低切削速度, 或加大切削厚度,就可以得 到单元切屑;反之则可以得 到带状切屑。
(4)崩碎切屑 (4)崩碎切屑
这是属于脆性材料的切屑 (加工灰铸铁、脆钢) 加工灰铸铁、脆钢) 塑性变形很不充分,即突然 崩裂而成为小块或粉末状 切屑。
1.3.2积屑瘤Built1.3.2积屑瘤Built-Up Edge
1.积屑瘤的形成 1.积屑瘤的形成 在切削区,金属材料层受到强烈的挤压和摩 擦,正压力和摩擦系数的乘积,即内摩擦 力大于金属材料的剪切强度,切屑底部一 部分金属就撕裂下来粘接在刀尖附近的表 面上,逐渐积成积屑瘤。
(1)积屑瘤特征 (1)积屑瘤特征
切屑的形成过程是工件受 到刀具的挤压而崩碎,无 塑性变形。如图:
A D
C B
滑移面AB,CD等与作用力P的方向大致呈45° 滑移面AB,CD等与作用力P的方向大致呈45°左右 角度。 AB,CD两侧还会产生一系列滑移面。 AB,CD两侧还会产生一系列滑移面。
1.3金属切削过程 1.3金属切削过程
金属切削过程是由挤压而产生的剪切过程。 这是俄国学者在1870年定义的 这是俄国学者在1870年定义的 在这个过程中会产生切屑,积屑瘤,切削力, 加工硬化和刀具磨损等物理现象。
1.3.1切削过程及切屑种类 1.3.1切削过程及切屑种类 1.切屑形成过程 1.切屑形成过程
(3)刀具角度 (3)刀具角度
1)前角增加,切削力减小。 1)前角增加,切削力减小。
切削力
γ0
2)后角增加,切削力减小。 2)后角增加,切削力减小。 3)主偏角kr增加,主切削力Fz减小,进给力Fx 3)主偏角k 增加,主切削力F 减小,进给力F 增加,切深抗力F 增加,切深抗力Fy减小。

第二章第三节 金属切削过程及其物理现象

第二章第三节 金属切削过程及其物理现象

五.变形程度的表示方法
1. 剪切角 2. 相对滑移或剪应变 3. 变形系数 a / l
六. 前刀面的挤压与摩擦及其对切屑变形的影响
特征:使切屑底层靠近前刀面处纤维化,流动速度 减慢,甚至滞留在前刀面上; 切屑弯曲; 由摩擦产生的热量使切屑与刀具接触面温度升高。
1. 2. 3. 4.
七. 积屑瘤的形成及其对切削过程的影切 屑的情况下,加工一般钢料或其他 塑性材料时,常常在刀具前刀面粘 着一块剖面有时呈三角形的硬块。 它的硬度很高,通常是工件材料的 2~3倍,在处于比较稳定的状态时, 能够代替切削刃进行切削。这块冷 焊在前刀面上的金属就叫积屑瘤。
第三节 金属切削过程及其物理现象
一. 国内外切削理论研究概述
1. 2. 3. 1870年,俄国学者基麦就开始了切削理论的研究工作,提出塑 性金属的切削过程是由挤压产生的剪切过程。 1913年~1916年,乌沙丘夫的研究使人们对切削过程的认识 由外部深入到内部。 1907年,美国学者泰勒(Taylor)发表了(On the Art of Cutting Metal)一书,提出了著名的切削速度与刀具耐用度关 系式(著名的泰勒公式),对生产应用产生了重大影响。 1941年,美国学者麦钱特(Merchant)发表了(Mechanics of the Metal Cutting Process)的著名论文,提出了塑性金属 切削是剪切过程的力学模型,推导了剪切角的理论公式。
4.
5.
6.
在Merchant之后,诸多学者对剪切角的理论推导,剪切角与变形 的关系以及切削速度对切屑变形的影响进行了广泛的研究。如美国 学者李-谢弗、苏联学者佐列夫、澳大利亚学者奥克斯利、日本学 者中山一雄、日本学者臼井英治、华裔学者赵佩之、美国学者阿尔 伯莱特等都各自做出了一定的贡献。 1981年起,在刘培德教授的带领下,大连理工大学机械系金属切 削原理与刀具教研室的多位老师开展了切削理论的研究。取得的成 果有: 提出了正交切削时刃前区应力分析的新模型(带弯矩的切削力学模 型) 证明了切削过程中存在弯矩,弯矩的存在使切屑发生弯曲。通过一 定手段控制弯矩的大小及正负控制切屑的卷曲与折断,从而发展了 断屑理论。解决了诸多生产难题,如上海宝钢无缝钢管厂在西德产 数控车床上螺纹加工的断屑问题。

