2017-2018学年人教版八年级下册期末数学试卷及答案

合集下载

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

2017-2018学年人教版八年级下册期末考试数学试题及答案

2017-2018学年人教版八年级下册期末考试数学试题及答案

2017-2018学年八年级下学期期末考试数学试题一、 选择题:(共8个小题,每小题2分,共16分)1.在我国古代的房屋建筑中,窗棂是重要的组成部分,具有高度的艺术价值. 下列窗棂的图案中,是中心...对称图形但不是轴对称图形的.............是2.如图,为测量池塘边上两点A ,B 之间的距离,可以在池塘的 一侧选取一点O ,连接OA ,OB ,并分别取它们的中点D ,E , 连接DE ,现测出AO =36米,BO =30米,DE =20米, 那么A ,B 间的距离是A .30米B .40米C .60米D .72米 3.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙 丙 丁 平均数(环) 8.9 9.1 8.9 9.1 方差3.33.83.83.3根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择 A .丁 B .丙 C .乙D .甲 4.一个不透明的盒子中装有3个红球,2个黄球和1个白球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是红球的概率为A .16B .13 C. 12 D .235.用配方法解方程223x x -=时,原方程应变形为A. ()212x += B. ()212x -=C. ()214x +=D. ()214x -=6.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为A .B .1- C.2D .2- 7. 若正比例函数y kx =的图象经过点(,9)A k ,且经过第一、三象限,则k 的值是 A. -9B. -3C. 3D. -3或3 8. 甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们A .B .C .D .乙甲-120104321OstFEDCBA α前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.①乙比甲晚出发1小时;②甲比乙晚到B 地3小时;③甲的速度是5千米/时;④乙的速度是10千米/小时;根据图 象信息,下列说法正确的是A .①B .③C .①②D .①③二、 填空题 (共5个小题,每题2分,共10分)9. 关于x 的一元二次方程230x x k -+=有一个根为1,则k 的值等于______.10. 如图,六边形ABCDEF 是正六边形,那么a Ð的度数是______.11. 已知:菱形的两条对角线长分别为6和8,那么它的边长是 .12. 某学习小组的同学做摸球实验时,在一个暗箱里放了多个只有颜色不同的小球,将小 球搅匀后任意摸出一个,记下颜色并放回暗箱,再次将球搅匀后任意摸出一个,不 断重复.下表是实验过程中记录的数据: 摸球的次数m 300 400 500 800 1000 摸到白球的次数n 186 242 296 483 599 摸到白球的频率m n0.6200.6050.5920.6040.599请估计从暗箱中任意摸出一个球是白球的概率是 . 13.在平面直角坐标系xOy 中,直线12y x =与双曲线22y x =的图象如图所示, 小明说:“满足12y y <的x 的取值范围 是1x <-.”你同意他的观点吗?答: .理由是 .三、解答题 (共74分)14.解方程:(1)2450x x +-=. (2)23210x x +-=. 15.已知:如图,矩形ABCD ,点E 是BC 上一点,连接AE ,AF 平分∠EAD 交BC 于F .求证:AE =EF16.已知关于x 的一元二次方程2420x x k -+-=有实数根, (1)求k 的取值范围;(2)若k 为负整数,且方程两个根均为整数,求出它的根.y xy 2=2xy 1=2x–1–2–3–41234–1–2–3–41234O 第10题图题图F E DCB A17.已知:如图,在平行四边形ABCD 中,延长CB 至E ,延长AD 至F ,使得BE =DF ,连接EF 与对角线AC 交于点O . 求证:OE =OF .18.2017年6月17日北京国际自行车大会召开,来自世界各地的4000多名骑游爱好者齐聚夏都延庆.各种自行车赛事也带动了延庆的骑游产业.据调查,延庆区某骑游公司每月的租赁自行车数的增长率相同,今年四月份的骑游人数约为9000人,六月份的骑游人数约为16000人,求该骑游公司租赁自行车数的月平均增长率(精确到0.01).19.设函数1y x=与21y x =+的图象的交点坐标为(,)a b ,求12ab-的值.20.如图,在△ABC 中,∠ACB =90°,点D 是AB 的中点,过点D 作DE ⊥AC 于点E , 延长DE 到点F ,使得EF =DE ,连接AF ,CF . (1)根据题意,补全图形; (2)求证:四边形ADCF 是菱形;(3)若AB =8,∠BAC =30°,求菱形ADCF 的面积.21.尺规作图已知:如图,∠MAB =90°及线段AB . 求作:正方形ABCD .要求:1.保留作图痕迹,不写做法,作出一个满足条件的正方形即可; 2.写出你作图的依据.22.从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显 示,参与共享经济活动超6 亿人,比上一年增加约1亿人.(1)为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是 ; A .对某学校的全体同学进行问卷调查BC ADMBA OFEDCBAB.对某小区的住户进行问卷调查C.在全市里的不同区县,选取部分市民进行问卷调查(2)调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.根据以上信息解答下列问题:①统计表中的a= ;b= ;②补全频数分布直方图;③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有多少人?23.在平面直角坐标系xOy中,直线(0)y kx b k=+¹与双曲线8yx=的一个交点为(2,)P m,与x轴、y轴分别交于点A,B.(1)求m的值;(2)若2AOP AOBS SD D=,求k的值.24.2020年冬奥会将在延庆召开,延庆区某中学响应区团委的号召,组织学生参加“我是奥运小志愿者”活动,志愿者可以到“八达岭长城”、“世葡园”、“龙庆峡”、“百里画廊”四个景区之一参加活动.晓明对“八达岭长城”和“百里画廊”最感兴趣,他将四个景区编号为A、B、C、D,并写在四张卡片上(除编号和内容不同之外,其余完全相同),他将卡片背面朝上,洗匀放好,从中随机抽取两张,请用列表或是画树状图的方法,求抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的概率. (说明:这四张卡片分别用它的编号A、B、C、D表示)年龄段(岁) 频数 频率12≤x<16 2 0.0216≤x<20 3 0.0320≤x<24 15 a24≤x<28 25 0.2528≤x<32 b 0.3032≤x<36 25 0.25骑共享单车的人数统计表骑共享单车的人数统计表频数(人)216123530252015105频数分布直方图频数分布直方图HGOyx1234-1-3-2-132125.已知矩形的面积为1,设该矩形的长为x ,周长为y ,小彬借鉴以前研究函数的经验,对函数y 随自变量x 的变化进行了探究;以下是小彬的探究过程: (1) 结合问题情境分析:①y 与x 的函数表达式为 ;②自变量x 的取值范围是 . (2)下表是y 与x 的几组对应值.x (41)31211 2 3 4… y…17220354m203172…①写出m 的值; ②画出函数图象;③观察图象,写出该函数两条不同类型的性质.26.已知:正方形ABCD ,E 为平面内任意一点,连接DE ,将线段DE 绕点D 顺时针旋转90°得到DG ,连接EC ,AG . (1)当点E 在正方形ABCD 内部时,①根依题意,在图1中补全图形; ②判断AG 与CE 的数量关系与位置关系 并写出证明思路..... (2)当点B ,D ,G 在一条直线时,若AD =4,DG =22,求CE 的长. (可在备用图中画图)27.对于点P (x ,y ),规定x +y =a ,那么就把a 叫点P 的亲和数.例如:若P (2,3),则2+3=5,那么5叫P 的亲和数.(1)在平面直角坐标系中,已知,点A (-2,6)①B (1,3),C (3,2),D (2,2),与点A 的亲和数相等的点 ;AB C DEDCB A图1 备用图备用图②若点E 在直线6y x =+上,且与点A 的亲和数相同,则点E 的坐标是 ;(2)如图点P 是矩形GHMN 边上的任意点,且点H (2,3),N (-2,-3),点Q 是直线y x b =-+上的任意点,若存在两点P 、Q 的亲和数相同,那么求b 的取值范围?初 二 数 学 答 案一、选择题:(共8个小题,每小题2分,共16分)DBAC DACD二、填空题 (共5个小题,每空2分,共10分)9.2. 10.60° 11.5. 12.0.599. 13.不同意,理由略 三、解答题14.(1)2450x x +-=(5)(1)0x x +-=……3分 ∴125,1x x =-=……4分 (2)方法1: 方法2:23210x x +-=23210x x +-= 3,2,1a b c ===- (31)(1)0x x -+=3分 242b b ac x a -±-= ∴121,13x x ==- 4分 ∴241223x -±+=´3分 ∴121,13x x ==-4分 15.证明:∵矩形ABCD ∴AD ∥BC ,∴∠DAF =∠AFB ………1分 ∵AF 平分∠EAD∴∠DAF =∠EAF ………2分 ∴∠AFB =∠EAF ………3分FEDCB A∴AE=EF ………4分 16.解:(1)∵关于x 的一元二次方程2420x x k -+-=有实数根∴0D ³∵24164(2)840b ac k k D =-=--=+³∴2k ³- ……………2分 (2)∵2k ³-且k 为负整数∴2,1k k =-=- ……………3分 当2k =-时,原方程化为2440x x -+=,则方程的解为122x x ==……4分当1k =-时,原方程化为2430x x -+=,则方程的解为123,1x x ==……5分17.证明:连接AE ,DF∵ABCD∴AD ∥BC ,AD=BC ……2分 ∵BE =DF ∴CE =AF ……3分 ∴四边形AECF 为平行四边形……4分 ∴OE =OF ……5分18.设该骑游公司租赁自行车数的月平均增长率是x ,…………………1分依题意,得:()29000116000x +=,………………………3分解得: 413x +=±∴120.33,0.67x x ==-(舍).……………………………4分答:该骑游公司租赁自行车数的月平均增长率是0.33 .……………5分19.∵函数1y x =与21y x =+的图象的交点为(,)a b∴1,21ab b a ==+ ……2分∴122111b a a b ab ++=== ……4分 21.(1)补全图形-----------------1分 (2)证明:∵Rt △ABC 中,CD 是AB 边上的中线, ∴CD=AD , ∵DE ⊥AC ,OFEDCB AF E DCBA∴AE=EC , ∵DE=EF∴四边形ADCF 为平行四边形 ……2分 ∵AD=CD∴平行四边形ADCF 为菱形 ……3分 (3)在Rt △ADE 中∵AD =4,∠AED=90°,∠CAD=30°, ∴DE =12AD =2, ∴由勾股定理得,3AE =. ……4分 ∴ADCF=423=83S´菱形……5分22.答案略(1)画图------------2分(2)依据------------4分23. 共5分,每空1分(1)C(2)①a =0.15;b=30;②补全图形;③700 23.(1)(2,)P m 在双曲线8y x=的图象上∴m =4 --------1分 (2)如图,分两种情况 ①当与y 轴正半轴相交时∵AOP AOB S =2S D D∴11222x BO P =BO OA∴O B =2 ∴B (0,2)由题意得,(0)y kx b k =+¹经过点B (0,2),P (2,4)∴解得1k =-----------3分②当与y 轴负半轴相交时∵AOPAOBS =2SD D∴11222y AO P =BO OA∴OB =2 ∴B (0,-2)由题意得,(0)y kx b k =+¹经过点B (0,-2),P (2,4) ∴解得3k =综上所述:1k =,3k = -----------5分24.A (八达岭)B (市葡园)C (龙庆峡)D (百里画廊)A (八达岭)AB AC AD B (市葡园) BA BC BD C (龙庆峡) CACB CD D (百里画廊) DADBDC∴抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的概率21126P ==-----4分 25. (1)①y 与x 的函数表达式为22y x x =+;-----------1分 ②自变量x 的取值范围是x >0. -----------2分 (2)①m =4; -----------3分②函数图象如图所示; -----------4分 ③答案略. -----------6分26. (1)当点E 在正方形ABCD 内部时,①根依题意,补全图形如图: -----------1分 ②AG =CE ,AG ⊥CE . -----------3分 证明思路如下:①由正方形ABCD,可得A D=CD,∠ADC=90°,②由DE绕着点D顺时针旋转90°得DG,可得∠GDE=∠ADC=90°,GD=DE,进而可得,∠GDA=∠EDC③利用角边角可证△AGD≌△CED,可得AG=CE.----------4分证明思路如下:①延长CE分别交AG、AD于点F、H,②由①中结论△AGD≌△CED,可得∠GAD=∠ECD,③由∠AHF=∠CHD,利用三角形内角和定理可得∠AFH=∠HDC=90°④利用垂直定义可证得AG⊥CE.- --------5分(2)解:当点G在线段BD的延长线上时,如图3所示.过G作GM⊥AD于M.∵BD是正方形ABCD的对角线,∴∠ADB=∠GDM=45°.∵GM⊥AD,DG=∴MD=MG=1在Rt△AMG中,由勾股定理,得AG=∴CE=AG=. ----------6分当点G在线段BD上时,如图4所示.过G作GM⊥AD于M.∵BD是正方形ABCD的对角线,∴∠ADG=45°∵GM⊥AD,DG=∴MD=MG=1在Rt△AMG中,由勾股定理,得AG=∴CE=AG= --------7分故CE的长为或27.(1)①与点A的亲和数相等的点 B , D ; --------2分HGOyx1234-1-3-2-1321②点E的坐标是 (-1,5); --------4分 (2)b的取值范围是55b-££ --------7分。

2017-2018学年人教版数学八年级第二学期期末考试试题及答案

2017-2018学年人教版数学八年级第二学期期末考试试题及答案

2017-2018学年八年级(下)期末考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1 •若式子土2有意义,则x的取值范围为()x—3A. x >2B . x工3 C. x>2 或x工3 D . x>2 且X M 32•下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A . a=亡2 ,b= J3 ,c= /5 B. a=1.5,b=2,c=3C. a=6,b=8,c=10 D . a=3,b=4,c=53. 下列计算错误的是()A. 3+2 2 =5 2 B . . - 2=、、2 C.、、2 X、3 =/〕D . J” ■ = , 24. 设n为正整数,且n v — v n+1,则n的值为()A. 5B. 6C. 7D. 85. 若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为()A . 2,2B . 4迁C . 4D . 86 .如图,在平行四边形ABCD中,/ B=80°,AE平分/ BAD交BC于点E,CF// AE 交AD 于点F,则/ 1=()A . 40°B . 50°C . 60°D . 80°7. 小刚与小华本学期都参加5次数学考试(总分都为120分),数学老师想判断这两个同学的数学成绩谁更稳定,在做统计分析时,老师需要比较这两个人5次数学成绩的()A.方差B .平均数C .众数D .中位数8. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A .当AB=BC时,平行四边形ABCD是菱形B. 当AC丄BD时,平行四边形ABCD是菱形C. 当AC=BD时,平行四边形ABCD是正方形D. 当/ ABC=90时,平行四边形ABCD是矩形9. 关于一次函数y= - 2x+3,下列结论正确的是()A .图象过点(1,- 1)B .图象经过一、二、三象限C. y随x的增大而增大D .当x>;时,y v 010. 如图,菱形ABCD中,AB=2,/ B=120°,点M是AD的中点,点P由点A出发,沿LB-CF 作匀速运动,到达点D停止,则△ APM的面积y与点P 经过的路程x 之间的函数关系的图象大致是()二、填空题(共6小题,每小题4分,满分24分)11. ______________________ 比较大小:-2並-3 (填V”或“ =或>”12. 将正比例函数y=- 2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_______ .13. _____ 在平面直角坐标系中,A (- 4,3),点O为坐标原点,则线段OA的长为_________ .14. 如图所示,DE ABC的中位线,点F在DE 上,且/ AFB=90°,若AB=5,15. 如图,在△ ABC 中,/ ACB=90 , AC=6 , AB=10 , AB 的垂直平分线DE则CE的长等于16. 如图,在平面直角坐标系中有一个边长为1的正方形OABC,边OA, OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB i C i,再以对角线OB i为边作第三个正方形OB1B2C2,…,照此规律作下去,则点B6的坐标三、解答题(共3小题,满分18分)17. (6 分)计算:心:畀匸(一 -1)- 30- | - - 2| .1 218. (6分)先化简,再求值:(1-丄),其中a W3 - 1.a a -119. (6分)如图,在平行四边形ABCD中,已知AD > AB .(1)实践与操作:作/ BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.四、简答题20. ( 7 分)已知:x=2+ 一 , y=2- 一 .(1)求代数式:x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?21. (7分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10 分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(2)请你将如图的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.22. ( 7分)已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5, 0),直线y=2x - 4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x - 4>kx+5的解集;(3)求厶ADC的面积.五、简答题23. (9分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费•小英家1月份用水20吨,交水费49元;2月份用水22吨,交水费56元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?24. (9分)已知如图1,P为正方形ABCD的边BC上任意一点,BE丄AP于点E,在AP的延长线上取点F,使EF=AE,连接BF,Z CBF的平分线交AF 于点G.(1)求证:BF=BC ;(2)求证:△ BEG是等腰直角三角形;(3)如图2,若正方形ABCD的边长为4,连接CG,当P点为BC的中点时,求CG的长.图1 图225. (9分)如图,矩形OABC在平面直角坐标系内(_0为坐标原点),点A 在x轴上,点C在y轴上,点B的坐标为(-4,- 4 •「),点E是BC的中点, 现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使/ CEF=6C° .(1)求证:△ EFC^A GFO;(2)求点D的坐标;(3)若点P (x, y)是线段EG上的一点,设△ PAF的面积为s,求s与x的函数关系式并写出x的取值范围.备用图、选择题(每小题3分,共30分)题号12345678910答案D B A C C B A C D B、填空题(每小题4分,共24分)11.> 12 .y=—2x+5 . 13.5.714. 2 . 15. 4 . 16.( 8, -8)三、解答题(每小题6分,共18分)17.解:原式 =.4・・.3 ■ 3-分3-1 ■〔3-2____________ 」4 3.................. .............. 6分18. 解:原式2 (2)条形的统计图补充如图: 4分a -1 a ------- x ---------------------------a (a 1)(a -1) a "a 1 当 a 二、.3 _1 时 原式二上3-1.3+1-13-、、3319. ..................................................................................... 解:(1)如图AE 就是所要求的角平分线。

