高中物理模型及方法

合集下载

高中物理板块模型归纳

高中物理板块模型归纳

高中物理板块模型归纳高中物理板块模型归纳是指将高中物理课程中所涉及的知识点进行分类、总结和归纳,形成一种系统化的知识结构。

这种模型可以帮助学生更好地理解和掌握物理知识,提高学习效率。

下面详细介绍高中物理板块模型。

一、力学1. 运动学(1)描述运动的数学工具:位移、速度、加速度、角速度、周期等。

(2)直线运动规律:匀速直线运动、匀加速直线运动、匀减速直线运动、匀速圆周运动。

(3)曲线运动规律:平抛运动、斜抛运动、圆周运动。

2. 动力学(1)牛顿运动定律:惯性定律、动力定律、作用与反作用定律。

(2)动量定理:动量的守恒、动量的变化。

(3)能量守恒定律:动能、势能、机械能、内能。

3. 机械振动与机械波(1)简谐振动:正弦、余弦、螺旋线。

(2)非简谐振动:阻尼振动、受迫振动。

(3)机械波:横波、纵波、波的干涉、波的衍射、波的传播。

二、热学1. 分子动理论(1)分子运动的基本规律:布朗运动、分子碰撞、分子速率分布。

(2)气体的状态方程:理想气体状态方程、范德瓦尔斯方程。

2. 热力学(1)热力学第一定律:内能、热量、功。

(2)热力学第二定律:熵、热力学第二定律的微观解释。

3. 物态变化(1)相变:固态、液态、气态、等离子态。

(2)相变规律:熔化、凝固、汽化、液化、升华、凝华。

三、电学1. 电磁学(1)静电学:库仑定律、电场、电势、电势差、电容、电感。

(2)稳恒电流:欧姆定律、电阻、电流、电功率、电解质。

(3)磁场:毕奥-萨伐尔定律、安培环路定律、洛伦兹力、磁感应强度、磁通量、磁介质。

2. 电路与电器(1)电路:串联电路、并联电路、混联电路、电路图。

(2)电器:电阻、电容、电感、二极管、晶体管、运算放大器。

3. 电磁波(1)电磁波的产生:麦克斯韦方程组、赫兹实验。

(2)电磁波的传播:波动方程、折射、反射、衍射。

四、光学1. 几何光学(1)光线、光的反射、光的折射、光的速度。

(2)透镜:凸透镜、凹透镜、眼镜、相机、投影仪。

高一物理48个解题模型

高一物理48个解题模型

高一物理48个解题模型高一物理48个解题模型物理是一门理论与实践相结合的学科,对于高中生来说,掌握解题模型是学好物理的关键。

下面将介绍一些高一物理常见的解题模型,帮助学生更好地应对各种物理问题。

1. 运动学模型:根据物体在运动中的速度、位移、加速度等信息,分析物体的运动规律。

2. 动量守恒模型:根据系统内物体的质量和速度,分析碰撞、爆炸等情况下动量的守恒关系。

3. 能量守恒模型:根据物体的势能、动能等信息,分析物体在能量转化过程中的关系。

4. 弹性碰撞模型:根据碰撞物体的质量和速度,分析碰撞后物体的速度和能量转化情况。

5. 万有引力模型:根据物体的质量和距离,分析物体之间的引力关系。

6. 电路分析模型:根据电路中的电阻、电容、电流等元件,分析电路中的电流、电压等参数。

7. 磁场分析模型:根据磁场的大小和方向,分析磁场对物体的作用力和磁感应强度等参数。

8. 电磁感应模型:根据磁感应强度和导线运动情况,分析感应电动势和感应电流等问题。

9. 光学成像模型:根据光的传播规律,分析凸透镜、凹透镜成像的特点和规律。

10. 热力学模型:根据物体的温度、热量和热容等参数,分析热力学过程中的能量转化和热平衡问题。

11. 物质结构模型:根据物质的化学成分和结构,分析物质的性质和变化规律。

12. 机械振动模型:根据弹簧振子、摆锤等物体的振动特性,分析振动频率和振幅等问题。

13. 波动模型:根据波的传播规律,分析波的频率、波速和波长等参数。

14. 电磁波模型:根据电磁波的特性,分析电磁波的频率、波长和传播速度等问题。

15. 电磁场分析模型:根据电磁场的大小和方向,分析电磁场对物体的作用力和电磁感应等问题。

除了上述模型外,还有很多其他解题模型,如力学模型、静电模型、波粒二象性模型等等。

在解题过程中,学生可以根据具体问题的要求选择合适的模型进行分析和计算。

同时,掌握解题方法也是解决物理问题的关键。

学生需要注重理论知识的学习,建立良好的物理思维和逻辑能力,通过大量的练习和实践,熟悉不同模型的应用,培养自己的解题能力。

高中物理解题模型详解(20套精讲)

高中物理解题模型详解(20套精讲)