金属切削过程及控制

金属切削过程及控制

图3-12 积屑瘤高度与切削速度关系示意图
4)积屑瘤对起削过程的影响
实际前角增大(图3-13); 增大切削厚度(图3-13) ; 使加工表面粗糙度增大; 对刀具寿命的影响。
一般积屑瘤对切削加工过程的影响是不利 的,在精加工时应尽可能避免积屑瘤的产生, 但在粗加工时,有时可充分利用积屑瘤。
图3-10
切屑和前面摩擦情况示意图
六、积屑瘤的形成及其对切削过程的影响
1)什么是积屑瘤
在中低速切削塑性金属材料时, 常在刀具前面刃口处粘 结一些工件材料, 形成一块硬度很高的楔块,称之为积屑瘤。
2)积屑瘤的形成原因
产生这种现象,是滞流层金属不断堆积的结果。
3)影响积屑瘤的因素
积屑瘤的产生以及它的积聚高度与金属材料的硬化程度 有关,也与刀刃前区的温度和压力状况有关。
三、影响切削力的因素
1. 工件材料
•影响较大的因素主要是工件材料 的强度、硬度和塑性。 •材料的强度、硬度越高,则屈服 强度越高,切削力越大。 •在强度、硬度相近的情况下,材 料的塑性、韧性越大,则刀具前面 上的平均摩擦系数越大,切削力也 就越大。
2. 切削用量
进给量f和背吃刀量ap
进给量f和背吃刀量ap增加,使切 削力Fc增加,但影响程度不同。 进给量f 增大时,切削力有所增 加;而背吃刀量ap增大时,切削 刃上的切削负荷也随之增大,即 切削变形抗力和刀具前面上的摩 擦力均成正比的增加。
第一节 金属切削过程及切屑类型 一、切屑的形成过程
1.切削变形的力学本质
切削金属形成切屑的 过程是一个类似于金属材 料受挤压作用,产生塑性 变形进而产生剪切滑移的 变形过程 (图)。
2.切屑形成过程模型
图3-1

第一章 金属切削过程中的基本规律讲解

第一章  金属切削过程中的基本规律讲解
积的结果。 (2)积屑瘤对切削过程的影响 ①保护刀具 积屑瘤代替切削刃和前刀面进行切削。
②增大前角 积屑瘤具有30°左右的前角。
③增大切削厚度 切削厚度增大了ΔhD。
④增大已加工表面粗糙度
原因:积屑瘤不规则的形状和非周期性的生成与脱 落、可能引起的振动、积屑瘤碎片残留在已加工表面 上。
积屑瘤
(3)影响积屑瘤的主要因素
在滑动区内的摩擦为外摩擦,该处的剪应力τy 由τs 逐渐减小到零。
正应力σγ 在刀刃处最大,离切削刃越远,前刀面上 的正应力越小,并逐渐减小到零。
刀-屑接触面上的摩擦特性
刀-屑接触面上的摩擦特性
前刀面上的摩擦系数μ是变化的,其计算公式如下:
s av
式中 τs ——工件材料的剪切屈服强度,随温度升 高而略有下降
响比较明显,前角γ0 对切削力的影响最大。
切削热的产生和传出
(1)切削热的产生 切削加工中,切削变形与摩擦所消耗的能量几乎全 部转换为热能,因此三个变形区就是三个发热源。如 下图所示。
切削热的产生和传出
(2)切削热的传出 由切屑、刀具、工件、周围介质传导出去。
车削钢料时,切削热被切屑带走约50% ~ 86%,传入 刀具的约占10% ~ 40%,传入工件的约为3% ~ 9%,传入 周围介质的约占1%。
相对滑移ε
切削层中m´n´线滑移至m˝n˝ ,瞬时位移为∆y , 滑移量为∆s 。

