初中数学平行线的性质及判定知识点

合集下载

初中数学平行线与平行四边形的性质

初中数学平行线与平行四边形的性质

初中数学平行线与平行四边形的性质在初中数学中,平行线和平行四边形是重要的概念和形状。

平行线是指在同一个平面内永远不会相交的两条直线,而平行四边形是具有两对平行边的四边形。

本文将探讨平行线和平行四边形的性质,以及它们之间的关系。

一、平行线的性质1. 直线平行定理直线平行定理指出,如果一条直线与两条平行线相交,那么这两条平行线之间的对应角是相等的。

这意味着当两条直线被一条截断时,形成的对应角是相等的。

2. 平行线之间的夹角关系平行线之间的夹角关系有三种情况:- 对顶角:对顶角是指两条平行线被一条截线所形成的对应角。

对顶角是相等的。

- 内错角:当两条平行线被一条截线所形成的内角对顶角相加等于180度。

- 同旁内角:同旁内角是指两条平行线被一条截线所形成的同旁两个内角,这两个角是相等的。

3. 平行线与转角定理转角定理说明了通过两条平行线和一条截线形成的转角规律。

当两直线被截线交叉形成数个转角时,这些转角之和等于180度。

二、平行四边形的性质1. 对边关系平行四边形的两对对边是平行的。

也就是说,平行四边形的两条相对边互相平行。

2. 对角线关系平行四边形的对角线互相平分。

对角线相交的交点称为对角线的中点。

3. 内角和平行四边形的内角和为360度。

也就是说,平行四边形的四个内角的度数之和等于360度。

4. 其他性质平行四边形的两组相邻角互补,也就是说,互为补角的两个角是相邻角。

三、平行线与平行四边形之间的关系1. 平行四边形的性质可推导出平行线的性质通过平行四边形的性质,可以推导出平行线之间的夹角关系。

例如,通过平行四边形的对角线关系,可以得到平行线的转角定理。

2. 平行线的性质可应用于平行四边形的证明通过平行线的性质,可以证明一个四边形是平行四边形。

例如,可以通过观察四边形的对边是否平行来判断它是否为平行四边形。

四、例题演练接下来,我们通过几个例题来加深对平行线和平行四边形性质的理解:1. 已知直线AB和CD平行,且∠BCD = 110度,求∠CAB的度数。

初一数学平行线知识点

初一数学平行线知识点

教案初一数学平行线知识点教学目标:1. 让学生理解平行线的定义及性质。

2. 培养学生运用平行线性质解决问题的能力。

3. 培养学生合作交流、动手操作的能力。

教学重点:1. 平行线的定义及性质。

2. 平行线的判定方法。

教学难点:1. 平行线性质的推导。

2. 平行线在实际生活中的应用。

教学准备:1. 教学课件或黑板。

2. 直尺、圆规等绘图工具。

3. 练习题。

教学过程:一、导入1. 引导学生回顾已学的直线、射线、线段等基本概念。

2. 提问:在同一平面内,不相交的两条直线有什么关系?二、新课讲解1. 讲解平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 讲解平行线的性质:a. 同位角相等。

b. 内错角相等。

c. 同旁内角互补。

3. 讲解平行线的判定方法:a. 同位角相等。

b. 内错角相等。

c. 同旁内角互补。

三、课堂练习1. 让学生完成教材上的练习题,巩固平行线的性质及判定方法。

2. 老师巡回指导,解答学生疑问。

四、动手操作1. 分组合作,每组学生用直尺、圆规等绘图工具绘制一组平行线。

2. 学生互相交流,讨论如何判定两条直线是否平行。

3. 老师挑选几组学生的作品进行展示,并给予评价和指导。

五、课堂小结2. 提问:如何在实际生活中应用平行线?六、课后作业1. 完成教材上的课后习题。

2. 观察生活中的平行线现象,并尝试用所学知识解释。

教学反思:本节课通过讲解、练习、动手操作等多种教学方法,使学生掌握了平行线的定义、性质及判定方法。

在动手操作环节,学生积极参与,合作交流,提高了动手能力和团队协作能力。

在课后作业环节,学生将所学知识应用于实际生活,提高了学以致用的能力。

总体来说,本节课教学效果良好,达到了预期目标。

在今后的教学中,可适当增加课堂互动,提高学生的学习兴趣。

教案小学五年级科学光与影子教学目标:1. 让学生理解光与影子的基本概念。

2. 培养学生观察、描述和解释光与影子现象的能力。

3. 培养学生进行科学实验和探究的兴趣。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

初中数学平行线与角的性质知识点总结

初中数学平行线与角的性质知识点总结

初中数学平行线与角的性质知识点总结在初中数学中,平行线与角的性质是数学学习的重要内容之一。

了解平行线与角的性质,可以帮助我们解决与角度和线段相关的问题。

本文将对初中数学中平行线与角的性质知识点进行总结。

1. 平行线的定义与性质平行线是指在同一个平面上,永远不会相交的两条直线。

平行线具有以下性质:1.1 平行线上的任意两条线段互相平行。

1.2 平行线与同一条直线相交时,所成的对应内角、对应外角和同位角相等。

1.3 直线与其它平行线所构成的内(外)角互补。

2. 垂线与平行线的关系垂线是指与另一条线段(或线面)垂直交叉的线段(或线面)。

垂线与平行线有以下关系:2.1 平行线中的任意一条直线与另一平行线上的垂线互相垂直。

2.2 平行线上的任一直线与垂线互相垂直,那么它们的方向相同。

3. 角的性质角是由两条线段或者两条射线所构成的图形。

初中数学中常见的角包括锐角、直角、钝角和平角。

3.1 锐角:大于0度小于90度的角被称为锐角。

3.2 直角:等于90度的角被称为直角。

3.3 钝角:大于90度小于180度的角被称为钝角。

3.4 平角:等于180度的角被称为平角。

4. 平行线切割等分线段的性质当一条直线与两条平行线相交时,它将平行线切割成不同长度的线段。

这些线段具有以下性质:4.1 线段的比例性质:在平行线上,被一条截线分割的两个线段,它们的长度之比等于它们的截线分割的线段长度之比。

4.2 面积的比例性质:在平行线上,被一条截线分割的两个平行四边形,它们的面积之比等于它们的截线分割的线段长度之比。

5. 平行线切割相似三角形的性质当一条直线与两条平行线相交时,它将两个或多个相似三角形分割出来。

这些相似三角形具有以下性质:5.1 相似三角形的角度相等:在平行线上,被一条截线分割的两个相似三角形中,对应顶角相等。

5.2 相似三角形的边长比例:在平行线上,被一条截线分割的两个相似三角形中,对应边长之比等于它们的截线分割的线段长度之比。

初中数学 平行线的判定定理有哪些

初中数学  平行线的判定定理有哪些

初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。

在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。

同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。

1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。

2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。

即如果l||n且m||n,则l||m。

3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。

即如果l∠n且m∠n,则l||m。

4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。

5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。

即如果l||m且m||n,则l||n。

6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。

即如果l∠n且∠A=90°,则l||m。

7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。

8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。

9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。

以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。

初中数学平行线的性质知识点归纳摘抄

初中数学平行线的性质知识点归纳摘抄

初中数学平行线的性质知识点归纳摘抄初中数学平行线的性质知识点归纳摘抄在同一平面内,永不相交的两条直线互为平行线。

虽然平行线在平面内定义,但也适用于立体几何。

平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

性质2 两条平行线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

性质3 两条平行线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

额外补充的是,在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的!初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

2022年初中数学同步 7年级下册 第04课 平行线的性质及平移(教师版含解析)

2022年初中数学同步 7年级下册 第04课  平行线的性质及平移(教师版含解析)

第04课 平行线的性质及平移课程标准1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;4.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.知识点01 平行线的性质如右图:a ∥b, 截线c 与这两条平行线相交,他们相交所成的角分别为∠1, ∠2………. ∠8.测量他们的角并填入下表中。