高考物理解题模型目录第一章运动和力一、追及、相遇模型二、先加速后减速模型三、斜面模型四、挂件模型五、弹簧模型(动力学)第二章圆周运动一、水平方向的圆盘模型二、行星模型第三章功和能一、水平方向的弹性碰撞二、水平方向的非弹性碰撞三、人船模型四、爆炸反冲模型第四章力学综合一、解题模型:二、滑轮模型三、渡河模型第五章电路一、电路的动态变化二、交变电流第六章电磁场一、电磁场中的单杆模型二、电磁流量计模型三、回旋加速模型四、磁偏转模型第一章运动和力模型讲解:一、追及、相遇模型1、火车甲正以速度v1 向前行驶,司机突然发现前方距甲d处有火车乙正以较小速度v2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。

为了使两车不相撞,加速度 a 应满足什么条件?解析:设以火车乙为参照物,则甲相对乙做初速为(v1 -v2) 、加速度为 a 的匀减速运动。

若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。

因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为 d。

(v -v )2即:0 - (v1-v2)2 =-2ad,a = 1 2 ,2d(v -v )2故不相撞的条件为a ≥ 1 22d2、甲、乙两物体相距 s,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。

甲物体在前,初速度为v1,加速度大小为a1。

乙物体在后,初速度为v2,加速度大小为a2 且知v1<v2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?解析:若是v1a1≤v2 ,说明甲物体先停止运动或甲、乙同时停止运动。

在运动过程中,a2乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为v 2 v 2∆s =s + 1 - 22a1 2a2若是v1a2>v2a2,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据v共=v1-a1t =v2-a2t ,求得t =v2-v1a2-a1在t 时间内甲的位移s1=v共+v1 t2乙的位移s2=v共+v2 t2代入表达式∆s =s +s1-s2求得∆s =s -(v2-v1)2(a2-a1)3、如图 1.01 所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为vS和vA。

高中物理知识点归类总结-模型法

高中物理知识点归类总结-模型法

模型法(1)“对象模型”:即把研究的对象的本身理想化.用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型), 实际物体在某种条件下的近似与抽象,如质点、光滑平面、理想气体、理想电表等; 常见的如“力学”中有质点、点电荷、轻绳或杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;(2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型. (3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型 理想化了的物理现象或过程,如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动等。

有些题目所设物理模型是不清晰的,不宜直接处理,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。

解决物理问题的一般方法可归纳为以下几个环节: 原始的物理模型可分为如下两类:物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 知识分类举要力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 1.力的三种效应:时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等) 过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等)物理模型2.动量观点:动量(状态量):p=mv=K mE 2 冲量(过程量):I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。

公式: F 合t = mv’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F1t1+F2t2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。