cos o
sin cos( o )
增大前角γo 和剪切角φ,则
相对滑移ε减小,即切削
变形减小。
变形系数ξ
将切削时形成的切屑与切削层尺寸比较,可知切 屑的长度缩短而厚度增加。 变形系数就是切屑厚度和 切削层厚度的比值,或者是切削层长度和切屑长度的 比值。

金属切削中的物理现象

金属切削中的物理现象

10
2. 切削力
切削力的来源: 切削力的来源: 被切削材料的弹性、 被切削材料的弹性、塑性变形抗力 刀具与切屑、 刀具与切屑、工件表面之间的摩擦力
11
切削力的分解
1)主切削力Fz (切向力) )主切削力 切向力) 2)切深抗力 y (径向力) 径向力) )切深抗力F 3)进给抗力 x (轴向力) 轴向力) )进给抗力F
mV 工件
刀具
金属丝
小孔
30
热电偶
4. 刀具磨损及耐用度
刀具失效: 刀具失效:磨损和破损
刀具的磨损形态
31
塑性材料的前刀面磨损:月牙洼深度 塑性材料的前刀面磨损:月牙洼深度KT
32
原因: 原因: •前刀面上过高的切 前刀面上过高的切 削温度引起扩散磨损 改进方法: 改进方法: •降低切削速度 降低切削速度 •减小走刀 减小走刀 •采用正前角刀片, 采用正前角刀片, 采用正前角刀片 更耐磨的刀片材质或 涂层 •避免积屑瘤 避免积屑瘤
经验公式
x Fz f y Fz Fz = C Fz a p
切削力的测定: 切削力的测定: 1、测定机床功率,计算切削力 、测定机床功率, 2、用测力仪测量切削力 、
v
n Fz
K Fz
20
3. 切削热和切削温度
切削力做功转化为切削热: 切削力做功转化为切削热:
切屑
刀具
工件
切削热的来源与传出
21
影响热传导的因素: 影响热传导的因素:导热系数和加工方法 加工方法 车削 铣削 钻、镗削 磨削 切屑 50~86% 70% 30% 4% 工件 3~9% <30% >50% >80% 刀具 10~40% 5% 15% 12%

第2章 金属切削过程

第2章 金属切削过程

⑶主偏角 主偏角κ r 对主切削力影响不大,对吃刀抗力和进给抗 力影响显著( κr ↑—— Fp↓,Ff↑)
切削力/ N
2200
1800
1400 1000
κr - Fc
κr – Ff κr – Fp
FC—— 切削力(Fz) Ff—— 进给力(Fx) FP—— 背向力(Fy)
600 200 30 45 60
进给力Fx (Ff)
也称轴向分力,用Fx表示—总切削力在进给方 向的分力,是设计机床进给机构不可缺少的参数。 背向力 Fy(Fp) 也称径向分力,用Fy表示 —总切削力在垂直于
工作平面方向的分力,是进行加工精度分析、计算
系统刚度,分析工艺系统振动所必须的参数。
三个分力FC、Ff、FP与合力F 合力F =
2、切削温度的分布
★ 切削塑性材料 :
前刀面靠近刀尖处温度最高。
★ 切削脆性材料: 后刀面靠近刀尖处温度最高
750 ℃
刀 具
2.3.3 影响切削温度的主要因素
1.切削用量对刀具温度的影响
切削温度与切削用量的关系式为:
θ = Cθ VcZθ fyθ apxθ 三个影响指数 zθ >yθ >xθ ,说明切削速度对切削 温度的影响最大,背吃刀量对切削温度的影响最小。
C区是刀尖区,由于散热差,强度低,磨损 严重,磨损带最大宽度用VC表示 B区处于磨损带中间,磨损均匀,最大磨损 量VBmax;
3.边界磨损
N区处于切削刃与待加工表面的相交处,磨 损严重,磨损量以VN表示,此区域的 磨损也叫边界磨损
2.4.2 刀具磨损的主要原因
1. 硬质点磨损
工件材料中含有硬质点杂质,在加工过程中会将刀具表面划伤, 造成机械磨损。低速刀具磨损的主要原因是硬质点磨损。