并回答下列问题角 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8 度数100°80°100°80°100°80°100°80°哪些角是同位角,他们具有怎样的数量关系?同位角 ∠1=100° ∠5=100° ∠2=80° ∠2=80° ∠3=100° ∠7=100° ∠4=80° ∠8=80° 关系相等相等相等相等由此得出平行线的性质1:两直线平行,同位角相等;哪些角是 内错角,他们具有怎样的数量关系?内错角 ∠3=100° ∠5=100° ∠4=80° ∠6=80° 关系相等相等目标导航知识精讲由此得出平行线的性质2:两直线平行,内错角相等;由此得出平行线的性质3:两直线平行,同旁内角互补.注意:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”,即没有说明两直线平行,同位角,内错角及同旁内角的关系不确定;(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.知识点02 两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.注意:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.知识点03 命题、定理、证明1.命题:判断一件事情的语句,叫做命题.注意:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.注意:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.知识点04 平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.注意:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.注意:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.能力拓展考法01 平行线的性质【典例1】下列说法:①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A.1B.2C.3D.4【答案】A【分析】①根据平行线的定义进行判定;②根据平行线的性质进行判定;③根据平行线的性质定理进行判定,两条直线平行,同位角相等;④根据平行线的判定定理进行判定,同旁内角互补两条直线平行.【详解】①在同一平面内,不相交的两条直线叫做平行线,故原命题错误;②过直线外一点,有且只有一条直线平行于已知直线,故原命题错误;③两条平行直线被第三条直线所截,同位角相等,正确;④同旁内角互补,两直线平行,故原命题错误.故选:A【点睛】本题考查了平行线的定义,平行线性质定理和平行线的判定定理.【典例2】下列图形中,由AB∥CD,能得到∠1=∠2的是A.B.C.D.【答案】B【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.【即学即练】如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°【答案】D【详解】分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.【即学即练】如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为( )A.52°B.54°C.64°D.69°【答案】C【分析】先根据两直线平行,同旁内角互补求出∠AOB=128°,再根据角平分线的定义得到∠BOC=64°,继而根据平行线的性质即可求得答案.【详解】∵l//OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又∵l//OB,∴∠2=∠BOC=64°,故选C.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解本题的关键.【即学即练】如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )A.20B.30C.40D.60【答案】B【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B 【点睛】熟练运用平行线的判定和性质.【即学即练】如图,AB//CD ,AD CD =,165∠=,则2∠的度数是( )A .50B .60C .65D .70【答案】A 【分析】直接利用平行线的性质结合等腰三角形的性质得出∠2的度数. 【详解】AB//CD ,ACD 165∠∠∴==,AD CD =,CAD ACD 65∠∠∴==,2∠∴=180°-∠ACD -∠CAD=180656550--=, 故选A . 【点睛】本题考查了平行线的性质和等腰三角形的性质,正确得出CAD ∠的度数是解题关键. 【即学即练】如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100°【答案】B 【详解】因为AB ∥DF ,所以∠D+∠DEB=180°,因为∠DEB 与∠AEC 是对顶角, 所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B .【即学即练】如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .70【答案】B 【分析】根据平行线的性质可得170ABC ∠=∠=,再根据角平分线的定义可得答案. 【详解】 ∵//DE BC , ∴170ABC ∠=∠=, ∵BE 平分ABC ∠,∴1352CBE ABC ∠=∠=,故选B . 【点睛】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.【典例3】如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是( )A .48°B .78°C .92°D .102°【答案】D 【分析】直接利用已知角的度数结合平行线的性质得出答案.【详解】解:如图:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°, ∴∠2=∠3=180°﹣48°﹣30°=102° 故选D . 【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.【即学即练】将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若130∠=︒,则2∠的度数为( )A .10︒B .15︒C .20︒D .30【答案】B 【分析】根据平行的性质即可求解. 【详解】根据平行线的性质得到∠3=∠1=30°, ∴∠2=45°-∠3=15°.以及等腰直角三角形的性质,故选B【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.【即学即练】如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°【答案】C 【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE ∥CD ,即可得出∠1=∠EBC=16°. 【详解】 如图,∵∠ABC=60°,∠2=44°, ∴∠EBC=16°, ∵BE ∥CD , ∴∠1=∠EBC=16°, 故选C . 【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.【即学即练】把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°【答案】D 【分析】根据角的和差可先计算出∠AEF ,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】解:由题意可知AD//BC ,∠FEG=90°,∵∠1=34°,∠FEG=90°,∴∠AEF=90°-∠1=56°,∵AD//BC ,∴∠2=180°-∠AEF=124°,故选:D .【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键.考法02 辅助线与平行线【典例4】如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°【答案】B【详解】 试题分析:如图,过点A 作AB ∥b ,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a ∥b ,AB ∥B ,∴AB ∥b ,∴∠2=∠4=32°,故选B .考点:平行线的性质.【即学即练】如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒【答案】D【分析】 过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120BAE ∠=︒,18060AEF BAE ∴∠=︒-∠=︒,又//AB CD ,//EF CD ∴,40DCE CEF ∴=∠=∠︒,6040100AEC AEF CEF ∴∠=∠+∠=︒+︒=︒,故选:D .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.【即学即练】如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°【答案】C【分析】 过点E 作EF ∥AB ,如图,易得CD ∥EF ,然后根据平行线的性质可得∠BAE +∠FEA =180°,∠C =∠FEC =γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.【即学即练】如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()A.20°B.30°C.40°D.70°【答案】B【详解】试题分析:延长ED交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°,故选B.考点:平行线的性质.【即学即练】如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y【答案】B【分析】 根据平行线的性质可得∠CEF=180°-y ,x=z+∠CEF ,利用等量代换可得x=z+180°-y ,再变形即可.【详解】解:∵CD ∥EF ,∴∠C+∠CEF=180°,∴∠CEF=180°-y ,∵AB ∥CD ,∴x=z+∠CEF ,∴x=z+180°-y ,∴x+y -z=180°,故选:B .【即学即练】如图,AB ∥CD ,则下列等式成立的是( )A .∠B +∠F +∠D =∠E +∠GB .∠E +∠F +∠G =∠B +∠DC .∠F +∠G +∠D =∠B +∠ED .∠B +∠E +∠F =∠G +∠D【答案】A【分析】 E 作EM AB ,过F 作FH AB ,过G 作GH AB ,推出AB EM GN CD FH ,得出B BEM ∠∠=,FEM HFE =∠∠,HFG FGN ∠∠=,.D NGN ∠∠=,求出B EFH HFG D BEM MEF FGN NGD +++=+++∠∠∠∠∠∠∠∠即可.【详解】过E 作EM AB ,过F 作FH AB ,过G 作GN AB ,AB CD , AB EM GN CD FH ∴.,,B BEM FEM HFE HFG FGN ∠∠∠∠∠∠===,D DGN =∠∠,B EFH HFG D BEM MEF FGN NGD ∠∠∠∠∠∠∠∠∴+++=+++,B EFG D EFG FGD ∠∠∠∠∠∴++=+,所以A 选项是正确的.【点睛】本题主要考查了平行线的性质的应用,主要考查学生的推理能力.【即学即练】如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.【答案】∠A+∠C ﹣∠P=180°【详解】如图所示,作PE ∥CD ,∵PE ∥CD ,∴∠C+∠CPE=180°,又∵AB ∥CD ,∴PE ∥AB ,∴∠A=∠APE ,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.【即学即练】珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.【答案】20【分析】由已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,又由CF∥DE,所以∠CDE=∠DCF.【详解】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为20.【点睛】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.【即学即练】如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【答案】B【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.【即学即练】如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=________°.