高中物理24个经典模型

高中物理24个经典模型

高中物理24个经典模型高中物理中有许多经典的模型,这些模型帮助我们理解物理世界的运作原理。

本文将介绍高中物理中的24个经典模型,让我们一起来了解它们吧!1.单摆模型:单摆模型用来研究摆动的物体的运动规律。

它包括一个质点和一个细线,可以通过改变细线长度或质点的质量来研究摆动的周期和频率。

2.平抛运动模型:平抛运动模型用来研究水平投掷物体的运动轨迹和速度。

它假设没有空气阻力,只有重力作用。

可以通过改变初速度和仰角来研究物体的落点和飞行距离。

3.牛顿第一定律模型:牛顿第一定律模型认为在没有外力作用下物体将保持匀速直线运动或静止。

这个模型帮助我们理解惯性的概念和物体运动状态的变化。

4.牛顿第二定律模型:牛顿第二定律模型描述了物体受力和加速度之间的关系。

它的数学表达式为F=ma,其中F表示物体受力,m表示物体质量,a表示物体加速度。

5.牛顿第三定律模型:牛顿第三定律模型表明对于每个作用力都存在一个等大反向的相互作用力。

这个模型帮助我们理解力的概念和物体之间的相互作用。

6.阻力模型:阻力模型用来研究运动物体与介质之间的相互作用。

它的大小与速度和物体形状有关,在物体运动时会减小其速度。

7.功率模型:功率模型描述了物体转化能量的速度和效率。

它等于功的大小除以时间,可以帮助我们理解物体能量的转变和利用。

8.热传导模型:热传导模型描述了热量在物体间传递的过程。

它通过研究热导率和温度差来解释热量传递的速率和方向。

9.摩擦力模型:摩擦力模型用来描述物体在接触面上滑动或滚动时的相互作用。

它的大小与物体之间的粗糙程度和压力有关,可以通过摩擦力模型来研究物体的运动和停止。

10.力矩模型:力矩模型用来研究物体旋转的平衡和加速度。

它的数学表达式为M=rF,其中M表示力矩,r表示力臂,F表示作用力。

11.浮力模型:浮力模型用来研究物体在液体或气体中的浮力。

它的大小等于液体或气体对物体的推力,可以帮助我们理解物体在液体中的浮沉和船只的浮力原理。

物理模型考点总结归纳高中

物理模型考点总结归纳高中

物理模型考点总结归纳高中物理是一门研究物质运动以及相互作用的自然科学,广泛应用于现实生活和工程领域。

在高中物理学习中,学生们需要掌握各种物理模型,这些模型用于解释复杂的现象和问题。

本文将总结和归纳高中物理学习中的一些重要考点和物理模型。

一、力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律描述了物体的运动状态将保持恒定,直到遇到外力。

物体在无外力作用下匀速直线运动,或保持静止。

2. 牛顿第二定律(力学基本定律)牛顿第二定律描述了物体的加速度与作用在物体上的合力成正比。

即 F=ma,其中 F 为物体所受力的合力,m为物体的质量,a为物体的加速度。

3. 牛顿第三定律(作用力与反作用力)牛顿第三定律描述了物体之间的相互作用,即使两个物体之间有作用力,这两个力的大小相等、方向相反,且作用在不同的物体上。

4. 弹簧弹力模型弹簧的弹力模型是描述弹簧受力的一种常见模型。

根据胡克定律,弹簧的弹力与弹簧的伸长或压缩程度成正比。

二、电磁模型1. 静电力模型静电力模型用于描述电荷之间的相互作用。

根据库仑定律,两个电荷之间的静电力与它们之间的距离的平方成反比。

2. 电场模型电场模型用于描述静电力的传递方式。

电场是由电荷产生的,电场中的电荷会受到电场力的作用。

3. 磁场模型磁场模型用于描述磁力的传递。

根据洛伦兹力,运动带电粒子在磁场中受到的磁力与粒子的速度和磁场的强度成正比。

4. 电磁感应模型电磁感应模型用于描述电磁感应现象。

当导体中的磁通量发生变化时,会在导体中产生感应电动势。

三、光学模型1. 光的射线模型光的射线模型用于描述光在直线传播时的特性。

根据光的直线传播原理,光线在一直线传播过程中可以发生折射、反射等现象。

2. 光的波动模型光的波动模型用于描述光的波动性质。

根据光的波动理论,光具有波长、频率等特性,并符合波的干涉、衍射、偏振等规律。

3. 光的粒子模型(光量子模型)光的粒子模型用于描述光的粒子性质。

根据光量子理论,光以光子的形式传播,光子具有能量和动量。

专题八:高中物理常见的物理模型

专题八:高中物理常见的物理模型

第八讲:高中物理常见的物理模型方法要求归纳:高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现“知识与技能,过程与方法并重”的高中物理学习思想。

高考试题中常出现的有代表的物理模型考试的频度大。

如斜面问题、叠加体问题、含弹簧的连接体等物理模型。

一:斜面问题在每年各地高考试题中都有关于斜面模型的试题。

如10年安微第19题,福建第21题等.对于这类问题以下结论可以帮助同学们更好、更快地理清解题思路。

1.自由释放的滑块能在斜面上(如图甲所示)匀速下滑时,m 与M 之间的动摩擦因数θμtan g =。

2.自由释放的滑块在斜面上(如图甲所示):1)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零; 2)加速下滑时,斜面对水平地面的静摩擦力水平向右; 3)减速下滑时,斜面对水平地面的静摩擦力水平向左;3.自由释放的滑块在斜面上(如图乙所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方面的作用力,(m 停止前)M 对水平地面的静摩擦力依然为零。

4.悬挂有物本的小车在斜面上滑行(如图所示):1)向下的加速度θsin g a =时,悬绳稳定时将垂直于斜面; 2)向下的加速度θsin g a >时,悬绳稳定时将偏离垂直方向向上; 3)向下的加速度θsin g a <时,悬绳将偏离垂直方向向下。

5.在倾角为θ的斜面上以速度0v 平抛一小球(如图所示): 1)落到斜面上的时间:g v t /tan 20θ=;2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且θαtan 2tan =,与初速度无关;3)经过g v to c /tan θ=小球距斜面最远,最大距离)cos 2/()sin (20θθg v d =。

6.如图所示,当整体有向右的加速度θsin g a =时,m 能在斜面上保持相对静止。

7.在如图甲所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达到的稳定速度)/(sin 22L B mgR v m θ=。

高中物理板块模型

高中物理板块模型

高中物理板块模型
高中物理板块模型:
一、动力学:
1. 力的定义:力是影响物体外形、运动方向以及运动速度的变量。


动学中引入的向量概念,帮助我们正确理解力的具体作用。

2. 运动学定律:第一定律,物体在没有受到其他作用力影响的情况下,保持原有状态;第二定律,物体受到作用力的影响时,受力方向和作
用力方向相同;第三定律,物体受到作用力的大小及方向决定了物体
的变化情况。