第十七章 金属切削加工基础知识

第十七章 金属切削加工基础知识

图17-15 切削合力与分力
(1)主切削力Fc 垂直于基面且与切削主运动速度方向一致。机床动 力的主要依据。消耗功率95%以上。 (2)背向力Fp 在基面内,与切削进给速度方向垂直。易使工件变 2 形,同时还会引起振动,使工件的表面粗糙度值增大。 (3)进给力Ff 在基面内,与进给速度方向平行。是验证进给系统 零件强度和刚度的依据。 (17-6) 由图17-15可知 F2=F2c+ F2p+ F2f 2. 影响切削力的大小的因素: 影响切削力的大小的因素: (1)工件材料的影响 )工件材料的影响:一般材料的强度、硬度愈高,韧性、塑性愈好, 愈难切削,切削力也愈大。 (2)切削用量的影响:当ap和f增加时,切削力也增大。在车削加工时, )切削用量的影响: 当ap加大一倍,Fc也增大一倍;而f加大一倍,Fc只增大68%~86%,因 此,从切削力角度考虑,加大进给量比加大背吃刀量有利。 (3)刀具几何参数的影响 前角和后角对切削力的影响最大。 ) 前角愈大切屑变形小,切削力也小。 后角愈大,刀具后刀面与工件加工表面间的摩擦愈小。 改变主偏角的大小,可以改变轴向力与径向力的比例(特别是加工细长工 件时,经常采用较大的主偏角以使径向力减小)
• 二、影响材料切削加工性的因素 • 1.影响工件材料切削性能的主要因素 • (1)硬度、强度 一般来讲,材料的硬度、强度愈高,则切削力愈大, 消耗切削功率愈多,切削温度愈高,刀具磨损愈快,因此,其切削加 工性差。 • (2)塑性 材料的塑性愈大,则切削变形愈大,刀具容易发生磨损。 在较低的切削速度下加工塑性材料还容易出现积屑瘤使加工表面粗糙 度值增大,且断屑困难,故切削加工性不好。但材料塑性太差时,得 到崩碎切屑,切削力和切削热集中在切削刃附近,刀具易产生崩刃, 加工性也较差。 • (3)另外,材料的热导率、化学成分、金相组织等都对材料的切削加 工性有一定的影响。 • 2.改善材料切削加工性的主要措施 • (1)调整材料的化学成分 在钢中加入S、P、Pb、Ca等元素能起 到一定的润滑作用并增加材料的热脆性,从而改善其切削加工性。 • (2)对工件材料进行适当的热处理 利用热处理可改善低碳钢和高 碳钢的切削加工性。例如,对低碳钢和进行正火处理,或降低塑性, 提高硬度,使其切削加工性得到改善。对高碳钢和工具钢进行球化退 火,使网状、片状的渗碳体组织球状渗碳体,降低了材料的硬度,使 切削加工较易进行。对于出现白口组织的铸件,可在950~1000℃下 进行长时间退火,降低硬度, 达到改善切削加工性的目的。

第2章 金属切削过程的物理现象

第2章 金属切削过程的物理现象

2.2.2 切屑与前刀面的摩擦和积屑瘤
1.切屑与前刀面的摩擦 切屑与前刀面间的这种 摩擦与一般金属接触面 间的摩擦不同。切屑与 前刀面接触区分为粘结 区和滑动区两部分。
外摩擦
图2-5切屑与前刀面摩擦特性
内摩擦