【答案】40【详解】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB ∥EF ,∴∠BEF=∠ABE=70°;又∵EF ∥CD ,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF -∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.考法03 折叠问题【典例5】如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是__.【答案】55°【详解】a b ∥ ,3170∴∠=∠= ,()1218070552∴∠=-⨯= . 【即学即练】如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°【答案】D【详解】分析:由折叠可得:∠DGH=12∠DGE=74°,再根据AD ∥BC ,即可得到∠GHC=180°﹣∠DGH=106°. 详解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=12∠DGE=74°.∵AD ∥BC ,∴∠GHC=180°﹣∠DGH=106°.故选D .点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.【即学即练】如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.【答案】50°【分析】先根据平行线的性质得出∠DEF 的度数,再根据翻折变换的性质得出∠D′EF 的度数,根据平角的定义即可得出结论.【详解】∵AD ∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF ,∴∠D′EF=65°,∴∠AED′=50°.【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.【即学即练】将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A.40°B.50°C.60°D.70°【答案】D【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.【即学即练】如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.【答案】65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.【即学即练】如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′、D′处,C′E交AF于点G,若∠CEF=64°,则∠GFD′=_____________.【答案】520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠EFD′-∠AFE=116°-64°=52°,故答案为52°.【即学即练】如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于__.【答案】115【详解】∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE=180502-=65°, ∵∠AEF+∠BFE=180°,∴∠AEF=115°.故答案为115°.考法04 综合证明【典例6】如图,已知EF BC ⊥,1C ∠∠=,23180.∠∠+=试说明直线AD 与BC 垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:1C ∠∠=,(已知)∴______//______,(______)2∠∴=______.(______)又23180∠∠+=,(已知)3∠∴+______180.(=等量代换)∴______//______,(______)ADC EFC.(∠∠∴=______)EF BC ⊥,(已知)EFC 90∠∴=,ADC 90∠∴=,∴______⊥______.【答案】GD AC 同位角相等,两直线平行 DAC ∠ 两直线平行,内错角相等 DAC ∠ AD EF 同旁内角互补,两直线平行 两直线平行,同位角相等 AD BC【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】解:1C ∠∠=,(已知)GD //AC ∴,(同位角相等,两直线平行)2DAC.(∠∠∴=两直线平行,内错角相等)又23180∠∠+=,(已知)3180.(DAC ∠∠∴+=等量代换)//AD EF ∴,(同旁内角互补,两直线平行).(ADC EFC ∠∠∴=两直线平行,同位角相等)EF BC ⊥,(已知)90EFC ∠∴=,90ADC ∠∴=,AD BC ∴⊥.【点睛】本题主要考查了平行线的判定和性质,已经垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.【即学即练】如图,已知AC ∥DF,直线AF 分别与直线BD 、CE 相交于点G ,H,∠1=∠2.求证:∠C=∠D .解:∵∠1=∠2(已知)∠1=∠DGH( ),∴∠2=_______( 等量代换 )∴_______∥_______(同位角相等,两直线平行)∴∠C=_______(两直线平行,同位角相等)又∵AC∥DF( )∴∠D=∠ABG ( )∴∠C=∠D ( )【答案】对顶角相等,∠DGH,BD∥CE ,∠ABG,已知,两直线平行,内错角相等,等量代换,【详解】整体分析:根据平行线的性质,判定和对顶角相等解题,注意理解图形.证明:∵∠1=∠2(已知)∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABG(两直线平行,同位角相等)又∵AC∥DF(已知)∴∠D=∠ABG(两直线平行,内错角相等)∴∠C=∠D(等量代换).【即学即练】如图,已知在△ABC中,EF⊥AB,CD⊥AB,G在AC边上,∠AGD=∠ACB,求证:∠1=∠2.【答案】见解析.【分析】由EF⊥AB,CD⊥AB可得EF∥CD,由∠AGD=∠ACB可得DG∥BC.再利用平行线的性质可证∠1=∠2.【详解】∵EF⊥AB,CD⊥AB,∴EF∥CD,∴∠2=∠3.又∵∠AGD=∠ACB,∴DG∥BC,∴∠1=∠3;∴∠1=∠2.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定和性质是解题的关键.【即学即练】如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.考法05 命题【典例7】把命题“等角的补角相等”改写成“如果…那么…”的形式是______.【答案】如果两个角是等角的补角,那么它们相等.【分析】弄清命题的题设(条件)和结论即可写出.【详解】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为如果两个角是等角的补角,那么它们相等.【点睛】本题考查了将原命题写成“如果…那么…”即题设(条件)与结论的形式,解决问题的关键是找出相应的题设和结论.【即学即练】将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.【答案】如果两条直线平行于同一条直线,那么这两条直线平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.【即学即练】下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.【即学即练】将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.【答案】如果两个角互为对顶角,那么这两个角相等【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【点睛】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.【即学即练】将命题“同角的补角相等”改写成“如果……,那么……”的形式为_________________.【答案】如果两个角是同一个角的补角,那么这两个角相等【详解】试题考查知识点:命题改写思路分析:每一个命题都是基于条件的一个判断,只要把条件部分和判断部分分开即可具体解答过程:如果两个角是同一个角的补角,那么这两个角相等试题点评:这是关于命题的基本题型.考法06 平移【典例8】如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A.B.C.D.【答案】D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.【典例9】如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【答案】C【详解】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.【即学即练】如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20B.24C.25D.26【答案】D 【详解】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=12(AB+EH)×BE=12(8+5)×4=26.故选D.【即学即练】如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长【答案】D【详解】可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∴将a向右平移即可得到b、c,∵图形的平移不改变图形的大小,∴三户一样长.故选D.【即学即练】如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )A.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定【答案】B【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】如图:根据平移可得两只蚂蚁的行程相同,∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选B.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.【即学即练】如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2【答案】B【详解】 解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .【即学即练】如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC=5.EC=3,那么平移的距离为( )A .2B .3C .5D .7【答案】A【详解】 试题分析:观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离=BE=5﹣3=2.考点:平移的性质.【即学即练】如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=_____°.【答案】105【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°.∵∠3=∠4,∴∠4+∠CAD=∠2,∴∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为105.【点睛】本题考查了平移的性质、三角形外角的性质以及平行线的性质,正确转化角的关系是解题的关键.【即学即练】某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面与正面如图所示,则购买地毯至少需______元.【答案】512元【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.解:利用平移线段,把楼梯的横竖向上向左平移,构成一个长方形,长宽分别为5米,3米,∴地毯的长度为5+3=8(米),∴地毯的面积为8×2=16(平方米),∴买地毯至少需要16×32=512(元)【点睛】本题考查平移性质的实际运用.解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.【即学即练】如图,在长方形草地内修建了宽为2米的道路,则草地面积为_______米2.【答案】144【分析】先求出道路的总长度,进而求出道路的面积,最后用总面积减去道路的面积即可.【详解】解:由图形得到了的总长度为20+10-2=28米,所以道路的总面积为28×2=56米2,所以草地面积为20×10-56=144米2.故答案为:144【点睛】本题考查了请不规则图形的面积,根据题意求出道路的总长度是解题关键,注意应减去重合的部分.分层提分题组A 基础过关练1.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )。