2017-2018八年级数学下试题及答案

2017-2018八年级数学下试题及答案

八年级数学试题 第 1 页 (共 7 页)2017-2018学年度第二学期期末检测八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.式子3-x 在实数范围内有意义,则x 的取值范围是( ) A .3≥xB .3>xC .3≤xD .3≠x 2.下列根式中,不能与3合并的是( )A .34B .34 C .32D .12 3. 甲、乙、丙、丁四名同学在三次诊段考试中数学成绩的方差分别为2=1.2S 甲,39.02=乙S ,18.02=丙S ,2=3.5S 丁,则这四名同学发挥最稳定的是( ) A .甲 B .乙 C .丙 D .丁4. 若正比例函数kx y =的图像经过第二、四象限,则k 的值可以是( ) A .2B .2-C .2±D .20-或5.下列各组数不能作为直角三角形三边长的是( )A .3,4, 5B .3,4,5C .5,12,13D .1,2, 3 6.不能判定一个四边形是平行四边形的条件是( ) A .两组对边分别平行B .一组对边平行,另一组对边相等C .一组对边平行且相等D .两组对边分别相等 7.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O , ∠ACB =60°,则∠AOB 的大小为( ) A .30°B .60°C .120°D .150°8.已知菱形的周长为cm 20,两对角线的长度之比是4:3,那么两对角线的长分别为( ) A.cm cm 4,3 B.cm cm 8,6 C.cm cm 16,12 D.cm cm 32,24 9.关于一次函数22+-=x y ,下列结论正确的是( )A .函数图象不经过第一象限B .图象与x 轴的交点是)2,0(OAD CB)7(题图八年级数学试题 第 2 页 (共 7 页)C .y 随x 的增大而增大D .图象过点)4,1(- 10. 如图,直线)0(≠=k kx y 和直线)0(≠+=m n mx y 相交于 点)3,2(A ,则不等式n mx kx +≤的解集为( ) A .3x ≥B .3x ≤C .2x ≥D .2x ≤11.如图,用菱形纸片按规律依次拼成下列图案.由图知,第1个图案中有5个菱形纸片;第2个图案中有9个菱形纸片;第3个图形中有13个菱形纸片.按此规律,第6个图案中有()个菱形纸片.A .21B .23C .25D .2912. 若关于x 的一次函数3)1(--=x k y ,y 随x 的增大而减小,且关于x 的不等式组⎩⎨⎧<+≥+0752k x x 无解,则符合条件的所有整数k 的值之和是( ) A. 2- B. 1- C. 0 D. 1二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.计算:=-2)3( .14.将直线2+-=x y 向下平移3个单位长度后所得直线的解析式是 .15.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占%30,期末卷面成绩占%70,小明的两项成绩(百分制)依次是90分,80分,则小明这学期的数学成绩是 _________分.16.一次函数42+-=x y 的图象与两坐标轴所围成的三角形面积是 . 17. 如图所示,DE 为ABC ∆的中位线,点F 在DE 上,且 90=∠AFB , 若8=AB ,14=BC ,则EF 的长为 .18. 如图, 在正方形ABCD 中,对角线AC 的长为cm 16,P 是BC 上 任意一点,AC PE ⊥,BD PF ⊥,则PF PE +的值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.(17题图)nmx y +=xk y =)3,2(A )10(题图CD)18(题图八年级数学试题 第 3 页 (共 7 页)19.计算: 6223427⨯-+20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额 进行统计调查,并绘制了统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是 ______元/人;众数是_____元;中位数是_______元; (2)据统计该校的1800人中,每周零花钱为15元的学生 约有多少人?四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.21. 如图,在ABCD 中,点E 、F 是对角线AC 上的两点,且DF BE //,求证:四边形BEDF 是平行四边形.22.如图,直线l 与x 轴正半轴交于点A ,与y 轴负半轴交于点B ,其中A 点坐标是)0,3(,且 13=AB .(1)求直线l 的解析式;(2)求O 到直线l 的距离.23.我区为推行节约用水,决定从2018年起1月起实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按基本优惠价收费;每月超过12吨时,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费90元;2月份用水20吨,交水费6.73元. (1)求每吨水的基本优惠价和市场调节价分别是多少元?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式.24.阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”ABCD 中,若135=∠B ,则A ∠=__________;)20(题图)21(题图D八年级数学试题 第 4 页 (共 7 页)(2)如图,折叠平行四边形纸片DEBF ,使顶点E ,F 分别落在边BE ,BF 上的点A ,C 处,折痕分别为DG ,DH .求证:四边形ABCD 是“和谐四边形”.25. 如图1,在矩形ABCD 中,过矩形ABCD 对角线AC 的中点O 作AC EF ⊥分别交AB 、DC 于E 、F 点. (1)求证:CFAE =; (2)如图2,若G 为AE 的中点,且 30=∠AOG ,求证:OGDC 3=.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤.26. 如图,在平面直角坐标系中,一次函数()0y m x n m =+≠的图象与x 轴交于点)0,3(-A ,与y 轴交于点B ,且与正比例函数x y 2=的图象交于点)6,3(C . (1)求一次函数y m x n=+的解析式; (2)点P 在x 轴上,当PCPB +最小时,求出点P 的坐标; (3)若点E 是直线AC 上一点,点F 是平面内一点,以O 、C 、E 、F 四点为顶点的四边形是矩形,请直接写出点F(25题图))24(题图八年级数学试题 第 5 页 (共 7 页)2017-2018学年度第二学期期末检测七年级数学参考答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.假 14. 169 15. 0≥a 16 . 2∠ 17. )25,23(- 18. 5-三、解答题:(本大题共2个小题,每小题8分,共16分) 19.解:原式()()13223-+--+=………………………………………………4分13223-+--=……………………………………………………6分 23-=.………………………………………………………………8分20.解:原方程组化为6912642x y x y ⎧+=⎪⎨+=⎪⎩①②,由①-②得:510y =,……………………4分所以,2y =,代入方程321x y +=得3221x +⨯=, 解得1x =-, 故原方程组的解为12x y =-⎧⎨=⎩.………………………………8分四、解答题:(本大题共5个小题,每小题10分,共50分)21. 解:由4)2(3-≥-x x 得22≥x ,∴1≥x , ………………3分 由1312->+x x 得3312->+x x ,∴4<x ,………………6分 故原不等式组的解为41<≤x ,在数轴上表示为:……………8分八年级数学试题 第 6 页 (共 7 页)22. 解:(1)如图三角形ABC 为所求, ………(3分) (2)如图三角形,'''C B A 为所求………(6分))2,5(',)3,0('--C B ………(8分)(3) 三角形'''C B A 的面积是: 614212421=⨯⨯+⨯⨯……………(10分)23.(1)300%2060=÷(人).…………3分(2)%44 , %3…………7分(3)条形统计图补充正确.…………10分24.证明: E ∠=∠2 (已知)∴ AD ∥ BC( 内错角相等,两直线平行 ) ∴∠=∠3 DAC ( 两直线平行,内错角相等 ) ∵43∠=∠(已知)∴∠=∠4 DAC ( 等量代换 ) ∵21∠=∠(已知)∴CAF CAF ∠+∠=∠+∠21 即∠=∠BAF DAC∴∠=∠4 BAF (等量代换)∴ AB ∥ CD (同位角相等,两直线平行) (每空1分)25. 解:(1)设蔬菜有x 吨,水果有y 吨,根据题意得:⎩⎨⎧=-=+1735y x y x …………………………………………………(2分)解得:⎩⎨⎧==926y x ……………(4分)答:蔬菜有26吨,水果有9吨……………(5分)(2)设租用A 种货车a 辆,则租用B 种货车(8-a )辆,根据题意得:ABC'A 'B 'C八年级数学试题 第 7 页 (共 7 页)⎩⎨⎧≥-+≥-+9)8(226)8(24a a a a ……………………(7分)解得:75≤≤a …………………………(8分) ∵a 取整数 ∴a =5,6,7当a =5时,租车费用为:2000×5+1300×(8-5)=13900(元) 当a =6时,租车费用为:2000×6+1300×(8-6)=14600(元) 当a =7时,租车费用为:2000×7+1300×(8-7)=15300(元)∴租用A 种货车5辆,B 种货车3辆,可使运费最少,最少为13900元………(10分) 五、解答题:(本大题共1个小题,共12分)26.解:(1)A (-2,0) B (3,0)……………(4分) (2)∠PQD+∠OPQ+∠POB=360°…………………(5分) 证明:过点P 作PE ∥AB 由平移的性质可得AB ∥CD ∴AB∥PE ∥CD∴∠PQD+∠EPQ=180°,∠OPE+∠POB=180° ∴∠PQD+∠EPQ+∠OPE+∠POB=360°即∠PQD+∠OPQ+∠POB=360°……………(8分)(3)存在符合条件的M 点,坐标为(-7,0),(3,0)(0,-3),(0,7) (答对一点得1分)…………………………………………………(12分)2图。

2017-2018人教版八年级数学下册期末试卷及答案(精选)

2017-2018人教版八年级数学下册期末试卷及答案(精选)

期末测试(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是( ) A.12 B.23C.0.3D.7 2.▱ABCD 中,∠A =40°,则∠C =( )A .40°B .50°C .130°D .140° 3.下列计算错误的是( )A .3+22=5 2 B.8÷2= 2C.2×3= 6D.8-2= 24.(重庆中考)某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定 5.下列各组数不能作为直角三角形三边长的是( )A.3,4, 5 B .3,4,5 C .0.3,0.4,0.5 D .30,40,50 6.函数y =x -2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 7.矩形、菱形、正方形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .对角线平分对角8.2016年,某市发生了严重干旱,该市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .中位数是6C .平均数是6D .方差是49.(孝感中考)如图,直线y =-x +m 与y =nx +4n(n ≠0)的交点的横坐标为-2,则关于x 的不等式-x +m>nx +4n>0的整数解为( )A .-1B .-5C .-4D .-310.(牡丹江中考)如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( ) A .1 B .2 C .3D .4二、填空题(每小题4分,共24分)11.二次根式x -2有意义,则x 的取值范围是____________.12.将正比例函数y =-2x 的图象向上平移3个单位,则平移后所得图象的解析式是__________. 13.已知菱形的两条对角线长分别为1和4,则菱形的面积为____________.14.若已知方程组⎩⎪⎨⎪⎧2x +y =b ,x -y =a 的解是⎩⎪⎨⎪⎧x =-1,y =3.则直线y =-2x +b 与直线y =x -a 的交点坐标是__________.15.如图,在△MBN 中,已知BM =6,BN =7,MN =10,点A ,C ,D 分别是MB ,NB ,MN 的中点,则四边形ABCD 的周长是.16.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分∠BAD 交BC 于点E ,若∠CAE =15°,则∠BOE 的度数为____________.三、解答题(共66分)17.(8分)计算:3(2-3)-24-|6-3|. 18.(8分)如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边上的点F 处,折痕为AE.若BC =10 cm ,AB =8 cm ,求EF 的长.19.(8分)已知,一次函数y =kx +3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.20.(8分)如图,点D ,C 在BF 上,AC ∥DE ,∠A =∠E ,BD =CF. (1)求证:AB =EF ;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.22.(12分)(潜江中考)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x 棵,到两家林场购买所需费用分别为y 甲(元),y 乙(元).(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为____________元,若都在乙林场购买所需费用为____________元;(2)分别求出y 甲,y 乙与x 之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?23.(12分)以四边形ABCD 的边AB ,AD 为边分别向外侧作等边△ABF 和等边△ADE ,连接EB ,FD ,交点为G.(1)当四边形ABCD 为正方形时(如图1),EB 和FD 的数量关系是EB =FD ;(2)当四边形ABCD 为矩形时(如图2),EB 和FD 具有怎样的数量关系?请加以证明;(3)四边形ABCD 由正方形到矩形到一般平行四边形的变化过程中,∠EGD 是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD 的度数.参考答案1.D 2.A 3.A 4.A) 5.A 6.B 7.B 8.D 9.D 10.C 提示:①③④正确,②错误.11.x ≥2 12.y =-2x +3 13.2 14.(-1,3) 15.13 16.75° 17.原式=6-3-26-(3-6)=-6.18.由条件知AF =AD =BC =10 cm ,在Rt △ABF 中,BF =AF 2-AB 2=102-82=6(cm),∴FC =BC -BF =10-6=4(cm).设EF =x cm ,则DE =EF =x ,CE =8-x ,在Rt △CEF 中,EF 2=CE 2+FC 2,即x 2=(8-x)2+42.解得x =5,即EF =5 cm.19.(1)由题意,得k +3=4,解得k =1,∴该一次函数的解析式是y =x +3.(2)由(1)知,一次函数的解析式是y =x +3.当x =-1时,y =2,即点B(-1,5)不在该一次函数图象上;当x =0时,y =3,即点C(0,3)在该一次函数图象上;当x =2时,y =5,即点D(2,1)不在该一次函数图象上.20.(1)证明:∵AC ∥DE ,∴∠ACD =∠EDF.∵BD =CF ,∴BD +DC =CF +DC ,即BC =DF.又∵∠A =∠E ,∴△ABC ≌△EFD(AAS).∴AB =EF.(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知△ABC ≌△EFD ,∴∠B =∠F.∴AB ∥EF.又∵AB =EF ,∴四边形ABEF 为平行四边形. 21.(1)84 80 80 104(2)因为小王的方差是190,小李的方差是104,而104<190,所以小李成绩较稳定.小王的优秀率为25×100%=40%,小李的优秀率为45×100%=80%.(3)因为小李的成绩较小王稳定,且优秀率比小王的高,因此选小李参加比赛比较合适. 22.(1)5 900 6 000(2)y 甲=⎩⎪⎨⎪⎧4x (0≤x ≤1 000且x 为整数),3.8x +200(x>1 000且x 为整数);y 乙=⎩⎪⎨⎪⎧4x (0≤x ≤2 000且x 为整数),3.6x +800(x>2 000且x 为整数). (3)①当0≤x ≤1 000时,两家林场单价一样,因此到两林场购买所需要费用都一样;②当1 000<x ≤2000时,甲林场有优惠而乙林场无优惠,∴当1 000<x ≤2 000时,到甲林场购买合算;③当x >2 000时,y 甲=3.8x +200,y 乙=3.6x +800,y 甲-y 乙=3.8x +200-(3.6x +800)=0.2x -600.(ⅰ)当y 甲=y 乙时,0.2x -600=0,解得x =3 000.∴当x =3 000时,到两林场购买所需要费用都一样;(ⅱ)当y 甲<y 乙时,0.2x -600<0,解得x <3 000.∴当2 000<x <3 000时,到甲林场购买合算;(ⅲ)当y 甲>y 乙时,0.2x -600>0,解得x >3 000.∴当x >3 000时,到乙林场购买合算.综上所述,当0≤x ≤1 000或x =3 000时,到两林场购买所需要费用都一样;当1 000<x <3 000时,到甲林场购买合算;当x >3 000时,到乙林场购买合算. 23.(2)EB =FD.证明:∵△AFB 为等边三角形,∴AF =AB ,∠FAB =60°.∵△ADE 为等边三角形,∴AD =AE ,∠EAD =60°.∴∠FAB +∠BAD =∠EAD +∠BAD ,即∠FAD =∠BAE.∴△FAD ≌△BAE.∴EB =FD. (3)∠EGD 不发生变化.∵△ADE 为等边三角形,∴∠AED =∠EDA =60°.∵△ABF ,△AED 均为等边三角形,∴AB =AF ,∠FAB =60°,AE =AD ,∠EAD =60°.∴∠FAD =∠BAE.∴△FAD ≌△BAE.∴∠AEB =∠ADF.设∠AEB 为x °,则∠ADF 也为x °,于是有∠BED 为(60-x)°,∠EDF 为(60+x)°,∴∠EGD =180°-∠BED -∠EDF =180°-(60-x)°-(60+x)°=60°.。