刀—屑接触区的摩擦特点
切屑沿前面流出 → 切屑与前刀面间压力 大(2~3Gpa)、温度高(400~1000℃),切 屑底部严重塑性变形且与前刀面发生粘结 → 刀-屑间的摩擦不再是外摩擦,而是粘结层与 金属层的内摩擦 → 刀-屑接触区内摩擦力占 85%,整个接触区正应力σ以刀尖处最大 → 刀 -屑接触区实际上存在两个分区: 滑动区、粘 结区
切屑
节状切屑
粒状切屑
崩碎切屑
2) 节状切屑 又称挤裂切屑,外形和带状切屑不同之处在 于外表面呈锯齿形,有明显裂痕,内表面有时有裂纹,并未断 开,如图所示。 产生条件:这种切屑是在加工中等塑性金属材料时,切削 速度较低,切削厚度较大,并在较小的刀具前角的情况下产生。 影响:它的切削力波动较大,已加工表面粗糙度高。
2.切削用量
•ap和f的大小决定切削面积的大小。因此,ap和f的增加
均会使Fc增大,但两者的影响程度不同。ap增大,Fc成
正比线性增大。f增大,Fc成正比非线性增大。 这是由于,ap增大1倍,切削宽度aw增大1倍,故Fc 也增大1倍。f增大1倍时,切削厚度ac也增大1倍,Fc应随 之增大1倍。但是ac的增加将使变形系数下降,导致Fc 也有所下降,综合考虑,Fc的增长要慢于f的增长。 另:从切削力的指数公式中的系数大小也可看出切削 用量的影响程度的区别。
重要结论: 当切削面积相同时,采用较大的进给量f 及较小的背吃刀量ap可使切削力小一些→故从 刀具负荷和能量消耗方面来考虑,用大的进给 量f比用大的背吃刀量ap更有利。

金属切削过程

金属切削过程
名称 带状切屑
3.7切屑的类型与控制
(按切屑的形成机理 )
挤裂切屑 单元切屑 崩碎切屑
带状切屑
简图
节状切屑
形态 变形 形成条 件
带状,底面光滑 ,背面呈毛茸状 剪切滑移尚未达 到断裂程度 切削塑性材料, 速度高,切削厚 度小 前角大 切削过程平稳, 表面粗糙度小, 妨碍切削工作, 应设法断屑
节状,底面光滑有裂 粒状 纹,背面呈锯齿状 局部剪切应力达到断 剪切应力完全达 到断裂强度 裂强度 加工塑性材料, 工件材料硬度较 切削速度较低, 高,韧性较低, 进给量较大, 切削速度较低 刀具前角较小 切削过程欠平稳, 表面粗糙度欠佳
调整切削速度
(↓Vc,↑Vc)
高速 (Vc>80-100)
中速 (Vc=5-50)
↓摩擦
(γo↑, ↓前刀面Ra值, 加切削液)
*** Vc=20-30 M/min 为积屑瘤高发区
加工硬化现象
演示
五. 切削热及切削温度
(Cutting Heat and Cutting Temperature) 1.切削热 (Cutting Heat)
产生 传散
切屑、刀具、工件、空气 % 50-80 20-40 3-9 1% 对切削加工的影响 刀具:体积小,゜c↑,HRC↓ 工件:薄、小工件变形,烧坏
2.切削温度
(Cutting Temperature) 高低 热的产生 散热条件 影响因素 工材: 强、硬度、导热性 切削用量 Vc>f>ap 刀具角度 γo 、κr 切削液
切屑颜色与切削区域温度
六、刀具的磨损与耐用度
(TOOL Wear and Degree of Durableness)
1.磨损