七年级下册数学相交线与平行线知识点归纳

七年级下册数学相交线与平行线知识点归纳

七年级下册数学相交线与平行线知识点归纳相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(成正比),邻补角(优势互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,坐落于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、横向三要素:横向关系,横向记号,像距6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最长。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,存有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的认定:①同位角相等,两直线平行。

②内错角成正比,两直线平行。

③同旁内角互补,两直线平行。

11、推断:在同一平面内,如果两条直线都旋转轴同一条直线,那么这两条直线平行。

(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、正数整数,泛称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

平行线的性质定理

平行线的性质定理

初中数学《平行线的性质定理》微课精讲+知识点+教案知识点:1. 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。

2. 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。

3 . 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。

两个角的数量关系两直线的位置关系:1、垂直于同一直线的两条直线互相平行。

2、平行线间的距离,处处相等。

3、如果两个角的两边分别平行,那么这两个角相等或互补。

4、平行线的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5、平行线间的距离两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离.视频教学:练习:1.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是( )A.55°B.65°C.75°D.85°2.如图,∠1=∠2,∠3=40°,则∠4等于( )A.120°B.130°C.140°D .40°3.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是( )A.16°B.33°C.49°D.66°4.如图,已知∠1=∠2,若要∠3=∠4,则须( )A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD5.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为( )A.42°B.32°C.62°D.38°6.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为( )A.50°B.45°C.40°D.30°7.如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线FG交AB于点H,则正确的是( )A.∠AFG=70°B.∠AFG>∠AHFC.∠FHB=100° D.∠CFH =2∠EFG8.如图,在△ABC中,∠C=90°,点D在AC边上,DE∥AB,如果∠ADE=46°,那么∠B等于( )A.34°B.54°C. 46°D.44°9.将一直角三角板与两边平行的纸条如图所示放置.有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为( )A.1B.2C.3D.410.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )A.42°,138°B.都是10°C.42°,138°或42°,10° D.以上都不对课件:教案:在证明过程中,进一步理解证明的步骤,格式和方法.教学重难点重点:平行线三个性质的探究及运用.难点:平行线的性质定理与判定定理的区别及综合运用.教学活动设计课堂导入上一节课我们学习了平行线的判定,也就是说知道角的关系能够判断两条直线是否平行.可是老师从一张轻轨的图片和伸缩门的情景看到的却恰好是另一种有意思的情况,这种情况具有普遍意义吗?自学指导续表探索新知合作探究已知:如图,a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角,求证:∠1和∠2互补.证明:因为a∥b,所以∠3=∠2(两直线平行,同位角相等),因为∠1+∠3=180°(平角的定义),所以∠1+∠2=180°(等量代换).简单说成:两直线平行,同旁内角互补.几何语言:因为a∥b,所以∠1+∠2=180°.教师指导(1)归纳两直线平行的判定与性质两直线平行(2)总结证明的一般思路及步骤当堂训练1. 如图所示,EL∥FK,PG∥QH.找出图中与∠1相等的角.2. 已知∠3=∠4,∠1=47°,求∠2的度数.3.如图,AB∥EF,∠ECD=∠E,试说明CD∥AB.板书设计平行线的性质定理两直线平行⇒教学反思语言是思维的工具,要学好证明,必须学会语言的表达和运用,初学几何证明题时,学生对于几何语言不很清楚,几何语言分为文字语言、符号语言和图形语言,老师有必要强调:将图形语言和符号语言相结合是学好证明的基本功,画图时按要求将符合题意的图形画出来.但要注意以下几点:(1)注意所画图形的多种情况.(2)能根据题意画出简单的图形,掌握“题”与“图”的对应关系,一般图形不要画成特殊图形,否则就意味着人为增加了已知条件,反之,特殊图形也不要画成一般图形,这两种做法都没有真实的表达题意.(3)图形力求准确,便于观察,有利于解题.。

北师大版八年级数学上册《平行线的性质》平行线的证明

北师大版八年级数学上册《平行线的性质》平行线的证明

,
∴AD∥BE(
).
,即∠
栏目索引
=∠
,
答案 BAE;两直线平行,同位角相等;BAE;等量代换;∠1;∠2;BAE; DAC;DAC;内错角相等,两直线平行
4 平行线的性质
栏目索引
6.如图7-4-6,已知∠1+∠2=180° ,∠A=∠C,DA平分∠FDB,试证明∠3= ∠4.
图7-4-6
4 平行线的性质
栏目索引
解析 (1)∵四边形ABCD为长方形,∴AD∥BC, ∴∠1+∠2=180° , ∵∠1=110° ,∴∠2=70° . (2)由折叠的性质得∠D'=90° , 若D'C'∥BC,则有∠EGF=∠D'=90° , ∵AD∥BC, ∴∠2=∠EGF=90° , 则当∠2等于90度时,D'C'∥BC.
图7-4-8
4 平行线的性质
证明 ∵AD⊥BC,EF⊥BC(已知), ∴∠ADC=∠EFD=90° (垂直的定义), ∴AD∥EF(同位角相等,两直线平行), ∴∠3=∠BAD(两直线平行,内错角相等), ∠DAC=∠E(两直线平行,同位角相等), ∵AD平分∠BAC(已知), ∴∠BAD=∠DAC(角平分线的定义), ∴∠E=∠3(等量代换).
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135° ,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180° (两直线平行,同旁内角互 补),又因为∠DOB=135° ,所以∠B=180° -135° =45° ,又∠A=∠B,所以 ∠A=45° .

初中数学平行线的性质及判定知识点

初中数学平行线的性质及判定知识点

初中数学平行线的性质及判定知识点学校数学平行线的性质及判定学问点1平行线的性质及判定平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

通过上面对数学中平行线的性质及判定学问点的内容讲解学习,信任同学们已经能很好的把握了吧,盼望同学们会从中学习的更好。

学校数学平行线的性质及判定学问点2相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要留意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要留意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:推断对错:由于∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

( )相等的两个角互为对顶角。

( )2、垂直是两直线相交的特别状况。

留意:两直线垂直,是相互垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条相互垂直的直线的交点叫垂足。

垂直时,肯定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的全部线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