2017-2018学年新课标最新陕西省西安市八年级数学下学期期末试卷及答案-精品试卷

2017-2018学年新课标最新陕西省西安市八年级数学下学期期末试卷及答案-精品试卷

2017-2018学年陕西省西安市八年级(下)期末数学试卷一、选择题1.若分式的值为0,则x的取值应满足是()A.x=﹣2 B.x≠﹣2 C.x=2 D.x≠22.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30° B.40° C.50° D.70°3.下列不等式一定成立的是()A.a<2a B.a<a+2 C.﹣a>﹣2a D.a+2>24.在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列因式分解正确的是()A.x(x+3)=x2+3x B.2n2﹣mn﹣n=2n(n﹣m﹣1)C.﹣x2﹣4y2+4xy=﹣(x﹣2y)2D.2x3﹣8x=2x(x2﹣4)6.一个多边形的每一个内角均为相邻外角的4倍,这个多边形的边数是()A.9 B.10 C.11 D.127.如图,四边形ABCD中,AC=8,BD=6,且AC⊥BD,连接四边形ABCD各边中点得到四边形EFGH,下列说法正确的是()A.四边形EFGH是矩形 B.四边形EFGH的周长是7C.四边形EFGH的面积是12 D.四边形ABCD的面积是488.若关于x的方程﹣=1的解为正数,则m的取值范围是()A.m<4 B.m>4 C.m<4且m≠0 D.m>4且m≠89.如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足F在线段AD上,连接EF.则下列结论一定成立的是()①∠FBC=90°;②点E是CD中点;③EF=EB;④S△EBF=S△EDF+S△EBC.A.①②B.③④C.①②③D.①②③④10.如图,四边形ABCD中,AB=AD,∠B+∠C=180°,若AC=12,则四边形ABCD的面积最大值为()A.36 B.C.72 D.二、填空题11.分解因式:a3﹣12a2+36a= .12.如图,点A的坐标为(0,6),将△OAB沿x轴向右平移得到△O'A'B',若点A的对应点A'落在直线y=2x﹣1上,则点B与其对应点间的距离为.13.已知一次函数y=ax+b的图象经过第二、三、四象限,与x轴的交点为(﹣2,0),则不等式ax﹣b<0的解集是.14.如图,正方形ABCD中,AB=2,点E是AB上一点,将正方形沿CE折叠,点B落在正方形内一点B'处,若△AB'D为等腰三角形,则BE的长度为.三、解答题15.解不等式组:,并将解集表示在数轴上.16.先化简,再求值: +(a﹣1﹣),其中a=2.17.解方程:=.18.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)19.我校为了创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.求文学和科普书的单价.20.在如图所示的正方形网格中,△ABC的顶点均在格点上,点A的坐标为(1,﹣1).(1)画出△ABC向左平移2个单位,然后再向上平移4个单位后的△A1B1C1,并写出点A1的坐标;(2)以M(﹣1,1)为对称中心,画出与△A1B1C1成中心对称的△A2B2C2,并求出以A1、C2、A2、C1为顶点的四边形的面积.21.已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=8,AD=16,求MD的长.22.某电信公司有甲、乙两种手机收费业务,仅上网流量收费不同,图中I1、I2分别表示甲、乙两种业务每月流量费用y(元)与上网流量x(GB)的之间的函数关系.(1)分别求出甲、乙两种业务每月所收费用y元与上网流量x(GB)之间的函数关系式.(2)已知刘老师选择了甲业务,魏老师选择了乙业务,上月两位老师所用流量相同,均为mGB,上网流量费用相差不到20元,求m的取值范围.23.问题探究:(1)如图①,△ABC中,AB=AC=5,BC=6,点D在BC上,若AD平分△ABC的面积,请你画出线段AD,并计算线段AD的长度.(2)如图②,平行四边形ABCD中,AB=6,BC=8,∠B=60°,点M在AD上,点N在BC上,若MN平分平行四边形ABCD的面积,且线段MN的长度最短,请你画出符合要求的线段MN,并求出此时MN的长度.问题解决(3)如图③,四边形ABCD是规则中的商业区示意图,其中AD∥BC,∠B=90°,AD=1km,AB=2.4km,CD=2.6km,现计划在商业区内修一条笔直的单行道,入口M在AB上,出口N在BC上,使得MN将四边形ABCD分成面积相等的两部分,且MN的长度最短,你认为满足条件的MN是否存在?若存在,请求出MN的最短长度,并求出入口M和出口N与点B的距离;若不存在,请说明理由.参考答案与试题解析一、选择题1.若分式的值为0,则x的取值应满足是()A.x=﹣2 B.x≠﹣2 C.x=2 D.x≠2【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为零,进而得出答案.【解答】解:∵分式的值为0,∴x+2=0,解得:x=﹣2.故选:A.2.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30° B.40° C.50° D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵AD∥BC,∠1=70°,∴∠C=∠1=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣70°=40°,故选B.3.下列不等式一定成立的是()A.a<2a B.a<a+2 C.﹣a>﹣2a D.a+2>2【考点】不等式的性质.【分析】根据不等式的性质,可得答案;【解答】解:A、a<0时,a>2a,故A不符合题意;B、0<2,两边都加a,不等号的方向不变,故B符合题意;C、a<0时,两边都乘以﹣a,不等号的方向不变,故C不符合题意;D、a<0时,两边都加2,不等号的方向不变,故D不符合题意;故选:D.4.在下列平面图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的概念与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、既是轴对称图形又是中心对称图形,故A选项正确;B、是轴对称图形,但不是中心对称图形,故B选项错误;C、不是轴对称图形,是中心对称图形,故C选项错误;D、是轴对称图形,但不是中心对称图形,故D选项错误.故选:A.5.下列因式分解正确的是()A.x(x+3)=x2+3x B.2n2﹣mn﹣n=2n(n﹣m﹣1)C.﹣x2﹣4y2+4xy=﹣(x﹣2y)2D.2x3﹣8x=2x(x2﹣4)【考点】提公因式法与公式法的综合运用.【分析】利用因式分解的方法判断即可.【解答】解:A、原式不是因式分解,不符合题意;B、原式=n(2n﹣m﹣1),不符合题意;C、原式=﹣(x﹣2y)2,符合题意;D、原式=2x(x+2)(x﹣2),不符合题意,故选C6.一个多边形的每一个内角均为相邻外角的4倍,这个多边形的边数是()A.9 B.10 C.11 D.12【考点】多边形内角与外角.【分析】一个内角是一个外角的3倍,内角与相邻的外角互补,因而外角是36度,内角是144度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:每一个外角的度数是180÷5=36度,360÷36=10,则多边形是10边形.故选B.7.如图,四边形ABCD中,AC=8,BD=6,且AC⊥BD,连接四边形ABCD各边中点得到四边形EFGH,下列说法正确的是()A.四边形EFGH是矩形 B.四边形EFGH的周长是7C.四边形EFGH的面积是12 D.四边形ABCD的面积是48【考点】中点四边形.【分析】利用三角形的中位线定理证得四边形EFGH为平行四边形,然后利用有一个角是直角的平行四边形是矩形可判断选项A是否正确;由AC=8,BD=6,且AC⊥BD,可求出四边形EFGH 的面积,由此可判断选项CD是否正确;题目给出的数据求不出四边形EFGH的周长,所以选项B错误.【解答】解:∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=AC,GH=AC,∴EF=GH,同理EH=FG∴四边形EFGH是平行四边形;又∵对角线AC、BD互相垂直,∴EF与FG垂直.∴四边形EFGH是矩形,故选项A正确,符合题意;∵AC=8,BD=6,且AC⊥BD,∴四边形EFGH的面积=AC•BD=24,故选项CD错误,不符合题意;题目给出的数据求不出四边形EFGH的周长,所以选项B错误,不符合题意,故选A.8.若关于x的方程﹣=1的解为正数,则m的取值范围是()A.m<4 B.m>4 C.m<4且m≠0 D.m>4且m≠8【考点】分式方程的解;解一元一次不等式.【分析】先将方程进行求解,然后利用x>0列出方程即可求出m的范围.【解答】解:去分母可得:x2+2x﹣m=x2﹣4∴x=∵x>0,∴>0,∴m>4又∵x2﹣4≠0,∴x≠±2,∴m≠0或8,∴m的范围为:m>4且m≠8,故选(D)9.如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足F在线段AD上,连接EF.则下列结论一定成立的是()①∠FBC=90°;②点E是CD中点;③EF=EB;④S△EBF=S△EDF+S△EBC.A.①②B.③④C.①②③D.①②③④【考点】平行四边形的性质;全等三角形的判定与性质;角平分线的性质.【分析】由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;由平行线的性质得到∠CEB=∠ABE,由角平分线的定义得到∠ABE=∠CBE,等量代换得到∠CEB=∠CBE,根据等腰三角形的判定得到CE=BE,等量代换得到CD=2CE,求得点E是CD中点;故②正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故③正确;由于S△BEF=S△BME,S△DFE=S△CME,于是得到S△EBF=S△BME=S△EDF+S△EBC.故④正确.【解答】解:∵BF⊥AD,∴∠AFB=90°,∵在平行四边形ABCD中,AD∥BC,∴∠AFB=∠CBF=90°,故①正确;∵CD∥AB,∴∠CEB=∠ABE,∵BE平分∠ABC交CD于点E,∴ABE=∠CBE,∴∠CEB=∠CBE,∴CE=BE,∵AB=2AD,∴CD=2BC,∴CD=2CE,∴点E是CD中点;故②正确;延长FE交BC的延长线与M,∴∠DFE=∠M,在△DFE与△CME中,,∴△DFE≌△CME,∴EF=EM=FM,∵∠FBM=90°,∴BE=FM,∴EF=BE,故③正确;∵EF=EM,∴S△BEF=S△BME,∵△DFE≌△CME,∴S△DFE=S△CME,∴S△EBF=S△BME=S△EDF+S△EBC.故④正确.故选D.10.如图,四边形ABCD中,AB=AD,∠B+∠C=180°,若AC=12,则四边形ABCD的面积最大值为()A.36 B.C.72 D.【考点】全等三角形的判定与性质;角平分线的性质.【分析】解:过A点分别作AE⊥BC于E,AF⊥CD于F,连接BD,根据全等三角形的性质得到AE=AF,S四边形ABCD=S四边形AECF,当四边形AECF的面积最大时,四边形AECF是正方形,根据正方形的性质得到EF=AC,EF⊥AC,于是得到结论.【解答】解:过A点分别作AE⊥BC于E,AF⊥CD于F,连接BD,∵∠ADF+∠ABC=180°,且∠ABE+∠ABC=180°,∴∠ADF=∠ABE,在△ABE与△ADF中,,∴△ABE≌△ADF,∴AE=AF,S四边形ABCD=S四边形AECF,当四边形AECF的面积最大时,四边形AECF是正方形,∴EF=AC,EF⊥AC,∴四边形ABCD的面积最大值=AC2=×122=72,故选C.二、填空题11.分解因式:a3﹣12a2+36a= a(a﹣6)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣12a+36)=a(a﹣6)2,故答案为:a(a﹣6)212.如图,点A的坐标为(0,6),将△OAB沿x轴向右平移得到△O'A'B',若点A的对应点A'落在直线y=2x﹣1上,则点B与其对应点间的距离为.【考点】一次函数图象上点的坐标特征;坐标与图形变化﹣平移.【分析】将y=6代入一次函数解析式求出x值,由此即可得出点A'的坐标为(,6),进而可得出△OAB沿x轴向右平移个单位得到△O'A'B',根据平移的性质即可得出点B与其对应点间的距离.【解答】解:当y=2x﹣1=6时,x=,∴点A'的坐标为(,6),∴△OAB沿x轴向右平移个单位得到△O'A'B',∴点B与其对应点间的距离为.故答案为:.13.已知一次函数y=ax+b的图象经过第二、三、四象限,与x轴的交点为(﹣2,0),则不等式ax﹣b<0的解集是x>﹣2 .【考点】一次函数与一元一次不等式.【分析】图象经过第二、三、四象限可知k<0,b<0,画出图形即可求出ax﹣b<0的解集.【解答】解:∵一次函数的图象经过第二、三、四象限,且与x轴的交点为(﹣2,0)∴ax﹣b<0的解集即为y<0的解集,∴x>﹣2故答案为:x>﹣214.如图,正方形ABCD中,AB=2,点E是AB上一点,将正方形沿CE折叠,点B落在正方形内一点B'处,若△AB'D为等腰三角形,则BE的长度为4﹣2或.【考点】翻折变换(折叠问题);等腰三角形的性质;正方形的性质.【分析】由四边形ABCD是正方形,得到AB=BC=CD=AD,①当AD=B′D时,如图1,由翻折的性质得,B′C=BC,推出△CDB′是等边三角形,得到∠B′DC=60°,∠ADB′=30°,过B′作B′G⊥AD于G,B′F⊥AB于F,根据勾股定理得到BE=4﹣2;②当AB′=B′D时,如图2,则B′在AD的垂直平分线上,推出B′在BC的垂直平分线上,得到BB′=CB′,由翻折的性质得,B′C=BC,推出△BB′C是等边三角形,解直角三角形得到BE=BC=,③当AB′=AD时,则AB=AB′,推出EC垂直平分BB′,得到A与E 重合,B′与D重合,不符合题意,舍去.于是得到结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,①当AD=B′D时,如图1,由翻折的性质得,B′C=BC,∴B′D=B′C=CD,∴△CDB′是等边三角形,∴∠B′DC=60°,∴∠ADB′=30°,过B′作B′G⊥AD于G,B′F⊥AB于F,∴AF=B′G=×2=1,DG=,∴AG=FB′=2﹣,∵BE=B′E,EF=1﹣BE,∴(2﹣)2+(1﹣BE)2=BE2,∴BE=4﹣2;②当AB′=B′D时,如图2,则B′在AD的垂直平分线上,∴B′在BC的垂直平分线上,∴BB′=CB′,由翻折的性质得,B′C=BC,∴△BB′C是等边三角形,∴∠BCE=30°,∴BE=BC=,③当AB′=AD时,则AB=AB′,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,∴A与E重合,∴B′与D重合,不符合题意,舍去.综上所述,BE的长为4﹣2或.故答案为:4﹣2或.三、解答题15.解不等式组:,并将解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后表示出来即可.【解答】解:∵解不等式①得:x≥﹣3,解不等式②得:x<1,∴不等式组的解集为﹣3≤x<1,在数轴上表示为:.16.先化简,再求值: +(a﹣1﹣),其中a=2.【考点】分式的化简求值.【分析】首先化简+(a﹣1﹣),然后把a=2代入化简后的算式,求出算式的值是多少即可.【解答】解: +(a﹣1﹣)=+=+==a﹣1当a=2时原式=2﹣117.解方程:=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6+6=x+3,解得:x=3,经检验x=3是增根,原方程无解.18.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)【考点】作图—基本作图.【分析】延长AB,以点C为圆心,大于点C到直线AB距离的长为半径画弧,交AB的延长线与点MN,再作线段MN的垂直平分线CD即可.【解答】解:如图,CD即为所求.19.我校为了创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.求文学和科普书的单价.【考点】分式方程的应用.【分析】首先设文学书的单价为x元,则科普书的单价为(x+4)元,根据题意可得等量关系:12000元购进的科普书是数量=用8000元购进的文学书本数,根据等量关系列出方程,再解即可.【解答】解:设文学书的单价为x元.根据题意,得=.解得x=8.经检验,x=8是原方程的解,且符合题意.x+4=12,则科普书的单价为12元,答:文学书的单价为8元,科普书的单价为12元.20.在如图所示的正方形网格中,△ABC的顶点均在格点上,点A的坐标为(1,﹣1).(1)画出△ABC向左平移2个单位,然后再向上平移4个单位后的△A1B1C1,并写出点A1的坐标;(2)以M(﹣1,1)为对称中心,画出与△A1B1C1成中心对称的△A2B2C2,并求出以A1、C2、A2、C1为顶点的四边形的面积.【考点】作图﹣旋转变换;作图﹣轴对称变换;作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用中心对称图形的性质得出对应点位置,再结合三角形面积求法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(﹣1,3);(2)如图所示:△A2B2C2,即为所求,以A1、C2、A2、C1为顶点的四边形的面积为:2×6=12.21.已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=8,AD=16,求MD的长.【考点】矩形的性质;全等三角形的判定与性质;勾股定理;菱形的判定.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣32x+256+64,求出即可.【解答】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(16﹣x)2+82,解得:x=10,答:MD长为10.22.某电信公司有甲、乙两种手机收费业务,仅上网流量收费不同,图中I1、I2分别表示甲、乙两种业务每月流量费用y(元)与上网流量x(GB)的之间的函数关系.(1)分别求出甲、乙两种业务每月所收费用y元与上网流量x(GB)之间的函数关系式.(2)已知刘老师选择了甲业务,魏老师选择了乙业务,上月两位老师所用流量相同,均为mGB,上网流量费用相差不到20元,求m的取值范围.【考点】一次函数的应用.【分析】(1)根据图象中提供的信息利用待定系数法即可得到结论;(2)根据题意即可得到结论.【解答】解:(1)I1:y=100x;I2:y=;(2)由图象知,当x>1时,两人所交费用相等,∴m<1,∵上网流量费用相差不到20元,∴刘老师上网流量费用不到70元,当y=m=70时,x=0.7,∴m的取值范围是:0<m<0.7.23.问题探究:(1)如图①,△ABC中,AB=AC=5,BC=6,点D在BC上,若AD平分△ABC的面积,请你画出线段AD,并计算线段AD的长度.(2)如图②,平行四边形ABCD中,AB=6,BC=8,∠B=60°,点M在AD上,点N在BC上,若MN平分平行四边形ABCD的面积,且线段MN的长度最短,请你画出符合要求的线段MN,并求出此时MN的长度.问题解决(3)如图③,四边形ABCD是规则中的商业区示意图,其中AD∥BC,∠B=90°,AD=1km,AB=2.4km,CD=2.6km,现计划在商业区内修一条笔直的单行道,入口M在AB上,出口N在BC上,使得MN将四边形ABCD分成面积相等的两部分,且MN的长度最短,你认为满足条件的MN是否存在?若存在,请求出MN的最短长度,并求出入口M和出口N与点B的距离;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)作中线AD,利用等腰三角形三线合一的性质和勾股定理求AD的长;(2)经过平行四边形对角线中点的直线将平行四边形的面积分成相等的两部分,当MN⊥BC时,最短,作两平行线AD和BC的距离AE,根据三角函数求AE的长,即是MN的长;(3)存在,先根据勾股定理求BC的长,设BM=a,BN=b,根据面积的关系求ab=3.6,且保证a+b最小,所以MN最小,分别计算即可.【解答】解:(1)如图①,作中线AD,则AD平分△ABC的面积,∴BD=CD=BC=×6=3,∵AC=AB=5,∴AD⊥BC,由勾股定理得:AD==4;(2)连接AC、BD,交于O,过O作直线MN,交AD于M,交BC于N,如图②,∵四边形ABCD为平行四边形,∴OA=OC,AD∥BC,∴∠CAD=∠ACB,∵∠AOM=∠CON,∴△AOM≌△CON,∴S△AOM=S△CON,同理可得:△OMD≌△ONB,△AOB≌△COD,∴S△OMD=S△ONB,S△AOB=S△COD,∴S△AOM+S△AOB+S△BON=S△CON+S△COD+S△OMD,即MN将四边形ABCD分成面积相等的两部分,当MN⊥BC时,MN是最短,如图③,过A作AE⊥BC于E,在Rt△ABE中,∵∠ABC=60°,∴sin60°=,∴AE=×6=3,∵AD∥BC,AE⊥BC,MN⊥BC,∴MN=AE=3,∴此时MN的长度为3;(3)存在,如图④,过D作DE⊥BC于E,则四边形ABED是矩形,∴BE=AD=1,DE=AB=2.4,由勾股定理得:EC==1,∴BC=BE+EC=2,如图⑤,设BM=a,BN=b,∵MN将四边形ABCD分成面积相等的两部分,∴ab=×(1+2)×2.4,ab=3.6,当a=b时,在Rt△BMN中,MN===,当a+b最小时,MN最小,∴当a=b时,MN最小,则a=b=,∴MN==,答:MN的最短长度为km,出入口M和出口N与点B的距离都是km.2017年4月21日。