金属切削过程中的物理现象

金属切削过程中的物理现象

金属切削过程中的物理现象
金属切削过程是指通过刀具把被加工金属的多余部分去除,从而获得所需要的形状、尺寸和表面质量的过程。

在这个过程中,会出现许多有趣的物理现象。

其中一个物理现象是切屑的形成。

当刀具切入工件时,工件材料会受到挤压、摩擦和剪切等力的作用,从而发生塑性变形并形成切屑。

切屑的形状和尺寸与刀具的几何形状、切削参数、工件材料等因素有关。

另一个物理现象是切削力。

在金属切削过程中,刀具会受到工件材料的阻力,这个阻力称为切削力。

切削力的大小和方向会影响刀具的寿命、加工质量和加工效率。

因此,在金属切削过程中,需要合理选择刀具材料、刀具几何形状和切削参数等,以减小切削力。

此外,还会出现切削热的现象。

在金属切削过程中,刀具与工件之间的摩擦会产生大量的热量,这些热量会使工件和刀具的温度升高。

过高的温度会降低工件材料的力学性能和刀具的寿命,因此需要采取适当的冷却措施来降低温度。

总之,金属切削过程中会出现许多有趣的物理现象,这些现象对于理解金属切削加工过程、提高加工质量和效率具有重要意义。

模块金属切削加工中的主要现象及规律

模块金属切削加工中的主要现象及规律

课题1 切削中的变形 图2-4 剪切角
课题1 切削中的变形
剪切角φ可按下式计算
式中π 4Fra bibliotek(0
)
(2-1)
φ——剪切角;
β——摩擦角,即切削合力F与前刀面垂直力FN之
间的夹角;
ro——前角。 2) 变形程度的衡量
金属切削过程中的许多物理现象都与切削过程中的
变形程度大小直接有关。衡量切削变形程度大小的
课题2 切屑的种类及断屑 图2-8 切屑的种类
课题2 切屑的种类及断屑
2. 挤裂切屑 如图2-8(b)所示,挤裂切屑外形与带状切屑相似,但变形 程度比带状切屑大。这种切屑是在加工塑性金属材料,切 削厚度较大,切削速度较低,刀具前角较小时得到的。此 时切削力波动较大,切削过程中产生一定的振动,已加工 表面较粗糙。 3. 单元切屑 如图2-8(c)所示,加工塑性较差的金属材料时,在挤裂切 屑基础上将切削厚度进一步增大,切削速度和前角进一步 减小,使剪切裂纹进一步扩展而断裂成梯形状的单元切屑。
课题1 切削中的变形 图2-3 切削时的3个变形区
课题1 切削中的变形
1. 第一变形区 1) 变形特点 第一变形区是指在切削层内产生剪切滑移的塑性变形区, 切削过程中的塑性变形主要发生在这里,所以它是主要变 形区。 由于此变形区一般是很窄的,因此在实际中常用一个剪切
面OM 来代替。如图2-4所示的OM 剪切面。根据材料力学可 知,剪切滑移产生在切应力最大的平面OM 上,它和作用力 F的方夹向角间φ的称夹为角剪为切角。。通4常把切削速度vc与剪切面OM 间
方法有多种,实用中较常用也较方便的是用变形系
数ζ来衡量变形程度大小。
课题1 切削中的变形
如图2-5所示,切削层经过剪切滑移变形变为切屑,其长度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切屑收缩:

之一

切削层金属经过第I、II变形区的挤压和摩擦变形,切屑的长 度将减小,厚度将增加。这种现象称为切屑收缩。切屑收缩 是切削层金属塑性变形的有力证据。 切削收缩的程度可用变形系数来表示ξ,用下式计算
ξ = ac/a = l/lc
式中:a、l分别为切削层的厚度和长度 ac、lc分别为切屑的厚度和长度,
教学光盘(30”)
10
影响积屑瘤的因素