3. 集中力和分散力:当物体受到若干作用力,物体内部有内向力和外
向力,这些力可以加起来表示为集中力,也可以分散表示为分散力。

二、振动学:
1. 振动的定义:振动指的是物体时而向一个方向移动,时而向另一个
方向移动的一种运动现象。

2. 振动的特征:振动的时间周期是固定不变的;振动的幅值是有限的;振动的频率有序的变化。

3. 振动的方程:简谐振动方程是描述振动情况的基础方程,它可以用
来描述振动的频率、到达最大幅值所需要的时间以及幅值等等。

三、电磁学:
1. 磁场:磁场是由一组无穷多的磁力线组成的空间领域,它可以影响附近的磁性物体的磁力矢量方向,并产生作用力。

2. 磁场定律:磁力线的双环律,两磁极定律,磁场守恒定律等都是磁场定律。

3. 能量守恒定律:能量守恒定律表明在宏观尺度上,物质系统中的能量在时间上保持守恒,而在电磁势场中能量也是守恒的。

高中物理动量十个模型笔记

高中物理动量十个模型笔记

高中物理动量十个模型笔记
1、连接体模型:指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

2、斜面模型:用于搞清物体对斜面压力为零的临界条件。

斜面固定,物体在斜面上情况由倾角和摩擦因素决定物体沿斜面匀速下滑或静止。

3、轻绳、杆模型:绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

杆对球的作用力由运动情况决定。

4、超重失重模型:系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量ay);向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)。

5、碰撞模型:动量守恒;碰后的动能不可能比碰前大;对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。

6、人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从动量守恒。

7、弹簧振子模型:F=-Kx(X、F、a、V、A、T、f、E、E:等量的变化规律)水平型和竖直型。

8、单摆模型:T=2T(类单摆),利用单摆测重力加速度。

9、波动模型:传播的是振动形式和能量.介质中各质点只在平衡位置附近振动并不随波迁移。

10、"质心"模型:质心(多种体育运动),集中典型运动规律,力能角度。

高中典型的物理模型及方法

高中典型的物理模型及方法

●典型物理模型及方法◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止记住:N=211212m F m F m m ++(N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F212m m m N+=讨论:①F 1≠0;F 2=0122F=(m +m )a N=m aN=212m Fm m +②F 1≠0;F 2≠0N=211212m F m m m F ++(20F=就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++F=A B B 12m (m )m Fm m g ++F 1>F 2m 1>m 2N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量)第12对13的作用力N 12对13=Fnm12)m -(n ◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例)①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

高中物理解题常用经典模型

高中物理解题常用经典模型

1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理类平抛运动.11、"行星"模型:向心力各种力.相关物理量.功能问题.数理问题圆心.半径.临界问题.12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心多种体育运动.集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点;直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题;采用正交分解法;图解法;三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法函数极值法.图像法等和物理方法参照物变换法.守恒法等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型力能规律.回旋模型圆周运动.数理问题.23、"对称"模型:简谐运动波动.电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等;处理角度为力电角度.电学角度.力能角度.。

高中物理模型清单和126招

高中物理模型清单和126招

高中物理模型清单和126招
传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。

追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。

图像法等)
挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。

“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。

半径。

临界问题)。

抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。

“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。

“磁流发电机”模型:平衡与偏转,力和能问题。

“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。

“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。

电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。

交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。

“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。

“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。

“爆炸”模型:动量守恒定律,能量守恒定律。

“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

高中物理最全模型归纳总结

高中物理最全模型归纳总结

高中物理最全模型归纳总结在高中物理学习过程中,我们掌握了众多物理模型,这些模型为我们解释自然现象提供了便利。

本文将对高中物理学习中最常用的模型进行归纳总结,旨在帮助同学们更好地理解和应用这些模型。

第一部分:力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律表明物体在没有外力作用时保持静止或匀速直线运动。

这个模型可以解释为何我们在车上突然刹车时会向前倾斜。

2. 牛顿第二定律(运动定律)牛顿第二定律描述了力、质量和加速度之间的关系,即力等于质量乘以加速度。

这个模型可以帮助我们计算物体受到的合力以及其加速度。

3. 牛顿第三定律(作用-反作用定律)牛顿第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。

这个模型可以解释为何我们划船时推水就能向后移动。

4. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力与它们的质量和距离的平方成正比,与引力的方向成反比。

这个模型可以帮助我们理解行星的椭圆轨道和天体之间的相互作用。

第二部分:热力学模型1. 理想气体状态方程理想气体状态方程描述了理想气体的压强、体积和温度之间的关系。

这个模型可以帮助我们在气体过程中计算温度、压强和体积的变化。

2. 热传导模型热传导模型用于描述热量在物体之间传递的过程。

它遵循热量自高温物体向低温物体传递的规律。

这个模型可以解释为何我们触摸金属杯时会感觉更冷。

3. 热辐射模型热辐射模型用于解释物体通过辐射的方式传递热量。

热辐射是指物体由于其温度而产生的电磁波辐射。

这个模型可以帮助我们理解太阳能的产生和传递。

第三部分:电磁学模型1. 静电模型静电模型用于描述带电物体之间的相互作用。

根据电荷的性质,带电物体可能相互吸引或者相互排斥。

这个模型可以解释为何我们的头发梳理之后会挑起纸片。

2. 电流模型电流模型用于描述电荷在导体中流动的现象。

根据导体的电阻和电压差,电流的大小和方向也会发生变化。

这个模型可以帮助我们计算电路中的电流和电压。

高中物理四大经典力学模型完全解析

高中物理四大经典力学模型完全解析

四大经典力学模型完全解析一、斜面问题模型1.自由释放的滑块能在斜面上(如下图所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ.2.自由释放的滑块在斜面上(如上图所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如下图所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零。