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。

2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷(解析版)

2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷(解析版)

2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3D.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.73.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,124.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12B.14C.16D.189.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6B.7C.2D.2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=.12.已知y=,则x y的值为.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2017-2018学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x 的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D、对角线相等的平行四边形是矩形,正确;故选:D.【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】由直线经过的象限结合四个选项中的图象,即可得出结论.【解答】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴选项B中图象符合题意.故选:B.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12B.14C.16D.18【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.9.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【分析】先根据点(1,0)在一次函数y=kx﹣2的图象上,求出k=2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【解答】解:∵点(1,0)在一次函数y=kx﹣2的图象上,∴k﹣2=0,∴k=2>0,∴y随x的增大而增大,∵﹣2<1<3,∴y1<0<y2.故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6B.7C.2D.2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=36,根据勾股定理得到斜边==6.故选:A.【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=5.【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×142﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5.【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为14.【分析】根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H 横坐标表示点P从B开始运动到A的总路程,则问题可解.【解答】解:由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【解答】证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBC=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)【分析】直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【解答】解:不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF===≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)想办法证明∠BAD=∠ABC=∠ADC=90°即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S=×6×4=12;△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。

【全国校级联考】福建省安溪县2017-2018学年度八年级(下)数学期末试卷(解析版)

【全国校级联考】福建省安溪县2017-2018学年度八年级(下)数学期末试卷(解析版)

福建省安溪县2017-2018学年度八年级(下)数学期末试卷一、选择题(本大题共10小题,共40分)1. 分式11x +有意义,则x 的取值范围是( )A. 1x ¹- B. =1x - C. 1x ¹ D. 1x =【答案】A【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,分式有意义.【详解】分式11x +有意义,则x+1≠0,即1x ¹-.故选:A【点睛】考核知识点:分式有意义的条件.理解定义是关键.2. 在平面直角坐标系中,点(–1–,2)在第( )象限.A. 一B. 二C. 三D. 四【答案】C【解析】【详解】分析:根据在平面直角坐标系中点的符号特征求解即可.详解:∵-1<0,-2<0,∴点(–1,–2)在第三象限.故选C.点睛:本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.3. 若关于x 的分式方程11x m x x =-+的解为x =2,则m 的值为( ) .A. 2B. 0C. 6D. 4【答案】C【解析】【分析】根据分式方程11x m x x =-+的解为x =2,把x =2代入方程即可求出m 的值.【详解】解:把x =2代入11xm x x =-+得,22121m =-+,解得m =6.故选C.点睛:本题考查了分式方程的解,熟练掌握方程解得定义是解答本题的关键.4. 一组数据3、7、2、5、8的中位数是( ) .A. 2B. 5C. 7D. 8【答案】B【解析】【分析】先从小到大排列,然后找出中间的数即可.【详解】从小到大排列:2,3,5,7,8,∴中位数是5.故选B.【点睛】本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.5. 0.0000077米,用科学记数法表示是( )米A. 0.77×10–6B. 77×10–6C. 7.7×10–6D. 7.7×10–5【答案】C【解析】【详解】分析:对于一个绝对值小于1的非0小数,用科学记数法写成10n a -´ 的形式,其中110a £<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).详解:0.0000077=7.7×10–6.故选C.点睛:本题考查了负整数指数科学记数法, 根据科学计算法的要求,正确确定出a 和n 的值是解答本题的关键.6. 一次函数y=2x –6的图象不经过第( )象限.A. 一B. 二C. 三D. 四【答案】B【解析】【详解】分析:根据一次函数图象与系数的关系的关系解答即可.详解:∵2>0,-6<0,∴一次函数y=2x–6的图象经过一、三、四象限,不经过第二象限.故选B.点睛:本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.7. 菱形ABCD中,∠A=60°,周长是16,则菱形的面积是( ) .A. 16B. 162 C. D.【答案】D【解析】【详解】分析:过点D作DE⊥BC于点E,根据菱形的性质以及直角三角形的性质得出DE的长,即可得出菱形的面积.详解:如图所示:过点D作DE⊥BC于点E,∵在菱形ABCD中,周长是16,∴AD=AB=4,∵∠A=60°,∴∠ADE=30°,∴AE=1AD=2,2∴DE=,.∴菱形ABCD的面积S=DE×AB故选D.点睛:题主要考查了菱形的面积以及其性质,含30°角的直角三角形的性质,勾股定理,得出DE的长是解题关键.8. 如图,▱ABCD的周长为 16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE 的周长为()A. 4 cmB. 6 cmC. 8 cmD. 10 cm 【答案】C【解析】【分析】根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线性质得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC.∵EO⊥AC,∴AE=EC.∵AB+BC+CD+AD=16cm,∴AD+DC=8cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8(cm).故选C.AE=CE,主要培养学生运用性质进行推理的能力.9. 如图l1:y=x+3与l2:y=ax+b相交于点P(m,4),则关于x的不等式x+3≤ax+b的解为()A. x≥4B. x<mC. x≥mD. x≤1【答案】D【解析】【详解】试题分析:首先把P(m,4)代入y=x+3可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.解:把P (m ,4)代入y=x+3得:m=1,则P (1,4),根据图象可得不等式x+3≤ax+b 的解集是x≤1,故选D .10. 如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A. 1B. 1.3C. 1.2D. 1.5【答案】C【解析】【分析】首先证明四边形AEPF 为矩形,可得AM =12AP ,最后利用垂线段最短确定AP 的位置,利用面积相等求出AP 的长,即可得AM .【详解】在△ABC 中,因为AB 2+AC 2=BC 2,所以△ABC 为直角三角形,∠A =90°,又因为PE ⊥AB ,PF ⊥AC ,故四边形AEPF 为矩形,因为M 为 EF 中点,所以M 也是 AP 中点,即AM =12AP ,故当AP ⊥BC 时,AP 有最小值,此时AM 最小,由1122ABC S AB AC BC AP D =´´=´´,可得AP =125,AM=12AP=6 1.25=故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.二、填空题(本大题共6小题,共24分)11. 计算11x-−1xx-的结果为______【答案】-1【解析】【分析】直接根据分式的运算法则计算即可.【详解】由分式的加减运算法则可得:11(1)=1111x x xx x x x----=----= -1【点睛】此题是简单题,分式的加减运算,分母相同的,分子直接相加减;分母不用的要先通分,然后再计算.12. 已知等腰三角形的周长为24,底边长y关于腰长x的函数表达式(不写出x的取值范围) 是________.【答案】y=24-2x【解析】y关于腰长x的函数表达式.【详解】解:由题意得,y+x+x=24,∴y=24-2x.故答案为y=24-2x.【点睛】本题考查了列一次函数关系式,等腰三角形的定义,熟练掌握周长等于三边之和是解答本题的关键.13. 四边形ABCD中,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的边的条件是_________.【答案】//AB CD(答案不唯一)【解析】【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可得出答案.【详解】根据平行四边形的判定,可再添加一个条件://AB CD故答案为://AB CD (答案不唯一)【点睛】本题考查平行四边形的判定,掌握常见的判定方法是解题关键.14. 如图所示(图象在第二象限),若点A 在反比例函数()0k y k x=¹的图象上,AM x ^轴于点M ,AMO V 的面积为3,则k =______.【答案】6-【解析】【分析】过双曲线上任意一点与原点所连的线段、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即1||2S k =.【详解】解:因为AOM D 的面积是3,所以||236k =´=.又因为图象在二象限,0k <,所以6k =-.故答案为:6-.【点睛】主要考查了反比例函数k y x=中k 的几何意义,解题的关键是掌握即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为||k ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.15. 如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.【答案】30°【解析】【详解】分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.详解:∵四边形ABCD是矩形,∴∠ADC=90°,OA=OD,∴∠ODA=∠DAE,∵∠CDE =2∠ADE,∴∠ADE=90°÷3=30°,∵DE⊥AC,∴∠AED=90°,∴∠DAE=60°,∴∠ODA=60°,∴∠BDC=90°-60°=30°;故答案为30°.点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.16. 将5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________.【答案】1 .【解析】【分析】连接O 1A ,O 1B ,先证明△AO 1C ≌△BO 1D ,从而可得11AO B ACO D S S =V 四边形=14S 正方形ABEF =14,然后可求阴影部分面积之和.【详解】解:如图,连接O 1A ,O 1B ,∵四边形ABEF 是正方形,∴O 1A =O 1B , ∠AO 1B =90°.∵∠AO 1C +∠AO 1D =90°,∠BO 1D +∠AO 1D =90°,∴∠AO 1C=∠BO 1D .∵∠AO 1C=∠BO 1D ,O 1A =O 1B ,∠O 1AC =∠O 1BD =45°,∴△AO 1C ≌△BO 1D ,∴11AO B ACO D S S =V 四边形=14S 正方形ABEF =14,∴阴影部分面积之和等于14×4=1.故答案为1.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,证明△AO 1C ≌△BO 1D 是解答本题的关键.三、解答题(共86分)17. 解分式方程: 23111xx x +=--【答案】x=2【解析】【详解】试题分析:将方程通过去分母、移项、合并同类项解出方程的解,并检验即可.试题解析:原方程可化为:23111x x x -=-- 去分母,得231x x -=-解得2x =检验:将2x =代入最简公分母x -1中,得2-1=1≠0.∴2x =是原分式方程的解.18. 先化简,再求值:35(222x x x x -¸+---,其中x =1【答案】14【解析】【详解】分析:先把括号内通分,再把除法转化为乘法,并把分子、分母分解因式约分,然后把x =1代入计算即可.详解:原式= =()()()23233x x x x x --´-+- =13x + ,当x=1时,原式=14;点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序是解答本题的关键.19. 已知:如图,□ABCD 中,延长BA 至点E ,使BE=AD ,连结CE ,求证:CE 平分∠BCD .【答案】见解析【解析】【详解】分析:由平行四边形的性质得出AB∥CD,AD=BC,由平行线的性质得出∠E=∠DCE,由已知条件得出BE=BC,由等腰三角形的性质得出∠E=∠BCE,得出∠DCE=∠BCE即可.详解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC,∴∠E=∠DCE,∵BE=AD,∴BE=BC,∴∠E=∠BCE,∴∠DCE=∠BCE,即CE平分∠BCD.点睛:本题考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证出∠E=∠BCE是解决问题的关键.20. 如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF(1)填空∠B=_______°;(2)求证:四边形AECF是矩形.【答案】(1)60;(2)见解析【解析】【详解】分析:(1)根据菱形的性质可得AB=BC,然后根据AB=AC,可得△ABC为等边三角形,继而可得出∠B=60°;(2)根据△ABC为等边三角形,同理得出△ACD为等边三角形,然后根据E、F分别是BC、AD的中点,可得AE⊥BC,CF⊥AD,然后根据AF∥CE,即可判定四边形AECF为矩形.详解:(1)(1)因为四边形ABCD为菱形,∴AB=BC,∵AC=AB,∴△ABC为等边三角形,∴∠B=60°,;(2)证明:∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E.F分别是BC.AD的中点,∴CE=12BC,AF=12AD,∴AF=CE,∴四边形AECF是平行四边形,∵AB=AC,E是BC的中点,∴AE⊥BC,即∠AEC=90°,∴四边形AECF是矩形.点睛:本题考查了菱形的性质,等边三角形的判定与性质,矩形的判定,解答本题的关键是掌握菱形的四条边都相等的性质,注意掌握矩形的判定:有一个角是直角的平行四边形是矩形.21. 我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【答案】(1)85;80;85;(2)初中部成绩好些;(3)初中代表队选手成绩较为稳定【解析】【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.【详解】解:(1)初中部5名选手的成绩分别为:75,80,85,85,100,初中部的平均数为:75808585100=855++++(分),85出现的次数最多,所以初中部5名选手的成绩的众数为85,高中部5名选手的成绩按从小到大排列为:70,75,80,100,100,所以高中部5名选手的成绩的中位数为80;填表如下:()初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵2222221S [(7585)(8085)8585)8585)(1008]5)705=-+-+-+-+-=初中队((2222221S [(7085)(10085)(10085)(7585)(8085)10]65=-+-+-+-+-=高中队,∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.【点睛】此题考查了众数,中位数和平均数以及方差的求解,解题的关键是熟练掌握众数,中位数和平均数以及方差的求法.22. 如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.【答案】(1)见解析 (2)3【解析】【详解】分析:(1)首先利用ASA得出△DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;(2)由AE⊥EC,四边形ADCE ADCE是矩形,由F为AC 的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.详解:(1)∵CE∥AB,∴∠EDA=∠DEC.∵FA=FC ∠DFA=∠CFE,∴△ADF≌△CEF(ASA) ,∴AF=CF,∴四边形ADCE是平行四边形;(2)∵AE⊥EC,综合(1)四边形ADCE是平行四边形,∴四边形ADCE是矩形,∴DE=2EF=2 ∠DCE=090,∴=,四边形ADCE 的面积=CE·DC=3.点睛:此题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定,勾股定理,得出△DAF ≌△ECF 是解题关键.23. 如图,在平面直角坐标系中,直线y =2x +b (b <0)与坐标轴交于A ,B 两点,与双曲线k y x=(x >0)交于D 点,过点D 作DC ⊥x 轴,垂足为G ,连接OD .已知△AOB ≌△ACD .(1)如果b =﹣2,求k 的值;(2)试探究k 与b 的数量关系,并写出直线OD 的解析式.【答案】(1)4 (2)2k b =,y =x .【解析】【分析】(1)首先求出直线y =2x ﹣2与坐标轴交点的坐标,然后由△AOB ≌△ACD 得到CD =DB ,AO =AC ,即可求出D 坐标,由点D 在双曲线k y x=( x >0)的图象上求出k 的值.(2)首先直线y =2x +b 与坐标轴交点的坐标为A (2b -,0),B (0,b ),再根据△AOB ≌△ACD 得到CD =DB ,AO =AC ,即可求出D 坐标,把D 点坐标代入反比例函数解析式求出k 和b 之间的关系,进而也可以求出直线OD 的解析式.【小问1详解】当b =﹣2时,直线y =2x ﹣2与坐标轴交点的坐标为A (1,0),B (0,﹣2),∵△AOB ≌△ACD ,∴CD =OB =2,AO =AC =1.∴点D 的坐标为(2,2).∵点D 在双曲线k y x=( x >0)的图象上,∴k =2×2=4.【小问2详解】直线y =2x +b 与坐标轴交点的坐标为A (2b -,0),B (0,b ),∵△AOB ≌△ACD ,∴CD =OB =b ,AO =AC =2b -,∴点D 的坐标为(﹣b ,﹣b ).∵点D 在双曲线k y x=( x >0)的图象上,∴()()2k b b b =-×-=,即k 与b 的数量关系为:2k b =.∴直线OD 的解析式为:y =x .【点睛】本题考查了一次函数与反比例函数的性质、待定系数法求解一次函数,熟掌握一次函数与反比例函数的图像及性质是解题的关键.24. 如图,正方形ABCD,点P 为对角线BD 上一动点,点E 在射线BC 上,(1)填空:BD =______;(2)若BE =t ,连接PE 、PC ,求PE +PC 的最小值(用含t 的代数式表示);(3)若点E 是直线AP 与射线BC 的交点,当△PCE 为等腰三角形时,求∠PEC 的度数.【答案】(1)BD=2 (2)24t+(3)120°或30°【解析】【分析】(1)根据勾股定理计算即可;(2)连接AP,当AP与PE在一条线上时,PE+PC最小,利用勾股定理求出最小值;(3)分两种情况考虑:①当E在BC延长线上时,如图2所示,△PCE为等腰三角形,则CP=CE;②当E在BC上,如图3所示,△PCE是等腰三角形,则PE=CE,分别求出∠PEC的度数即可.【详解】(1)BD.故答案为:2;(2)如图1所示:当AP与PE在一条线上时,PE+PC最小,∵AB,BE=t,∴PE+PC=;(3)分两种情况考虑:①当点E在BC的延长线上时,如图2所示,△PCE 是等腰三角形,则CP =CE ,∴∠CPE =∠CEP ,∴∠BCP =∠CPE +∠CEP =2∠CEP ,∵在正方形ABCD 中,∠ABC =90°,∴∠PBA =∠PBC =45°,在△ABP 和△CBP 中,AB BC ABP CBPBP BP =ìïÐ=Ðíï=î,∴△ABP ≌△CBP (SAS ),∴∠BAP =∠BCP =2∠CEP ,∵∠BAP +∠PEC =90°,∴2∠PEC +∠PEC =90°,∴∠PEC =30°;②当点E 在BC上时,如图3所示,△PCE 是等腰三角形,则PE =CE ,∴∠CPE =∠PCE ,∴∠BEP =∠CPE +∠PCE =2∠ECP ,∵四边形ABCD 是正方形,∴∠PBA =∠PBC =45°,又AB =BC ,BP =BP ,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP,∵∠BAP+∠AEB=90°,∴2∠BCP+∠BCP=90°,∴∠BCP=30°,∴∠AEB=60°,∴∠PEC=180°-∠AEB=120°.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,两点之间线段最短及分类讨论的数学思想,运用勾股定理是解(1)的关键,确定点P的位置是解(2)的关键,分两种情况讨论是解(3)的关键.25. 已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(10,0),点B的坐标为(10,8) .(1)直接写出点C的坐标为:C( ____ ,_____);(2)已知直线AC与双曲线y=m(m≠0)在第一象限内有一点交点Q为(5,n),x①求m及n的值;②若动点P从A点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,△APQ的面积为S t取何值时,S=10.【答案】(1)B(0,8)(2)20,4== t=2.5s,7s,11.5sm n【解析】【详解】分析:(1)根据矩形的对边相等的性质直接写出点C的坐标;(2)①设直线AC的解析式为y=kx+b(k≠0).将A(10,0)、C(0,8)两点代入其中,即利用待定系数法求一次函数解析式;然后利用一次函数图象上点的坐标特征,将点Q 代入函数关系式求得n 值;最后将Q 点代入双曲线的解析式,求得m 值;②分类讨论:分当0≤t ≤5时,当5<t ≤9时,当9<t ≤14时三种情况讨论求解.详解:(1)B (10,8),(2)① 设直线AC 函数表达式为y kx b =+(0k ¹ ),∵ 图像经过A (10,0).C (0,8),∴1008k b b +=ìí=î ,解得458k b ì=-ïíï=î,∴,当5x =时,4n =.∵ Q (5,4)在()0m y m x=¹上∴20m xy == ,∴20,4m n ==;②㈠当0<t≤5时,AP=2t ,∴1•102S AP n == ,∴4t=10,∴t=2.5 ,㈡当5<t≤9时,OP=2t-10,CP=18-2t ,∴111•••5222S OA OC OA OP CP =-- ,∴()()11110810•2105•18210222t t ´´-´--´-= ,∴45510t -= ,∴t=7 ;㈢当9<t≤14时,OP=2t-18,BP=28-2t ,∴()111••8•222S BC AB CP n BP AB =--- ,∴()()402218428210t t ----= ,∴t=11.5 ,综上所述:当t=2.5s,7s,11.5s 时,APQ 的面积是10.点睛:本题考查的是反比例函数综合题,熟知反比例函数图象上点的坐标特点、三角形的面积公式及正方形的性质是解答此题的关键.注意解(2)②时,要分类讨论,以防漏解.。