平行线的性质及判定

平行线的性质及判定

平行的性质及判定定义示例剖析平行线的概念:在同一平面内,永不相交的两条直线称为平行线.用“∥”表示.∥a b,∥AB CD等.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.ba4321若∥a b,则12∠=∠;若∥a b,则23∠=∠;若∥a b,则34180∠+∠=︒.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.ba4321若12∠=∠,则∥a b;若23∠=∠,则∥a b;若34180∠+∠=︒,则∥a b.思路导航题型一:平行线的定义、性质及判定12平行公理:经过直线外一点,有且只有一条直线与这条直线平行.简单说成:过一点有且只有一条直线与已知直线平行.(c )b aA过直线a 外一点A 做∥b a ,∥c a ,则b 与c 重合.平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.简单说成:平行于同一条直线的两条直线平行.c b a若∥,∥b a c a ,则∥b c .【例1】 ⑴ 两条直线被第三条直线所截,则( )A .同位角相等B .内错角相等C .同旁内角互补D .以上都不对⑵ 1∠和2∠是同旁内角,若145∠=︒,则2∠的度数是( ) A .45︒ B .135︒ C .45︒或135︒ D. 不能确定⑶ 如图,下面推理中,正确的是( )A .∵180A D ∠+∠=°,∴AD BC ∥B .∵180CD ∠+∠=°,∴AB CD ∥ C .∵180A D ∠+∠=°,∴AB CD ∥ D .∵180A C ∠+∠=°,∴AB CD ∥(北京三帆中学期中)⑷ 如图,直线a ∥b ,若∠1=50°,则∠2=( )A .50°B .40°C .150°D .130°(北京101中期中)⑸ 如图,直线AB CD ∥,EF CD ⊥,F 为垂足,如果20GEF ∠=°,则1∠的度数是( )A .20°B .60°C .70°D .30°(北京八中期中)⑹ 如图,直线a b ∥,点B 在直线b 上,且AB BC ⊥,155∠=°,则2∠的度数为______典题精练DCBAba 21DGF1E CB A321ba CBA(北京八十中期中)⑺ 如图,1∠和2∠互补,那么图中平行的直线有( )A .a b ∥B .c d ∥C .d e ∥D .c e ∥(北京十三分期中)⑻ 将一直角三角板与两边平行的纸条如图所示放置,下列结论:①12∠=∠;②34∠=∠;③2490∠+∠=°;④45180∠+∠=°,其中正确的个数( )12345A .1B .2C .3D .4(北京十三分期中)⑼ 如图,直线12l l ∥,AB CD ⊥,134∠=°,那么2∠的度数是 .21l 2l 1DCB A(北京一六一中期中)⑽ 将一张长方形纸片按如图所示折叠,如果164∠=°,那么2∠等于 .21(北京一六一中期中)【解析】 ⑴D ; ⑵D ;⑶C ;⑷D ;⑸C ;⑹35°; ⑺D ;⑻D ;⑼56°; ⑽52°.【铺垫】多选题:下列说法错误的有( )A :不相交的两条直线是平行线.B :两条直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补. 21edc ba4C :三条直线a 、b 、c .若a b ∥,b c ∥,则a c ∥;同理,若a b ⊥,b c ⊥,则a c ⊥.D :已知α∠的两边与β∠的两边平行,若48α∠=°,则48β∠=°.E :若AB CD ∥,CD EF ∥,则AB EF ∥.理由是等量代换. F :有公共端点且没有公共边的两个角是对顶角.G :同一平面内垂直于同一条直线的两条直线平行.【解析】 A BCDEF【例2】 ⑴ 如图,∥AB CD ,B D ∠=∠,请说明12∠=∠,请你完成下列填空,把解答过程补充完整.解:∵AB CD ∥,∴180BAD D ∠+∠=°( ). ∵B D ∠=∠, ∴BAD ∠+ 180=°(等量代换). ∴ (同旁内角互补,两直线平行). ∴12∠=∠( ).(北京市海淀区期末)⑵ 填空,完成下列说理过程.如图,DP 平分ADC ∠交AB 于点P ,90DPC ∠=︒,如果∠1+∠3=90°,那么∠2和∠4相等吗?说明理由.解:∵DP 平分ADC ∠, ∴∠3=∠ ( ) ∵APB ∠= °,且90DPC ∠=︒,∴∠1+∠2=90°. 又∵∠1+∠3=90°,∴∠2=∠3. ( )∴∠2=∠4.(北京市朝阳区期末)⑶ 如图,已知DE AC ∥,DF AB ∥,求A B C ∠+∠+∠度数.4321FEDCBA解:∵DE AC ∥( ),∴C ∠= ( ), 3∠= ( ) 又∵DF AB ∥( ) ∴B ∠= ( ) A ∠= ( ) ∴3A ∠=∠( )∴123A B C BDC ∠+∠+∠=∠+∠+∠=∠= ( )【点评】第⑶题即证明了三角形内角和等于180°. 21D C BA PD C B A43215321ABCDE GH MF【解析】 ⑴ 依次填:两直线平行,同旁内角互补;B ∠;∥AD BC ;两直线平行,内错角相等⑵ 4,角平分线定义,180,同角的余角相等⑶ 已知;1∠;两直线平行,同位角相等;4∠;两直线平行,内错角相等;已知;2∠;两直线平行,同位角相等;4∠;两直线平行,同位角相等;等量代换;180°;平角定义.【例3】 ⑴ 如图,已知直线AB CD ∥, 115C ∠=°,25A ∠=°,则E ∠ 的度数为 度.⑵ 如图,不添加辅助线,请写出一个能判定EB AC ∥的 条件: .⑶ 如图,点E 在AC 的延长线上,给出下列条件:① 12∠=∠;② 34∠=∠;③ A DCE ∠=∠; ④ D DCE ∠=∠;⑤ 180A ABD ∠+∠=°; ⑥ 180A ACD ∠+∠=°;⑦ AB CD =. 能说明AC BD ∥的条件有 .⑷ 如图,直线EF 分别与直线AB 、CD 相交于点G 、H , 已知1260∠=∠=°,GM 平分HGB ∠交直线CD 于点M . 则3∠=( )A .60°B .65°C .70°D .130°【解析】 ⑴ ∵AB CD ∥,115C ∠=°(已知),∴65BFC ∠=°(两直线平行,同旁内角互补) ∴65AFE BFC ∠=∠=°(对顶角相等). ∵25A ∠=°(已知),∴90E ∠=°(三角形内角和).⑵ EBD ACB ∠=∠(EBA BAC ∠=∠)等(答案不唯一) ⑶ ②④⑤; ⑷ A .【例4】 ⑴ 已知:如图1,CD 平分ACB ∠,DE BC ∥,80AED ∠=°,求EDC ∠.⑵ 已知:如图2,1C ∠=∠,2∠和D ∠互余,BE FD ⊥于G .求证:AB CD ∥.(北京八中期中)EDCBA21G F EDCB A图1 图2ABC D E图3EDC B AF 4321EDCB A6【解析】 ⑴ ∵DE BC ∥∴80EDC DCB ACB AED ∠=∠∠=∠=︒,∵CD 平分ACB ∠∴1402EDC DCB ACB ∠=∠=∠=︒⑵ 证明:∵1C ∠=∠(已知)∴BE CF ∥(同位角相等,两直线平行) 又∵BE FD ⊥(已知)∴90CFD EGD ∠=∠=︒(两直线平行,同位角相等) ∴290BFD ∠+∠=︒(平角定义) 又∵290D ∠+∠=︒(已知) ∴BFD D ∠=∠(等量代换)∴AB CD ∥(内错角相等,两直线平行)【备选1】⑴如图1,一个宽度相等的纸条折叠一下,如果1100∠=︒,则2∠的度数是 .⑵如图2,把一张四边形纸片ABCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O ,若AB CD ∥,AD BC ∥,15DBC ∠=︒,则BOD ∠= .⑶如图3,直线1l 、2l 分别和3l 、4l 相交,若1∠与3∠互余,2∠与3∠的余角互补,4110∠=︒, 那么3∠= .21B DEOA 4321l 3l 4l 1l 2图1 图2 图3⑷如右图,已知AB CD ∥,AD BC ∥,60B ∠=︒,50EDA ∠=︒, 则CDO ∠= .【解析】 ⑴50°;⑵150°;⑶70°;⑷70°.【备选2】已知,如图,DE BC ⊥于E ,FG BC ⊥于G ,12∠=∠.求证:EH AC ∥.【解析】 901HEC ∠=︒+∠,902C ∠=︒-∠,∵12∠=∠∴180HEC C ∠+∠=︒ ∴EH AC ∥(同旁内角互补,两直线平行)【备选3】如图,已知AB 、CD 分别垂直EF 于B 、D ,且60FCD ∠=︒,130∠=︒,求证:BM AF ∥.图3G HF 21E B DACAOEDC B71A MFE DCB【解析】 ∵AB 、CD 分别垂直EF 于B 、D∴AB CD ∥∴60A FCD ∠=∠=°(两直线平行,同位角相等) 160ABM ABE ∠=∠-∠=°(垂直的定义) ∴A ABM ∠=∠∴BM AF ∥(内错角相等,两直线平行)【备选4】如图,已知12180∠+∠=,3B ∠=∠,试判断AED ∠与ACB ∠的大小关系,并对结论进行证明.