4.悬挂有物体的小车在斜面上滑行(如下图所示):(1)向下的加速度a=g sinθ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sinθ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sinθ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如下图所示):(1)落到斜面上的时间t=2v0tanθg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tanα=2tanθ,与初速度无关;6.如下图所示,当整体有向右的加速度a=g tanθ时,m能在斜面上保持相对静止。

例1在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如下图所示),它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动。

(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法。

高中物理涉及到的物理方法

高中物理涉及到的物理方法

高中物理涉及到的物理方法
1.模型建构法:将复杂的物理现象简化为便于理解和研究的物理模型,如质点模型、理想气体模型、点电荷模型等。

2.实验探究法:通过设计和进行物理实验来验证物理定律,探索物理现象的本质,例如测量物体运动的速度、加速度,研究力与运动的关系等。

3.数学分析法:运用数学工具如代数、几何、微积分等对物理问题进行定量分析,如通过数学方程推导物理定律,解决力的平衡问题,求解物体运动轨迹等。

4.控制变量法:在研究多个变量影响某一物理现象时,通过控制其他变量不变,仅改变一个变量,以研究这个变量对现象的影响,如在研究影响电阻的因素时,分别保持长度、横截面积、材料不变,单独研究每个因素的作用。

5.图像法:将物理量之间的关系绘制成图像,直观展现物理过程的变化规律,如描绘速度-时间图像来分析物体的运动状态。

6.矢量分析法:在处理力、速度、加速度等具有方向的物理量时,运用矢量的加减法则和分解法分析物理问题。

7.等效替代法:如在电路分析中,利用等效电阻、等效电源等概念简化电路结构,便于分析。

8.理想化方法:忽略次要因素,突出主要矛盾,如理想气体、理想变压器、理想导体、理想弹簧等理想模型的运用。

9.归纳与演绎法:通过对实验数据的归纳总结,形成普遍规律,并运用规律进行演绎推理,预测新的物理现象。

10.物理思维法:包括因果分析、类比思维、逆向思维、逻辑推理等,用于分析物理问题的因果关系和内在逻辑。

高中物理68个解题模型

高中物理68个解题模型

高中物理68个解题模型物理作为一门自然科学,研究的是物质和能量之间的相互关系。

在高中物理学习中,解题是一个重要的环节。

为了帮助同学们更好地掌握物理知识,提高解题能力,本文将介绍高中物理中常见的68个解题模型。

一、力学部分1. 牛顿第一定律模型:物体静止或匀速直线运动时,合外力为零。

2. 牛顿第二定律模型:物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。

3. 牛顿第三定律模型:任何两个物体之间的相互作用力大小相等、方向相反。

4. 重力模型:物体受到的重力与物体的质量成正比。

5. 弹簧模型:弹簧的伸长或缩短与外力的大小成正比。

6. 摩擦力模型:物体受到的摩擦力与物体受到的压力成正比。

7. 斜面模型:物体在斜面上滑动时,重力分解为平行于斜面的分力和垂直于斜面的分力。

8. 动量守恒模型:在没有外力作用下,物体的总动量保持不变。

9. 能量守恒模型:在一个封闭系统中,能量的总量保持不变。

二、热学部分10. 热传导模型:热量从高温物体传递到低温物体。

11. 热膨胀模型:物体受热后会膨胀,受冷后会收缩。

12. 热平衡模型:两个物体处于热平衡时,它们的温度相等。

13. 热容模型:物体吸收或释放的热量与物体的质量和温度变化成正比。

14. 理想气体状态方程模型:PV = nRT,描述了理想气体的状态。

15. 热力学第一定律模型:热量的增加等于物体内能的增加与对外做功的总和。

三、光学部分16. 光的直线传播模型:光在均匀介质中直线传播。

17. 光的反射模型:光线与平面镜或曲面镜相交时,遵循入射角等于反射角的规律。

18. 光的折射模型:光线从一种介质射入另一种介质时,遵循折射定律。

19. 光的色散模型:光在经过棱镜等介质时,会发生色散现象。

20. 光的干涉模型:两束相干光叠加时,会出现干涉现象。