2017-2018学年八年级数学下期末试卷附答案和解释

2017-2018学年八年级数学下期末试卷附答案和解释

2017-2018学年八年级数学下期末试卷附答案和解释一、选择题(本大题共6小题,共18.0分)1.下列函数中,一次函数是()A. B. C. D.2.下列判断中,错误的是()A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是()A. B. C. D.4.下列事件中,必然事件是()A. “奉贤人都爱吃鼎丰腐乳”B. “2018年上海中考,小明数学考试成绩是满分150分”C. “10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D. “在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线互相平分D. 梯形的对角线互相垂直二、填空题(本大题共12小题,共24.0分)6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______11.化简:()-()=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S 四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点O∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题(本大题共8小题,共64.0分)18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与相反的向量______;(2)填空:++=______;(3)求作:+(保留作图痕迹,不要求写作法).22.中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.23.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM 的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx(k≠0),故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;故选:A.利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x(x-1)=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,故选:D.利用各自方程的定义判断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,熟练掌握各自的定义是解本题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,∴△=4+4m≥0,解得:m≥-1.故选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m 的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、“奉贤人都爱吃鼎丰腐乳”,是随机事件,故此选项错误;B、“2018年上海中考,小明数学考试成绩是满分150分”,是随机事件,故此选项错误;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件,故此选项正确;D、“在一副扑克牌中任意抽10张牌,其中有5张A”,是不可能事件.故选:C.直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.此题主要考查了随机事件以及必然事件、不可能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A.平行四边形的对角线平分,错误;B.菱形的对角线平分对角,错误;C.菱形的对角线互相平分,正确;D.等腰梯形的对角线互相垂直,错误;故选:C.根据菱形、平行四边形、矩形、等腰梯形的性质分别判断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,熟练掌握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】±2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=±2,故答案为±2.移项,系数化成1,再开方即可.本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=(1+x)2,x2=9,解得:x=±3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边≠右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k<0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,∴k<0.故答案为:k<0,先判断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.本题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:()-()=--+=(+)-(+)=-=.故答案为:.由去括号的法则可得:()-()=--+,然后由加法的交换律与结合律可得:(+)-(+),继而求得答案.此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.12.【答案】100(1+x)2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179.故答案为:100(1+x)2=179.设平均每次涨价的百分比为x,根据原价为100元,表示出第一次涨价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次涨价的价钱为100(1+x)2元,根据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180°,解得:x=45°,∴边数=360°÷45°=8.故答案为:8.根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数.本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形(答案不唯一)【解析】解:矩形(答案不唯一).根据轴对称图形与中心对称图形的概念,写一个则可.掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分∠BAD,∴∠BAO=∠DAO,在△BAO与△DAO中,,∴△BAO≌△DAO(SAS),∴∠BOA=∠DOA,∴AC⊥BD,∵AC=8,S四边形ABCD=16,∴BD=16×2÷8=4.故答案为:4.根据角平分线的定义可得∠BAO=∠DAO,根据SAS可证△BAO≌△DAO,再根据全等三角形的性质可得∠BOA=∠DOA,可得AC⊥BD,再根据对角线互相垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是根据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;本题考查矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,∴S△ADE=S△EOD=×22=.故答案为如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.本题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x(2)把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】(1)让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.(2)让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】,【解析】解:(1)与相反的向量有,,故答案为有,.(2)∵+=,+=,∴++=故答案为.(3)如图,作平行四边形OBEC,连接AE,即为所求;(1)根据相反的向量的定义即可解决问题;(2)利用三角形加法法则计算即可;(3)如图,作平行四边形OBEC,连接AE,即为所求;本题考查平面向量、作图-复杂作图、矩形的性质等知识,解题的关键是熟练掌握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:=70+,解得:x=4或x=-5(舍去)答:上海火车站到北京火车站的“复兴号”运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时(x+1)小时,然后依据“复兴号”高铁列车较“和谐号”速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.【答案】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)证明:∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是平行四边形,∵CD=CE,∴四边形ADCE是菱形.【解析】(1)利用等腰三角形的性质、直角三角形斜边中线定理证明即可;(2)首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再根据CD=CE可得四边形是菱形;本题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).【解析】(1)先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;(2)先求出点C坐标,进而求出OC,判断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解本题的关键.25.【答案】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD 是矩形,AD=BH=5,AB=DH=3.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,∴MH===4,∴BM=BH-MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=4,∴BM′=BH+HM′=9.综上所述,满足条件的BM的值为1或9.(2)①如图2中,作MH⊥AD于H.在Rt△DMH中,DM==,∵S△ADM=•AD•MH=•DM•AE,∴5×3=y•∴y=.②如图3中,当AB=AE时,y=3,此时5×3=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AE⊥DM,∴DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;(2)①如图2中,作MH⊥AD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时5×3=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;本题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2017-2018学年八年级(下)期末数学试卷