【解析】 法一:∵12180∠+∠=,∴2DFE ∠=∠ ∴AB ∥EF ,∴3ADE ∠=∠ ∵3B ∠=∠,∴B ADE ∠=∠∴DE ∥BC ,∴AED ACB ∠=∠法二:延长EF ,找2∠的同位角,证出AB ∥EF ,再找3∠的内错角,证出DE ∥BC 即可.【例5】 如图,已知:AB ∥CD ,直线EF 分别交AB 、CD 于点M 、N , MG 、NH 分别平分AME ∠、CNE ∠. 求证:MG ∥NH .从本题我能得到的结论是:【解析】 ∵AB ∥CD ,∴AME CNE ∠=∠ 又∵MG 、NH 分别平分AME ∠、CNE ∠∴1122GME AME CNM HNE ∠=∠=∠=∠,∴MG ∥NH从本题我能得到的结论是:两直线平行,同位角的角分线平行. 引导学生举一反三,可得:两直线平行,内错角的角分线平行;两直线平行,同旁内角的角分线互相垂直.【选讲】下列条件中,位置关系互相垂直的是( )①对顶角的角平分线;②邻补角的平分线;③平行线的同位角的平分线;④平行线的内错角的平分线;⑤平行线的同旁内角的平分线.A .①②B .③④C .①⑤D .②⑤ 【解析】 D . 在同一条直线上的是①,位置关系是平行的是③④.思路导航题型二:基本模型中平行线的证明NM HG FED C B A 123AB D E F8模 型示例剖析ab21若∥a b ,则12∠=∠a bc321若∥∥a b c ,则1213180,∠=∠∠+∠=︒ba 321若∥a b ,则123∠=∠+∠ab321若∥a b ,则123360∠+∠+∠=︒【例6】 已知:如图∥AB CD ,点E 为其内部任意一点,求证:BED B D ∠=∠+∠.【解析】 过点E 作∥EF AB ,∵∥EF AB ,∥AB CD (已知)∴∥EF CD (平行于同一条直线的两直线平行) ∵∥EF AB ,(已知)∴B BEF ∠=∠(两直线平行,内错角相等) ∵∥EF CD ,(已知)∴D DEF ∠=∠(两直线平行,内错角相等)∵BED BEF DEF ∠=∠+∠∴BED B D ∠=∠+∠(等量代换)【例7】 如图,已知AB DE ∥,80ABC ∠=︒,140CDE ∠=︒,求BCD ∠的度数.【解析】 过点C 作CF AB ∥.∵AB DE ∥且CF AB ∥(已知)∴CF AB DE ∥∥(平行于同一条直线的两直线平行) ∵AB CF ∥且80ABC ∠=︒(已知)∴80BCF ABC ∠=∠=︒(两直线平行,内错角相等) ∵DE CF ∥且140CDE ∠=︒(已知) 典题精练F ABCDEFEDCBAA BCDEEDCBA9321 BbCDM ca∴180********DCF CDE ∠=︒-∠=︒-︒=︒(两直线平行,同旁内角互补) ∴804040BCD BCF DCF ∠=∠-∠=︒-︒=︒【拓展】如图所示,已知直线a b ∥,直线c 和直线a 、b 交于C 、D 两点,在C 、D 之间有一点M ,如果点M 在C 、D 之间运动,问1∠、2∠、3∠之间有怎样的关系? 这种关系是否发生变化?试着证明你的结论.【解析】 2=1+3∠∠∠. 关系不变.提示:过点M 做直线d a ∥.【例8】 如图,已知3180DCB ∠+∠=,12∠=∠,:4:5CME GEM ∠∠=,求CME ∠的度数.【解析】 如图延长CM 交直线AB 于点N∵3180DCB ∠+∠=,(已知)3ABC ∠=∠(对顶角相等)∴180ABC DCB ∠+∠=(等量代换) ∴AB ∥CD ,(同旁内角互补,两直线平行) ∴14∠=∠(两直线平行,内错角相等) ∵12∠=∠,(已知) ∴24∠=∠(等量代换) ∴GE ∥CM ,(同位角相等,两直线平行)∴180CME GEM ∠+∠=(两直线平行,同旁内角互补) ∵:4:5CME GEM ∠∠=, ∴80CME ∠=【点评】通过辅助线将相关角联系起来.训练1. 已知:如图,AE BC ⊥,FG BC ⊥,12∠=∠,360D ∠=∠+°,70CBD ∠=°.⑴ 求证:AB CD ∥;⑵ 求C ∠的度数.(北京十三分期中)321GFEDCBA1243AB C DE GMN123ABC DE GM思维拓展训练(选讲)10【解析】 ⑴如右图∵AE BC FG BC ⊥⊥,∴4590∠=∠=︒∴AE GF ∥ ∴1A ∠=∠ ∵12∠=∠ ∴2A ∠=∠ ∴AB CD ∥ ⑵∵AB CD ∥ ∴3180C D ABD ∠=∠∠+∠=︒, 又∵3ABD DBC ∠=∠+∠ ∴3180D DBC ∠+∠+∠=︒ ∵36070D DBC ∠=∠+∠=︒°, ∴360703180∠+︒+︒+∠=︒ ∴325∠=︒ ∴25C ∠=︒训练2. A ∠和B ∠的两边互相平行,A ∠比B ∠的三倍少20︒,则A ∠= 【解析】 10°或130°训练3. 如图,已知AB ∥CD ,70BEF ∠=,求ABE ∠+EFC FCD ∠+∠的度数.AB C DE FF ED C BA MN【解析】 过点E ,F 分别作AB 的平行线,那么AB ∥EM ∥FN ∥CD ,ABE ∠+EFC FCD ∠+∠ABE EFN NFC FCD =∠+∠+∠+∠ 180BEM MEF =∠+∠+ 70180250=+=训练4. 已知如图,12∠=∠,34∠=∠,56∠=∠,求证:CE BF ∥.【解析】 ∵34∠=∠(已知),∴BC DF ∥(内错角相等,两直线平行)∴57180∠+∠=°(两直线平行,同旁内角互补) ∵56∠=∠(已知),∴67180∠+∠=°(等量代换)∴AB CD ∥(同旁内角互补,两直线平行) ∴28∠=∠(两直线平行,内错角相等) 54321GFEDCBA8765G 3F 421E B DA CGE DCBA654321F11 N M F 21E BA C∵12∠=∠(已知), ∴18∠=∠(等量代换)∴CE BF ∥(内错角相等,两直线平行)题型一 平行线的定义、性质及判定 巩固练习【练习1】 已知如图,1C ∠=∠,2B ∠=∠,MN 与EF 平行吗?为什么?【解析】 ∵1C ∠=∠(已知),∴MN BC ∥(内错角相等,两直线平行)∵2B ∠=∠(已知),∴EF BC ∥(同位角相等,两直线平行) ∴MN EF ∥(平行于同一条直线的两直线平行)【练习2】 ⑴ 如图1,AB CD ∥,AD AC ⊥,32ADC ∠=°,则CAB ∠的度数是 .⑵ 如图2,直线l 与直线a ,b 相交.若a b ∥,170∠=°,则2∠的度数是 . ⑶ 如图3,直线m n ∥,155∠=°,245∠=°,则3∠的度数为( ) A .80° B .90° C .100° D .110°【解析】 ⑴ 122°;⑵ 110°;⑶ C .【练习3】 ⑴ 已知:如图1,110D ∠=°,70EFD ∠=°,12∠=∠,求证:3B ∠=∠.(北京三帆中学期中)证明:∵110D ∠=°,70EFD ∠=°(已知)∴180D EFD ∠+∠=° ∴AD ∥ ( ) 又∵12∠=∠(已知)∴ ∥ ( )∴ ∥ ( ) ∴3B ∠=∠( )⑵ 如图2,EF AD ∥,12∠=∠,70BAC ∠=°.将求AGD ∠的过程填写完整.(北京四中期中)解:∵EF AD ∥,∴2∠= ( )复习巩固图2132GAE BDF C图2 图221b a l图3n m321图1DC B A 图1321F E DCB A12又∵12∠=∠∴13∠=∠( )∴AB ∥ ( ) ∴BAC ∠+ 180=°( ) 又∵70BAC ∠=° ∴AGD ∠= .【解析】 ⑴EF ;同旁内角互补,两直线平行;AD ;BC ;内错角相等,两直线平行;EF ;BC ;平行于同一条直线的两直线平行;两直线平行,同位角相等.⑵3∠;两直线平行,同位角相等;等量代换;DG ;内错角相等,两直线平行;AGD ∠; 两直线平行,同旁内角互补;110°.【练习4】 如图,已知DA AB ⊥,DE 平分ADC ∠,CE 平分BCD ∠, 1290∠+∠=°,求证:BC AB ⊥.【解析】 ∵DE 平分ADC ∠,CE 平分BCD ∠,1290∠+∠=°∴180ADC BCD ∠+∠=°,∴AD ∥BC ,∴180DAB ABC ∠+∠=°∵DA AB ⊥,∴90ABC ∠=°,即BC AB ⊥题型二 基本模型中平行线的证明 巩固练习【练习5】 如图,已知AB ∥CD ,23ABF ABE ∠=∠,23CDF CDE ∠=∠,则:F E ∠∠= .【解析】 分别过点E ,F 做AB 和CD 的平行线,易得::2:3F E ∠∠=.【练习6】 已知:如图,点E 为其内部任意一点,BED B D ∠=∠+∠. 求证:∥AB CD .ED CBA【解析】 如图过点E 做∥EF AB ,∵∥EF AB∴B BEF ∠=∠,∵BED BEF DEF B DEF ∠=∠+∠=∠+∠ BED B D ∠=∠+∠ ∴DEF D ∠=∠ ∴∥EF CD 又∵∥EF AB ∴∥AB CDABCDE F12A B C DEFABCD E。