21. 光的衍射模型:光通过狭缝或物体边缘时,会发生衍射现象。

22. 光的偏振模型:光的振动方向只在一个平面上。

四、电学部分23. 电流模型:电流的大小等于单位时间内通过导体横截面的电荷量。

高中物理常用的研究方法汇总

高中物理常用的研究方法汇总

高中物理常用的研究方法汇总一、理想模型法实际中的事物都是错综复杂的,在用物理的规律对实际中的事物进行研究时,常需要对它们进行必要的简化,忽略次要因素,以突出主要矛盾;用这种理想化的方法将实际中的事物进行简化,便可得到一系列的物理模型;有实体模型:质点、点电荷、轻杆、轻绳、轻弹簧、理想变压器、3-3液片、理想气体、3-4弹簧振子,单摆等;过程模型:匀速直线运动、匀变速直线运动、匀变速曲线运动、匀速圆周运动等;采用模型方法对学习和研究起到了简化和纯化的作用;但简化后的模型一定要表现出原型所反映出的特点、知识;每种模型有限定的运用条件和运用的范围; 二、控制变量法就是把一个多因素影响某一物理量的问题,通过控制某几个因素不变,只让其中一个因素改变,从而转化为多个单一因素影响某一物理量的问题的研究方法;这种方法在实验数据的表格上的反映为:某两次试验只有一个条件不相同,若两次试验结果不同,则与该条件有关,否则无关;反过来,若要研究的问题是物理量与某一因素是否有关,则应只使该因素不同,而其他因素均应相同;控制变量法是中学物理中最常用的方法;滑动摩擦力的大小与哪些因素有关;探究加速度、力和质量的关系牛顿第二定律;导体的电阻与哪些因素有关电阻定律;电流的热效应与哪些因素有关焦耳定律;研究安培力大小跟哪些因素有关;研究理想气体状态变化理想气体状态方程等均应用了这种科学方法;三、理想实验法又称想象创新法,思想实验法是在实验基础上经过概括、抽象、推理得出规律的一种研究问题的方法;但得出的规律却又不能用实验直接验证,是科学家们为了解决科学理论中的某些难题,以原有的理论知识如原理、定理、定律等作为思想实验的"材料",提出解决这些难题的设想作为理想实验的目标,并在想象中给出这些实验"材料"产生"相互作用"所需要的条件,然后,按照严格的逻辑思维操作方法去"处理"这些思想实验的"材料",从而得出一系列反映客观物质规律的新原理,新定律,使科学难题得到解决,推动科学的发展;又称推理法;伽利略斜面实验、推导出声音不能在真空中传播、推导出牛顿第一定律等; 四、微量放大法物理实验中常遇到一些微小物理量的测量;为提高测量精度,常需要采用合适的放大方法,选用相应的测量装置将被测量进行放大后再进行测量;常用的放大法有累计放大法、形变放大法、光学放大法等; 1累计放大法:在被测物理量能够简单重叠的条件下,将它展延若干倍再进行测量的方法,称为累计放大法叠加放大法;如测量纸的厚度、金属丝的直径等,常用这种方法进行测量;累计放大法的优点是在不改变测量性质的情况下,将被测量扩展若干倍后再进行测量,从而增加测量结果的有效数字位数,减小测量的相对误差;2形变放大法:形变是力作用的效果,在力学中形变的基本表现形式为体积、长度、角度的改变;而显示形变的方法可用力学的方法,也可用电学、光学的方法,如:体积的变化:由液柱的长度的变化显示;热膨胀:杠杆放大法显示;3光学放大法:常用的光学放大法有两种,一种是使被测物通过光学装置放大视角形成放大像,便于观察判别,从而提高测量精度;例如放大镜、显微镜、望远镜等;另一种是使用光学装置将待测微小物理量进行间接放大,通过测量放大了的物理量来获得微小物理量;例如测量微小长度和微小角度变化的光杠杆镜尺法,就是一种常用的光学放大法;卡文迪许通过扭秤装置测量引力常量就采用了多种放大方法;五、模拟法模拟法和类比法很近似;它是在实验室里先设计出于某被研究现象或过程即原型相似的模型,然后通过模型,间接的研究原型规律性的实验方法;先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法;根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种;如在描绘电场中等势线实验中用直流电流场模拟静电场;六、类比与归纳所谓类比,是根据两个或两类对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维;如万有引力公式和库仑力公式从形式上很相似;七、等效替代效法等效法是常用的科学思维方法;等效是指不同的物理现象、模型、过程等在物理意义、作用效果或物理规律方面是相同的;它们之间可以相互替代,而保证结论不变;等效的方法是指面对一个较为复杂的问题,提出一个简单的方案或设想,而使它们的效果完全相同,从而将问题化难为易,求得解决;例如我们学过的等效电路、等效电阻、电压表等效为电流表、电流表等效为电压表、测电阻中的替代法、分力与合力等效、分运动与合运动等效、环形电流与小磁体的等效、通电螺线管与条形磁铁的等效等等;八、比值定义法比值定义法,就是在定义一个物理量的时候采取比值的形式定义;用比值法定义的物理概念在物理学中占有相当大的比例,比如如速度、加速度、密度、压强、功率、电场强度、电势、电势差、磁感应强度、电阻、电容等等;加速度a=Δv/Δt ;电场强度E=F/q ;电容C=Q/U ;电阻R=U/I ;电流I=q/t ;电动势,ε=W/q;电势差U=W/q;磁感应强度B=F/IL或B=F/qv或B=Φ/S;一"比值法"的特点:1、比值法适用于物质属性或特征、物体运动特征的定义;应用比值法定义物理量,往往需要一定的条件;一是客观上需要,二是间接反映特征属性的的两个物理量可测,三是两个物理量的比值必须是一个定值;2.两类比值法及特点一类是用比值法定义物质或物体属性特征的物理量,如:电场强度E、磁感应强度B、电容C、电阻R等;它们的共同特征是;属性由本身所决定;定义时,需要选择一个能反映某种性质的检验实体来研究;比如:定义电场强度E,需要选择检验电荷q,观测其检验电荷在场中的电场力F,采用比值F/q就可以定义;另一类是对一些描述物体运动状态特征的物理量的定义,如速度v、加速度a、角速度ω等;这些物理量是通过简单的运动引入的,比如匀速直线运动、匀变速直线运动、匀速圆周运动;这些物理量定义的共同特征是:相等时间内,某物理量的变化量相等,用变化量与所用的时间之比就可以表示变化快慢的特征;二"比值法"的理解1.理解要注重物理量的来龙去脉;为什么要研究这个问题从而引入比值法来定义物理量包括问题是怎样提出来的,怎样进行研究包括有哪些主要的物理现象、事实,运用了什么手段和方法等,通过研究得到怎样的结论包括物理量是怎样定义的,数学表达式怎样,物理量的物理意义是什么包括反映了怎样的本质属性,适用的条件和范围是什么和这个物理量有什么重要的应用;2.理解要展开类比与想象,进行逻辑推理;所有的比值法定义的物理量有相同的特点,通过展开类比与想象,进行逻辑推理、抽象思维等活动,从而引起思维的飞跃,知识的迁移,在类比中加深理解;如在重力场、电场、磁场的教学中,相同的是都需要选择一个检验场性质的实体,用检验实体的受力与检验实体的有关物理量的比来定义;但也存在区别,重力场的比值中,分母是质量最简单,电场定义时,要考虑电荷的电性,而磁场定义最复杂,不仅与考虑电流元I,而且要考虑电流元的放置方位与有效长度;3.不能将比值法的公式纯粹的数学化;在建立物理量的时候,交代物理思想和方法,搞清概念表达的属性,从这些量度公式中理解它们的物理过程与物理符号的真实内容,切忌被数学符号形式化,忽视了物理量的丰富内容,一定要从量度公式中揭示所定义的概念与有关概念的真实依存关系和物理过程,防止死记硬背和乱用;另一方面,在数学形式上用比例表示的式子,不一定就应用比值法;如公式a=F/m,只是数学形式上象比值法,实际上不具备比值法的其它特点;所以不能把比值法与数学形式简单的联系在一起;九、微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法;用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化;在使用微元法处理问题时,需将其分解为众多微小的"元过程",而且每个"元过程"所遵循的规律是相同的,这样,我们只需分析这些"元过程",然后再将"元过程"进行必要的数学方法或物理思想处理,进而使问题求解;使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用; 在高中物理中,由于数学学习上的局限,对于高等数学中可以使用积分来进行计算的一些问题,在高中很难加以解决;例如对于求变力所做的功或者对于物体做曲线运动时某恒力所做的功的计算;又如求做曲线运动的某质点运动的路程,这些问题对于中学生来讲,成为一大难题;但是如果应用积分的思想,化整为零,化曲为直,采用"微元法",可以很好的解决这类问题;"微元法"通俗地说就是把研究对象分为无限多个无限小的部分,取出有代表性的极小的一部分进行分析处理,再从局部到全体综合起来加以考虑的科学思维方法,在这个方法里充分的体现了积分的思想;十、极限法极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论;1.由平均值得瞬时值用到极限法一般由比值定义式定义出的物理量均为平均值,如,当取趋近于零时的平均速度可看做瞬时速度2.极限法在进行某些物理过程分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确;因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果;。