2017-2018学年八年级(下)期末数学试卷

2017-2018学年山东省泰安市肥城市八年级(下)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.下列各点不在一次函数y=2x+1图象上的是(),0)A. (0,1)B. (−1,−1)C. (−1,0)D. (−122.下列二次根式是最简二次根式的是()D. √4aA. √14B. √48C. √ab3.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A. 45°B. 60°C. 70°D. 65°4.小明在爬泰山的活动中,先跑步上山,累了停下来休息了一段时间后,慢慢走完剩下的路程,下面能反映小明离山顶的路程s与登山时间t关系的是()A. B.C. D.5.如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为()D. √34A. 5B. 4C. √3426.不等式4−2x>0的解集在数轴上表示为()A. B.C. D.7.在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A. (1.4,−1)B. (1.5,2)C. (1.6,1)D. (2.4,1)8.将一次函数y=2x−3的图象沿x轴方向左平移3个单位长度单位,所得直线的解析式为()A. y=2x+3B. y=2xC. y=2x−6D. y=2x−99.如图,函数y1=−2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式−2x>ax+3的解集是()A. x>−4B. x<2C. x>−1D. x<−110.已知一次函数y=kx−m−2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A. k<2,m>0B. k<2,m<0C. k>2,m>0D. k<0,m<011.端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A. 乙队比甲队提前0.25min到达终点B. 当乙队划行110m时,此时落后甲队15mC. 0.5min后,乙队比甲队每分钟快40mD. 自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min12.若关于x的不等式组{3x+12−4x+23>12(m−x)≥4无解,则m的取值范围是()A. m≤9B. m≥9C. m≥5D. m≤−5二、填空题(本大题共6小题,共18.0分)13.计算√9的结果是______.14.若使式子√1−2xx有意义,则x的取值范围是______.15.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C′,连接AA′,若∠1=25°,则∠BAA′的度数是______.16.已知点P(1,2)关于x轴的对称点为P′,关于原点的对称点为P″,则过点P′与点P″所在直线的解析式为______.17.不等式组{x−13−12x<−14(x−1)≤2(x−a)有3个整数解,则a的取值范围是______.18.如图,矩形ABCD中AB=6,BC=10,将矩形如图折叠,折痕为BE,点A落在点F处,延长EF,恰好经过点C,则折痕BE的长为______.三、计算题(本大题共1小题,共6.0分)19.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(立方米)与经过时间x(小时)的函数关系如图所示:(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当x≥0.5时,求储气罐中的储气量y(立方米)与时间x(时)的函数解析式;(3)到中午12时下班,工作人员可以为多少辆车加气?四、解答题(本大题共6小题,共48.0分)20.化简下列各式(1)√17×√28+√12−12√16+(√48−√18)÷√2;(2)(2√3+2)(2√3−2)+(√2+2)2−(3√3)2 .21.解下列关于x的不等式组,并把解集表示在数轴上,写出其正整数解.{x−52+1>x−3x−(3x−1)≤x+822.如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G.(1)BE与AG相等吗?若相等,请证明,若不相等,请说明理由;(2)求AF的长.23.已知函数y1=|2x−1|.x…−1−0.500.51 1.52…y…3______ ______ 0______ 2______ ……224.如图,在△ABC中,D、E分别是AB、AC的中点,连接DE并延长DE至点F,使EF=DE,连接CF.(1)求证:四边形DBCF是平行四边形;(2)探究:当△ABC满足什么条件时,四边形ADCF是矩形,并说明理由.25.某商店分两次购进A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.答案和解析1.【答案】C【解析】解:∵y=2x+1,∴当x=0时,y=1,故选项A不符合题意,当x=−1时,y=−1,故选项B不符合题意,选项C符合题意,当x=−1时,y=0,故选项D不符合题意,2故选:C.根据题目中的函数解析式,可以判断各个选项中点的坐标是否在函数的图象上.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.2.【答案】A【解析】解:A、√14是最简二次根式,故选项正确;B、√48=4√3,不是最简二次根式,故选项错误;C、√a被开方数含分母,不是最简二次根式,故选项错误;bD、√4a=2√a,不是最简二次根式,故选项错误.故选:A.根据最简二次根式的概念进行判断即可.本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.【答案】B【解析】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故选:B.如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=15°,即可解决问题.该题主要考查了旋转变换的性质及其应用问题;牢固掌握旋转变换的性质是灵活运用、解题的关键.4.【答案】C【解析】【分析】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答,根据题意可以判断哪个选项中的函数图象符合题意,从而可以解答本题.【解答】解:由题意可得,刚开始,小明跑步上山,s随着t的增加而减小,变化趋势比较快,休息一段时间,这个过程,s随着t的增加不变,慢慢走完剩下的路程,s随着t的增加而减小,变化趋势比较缓慢,故选:C.5.【答案】D【解析】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM//AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC=√AD2+CD2=2√34,AC=√34,∴BO=12故选:D.已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.6.【答案】D【解析】解:4−2x>0,移项,得:−2x>−4,系数化为1,得:x<2,故选:D.根据解一元一次不等式基本步骤:移项、系数化为1可得,然后将解集表示在数轴上.本题主要考查解一元一次不等式,在数轴上表示不等式的解集,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.【答案】C【解析】解:∵A点坐标为:(2,4),A1(−2,1),∴点P(2.4,2)平移后的对应点P1为:(−1.6,−1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.8.【答案】A【解析】解:由“左加右减”的原则可知,将一次函数y=2x−3的图象向左平移3个单位,所得图象的解析式为y=2(x+3)−3,即y=2x+3.故选:A.直接根据“左加右减”的原则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.【答案】D【解析】解:∵函数y1=−2x过点A(m,2),∴−2m=2,解得:m=−1,∴A(−1,2),∴不等式−2x>ax+3的解集为x<−1.故选:D.首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式−2x>ax+ 3的解集即可.此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.10.【答案】A【解析】解:∵一次函数y=kx−m−2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,∴k−2<0,−m<0,∴k<2,m>0.故选:A.由一次函数y=kx−m−2x的图象与y轴的负半轴相交且函数值y随自变量x的增大而减小,可得出k−2<0、−m<0,解之即可得出结论.本题考查了一次函数的性质,根据一次函数的性质找出k−2<0、−m<0是解题的关键.11.【答案】D【解析】解:A、由横坐标看出乙队比甲队提前0.25min到达终点,故A不符合题意;B、乙AB段的解析式为y=240x−40,当y=110时,x=58;甲的解析式为y=200x,当x=58时,y=125,当乙队划行110m时,此时落后甲队15m,故B不符合题意;C、乙AB段的解析式为y=240x−40乙的速度是240m/min;甲的解析式为y=200x,甲的速度是200m/min,0.5min后,乙队比甲队每分钟快40m,故C不符合题意;D、甲的解析式为y=200x,当x=1.5时,y=300,甲乙同时到达(500−300)÷(2.25−1.5)≈267m/min,故D符合题意;故选:D.观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,根据图象上特殊点的意义即可求出答案.此题主要考查了函数图象的性质,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.12.【答案】A【解析】解:解不等式3x+12−4x+23>1,得:x>7,解不等式2(m−x)≥4,得:x≤m−2,∵不等式组无解,∴m−2≤7,则m≤9,故选:A.先求出两个不等式的解集,再根据不等式组无解列出关于m的不等式求解即可.本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.【答案】3【解析】解:∵32=9, ∴√9=3. 故填3.由√9表示9的算术平方根,根据算术平方根的定义即可求出结果.本题考查了算术平方根的定义.注意一个正数有两个平方根,它们互为相反数,其中正的平方根又叫做算术平方根.14.【答案】x ≤12且x ≠0【解析】解:使式子√1−2x x有意义,得{1−2x ≥0x ≠0. 解得x ≤12且x ≠0, 故答案为:x ≤12且x ≠0.根据当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负,可得答案..本题考查了二次根式有意义的条件,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负. 15.【答案】65°【解析】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C , ∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CA′A =45°,∠CA′B′=20°=∠BAC ∴∠BAA′=180°−70°−45°=65°, 故答案为:65°.根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 16.【答案】y =−2【解析】解:∵点P(1,2)关于x 轴的对称点为P′,关于原点的对称点为P″, ∴P′(1,−2),P″(−1,−2),设过点P′与点P″所在直线的解析式为y =kx +b ,则 {k +b =−2−k +b =−2, 解得{k =0b =−2.故过点P′与点P″所在直线的解析式为y =−2. 故答案为:y =−2.根据两个点关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于原点对称时,它们的坐标符号相反;可得点P′与点P″的坐标,再根据待定系数法可得答案. 此题主要考查了待定系数法求一次函数解析式,关于原点对称的点的坐标,以及关于x 轴对称点的坐标,关键是掌握点的坐标的变化规律.17.【答案】−6<a ≤−5【解析】解:不等式组{x−13−12x <−14(x −1)≤2(x −a), 由x−13−12x <−1,解得:x >4,由4(x −1)≤2(x −a),解得:x ≤2−a ,故不等式组的解为:4<x ≤2−a ,由关于x 的不等式组{x−13−12x <−14(x −1)≤2(x −a)有3个整数解, 解得:7≤2−a <8,解得:−6<a ≤−5.故答案为:−6<a ≤−5根据解不等式组,可得不等式组的解,根据不等式组的解有3个整数解,可得答案. 本题考查了一元一次不等式组,利用不等式的解得出关于a 的不等式是解题关键. 18.【答案】2√10【解析】【分析】根据翻折的性质得出∠A =∠BFC =90°,AB =BF ,利用勾股定理得出CF ,设AE 为x ,进而利用勾股定理解答即可.本题主要考查的是翻折的性质、勾股定理的应用,根据翻折的性质得出∠A =∠BFC =90°,AB =BF ,利用勾股定理得出CF ,从而列出关于x 的方程是解题的关键.【解答】解:设AE 为x ,ED =10−x ,由翻折可得:∠A =∠BFC =90°,AB =BF ,AE =EF ,在Rt △BFC 中,CF =√BC 2−BF 2=√102−62=8,在Rt △EDC 中,ED 2+CD 2=EC 2,即(10−x)2+62=(x +8)2,解得:x =2,即AE =2,在Rt △AEB 中,BE =√AE 2+AB 2=√22+62=2√10,故答案为2√10.19.【答案】解:(1)由图可得,8:00~8:30,燃气公司向储气罐注入了10000−2000=8000立方米天然气;(2)当x ≥0.5时,设储气罐中的储气量y(立方米)与时间x(时)的函数解析式是y =kx +b , {0.5k +b =1000010.5k +b =8000,得{k =−200b =10100, 即当x ≥0.5时,储气罐中的储气量y(立方米)与时间x(时)的函数解析式是y =−200x +10100;(3)当x =12−8=4时,y =−200×4+10100=9300,(10000−9300)÷20=700÷20=35(辆),答:到中午12时下班,工作人员可以为35辆车加气.【解析】(1)根据题意和函数图象可以解答本题;(2)根据函数图象中的数据可以求得相应的函数解析式;(3)根据题意和(2)中的函数解析式可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.【答案】解:(1)√17×√28+√12−12√16+(√48−√18)÷√2 =2+2√3−2√6+2√6−3=2√3−1;(2)(2√3+2)(2√3−2)+(√2+2)2−(3√3)2=12−4+6+4√2−27=4√2−13.【解析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式化简二次根式进而合并得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.21.【答案】解:{x−52+1>x −3①x −(3x −1)≤x +8②解不等式①得:x <3,解不等式②得:x ≥−73,故不等式组的解为−73≤<3,将不等式解集表示在数轴上如下图所示:故正整数解为1,2.【解析】分别解每一个不等式,根据口诀确定两不等式解集得公共部分即可.本题主要考查解不等式组得能力,严格遵循解不等式的基本步骤是解不等式的基本素质. 22.【答案】解:(1)BE =AG ,理由是:∵AF ⊥BE ,∴∠AFE =∠OAG +∠AEF =90°,∵四边形ABCD 是正方形,∴AC ⊥BD ,AO =BO ,∴∠AOG =∠OAG +∠AGO =90°,∴∠AEF =∠AGO ,在△AOG 和△BOE 中∵{∠AOG =∠BOE =90°∠AGO =∠BEO AO =BO∴△AOG≌△BOE(AAS),∴AG =BE ;(2)∵△AOB 是等腰直角三角形,且AB =3√2,∵OE=1,∴AE=3+1=4,由勾股定理得:BE=√32+12=√10,S△ABE=12BE⋅AF=12AE⋅OB,∴12×√10×AF=12×4×3,AF=6√105.【解析】(1)利用正方形的性质得OA=OB,∠AOB=∠BOC=90°,再利用等角的余角相等得到∠AGO=∠BEO,则利用”AAS“可判断△AOG≌△BOE,然后根据全等三角形的性质得到结论;(2)根据面积法列式可得AF的长.本题考查了正方形的性质、全等三角形的性质和判定,熟知正方形的四条边都相等,四个角都是直角,对角线互相垂直且相等平分,掌握相关的判定定理和性质定理是解题的关键.23.【答案】解:(1)2;1;1;3;画图如下:(2)观察上图可知,该函数与直线y2=3x+1的交点坐标为(0,1).【解析】解:(1)当x=−0.5时,y=2,当x=0时,y=1,当x=1时,y=1,当x=2时,y=3,故答案为:2,1,1,3.函数图象见答案;(2)见答案.【分析】(1)利用函数关系式求出函数值即可,利用描点法画出函数图象即可;(2)利用图象法即可解决问题.本题考查一次函数的图象等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】证明:(1)∵D、E分别是AB、AC的中点,∴DE=12BC,DE//BC,∴DF =DE +EF =BC ,∴四边形DBCF 是平行四边形.(2)当AC =BC 时,平行四边形ADCF 是矩形.理由:∵四边形ADCF 是矩形,∴AC =DF .∵在△ABC 中,D 、E 分别是AB ,AC 边上的中点,∴DE 是△ABC 的中位线,∴DE =12BC . 又∵EF =DE ,∴DF =BC ,∴AC =BC .【解析】本题考查了平行四边形的判定与性质以及矩形的判定与性质.证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.(1)只要证明DF =BC ,DF//BC ,即可解决问题;(2)由“对角线相等的平行四边形是矩形”可以推导:AC =BC .25.【答案】解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,根据题意得:{30x +40y =380040x +30y =3200, 解得:{x =20y =80. 答:A 种商品每件的进价为20元,B 种商品每件的进价为80元;(2)设购进B 种商品m 件,获得的利润为w 元,则购进A 种商品(1000−m)件, 根据题意得:w =(30−20)(1000−m)+(100−80)m =10m +10000.∵A 种商品的数量不少于B 种商品数量的4倍,∴1000−m ≥4m ,解得:m ≤200.∵在w =10m +10000中,∴w 的值随m 的增大而增大,∴当m =200时,w 取最大值,最大值为10×200+10000=12000,∴当购进A 种商品800件、B 种商品200件时,销售利润最大,最大利润为12000元.【解析】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w 与m 之间的函数关系式.(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,根据两次进货情况表,可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进B 种商品m 件,获得的利润为w 元,则购进A 种商品(1000−m)件,根据总利润=单件利润×购进数量,即可得出w 与m 之间的函数关系式,由A 种商品的数量不少于B 种商品数量的4倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再根据一次函数的性质即可解决最值问题.。

2017-2018学年下学期人教版初二数学下册期末测试题及答案.doc

2017-2018学年下学期人教版初二数学下册期末测试题及答案.doc

八年级期末数学模拟考试试题一、选择题(每小题3分,共30分)1、在函数y=1x-3 中,自变量x 的取值范围是 ( )A .3x ≠B .0x ≠C .3x >D .3x =2、下列计算正确的是 ( )A .623x x x =B .()248139x x --= C.111362a a a --= D.()021x +=3、下列说法中错误的是 ( ) A .两条对角线互相平分的四边形是平行四边形; B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的 ( )A .平均数B .中位数C .众数D .方差5、点P (3,2)关于x 轴的对称点'P 的坐标是 ( ) A .(3,-2) B .(-3,2) C .(-3,-2) D .(3,2)6、下列运算中正确的是 ( )A .1y x x y +=B .2233x y x y +=+C .221x y x y x y +=--D . 22x y x y x y +=++7、如图,已知P 、Q 是△ABC 的BC 边上的两点,且BP=PQ=QC=AP=AQ,则∠BAC 的大小为 ( )A .120°B .110°C .100°D .90°8、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为 ( )A. 6B. 4C. 3D. 29、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s (米)关于时间t (分)的函数图象,那么符合这个同学行驶情况的图像大致是CQ P B AE CBD Ay xoyxoyxoy xo( )A .B .C .D .10、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( ) A.梯形的下底是上底的两倍 B.梯形最大角是120° C.梯形的腰与上底相等 D.梯形的底角是60° 二、填空题(每小题3分,共30分)11、若分式x2-4x2-x-2的值为零,则x 的值是 .12、已知1纳米=1109 米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为米.13、如图,已知OA=OB ,点C 在OA 上,点D 在OB 上,OC=OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有 对.14、如图,ACB DFE BC EF ==∠∠,,要使ABC DEF △≌△,则需要补充一个条件,这个条件可以是 .15、已知y 与x-3成正比例,当x=4时,y=-1;那么当x=-4时,y= 。

2017—2018学年度第二学期期末考试初二数学试题及答案

2017—2018学年度第二学期期末考试初二数学试题及答案

2017—2018学年度第二学期期末考试初二数学试题题目一二三总分评卷人得分一、选择题(每小题3分,共30分)1.下列调查中,适合用普查方式的是()A.调査绥化市市民的吸烟情况B.调查绥化市电视台某节目的收视率C.调查绥化市市民家庭日常生活支出情况D.调査绥化市某校某班学生对“文明佛山”的知晓率2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三角形三个顶点的坐标分别是()A.(1,7)、(-2,2)、(3,4)B.(1,7)、(2,2)、(3,4)C.(1,7)、(2,-2)、(3,3)D.(1,7)、(2,2) 、( 3,4)3.已知直线a外有一点P,则点P到直线a的距离是()A.点P到直线的垂线的长度B.点P到直线的垂线段C.点P到直线的垂线段的长度D.点P到直线的垂线4.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2:∠1=4:1,则∠AOF的度数是()A.130°B.125°C.140°D.135°5.已知关于x的不等式(1-a)x>3的解集为x<31a-,则a的取值范围是()A.a>0 B.a<0 C.a<1 D.a>16.如果点P(5,y)在第四象限,那么y的取值范围是()A.y>0 B.y<0 C.y≤0D.y=07.下列说法正确的是()A.2π是分数B.2π是无理数C.如果a为实数,那么2a为正数D.如果a为实数,那么-a为负数7.若点A(a,4)和点B(3,b)关于y轴对称,则a,b的值分别是()A.3,4 B.2,-4 C.-3,4 D.-3,-49.有40个数据,共分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.20 B.0.30 C.0.25 D.0.1510.已知4520430X Y ZX Y Z-+=⎧⎨+-=⎩(xyx≠0),则x:y:x的值是()A.2:1:3 B.1:2:3 C.3:2:1 D.不能确定二、填空题: (每题3分,共33分)11.如果点P(a+6,a-3)在x轴上,那么其坐标是。

新人教版2017-2018学年八年级下册期末综合检测数学试卷(解析版)

新人教版2017-2018学年八年级下册期末综合检测数学试卷(解析版)