工件材料

塑性越大,越容易产生积屑瘤 当工件材料一定时,切削速度是影响积屑瘤的主要因素 规律:高速或低速不易产生积屑瘤

切削速度


刀具角度 切削液
11
控制积屑瘤的措施

提高或降低切削速度 增大刀具前角 使用润滑性能较好的切削液

总之:减小切屑流走时的阻力和摩擦力,都会减小积屑瘤的 高度或避免积屑瘤挤裂切屑)
条件:v较低、f较大、 γ 0较小、加工塑性金属; 特征:靠近前刀面一侧有裂纹(贯穿或不贯穿),另 一面锯齿状
6
切屑的种类
C:崩碎切屑
特征:碎屑 条件:切削脆性材料
7
注意
各种不同切屑的形成,主要是由于切削过程中 金属的变形能力和变形程度不同造成的
切屑的各种形态之间是可以转化的



常常伴随着残余应力和表面裂纹,使材料的疲劳强度 下降,并且使下道工序的工序的加工困难,还会引起 零件的变形。 增大刀具前角、减小刃口圆弧半径、限制后刀面磨损 以及采用合适的切削液等

减轻措施

13
小结
切削变形

切削变形机理 现象
1. 2.
切屑收缩 不同切屑种类

形成条件 对加工过程的影响
产生原因 特点、对加工过程的影响 影响因素及控制 表现 对零件不利影响和控制措施
14
3.
积屑瘤

4.
已加工表面加工硬化

思考题

章后思考题

3. 4. 5. 6.
15

由于各种不同切屑对切削效率、刀具寿命、和 加工质量的影响不同,因此可以用改变切削条 件的办法来控制切屑的形态,以控制切削过程。
8

切削变形现象

之三
积屑瘤

产生的原因

当前刀面与切屑底层金属的摩擦力超过切屑材料本身分 子之间的结合力时,滞留层的部分金属就会粘附到刀具 的前刀面上靠近刀刃处,逐渐累计便会形成一块很硬的 楔状金属瘤,通常称为积屑瘤,也叫刀瘤
12

切削变形现象
表现

之四
已加工表面的加工硬化

工件已加工表面金属的硬度比工件加工前表面 的硬度有明显地提高,而塑性降低(工件基体材料 硬度的1.2~2倍,深度可达0.01~0.05mm )

产生原因
由于受基本变形区的影响、刃口挤压、后刀面 的挤压和摩擦(第III变形区)等造成的 对被加工零件影响
1.2 金属切削过程及其物理现象
关注核心:
1.金属切削过程伴随哪些物理现象? 2.对加工过程的影响规律? 3.如何控制?
1
一、切削变形

切削过程 切削变形的力学模型


第一变形区、第二变形区、第三变形区 被切削层金属由于刀具的挤压而产生弹性变形和塑性变形,从而切 离工件本体形成切屑
2


切削变形现象

显然,ξ >1
3


切削变形现象
切屑种类:

之二
带状切屑 节状切屑 粒状切屑 崩碎切屑

教学光盘(3’18”)
4

切屑的种类
A:带状切屑
形成条件:加工塑性金属、v较高、f 较小,γ 0较大 特征:底面光滑,表面毛绒状,连绵 不断;切削稳定,但对清理和运输 不利,尤其在自动机和自动线上
9
积屑瘤对加工过程的影响


形成过程中经过了强烈的变形,所以硬度明显提高,一般比工件 材料的硬度提高1.5~2.5倍,因此可以代替刀刃切削,保护切削刃。 另外,积屑瘤存在增大了刀具的工作前角γe,切削变得轻快,所 以粗加工时产生积屑瘤有一定好处。 但是积屑瘤长大到一定高度后,由于切削过程中的冲击、振动等 原因,会发生破裂脱落,被切屑带走或留在已加工表面上,而且 这个过程周而复始,造成积屑瘤时大时小,极不稳定,容易应起 加工过程振动;另外积屑瘤沿切削刃伸出的形状很不规则,会在 工件已加工表面留下不均匀的沟痕,直接影响已加工表面的形状 精度和粗糙度,所以在精加工和使用定尺寸刀具加工时,尽量避 免积屑瘤的产生。
相关文档
最新文档