高中物理理想模型

高中物理理想模型

高中物理理想模型(1)对象模型:质点、弹簧振子、单摆、理想气体、点电荷、理想变压器、点光源、光线、薄透镜以及关于原子结构的卢瑟福模型、玻尔模型等(2)条件模型:光滑表面、轻杆、轻绳、均匀介质、匀强电场和匀强磁场(3)过程模型:在空气中自由下落的物体,在高度不大时,空气的作用忽略不计时,可抽象为自由落体运动;另外匀速直线运动、匀变速直线运动、抛体运动、匀速圆周运动、简谐振动、弹性碰撞、等温过程、绝热过程、稳恒电流.理想化模型是一种科学抽象,是研究物理学的重要方法,它根据所研究问题的需要和具体情况,确定研究对象的主要因素和次要因素,保留主要因素,忽略次要因素,排除无关干扰,从而简明扼要地揭示事物的本质。

理想模型分类:1、对象模型。

2、条件模型。

3、过程模型。

1. 质点质点不一定是很小的物体﹐只要物体的形状和大小在所研究的问题中属于无关因素或次要因素﹐即物体的形状和大小在所研究的问题中影响很小时﹐物体就能被看作质点。

它注重的是在研究运动和受力时物体对系统的影响,忽略一些复杂但无关的因素。

2. 匀速直线运动⑴一个物体在受到两个或两个以上力的作用时,如果能保持静止或匀速直线运动,我们就说物体处于平衡状态。

⑵不能从数学角度把公式s=vt理解成物体运动的速度与路程成正比,与时间成反比。

匀速直线运动的特点是瞬时速度的大小和方向都保持不变,加速度为零,是一种理想化的运动。

⑶带电粒子受恒力和洛仑兹力共同作用下运动时,只要是直线运动,一定是匀速直线运动。

(原因:像F洛这样的力会随速度的变化而变化,即速度直接影响合力,合力又直接影响加速度,即影响运动方向。

)3. 平抛运动⑴运动时间只由高度决定。

⑵水平位移和落地速度由高度和初速度决定。

⑶在任意相等的时间里,速度的变化量相等,方向也相同. 是加速度大小,方向不变的曲线运动⑷任意时刻,速度偏向角的正切等于位移偏向角正切的两倍。

⑸任意时刻,速度矢量的反向延长线必过水平位移的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)F 2=0122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0N=211212m F m m m F ++(2F=就是上面的情况)F=211221mm g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++F=A B B 12m (m )m Fm m g ++F 1>F 2 m 1>m 2 N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动) 研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。

由于外轨略高于内轨,使得火车所受重力和支持力的合力F合提供向心力。

为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R2mv③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R2m v即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。

火车提速靠增大轨道半径或倾角来实现(2)无支承的小球,在竖直平面内作圆周运动过最高点情况: 受力:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力.结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。

能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力)不能过最高点条件:V<V 临(实际上球还未到最高点就脱离了轨道)讨论:① 恰能通过最高点时:mg=Rm2临v ,临界速度V 临=gR;可认为距此点2R h = (或距圆的最低点)25R h =处落下的物体。

☆此时最低点需要的速度为V 低临=gR 5 ☆最低点拉力大于最高点拉力ΔF=6mg② 最高点状态: mg+T 1=L2m 高v (临界条件T 1=0, 临界速度V 临=gR, V≥V 临才能通过)最低点状态: T 2- mg = L2m低v 高到低过程机械能守恒:mg2L m m 221221+=高低v v T 2- T 1=6mg (g 可看为等效加速度)② 半圆:过程mgR=221mv 最低点T-mg=R2v m ⇒绳上拉力T=3mg ; 过低点的速度为V 低 =gR 2小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g③与竖直方向成角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR ,此时绳子拉力T=mg(3-2cos )(3)有支承的小球,在竖直平面作圆周运动过最高点情况:①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)圆心。

增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(00>==>><<作用时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)(力的大小用有向线段,但(支持)时,受到杆的作用力,速度当小球运动到最高点时N gR v N gR v mg N N gR v 0==<<恰好过最高点时,此时从高到低过程 mg2R=221mv 低点:T-mg=mv 2/R ⇒ T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2注意物理圆与几何圆的最高点、最低点的区别:(以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况)2.解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。

(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。

(3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。

(5)⎪⎩⎪⎨⎧=∑===∑02222y x F R Tm R m R v m F )(建立方程组πω3.离心运动在向心力公式F n =mv 2/R 中,F n 是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力。

当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。

其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。

◆3斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)◆4.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

如图:杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向最高点时杆对球的作用力;最低点时的速度,杆的拉力 若小球带电呢假设单B 下摆,最低点的速度V B =R 2g⇐mgR=221Bmv 整体下摆2mgR=mg 2R +'2B '2A mv 21mv 21+'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'BV 2V ==gR 256> V B =R 2g所以AB 杆对B 做正功,AB 杆对A 做负功◆5.通过轻绳连接的物体①在沿绳连接方向(可直可曲),具有共同的v 和a 。

特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式,②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。

讨论:若作圆周运动最高点速度 V0<gR,运动情况为先平抛,绳拉直时沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少◆5.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y)向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动 1到2到3过程中(1、3除外)超重状态绳剪断后台称示数 铁木球的运动系统重心向下加速 用同体积的水去补充 斜面对地面的压力地面对斜面摩擦力 导致系统重心如何运动◆6.碰撞模型:两个相当重要典型的物理模型,后面的动量守恒中专题讲解 ◆7.子弹打击木块模型: ◆8.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从①动量守恒方程:mv=MV ;ms=MS ;②位移关系方程 s+S=d ⇒s=d Mm M+ M/m=L m /L M 载人气球原静止于高h 的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长◆9.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型或竖直型◆10.单摆模型:T=2πg l / (类单摆)利用单摆测重力加速度 ◆11.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。

①各质点都作受迫振动,②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长。

t⑥波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法)知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法) ◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、截距、六交点明确:点、线、面积、斜率、截距、交点的含义中学物理中重要的图象⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。

⑵电学中的电场线分布图、磁感线分布图、等势面分布图、交流电图象、电磁振荡i-t 图等。

⑶实验中的图象:如验证牛顿第二定律时要用到a-F 图象、F-1/m 图象;用“伏安法 ”测电阻时要画I-U 图象;测电源电动势和内电阻时要画U-I 图;用单摆测重力加速度时要画的图等。

⑷在各类习题中出现的图象:如力学中的F-t 图、电磁振荡中的q-t 图、电学中的P-R 图、电磁感应中的Φ-t 图、E-t 图等。

相关文档
最新文档