期末综合检测一、选择题(每小题3分,共30分)1. 下列各式成立的是( )A. =2B. =-5C. =xD. =±6【答案】A【解析】分析:根据算术平方根的定义判断即可.详解:A.,正确;B.,错误;C.,错误;D.,错误.故选A.点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.2. 如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是( )A. y=x+5B. y=x+10C. y=-x+5D. y=-x+10【答案】C........... .............解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.3. 如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A,B,C,D,则它们之间的关系为( )A. A+B=C+DB. A+C=B+DC. A+D=B+CD. 以上都不对【答案】A【解析】分析:根据勾股定理和正方形的面积公式可以得到A+B=C+D.详解:如图,∵a2+b2=e2,c2+d2=e2,∴a2+b2=c2+d2,∴A+B=C+D.故选A.点睛:本题考查了勾股定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4. 某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A. 这10名同学体育成绩的中位数为38分B. 这10名同学体育成绩的平均数为38分C. 这10名同学体育成绩的众数为39分D. 这10名同学体育成绩的方差为2【答案】C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.5. 如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )A. B. 2 C. 2 D. 4【答案】C【解析】因为平四边形ABCD,所以AD∥BC,所以∠ACB=∠CAD=45°,又因为∠ABC=∠CAD=45°,所以∠ACB=∠ABC=45°,所以△ABC是等腰直角三角形,AB=AC=2,根据勾股定理的BC=2,故选C.6. 如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】解:∵点A(2,m),∴点A关于x轴的对称点B(2,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣2+1=﹣1,m=1,故选:B.视频7. 如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF= ( )A. 3B. 4C. 5D. 6【答案】A【解析】∵直角三角形ABC中,∠C=90°,AB=10,AC=8,∴.∵点E、F分别为AC、AB的中点,∴EF是△ABC的中位线,∴.故选A .8. 如图,在矩形ABCD 中,AB=1,BC=2,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是 ( )A. (A )B. (B )C. (C )D. (D ) 【答案】C【解析】试题解析:由题意知,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,则 当0<x≤2,s=x ,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选C .考点:动点问题的函数图象.9. 如图,正方形OABC 中,点B(4,4),点E ,F 分别在边BC ,BA 上,OE=,若∠EOF=45°,则OF的解析式为 ( )A. y=xB. y=xC. y=xD. y=x【答案】B【解析】分析:作辅助线,构建全等三角形,证明△OCE ≌△OAD 和△EOF ≌△DOF ,得EF =FD ,设AF =x ,在直角△EFB中利用勾股定理列方程求出x=,根据正方形的边长写出点F的坐标,并求直线OF的解析式.详解:延长BF至D,使AD=CE,连接OD.∵四边形OABC是正方形,∴OC=OA,∠OCB=∠OAD,∴△OCE≌△OAD,∴OE=OD,∠COE=∠AOD.∵∠EOF=45°,∴∠COE+∠FOA=90°﹣45°=45°,∴∠AOD+∠FOA=45°,∴∠EOF=∠FOD.故选B.点睛:本题是利用待定系数法求一次函数的解析式,考查了正方形的性质及全等三角形的性质与判定,作辅助线构建全等三角形是本题的关键,利用全等三角形的对应边相等设一未知数,找等量关系列方程,求出点F的坐标,才能运用待定系数法求直线OF的解析式.10. 如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )A. 55°B. 65°C. 75°D. 85°【答案】C【解析】分析:本题考查的是菱形的性质,线段的垂直平分线的性质.解析:在菱形ABCD中,∠BAD=70°,∴∠B=110°,∠CAB=35°,∵AB的垂直平分线交对角线AC,∴AF=BF,DF=BF,∴∠FBA=∠CAB=35°,∴∠FBC=∠CDF=75°.故选C点睛:本题的关键是运用菱形的对角线的性质得出角相等,利用菱形的性质得出三角形全等,利用垂直平分线的性质,得出线段相等.二、填空题(每小题3分,共24分)11. 计算:( -3)÷=______________.【答案】-5【解析】分析:先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.详解:原式=(4﹣9)÷=÷=-5.故答案为:-5.点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为________cm.【答案】168【解析】试题分析:设男生的平均身高为x,根据题意有:(20×163+30x)÷50 =166,解可得x=168(cm).故答案为:168.考点:加权平均数.13. 已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.【答案】【解析】试题分析:把点(3,5)代入直线y=ax+b可得3a+b=5,即b-5=-3a,再代入即可求值.考点:一次函数图象上点的坐标的特征.14. 如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则△ABC的面积为__________.【答案】+1【解析】分析:根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,求出BC的长,即可求出△ABC的面积.详解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=.在Rt△ADC中,DC===1,∴BC=+1,∴△ABC的面积=AC•BC=+1.故答案为:+1.点睛:本题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时涉及三角形外角的性质,二者结合,是一道好题.15. 为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,给出下列结论:①方差是8;②众数是-1;③平均数是-1.其中正确的序号是__________.【答案】②③【解析】分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;故答案为:②③.点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.16. 如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连接A'C,则线段A'C长度的最小值是__________.【答案】2-2【解析】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.视频17. 如图,Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过区域面积为__________.【答案】16【解析】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4,∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5,∴CC′=5﹣1=4,∴S▱BCC′B′=4×4=16 (cm2).即线段BC扫过的面积为16cm2.故答案为:16.18. 如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t=________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【答案】2或【解析】分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.解:∵E是BC的中点,∴BE=CE=BC=8,①当Q运动到E和B之间,设运动时间为t,则得:3t﹣8=6﹣t,解得:t=3.5;②当Q运动到E和C之间,设运动时间为t,则得:8﹣3t=6﹣t,解得:t=1,∴当运动时间t为1秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解答题(共66分)19. (1)计算:÷+×-.(2)已知x=2-,求代数式(7+4)x2+(2+)x+的值.【答案】(1)4-;(2)2+【解析】分析:(1)根据二次根式的混合运算法则计算,然后化简即可;(2)直接代入,按照运算顺序,利用完全平方公式和平方差公式计算,进一步合并得出答案即可.详解:(1)原式==;(2)当x=2﹣时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+.点睛:本题考查了二次根式的混合运算,注意利用计算公式计算,先化简,再进一步合并即可.20. 已知直线l1:y=-x+3和直线l2:y=2x,l1与x轴交点为A.求:(1)l1与l2的交点坐标.(2)经过点A且平行于l2的直线的解析式.【答案】(1)l1与l2的交点为(1,2);(2)所求直线的解析式为y=2x-6.【解析】分析:(1)根据两直线相交时,自变量和函数值均相等列出方程求得x和y的值即可求得交点坐标;(2)首先根据平行确定k的值,然后代入点A求得b值.详解:(1)由题意得:﹣x+3=2x,∴x=1,当x=1时,y=2,∴l1与l2的交点坐标为(1,2);(2)y=﹣x+3与x轴交点A的坐标为(3,0),设所求的直线的解析式为y=2x+b,当x=3时,y=0,∴6+b=0,∴b=﹣6,所求直线的解析式为y=2x﹣6.点睛:本题考查了两条直线平行或相交的问题,解题的关键是了解两直线平行比例系数相等.21. 某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是____________元,众数是____________元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)中位数是3400,众数是3000;(2)用中位数或众数来描述更为恰当.理由见解析.【解析】试题分析:(1)根据大小排列确定中间一个或两个的平均数,得到中位数,然后找到出现最多的为众数;(2)根据表格信息,结合中位数、平均数、众数说明即可.试题解析:(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势.考点:1、中位数,2、众数22. 如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.【答案】△ABD为直角三角形.理由见解析.【解析】分析:先在△ABC中,根据勾股定理求出的值,再在△ABD中根据勾股定理的逆定理,判断出AD⊥AB,即可得到△ABD为直角三角形.本题解析:△ABD为直角三角形理由如下:∵∠C=90°,AC=3,BC=4,. ∴∵52+122=132,23. 如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.【答案】(1)AC=4;(2)∠AOB=60°;(3)菱形OBEC的面积是2.【解析】解(1)在矩形ABCD中,∠ABC=90°,∴Rt△ABC中, ∠ACB=30°,∴AC=2AB=4.(2)在矩形ABCD中,∴AO=OA=2,又∵AB=2,∴△AOB是等边三角形,∴∠AOB=60°.(3)由勾股定理,得BC=,.,所以菱形OBEC的面积是2.24. 某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.(1)共需租多少辆客车?(2)请给出最节省费用的租车方案.【答案】(1)客车总数为6;(2)租4辆甲种客车,2辆乙种客车费用少.【解析】分析:(1)由师生总数为240人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为240人以及租车总费用不超过2300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y 元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.详解:(1)∵(234+6)÷45=5(辆)…15(人),∴保证240名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤2.∵x为整数,∴x=1,或x=2.设租车的总费用为y元,则y=280x+400×(6﹣x)=﹣120x+2400.∵﹣120<0,∴当x=2时,y取最小值,最小值为2160元.故租甲种客车4辆、乙种客车2辆时,所需费用最低,最低费用为2160元.点睛:本题考查了一次函数的应用、解一元一次不等式组以及一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(2)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.25. 某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y甲与x间的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想让8千个证书的印制费用不大于乙厂,在不降低制版费的前提下,每个证书最少降低多少元?【答案】(1)制版费1千元,y甲=x+1,证书单价0.5元;(2)当印制8千个证书时,选择乙厂,节省费用500元;(3)甲厂每个证书印刷费用最少降低0.0625元.【解析】(1)由图得制版费是1000元,通过坐标(0,1)(2,2)求出函数解析式,印刷单价=(印刷费用-制版费)2000;(2)求出y乙第二段的解析式,把x=8分别代入两解析式求值即可(3)由(2)得,8000500即为每个证书最少降低多少元26. 如图,边长为5的正方形OABC的顶点O在坐标原点处,点A,C分别在x轴、y轴的正半轴上,点E 是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP.(2)若点E的坐标为(3,0),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.【答案】(1)证明见解析;(2)存在点M的坐标为(0,2).【解析】分析:(1)在OC上截取OK=OE.连接EK,求出∠KCE=∠CEA,根据ASA推出△CKE≌△EAP,根据全等三角形的性质得出即可;(2)过点B作BM∥PE交y轴于点M,根据ASA推出△BCM≌△COE,根据全等三角形的性质得出BM=CE,求出BM=EP.根据平行四边形的判定得出四边形BMEP是平行四边形,即可求出答案.详解:(1)在OC上截取OK=OE.连接EK,如图1.∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°.∵AP为正方形OCBA的外角平分线,∴∠BAP=45°,∴∠EKC=∠P AE=135°,∴CK=EA.∵EC⊥EP,∴∠CEF=∠COE=90°,∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA.在△CKE和△EAP中,∵,∴△CKE≌△EAP,∴EC=EP;(2)y轴上存在点M,使得四边形BMEP是平行四边形.如图,过点B作BM∥PE交y轴于点M,连接BP,EM,如图2,则∠CQB=∠CEP=90°,所以∠OCE=∠CBQ.在△BCM和△COE中,∵,∴△BCM≌△COE,∴BM=CE.∵CE=EP,∴BM=EP.∵BM∥EP,∴四边形BMEP是平行四边形.∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.故点M的坐标为(0,2).点睛:本题考查了正方形的性质,全等三角形的性质和判定,平行四边形的性质和判定的应用,能灵活运用知识点进行推理是解答此题的关键,综合性比较强,难度偏大.。

2017-2018学年人教版初二数学第二学期期末测试卷及答案

2017-2018学年人教版初二数学第二学期期末测试卷及答案

2017-2018学年度八年级数学第二学期期末测试卷考 生 须 知1. 本试卷共6页,共三道大题,26道小题。

满分100分。

考试时间90分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在平面直角坐标系xOy 中,点P (2,-3)关于原点O 对称的点的坐标是 A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 2.如果一个多边形的每个内角都是120°,那么这个多边形是A .五边形B .六边形C .七边形D .八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是① ② ③ ④A .①②B .②③C .②④D .②③④ 4.方程()x x x =-1的解是A .x = 0B .x = 2C .x 1 = 0,x 2 = 1D .x 1 = 0,x 2 = 25.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x 与方差2S :甲 乙 丙 丁 x (秒)30 30 28 28 2S1.211.051.211.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择A .甲B .乙C .丙D .丁 6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB 的度数是 A .40°B .55°C .60°D .70°7.用配方法解方程2210x x --=,原方程应变形为A .2(1)2x -=B .2(1)2x += C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2 A .A →B →C →A B .A →B →C →D C .A →D →O →AD .A →O →B →C二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1)错误!未找到引用源。

2017-2018学年人教版数学初二第二学期期末测试题(含答案)

2017-2018学年人教版数学初二第二学期期末测试题(含答案)

2017-2018学年八年级数学第二学期期末测试卷(分数:100分 时间:90分钟)学校 班级 姓名 成绩 一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个....是正确的. 1.下列各式中,运算正确的是A.2=- B= C4= D.2=2.如图,在△ABC 中,3AB =,6BC =,4AC =,点D ,E 分别是边AB ,CB 的中点,那么DE 的长为A .1.5B .2C .3D .43.要得到函数23y x =+的图象,只需将函数2y x =的图象A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位4.在Rt △ABC 中, D 为斜边AB 的中点,且3BC =,4AC =,则线段CD 的长是 A .2 B .3 C .52D . 55.已知一次函数(1)y k x =-. 若y 随x 的增大而增大,则k 的取值范围是A .1k <B .1k >C .0k <D .0k >6.如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4AD =,那么AC 的长是A .5B .6 C. D.ABCDEDCBA7.如图,在点,,,M N P Q 中,一次函数2(0)y kx k =+<的图象不可能经过的点是A .MB .NC .PD .Q8.如图是某一天北京与上海的气温T (单位:C ︒)随时间t (单位:时)变化的图象.根据图中信息,下列说法错误..的是 A .12时北京与上海的气温相同B .从8时到11时,北京比上海的气温高C .从4时到14时,北京、上海两地的气温逐渐升高D .这一天中上海气温达到4C ︒的时间大约在上午10时9.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是A .13B .20C .25D .3410.已知两个一次函数1y ,2y 的图象相互平行,它们的部分自变量与相应的函数值如下表:则m 的值是A .13- B .3-C .12D .5二、填空题:(本题共18分,每小题3分) 11在实数范围内有意义,那么x 的取值范围是 .122(1)0y +=,那么x y 的值是 .13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为 .14. 如图,,,,E F M N 分别是边长为4的正方形ABCD 四条边上的点,且AE BF CM DN ===. 那么四边形EFMN 的面积的最小值是 .15.第24届冬季奥林匹克运动会,将于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目40次的训练测试,每次测试成绩分别为5分,4分,3分,2分,1分五档. 甲乙两位同学在这个项目的测试成绩统计结果如图所示.甲乙两位同学中单板滑雪成绩更稳定的是.NMFEDCBA16.已知一次函数y kx b =+的图象过点(1,0)-和点(0,2). 若()0x kx b +<,则x 的取值范围是 .三、解答题:(本题共22分,第17—19题每小题4分,第20—21题每小题5分) 1718.如图,在ABCD Y 中,点E ,F 分别在边AD ,BC 上,AE CF =,求证:BE DF =.19.已知1x =,求22x x -的值.20.在平面直角坐标系xOy 中,已知点(0,3)A 、点(3,0)B ,一次函数2y x =的图象与直线AB 交于点M .(1)求直线AB 的函数解析式及M 点的坐标; (2)若点N 是x 轴上一点,且△MNB 的面积为6,求点N 的坐标.21.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,且2BC AF =.(1)求证:四边形ADFE 为矩形;(2)若30C ∠=︒,2AF =,写出矩形ADFE 的周长.FED CBA ABCDEF四、解答题:(本题共14分,第22题8分,第23题6分)22.阅读下列材料:2016年人均阅读16本书!2017年4月23日“世界读书日”之前,国际网络电商亚马逊发布了“亚马逊中国2017全民阅读报告”.报告显示,大部分读者已养成一定的阅读习惯,阅读总量在10本以上的占56%,而去年阅读总量在10本以上的占48%.京东图书也发布了2016年度图书阅读报告.根据京东图书文娱业务部数据统计,2016年销售纸书人均16册,总量叠在一起相当于15000个帝国大厦的高.(1)在亚马逊这项调查中,以每年有效问卷1.4万份来计,2017年阅读量十本以上的人数比去年增加了人;(2)小雨作为学校的图书管理员,根据初二年级每位同学本学期的借书记录,对各个班借阅的情况作出了统计,并绘制统计图表如下:初二年级图书借阅分类统计扇形图初二年级各班图书借阅情况统计表①全年级140名同学中有科技社团成员40名,他们人均阅读科普类书籍1.5本,年级其他同学人均阅读科普类书籍1.08本,请你计算全年级人均阅读科普类书籍的数量,再通过计算补全统计表;②在①的条件下,若要推荐初二某个班级为本学期阅读先进集体,你会推荐哪个班,请写出你的理由.23.在四边形中,一条边上的两个角称为邻角. 一条边上的邻角相等,且这条边的对边上的邻角也相等,这样的四边形叫做IT 形. 请你根据研究平行四边形及特殊四边形的方法,写出IT 形的性质,把你的发现都写出来.五、解答题:(本题共16分,第24题8分,第25题8分)24.如图,四边形ABCD 是正方形,E 是CD 垂直平分线上的点,点E 关于BD 的对称点是'E ,直线DE 与直线'BE 交于点F .(1)若点E 是CD 边的中点,连接AF ,则FAD ∠=︒;(2)小明从老师那里了解到,只要点E 不在正方形的中心,则直线AF 与AD 所夹锐角不变.他尝试改变点E 的位置,计算相应角度,验证老师的说法.①如图,将点E 选在正方形内,且△EAB 为等边三角形,求出直线AF 与AD 所夹锐角的度数;②请你继续研究这个问题,可以延续小明的想法,也可用其它方法.BFB我选择小明的想法;(填“用”或“不用”)并简述求直线AF与AD所夹锐角度数的思路.25.对于正数x,用符号[]x表示x的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b在第一象限内,以A为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于y轴的边长为a,垂直于x轴的边长为[]1b+,那么,把这个矩形覆盖的区域叫做点A的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.A BC D图1 图2 根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点7(2,)2的矩形域,该矩形域的面积是;(2)点77(2,),(,)(0)22P Q a a>的矩形域重叠部分面积为1,求a的值;(3)已知点(,)(0)B m n m>在直线1y x=+上,且点B的矩形域的面积S满足45S<<,那么m的取值范围是.(直接写出结果)数学答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11.2x ≥- 12.1 13. 14.8 15.3;3;乙同学 16.10x -<<说明:第15题每空1分,共3分.三、解答题(本题共22分,第17—19题每小题4分,第20—21题每小题5分) 17.解:原式=------------------------------3分=------------------------------4分18.证明:∵四边形ABCD 是平行四边形, ∴AD BC∥,AD BC=.------------------------------1分 ∵AE CF =,∴DE BF =. ------------------------------2分 ∴四边形EBFD 是平行四边形.------------------------------3分∴BE DF =. ------------------------------4分 证法二:∵四边形ABCD 是平行四边形,∴AB DC =,A C ∠=∠. ------------------------------1分 ∵AE CF =. ------------------------------2分 ∴BAE DCF ≅V V . ------------------------------3分 ∴BE DF =. ------------------------------4分19.解法一:∵1x =,∴1x -=∴2222211(1)1x x x x x -=-+-=-- ------------------------------2分21=-ABCDEFA BCDEF4=. ------------------------------4分解法二:∵1x =,∴22(2)12)x x x x -=-=- ------------------------------2分21=-4=. ------------------------------4分注:结论错,有对根式计算正确的部分给1分。