初中数学知识归纳平行线与角的关系

初中数学知识归纳平行线与角的关系

初中数学知识归纳平行线与角的关系初中数学知识归纳——平行线与角的关系初中数学中,平行线与角的关系是一个重要的概念。

平行线的特性决定了与其相关的角具有一些特殊的性质。

在本文中,我们将对平行线与角的关系进行归纳和探讨。

一、平行线的定义与性质平行线是指在同一个平面内永不相交的两条线。

根据平行线的定义,我们可以总结出以下性质:1. 平行线具有相同的斜率。

2. 平行线之间的距离在平面内是始终相等的。

3. 平行线之间的夹角为零度,也就是说,它们之间不存在交角。

二、平行线判定定理在初中数学中,判定两条直线是否平行有多种方法,其中最常用的方法是根据角的关系来判断。

以下是两个常用的判定定理:1. 同位角定理:如果两条直线被一条横截线所切,且同侧内角相等,则这两条直线是平行的。

2. 顶角定理:如果两条直线被一条横截线所切,其内对顶角相等,则这两条直线是平行的。

三、平行线与角的关系平行线与角有着密切的关系,下面是一些相关的性质:1. 锐角和钝角:当一条横截线与两条平行线相交时,所形成的角可以是锐角或钝角,并且这些角的对顶角也是锐角或钝角。

2. 对顶角与平行线:当两条平行线被一条横截线所切,所形成的对顶角是相等的。

3. 内错角与平行线:当两条平行线被一条横截线所切,所形成的内错角是相等的。

4. 外错角与平行线:当两条平行线被一条横截线所切,所形成的外错角互补,即它们的和为180度。

四、角的分类在平行线与角的关系中,我们还需要了解一些角的分类,如下:1. 对顶角:两条平行线被一条横截线所切,形成的相对的两个角称为对顶角。

2. 内错角:两条平行线被一条横截线所切,形成的同侧内角称为内错角。

3. 外错角:两条平行线被一条横截线所切,形成的同侧外角称为外错角。

五、实际应用平行线与角的关系在生活中有许多实际应用。

例如,在建筑工程中,为了保证建筑物的结构稳定,我们往往需要利用平行线与角的知识来进行设计和构造。

同时,在地理学中,地图上标示的经线和纬线也是平行线,通过分析它们与角的关系,我们能够更好地理解地球的地理特征。

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定平行线是数学中最基础的概念之一,在初中数学中也占据了重要的地位。

平行线的性质和判定方法具有一定的规律性和逻辑性,掌握了这些知识,对于解题和推理都有很大的帮助。

本文将对初中数学中与平行线相关的性质和判定进行归纳和总结。

一、平行线的性质1. 平行线性质一:同位角性质同位角是指两条平行线被一条第三条线(称为横线)所切割所形成的内角和外角。

同位角性质可以概括为:当直线与两条平行线相交时,同位角相等。

例如,图1中的直线l与平行线m、n相交,角A和角B、C都是同位角。

根据同位角性质,可知∠A = ∠B = ∠C。

2. 平行线性质二:内错角性质内错角是指两条平行线被一条第三条线所切割所形成的内角。

内错角性质可以概括为:当直线与两条平行线相交时,内错角相等。

例如,图2中的直线l与平行线m、n相交,角A和角B是内错角。

根据内错角性质,可知∠A = ∠B。

3. 平行线性质三:同旁内角性质同旁内角是指两条直线与两条平行线相交所形成的内角。

同旁内角性质可以概括为:当两条直线与两条平行线相交时,同旁内角互补。

例如,图3中的直线a、b与平行线m、n相交,角A和角B、C是同旁内角。

根据同旁内角性质,可知∠A + ∠B = 180°和∠A + ∠C = 180°。

二、平行线的判定方法1. 直线平行判定法一:同位角相等法如果一条直线与另外两条直线相交时,同位角相等,则这两条直线平行。

例如,图4中的直线l与线段AB、CD相交,∠1 = ∠2,则可判定线段AB与线段CD是平行的。

2. 直线平行判定法二:内错角相等法如果一条直线与两条平行线相交时,内错角相等,则这条直线与这两条平行线平行。

例如,图5中的直线l与平行线m、n相交,∠A = ∠B,则可判定直线l与平行线m、n是平行的。

3. 直线平行判定法三:同旁内角互补法如果一条直线与两条平行线相交时,同旁内角互补,则这条直线与这两条平行线平行。

初中数学教案:平行线与垂直线的性质

初中数学教案:平行线与垂直线的性质

初中数学教案:平行线与垂直线的性质平行线与垂直线的性质初中数学教案一、引言在初中数学学习中,平行线与垂直线是基础概念,理解它们的性质对学生后续的几何知识的学习至关重要。

本教案旨在帮助学生全面了解平行线与垂直线的性质,包括定义、判定、性质及其在实际问题中的应用。

通过讲解、演示和练习,提高学生对平行线与垂直线的认识和运用能力。

二、平行线的定义和判定1. 平行线的定义平行线是指在同一个平面内永不相交的直线。

2. 平行线判定定理(1)同位角定理:如果两条直线被一条截线所交,那么同位角互补或同位角相等的话,这两条直线是平行线。

(2)平行线判定定理:如果两条直线与一条截线所成的内角相等(或互补),那么这两条直线是平行线。

三、垂直线的定义和判定1. 垂直线的定义垂直线是指两条直线相交,且交角为90度的直线。

2. 垂直线判定定理(1)垂直线判定定理:如果两条直线垂直相交,那么它们的斜率的乘积为-1。

(2)斜率为正数的直线L1与斜率为负数的直线L2相交,且交角为90度,则L1与L2互相垂直。

四、平行线与垂直线的性质1. 平行线的性质(1)同位角性质:同位角是两条平行线对应的内角或外角,它们互补或对应相等。

(2)同旁内角性质:两条平行线被一条截线所交,同旁内角相等。

(3)平行线与平行线相交:如果一条直线与两条平行线相交,那么这两个交角互补。

(4)平行线的转折性质:两个平行线之间如果有一直角,那么它是四条直线相交的那一个角的内角。

2. 垂直线的性质(1)垂线的性质:垂直线是两条直线相交,交角为90度的直线。

(2)互相垂直性质:如果两条直线相交,且一对相邻角互补,那么它们是互相垂直。

(3)垂线的平分性质:直线上的两点到另一条直线的距离相等时,这条直线与第一条直线垂直。

五、平行线与垂直线的应用1. 利用平行线与垂直线进行判定和构造(1)利用平行线判定性质进行证明:通过对平行线的判定性质进行运用,解决几何图形的证明问题。

(2)利用垂直线判定性质进行构造:通过对垂直线的判定性质进行运用,构造出满足条件的几何图形。

初中数学七年级上册第五章平行线

初中数学七年级上册第五章平行线

第一节平行线的定义1.1 什么是平行线在初中数学七年级上册第五章中,平行线是一个核心概念。

平行线是指在同一个平面上,永远不会相交的两条直线。

这意味着这两条直线之间将永远保持固定的距离,无论它们有多长。

1.2 平行线的符号表示在数学中,我们通常使用符号“||”来表示平行线。

如果有两条线段AB和CD并且它们平行,我们可以表示为AB || CD。

第二节平行线的性质2.1 平行线的交错性质当一组平行线被一条横截线所交叉时,交叉的结果将产生一组相等的对应角。

这就是平行线的交错性质。

2.2 平行线的内错性质当一组平行线被一条横截线所交叉时,交叉的结果将产生一组内错角之和为180度的对应角。

这就是平行线的内错性质。

2.3 平行线的同位角性质当一组平行线被一条横截线所交叉时,交叉的结果将产生一组相等的同位角。

这就是平行线的同位角性质。

第三节平行线的判定定理3.1 两条直线和一条横截线如果两条直线被一条横截线所交叉,而交叉的结果产生一组相等的内错角或同位角,那么这两条直线是平行的。

3.2 一组同位角相等如果两条直线被一条横截线所交叉,而交叉的结果产生一组相等的同位角,那么这两条直线是平行的。

3.3 使用平行线判定定理我们可以使用这些平行线判定定理来判断是否两条直线是平行的。

这也是数学中实际问题中常见的一种解题方法。

第四节平行线的应用4.1 在几何形状中的应用在几何形状中,平行线的性质和判定定理经常被应用来解决角度或边长的问题。

4.2 在实际生活中的应用在建筑、工程、地理等领域,平行线的概念也具有重要的应用价值,例如在设计房屋、修建道路、绘制地图等方面。

结语初中数学七年级上册第五章的平行线的概念、性质、判定定理及应用是数学学习中的重要内容,它对学生在几何学和实际问题求解中具有重要意义。

通过深入理解和学习,同学们能够灵活运用平行线的知识解决各种数学问题和实际问题。

希望同学们能够在学习中对平行线有更深入的理解,并能够灵活运用到实际生活中。

初中数学 什么是相交线和平行线的性质

初中数学 什么是相交线和平行线的性质

初中数学什么是相交线和平行线的性质相交线和平行线是初中数学中关于直线的重要概念。

它们在几何学中有着广泛的应用,用于描述和分析直线的位置关系。

在本文中,我们将详细讨论相交线和平行线的概念、性质和应用。

一、相交线相交线是指两条直线在同一平面内相交的情况。

相交线具有以下几种情况:1. 相交于一点:当两条直线在同一平面内相交于一个点时,这两条直线称为相交于一点。

2. 不相交:当两条直线在同一平面内没有交点时,这两条直线称为不相交。

3. 相交于一条直线:当两条直线在同一平面内相交于一条直线时,这两条直线称为相交于一条直线。

相交线具有一些重要的性质。

首先,两条相交线之间有且仅有一个交点。

其次,相交线之间的交点是唯一的,不受其他直线的影响。

此外,两条相交线之间的交点将平面分成四个部分,这四个部分称为角。

二、平行线平行线是指在同一平面内没有交点的直线。

平行线具有以下几种情况:1. 平行:当两条直线在同一平面内没有交点且方向相同时,这两条直线称为平行。

2. 不平行:当两条直线在同一平面内有交点或方向不同时,这两条直线称为不平行。

平行线具有一些重要的性质。

首先,平行线之间的距离是恒定的,即平行线之间的任意两点之间的距离相等。

其次,平行线之间的任意一条线段与平行线之间的其他线段成比例。

此外,平行线之间的任意一条线段与平行线之间的其他线段的对应角是相等的。

三、性质相交线和平行线具有一些重要的性质。

下面我们将分别讨论相交线和平行线的性质。

1. 相交线的性质:a. 相交线之间的交点将平面分成四个部分,这四个部分称为角。

相邻的两个角称为邻角,互补的两个角称为补角,补角的和为180度。

b. 相交线上的对应角是相等的。

c. 相交线上的内错角互补,外错角互补。

d. 相交线上的同旁内角相等,同旁外角相等。

2. 平行线的性质:a. 平行线之间的距离是恒定的,即平行线之间的任意两点之间的距离相等。

b. 平行线之间的任意一条线段与平行线之间的其他线段成比例。

初中数学知识归纳平行线与比例

初中数学知识归纳平行线与比例

初中数学知识归纳平行线与比例初中数学知识归纳:平行线与比例数学是一门重要的学科,在初中阶段,学生们开始接触和学习更加具体和细化的数学知识。

其中,平行线与比例是初中数学中的重要内容之一。

本文将对这两个知识点进行详细的归纳和讲解。

一、平行线平行线是指在同一个平面内,永不相交的两条直线。

在初中数学中,学生需要掌握以下与平行线相关的概念和定理。

1. 平行线的判定:a) 直线与直线的判定方法:若两条直线上的任意一对相交角的对顶角互补,则这两条直线平行。

b) 直线与线段的判定方法:若一条直线与线段的两个端点连线所得线段构成的锐角和余角互补,则这条直线与该线段平行。

c) 直线与角的判定方法:若两条直线分别与两个平行直线所夹的对应角相等,则这两条直线平行。

2. 平行线的性质:a) 平行线上的两条对顶角(相交角)互补。

b) 平行线上的内错角互补,外错角相等。

c) 平行线所夹的内角和为180度。

3. 平行线与平行线的关系:a) 若两条平行线被一组平行线所截断,则截断所得的对应线段成比例。

b) 若两条直线被一组平行线所截断,则截断所得的对应角相等。

二、比例比例是数学中常见的概念,用于描述两个或多个量之间的关系。

下面将介绍比例的相关知识点。

1. 比例的定义:若a、b、c、d为任意实数(其中b,c不为0),则称a与b的比等于c与d的比,记作a:b=c:d。

2. 比例的性质:a) 全比与分比的关系:若a:b=c:d,则a:(b+c)=b:(d+c)。

b) 等比与倍比的关系:若a:b=c:d,则a:b=2a:2b=3a:3b =……=na:nb(其中n为任意正整数)。

c) 同比代入性质:若a:b=c:d,且b+d不为0,则a/(b+d)=c/(b+d)。

3. 比例与线段的关系:a) 线段分成比例:若AC:CB=AD:DB,其中D位于BC上,则称AD为线段AB的内分点,BD为线段AB的外分点。

b) 若线段DE是线段AC与线段BC的和,则有AD:DE=AE:EC。

初中数学知识归纳平行线与转角的关系

初中数学知识归纳平行线与转角的关系

初中数学知识归纳平行线与转角的关系初中数学知识归纳:平行线与转角的关系在初中数学中,平行线与转角是常见的几何概念,它们之间有着密切的联系与关系。

平行线与转角的相关知识在几何的学习中扮演了重要的角色。

本文将对平行线与转角的关系进行归纳总结。

1. 平行线的定义与判定平行线是指在同一个平面内,永不相交的两条直线。

初中数学中通常采用以下几种方法来判定两条直线是否平行:a. 同位角相等法则:当两直线被一条截线所交,同位角相等时,这两条直线是平行的。

b. 内错角相等法则:当两条直线被一条截线所交,内错角相等时,这两条直线是平行的。

c. 垂线法则:如果两条直线分别与一条直线垂直,那么这两条直线是平行的。

2. 平行线的性质平行线具有许多重要的性质,这些性质对于解决几何问题非常有帮助:a. 平行线上的对应角相等:当两条平行线被一条截线所交,对应角相等。

b. 平行线上的内错角和互补角:当两条平行线被一条截线所交,内错角互补。

c. 平行线上的同位角和内错角:当两条平行线被一条截线所交,同位角和内错角相等。

d. 平行线的平行性:如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。

3. 转角的定义与性质转角是指由两条直线相交所形成的两对相邻角。

转角通常由其角度特性来描述:a. 对顶角互补:转角中的对顶角(相对的内角、相对的外角)之和等于180度。

b. 余角互补:转角中的余角之和等于90度。

4. 平行线与转角的关系在几何学中,平行线与转角有着密切的联系与关系,它们之间可以通过以下几个定理来说明:a. 同位角定理:当两条平行线被一条截线所交,同位角相等。

这个定理可以用来证明两个角是否相等,或者两条直线是否平行。

b. 内错角定理:当两条平行线被一条截线所交,内错角互补。

这个定理可以用来证明两个角的和为180度,或者说明两条直线平行。

c. 转角定理:当两条直线被一条截线所交,转角的对顶角是互补的。

通过以上定理,我们可以通过已知条件判定两条直线是否平行,或者可以通过已知的平行关系来推导出一些其他角的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学平行线的性质及判定知识点初中数学平行线的性质及判定知识点
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的.公因式。

公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:
①确定公因式。

②确定商式③公因式与商式写成积的形式。

分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。

相关文档
最新文档