2017-2018学年八年级数学下期末试卷有答案和解释

2017-2018学年八年级数学下期末试卷有答案和解释

2017-2018学年八年级数学下期末试卷有答案和解释一、选择题(本大题共6小题,共18.0分)1.函数y=(k-2)x+3是一次函数,则k的取值范围是()A. B. C. D.2.函数y=2x-1的图象经过()A. 一、二、三象限B. 二、三、四象限C. 一、三、四象限D. 一、二、四象限3.下列方程中,有实数根的方程是()A. B. C. D.4.已知向量、满足||=||,则()A. B. C. D. 以上都有可能5.事件“关于y的方程a2y+y=1有实数解”是()A. 必然事件B. 随机事件C. 不可能事件D. 以上都不对6.下列命题中,假命题是()A. 两组对角分别相等的四边形是平行四边形B. 有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形C. 有一组邻边相等且互相垂直的平行四边形是正方形D. 一组邻边互相垂直,两组对边分别平行的四边形是矩形二、填空题(本大题共12小题,共36.0分)7.已知函数f(x)=+1,则f()=______.8.已知一次函数y=1-x,则函数值y随自变量x的增大而______.9.方程x4-16=0的根是______.10.如图,一次函数y=kx+b(k≠0)的图象经过点(2,0),则关于x 的不等式kx+b>0的解集是______.11.用换元法解方程+=,若设y=,则原方程可以化为关于y的整式方程是______.12.木盒中装有1个黑球和2个白球,这些球除颜色外其他都相同.从木盒里先摸出一个球,放回去后摇匀,再摸出1个球,则摸到1个黑球1白球的概率是______.13.已知一个凸多边形的内角和等于720°,则这个凸多边形的边数为______.14.若梯形的一条底边长8cm,中位线长10cm,则它的另一条底边长是______cm.15.如图,折线ABC表示从甲地向乙地打电话所需的电话费y(元)关于通话时间t(分钟)的函数图象,则通话7分钟需要支付电话费______元.16.如图,矩形ABCD的两条对角线相交于点O,∠COB=2∠AOB,AB=8,则BC的长是______.17.我们把对角线与一条底边相等的等腰梯形叫做“完美等腰梯形”,若一个“完美等腰梯形”的对角线长为10,且该梯形的一个内角为75°,则这个梯形的高等于______.18.如图,在边长为6的正方形ABCD中,点M、N分别是边AD、BC的中点,Q是边CD上的一点.联结MN、BQ,将△BCQ沿着直线BQ翻折,若点C恰好与线段MN上的点P重合,则PQ的长等于______.三、解答题(本大题共7小题,共46.0分)19.解方程:3-=x.20.解方程组:21.如图,点E、F在平行四边形ABCD的对角线BD上,BE=DF,设,,.(1)填空:图中与互为相反向量的向量是______;(2)填空:-=______.(3)求作:+(不写作法,保留作图痕迹,写出结果)22.小明在普通商场中用96元购买了一种商品,后来他在网上发现完全相同的这一商品在网上购买比普通商场中每件少2元,他用90元在网上再次购买这一商品,比上次在普通商场中多买了3件.问小明在网上购买的这一商品每件几元?23.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AD与BE 交于点O,点F、G分别是BO、AO的中点,联结DE、EG、GF、FD.(1)求证:FG∥DE;(2)若AC=BC,求证:四边形EDFG是矩形.24.在平面直角坐标系中,过点(4,6)的直线y=kx+3与y轴相交于点A,将直线向下平移个单位,所得到的直线l与y轴相交于点B.(1)求直线l的表达式;(2)点C位于第一象限且在直线l上,点D在直线y=kx+3,如果以点A、B、C、D为顶点的四边形是菱形,求点C的坐标.25.已知在等腰梯形ABCD中,AD∥BC,AD=AB=CD=6厘米,∠B=60°,点P在边AD上以每秒2厘米的速度从D出发,向点A运动;点Q在边AB上以每秒1厘米的速度从点B出发,向点A运动.已知P、Q两点同时出发,当其中一个点到达终点时,另外一个点也随之停止运动,设两个点的运动时间为t秒,联结PC、QD.(1)如图1,若四边形BQDC的面积为S平方厘米,求S关于t的函数解析式并写出函数定义域;(2)若PC与QE相交于点E,且∠PEQ=60°,求t的值.答案和解析1.【答案】D【解析】解:由题意得:k-2≠0,解得:k≠2,故选:D.根据一次函数定义可得k-2≠0,再解不等式即可.此题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.【答案】C【解析】解:∵2>0,∴一次函数y=-x+2的图象一定经过第一、三象限;又∵-1<0,∴一次函数y=2x-1的图象与y轴交于负半轴,∴一次函数y=2x-1的图象经过第一、三、四象限;故选:C.根据一次函数y=kx+b(k≠0)中的k、b判定该函数图象所经过的象限.本题考查了一次函数的性质.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y 的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y 的值随x的值增大而减小.3.【答案】A【解析】解:A、x3+3=0,x=,有实数根,正确;B、平方不能为负数,无实数根,错误;C、分式方程中分母不能为零,无实数根,错误;D、算术平方根不能是负数,无实数根,错误;故选:A.根据立方根、平方根、二次根式和分式的意义判断即可.本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义.4.【答案】D【解析】解:若向量、满足||=||,可得:=,或=-,或∥,故选:D.利用单位向量的定义和性质直接判断即可.此题考查平面向量问题,解题时要认真审题,注意单位向量、零向量、共线向量的定义和的性质的合理运用.5.【答案】A【解析】解:∵△=1-4a2(-1)=4a2+1>0,原方程一定有实数解.∴方程a2y+y=1有实数解是必然事件.故选:A.根据根的判别式△=b2-4ac的值的符号就可以判断下列方程有无实数解.再判断属于哪类事件即可.本题主要考查了随机事件的意义与一元二次方程的根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.【答案】B【解析】解:A、两组对角分别相等的四边形是平行四边形,是真命题;B、有一条对角线与一组邻边构成等腰三角形的平行四边形不一定是菱形,是假命题;C、有一组邻边相等且互相垂直的平行四边形是正方形,是真命题;D、一组邻边互相垂直,两组对边分别平行的四边形是矩形是真命题;故选:B.根据平行四边形的判定、菱形的判定、正方形的判定及矩形的判定判断即可.此题主要考查了真命题的定义,解题时分别利用了平行四边形的判定、菱形的判定、正方形的判定及矩形的判定等知识解决问题.7.【答案】3【解析】解:f(x)=+1,则f()=×+1=2+1=3,故答案为:3.根据自变量与函数值的对应关系,可得答案.本题考查了函数值,利用自变量与函数值的对应关系是解题关键.8.【答案】减小【解析】解:∵k=-1<0,∴函数值y随自变量x的增大而减小,故答案为:减小根据一次函数y=kx+b的性质解得即可.本题考查了一次函数的性质;在一次函数y=kx+b中,k>0,y随x 的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.9.【答案】±2【解析】解:∵x4-16=0,∴(x2+4)(x+2)(x-2)=0,∴x=±2,∴方程x4-16=0的根是±2,故答案为±2.方程的左边因式分解可得(x2+4)(x+2)(x-2)=0,由此即可解决问题.本题考查高次方程的解,解题的关键是学会应用因式分解法解方程,把高次方程转化为一次方程,属于中考常考题型.10.【答案】x<2【解析】解:由图象可得:当x<2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x<2,故答案为:x<2观察函数图象得到即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.11.【答案】6y2-15y+2=0【解析】解:用换元法解方程+=,若设y=,则原方程可以化为关于y的整式方程是6y2-15y+2=0,故答案为:6y2-15y+2=0.方程变形后,根据设出的y变形即可.此题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.12.【答案】【解析】解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,其中摸到1个黑球1白球的有4种结果,∴摸到1个黑球1白球的概率为,故答案为:.列表将所有等可能的结果列举出来,利用概率公式求解即可.考查用列树状图的方法解决概率问题;得到两次摸到1个黑球1白球的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.13.【答案】6【解析】解:设这个多边形的边数为n,则(n-2)×180°=720°,解得:n=6,故答案为:6.设这个多边形的边数为n,根据题意得出(n-2)×180°=720°,求出即可.本题考查了多边形的内角和定理,能根据题意得出关于n的方程是解此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°.14.【答案】12【解析】解:设另一条底边为x,则8+x=2×10,解得x=12.即另一条底边的长为12.故答案为:12只需根据梯形的中位线等于梯形两底和的一半进行计算即可.本题考查了梯形的中位线定理,解题的关键是熟记梯形的中位线定理并灵活的应用.15.【答案】6.4【解析】解:当通话时间在3分钟以内费用为2.4元,超出之后每分钟元则通话7分钟费用为:2.4+(7-3)=6.4元故答案为:6.4根据图象分段讨论计费方案本题为一次函数实际应用问题,考查一次函数图象的实际意义.16.【答案】8【解析】解:∵四边形ABCD是矩形,∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠BOC=2∠AOB,∠BOC+∠AOB=180°∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=8,∴AC=BD=2AO=16,则BC==8.故答案是:8.首先证明△AOB是等边三角形,则可以求得AC的长,然后利用勾股定理求得BC的长本题考查了矩形的性质,等边三角形的性质和判定的应用,注意:矩形的对角线相等且互相平分.17.【答案】5【解析】解:如图,AB=CD,AD∥BC,BD=BC=10,∠C=75°.作DH⊥BC于H.∵BD=BC,∴∠BDC=∠C=75°,∴∠DBC=180°-75°-75°=30°,∴DH=BD=5.故答案为5作DH⊥BC于H.由BD=BC,推出∠BDC=∠C=75°,推出∠DBC=180°-75°-75°=30°,利用直角三角形30°的性质即可解决问题;本题考查等腰梯形的性质、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.【答案】2【解析】解:∵∠CBQ=∠PBQ=∠PBC,BC=PB=2BN=3,∠BPQ=∠C=90°,∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=6×=2.故答案为:2.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=2.本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.【答案】解:移项得平方得2x-3=9-6x+x2x2-8x+12=0(x-2)(x-6)=0x1=2,x2=6经检验x2=6为增根,舍去;x1=2为原方程的解.原方程的解为x=2.【解析】根据平方,可得整式方程,根据解整式方程,可得答案.本题考查了无理方程,利用平方转化成整式方程是解无理方程的关键,注意要检验方程的根.20.【答案】解:由(2)得x=y+1(3)把(1)、(3)联立得解得.【解析】把(2)变形后代入解答即可.此题考查高次方程的解法,关键是把(2)变形后代入解答.21.【答案】和【解析】解:(1)∵BE=DF,∴BF=ED,∴图中与互为相反向量的向量是和.故答案为和.(2)∵=+=+(-)=-,故答案为(3)如图,即为所求作的向量.(1)根据相等平面向量的定义即可判断;(2)理由三角形法则即可判断;(3)理由三角形法则即可解决问题;本题考查作图-复制作图,平行四边形的性质,平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】解:设小明在网上购买的这一商品每件x元.(1分),(4分)x2+4x-60=0,(2分)x1=-10,x2=6.(1分)经检验它们都是原方程的根,但x=-10不符合题意.(1分)答:小明在网上购买的这一商品每件6元.(1分)【解析】设小明在网上购买的这一商品每件x元,小明在普通商场中用96元购买了一种商品,后来他在网上发现完全相同的这一商品在网上购买比普通商场中每件少2元,他用90元在网上再次购买这一商品,比上次在普通商场中多买了3件根据此可列方程求解.本题考查分式方程的应用,设出价格,根据件数做为等量关系列方程求解.23.【答案】解:(1)∵AD、BE分别是边BC、AC上的中线,∴DE是△ABC的中位线,∴DE∥AB且DE=AB.∵点F、G分别是BO、AO的中点,∴FG是△OAB的中位线,∴FG∥AB且FG=AB.∴GF∥DE.(2)由(1)GF∥DE,GF=DE∴四边形EDFG是平行四边形.∵AD、BE是BC、AC上的中线,∴CD=BC,CE=AC.又∵AC=BC,∴CD=CE.在△ACD和△BCE中,,∴△ACD≌△BCE,∴∠CAB=∠CBA.∵AC=BC,∴∠CAB=∠CBA,∴∠DAB=∠EBA,∴OB=OA.∵点F、G分别是OB、AO的中点,∴OF=OB,OG=OA,∴OF=OG,∴EF=DG,∴四边形EDFG是矩形.【解析】(1)依据三角形的中位线定理可得到DE∥AB且DE=AB、FG∥AB且FG=AB,从而可证明FG∥DE;(2)首先证明四边形EDFG是平行四边形,然后再证明EF=DG,最后,依据矩形的判定定理进行证明即可.本题主要考查的是矩形的判定、三角形的中位线定理,熟练掌握三角形的中位线定理是解题的关键.24.【答案】解:(1)将点(4,6)代入直线y=kx+3,可得k=,∴y=x+3,将直线向下平移个单位,得到直线l的表达式:y=x+;(2)由题可得A(0,3),B(0,),设C(t,t+),当AB∥CD时,AB2=BC2,即t2+=,解得t1=2,t2=-2,又∵t>0,∴C(2,2);当AB,CD为菱形的对角线时,AC2=BC2,∴t2+=t2+,解得t=,∴C(,).综上所述,点C的坐标为(2,2)或(,).【解析】(1)将点(4,6)代入直线y=kx+3,可得y=x+3,将直线向下平移个单位,即可得到直线l的表达式:y=x+;(2)设C(t,t+),分两种情况进行讨论:当AB∥CD时,AB2=BC2;当AB,CD为菱形的对角线时,AC2=BC2,解方程即可得到点C的坐标.本题主要考查了菱形的判定以及一次函数图象与几何变换,解题时注意:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.【答案】(1)过点A作AH⊥BC,垂足为H,过点D作DF⊥AB,垂足为F,在Rt△ABH中,∠B=60°,AB=6,可得:AH=3、DF=3,S四边形BQDC=S梯形ABCD-SADQ=27-(8-t)=18(0<t≤3);答:求S关于t的函数解析式为S=18(0<t≤3);(2)当且∠PEQ=60°时,可证△CDP≌△ADQ(AAS),∴PD=AQ,即:6-t=2t,t=2.答:t的值为2.【解析】(1)由S四边形BQDC=S梯形ABCD-SADQ即可求出表达式;(2)当且∠PEQ=60°时,可证△CDP≌△ADQ,∴PD=AQ,即可求解.本题考查的是二次函数的应用,(1)中S四边形BQDC=S梯形ABCD-SADQ 这种面积拆分的办法是此类题目常用的方法.。

北京市西城区2017-2018学年八年级下期末考试数学试卷含答案解析

北京市西城区2017-2018学年八年级下期末考试数学试卷含答案解析

北京市西城区 2017-2018 学年八年级下期末考试数学试卷含答案分析试卷满分:100 分,考试时辰:100 分钟一、选择题(本题共30 分,每题 3 分)下边各题均有四个选项,此中只有一个是切合题意的.1.使二次根式x3存心义的x 的取值范围是().A.x3B.x3C.x0D.x3【专题】惯例题型.【剖析】斩钉截铁利用二次根式存心义的条件从而剖析得出答案.【解答】应选: B.【评论】本题重要考察了二次根式存心义的条件,正确掌握定义是解题重点.2.《国家宝藏》节目立足于中华文化宝库资源,经过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观众走进博物馆,让一个个馆藏文物鲜活起来.下边四幅图是我国一些博物馆的标记,此中是中心对称图形的是().A B C D【专题】惯例题型.【剖析】依照中心对称图形的定义和图案特色即可解答.【解答】解: A 、不是中心对称图形,应选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,应选项正确;D、不是中心对称图形,故本选项错误.应选: C.【评论】本题考察中心对称图形的观点:在同一平面内,假如把一个图形绕某一点旋转180 度,旋转后的图形能和原图形完好重合,那么那个图形就叫做中心对称图形.3.以下条件中,不可以判断一个四边形是平行四边形的是().A.两组对边分不平行B.两组对边分不相等C.两组对角分不相等 D .一组对边平行且另一组对边相等【专题】多边形与平行四边形.【剖析】依照平行四边形的判断方法一一判断即可.【解答】解: A、两组对边分不平行的四边形是平行四边形,故本选项不切合题意;B、两组对边分不相等的四边形是平行四边形,故本选项不切合题意;C、两组对角分不相等的四边形是平行四边形,故本选项不切合题意;D、一组对边平行且另一组对边相等的四边形不必定是平行四边形,可能是等腰梯形,故本选项切合题意;应选: D.【评论】本题考察平行四边形的判断,解题的重点是记着平行四边形的判断方法.4.若点 A(, m),B(4,n)都在反比率函数y 8的图象上,则 m与 n 的大小关系是().xA.m n B.m n C.m n D.没法确立【专题】函数思想.【剖析】把所给点的横纵坐标代入反比率函数的分析式,求出 mn 的值,比较大小即可.【解答】∴m<n.应选: A.【评论】本题重要考察反比率函数图象上点的坐标特色,全部在反比例函数上的点的横纵坐标的积等于比率系数.5.如图,菱形 ABCD 中,点 E,F 分不是 AC, DC 的中点.若 EF=3,则菱形 ABCD 的周长为().A.12 B.16C.20D. 24【专题】几何图形.【剖析】依照三角形的中位线平行于第三边同时等于第三边的一半求出 AD ,再依照菱形的周长公式列式运算即可得解.【解答】解:∵ E、F 分不是 AC、DC 的中点,∴E F 是△ ADC 的中位线,∴A D=2EF=2 ×3=6,∴菱形 ABCD 的周长 =4AD=4 ×6=24.应选: D.【评论】本题重要考察了菱形的四条边都相等,三角形的中位线平行于第三边同时等于第三边的一半,求出菱形的边长是解题的重点.6.近几年,手机支付用户规模增加快速,据统计2015 年手机支付用户约为 3.58 亿人,连续两年增加后,2017 年手机支付用户达到约 5.27 亿人.假如设这两年手机支付用户的年均匀增加率为 x,则依照题意可以列出方程为().A.3.58(1x) 5.27B.3.58(1 2x) 5.27C.3.58(1x)2 5.27 D. 3.58(1 x) 2 5.27【专题】惯例题型.【剖析】假如设这两年手机支付用户的年均匀增加率为x,那么 2016年手机支付用户约为 3.58(1+x)亿人, 2017 年手机支付用户约为3.58(1+x)2亿人,而2017 年手机支付用户达到约 5.27 亿人,依照2017 年手机支付用户的人数不变,列出方程.【解答】解:设这两年手机支付用户的年均匀增加率为x,依题意,得3.58(1+x)2=5.27.应选: C.【评论】本题考察的是由实质咨询题抽象出一元二次方程-均匀增加率咨询题.解决这种咨询题所用的等量关系同样是:增加前的量×(1+均匀增加率)增加的次数 =增加后的量.7.甲、乙两位射击运动员的10 次射击练习成绩的折线统计图以下图,则以下对于甲、乙这10 次射击成绩的讲法中正确的选项是().A.甲的成绩相对牢固,其方差小B.乙的成绩相对牢固,其方差小C.甲的成绩相对牢固,其方差大D.乙的成绩相对牢固,其方差大【专题】惯例题型.【剖析】联合图形,乙的成绩颠簸比较小,则颠簸大的方差就小.【解答】解:从图看出:乙选手的成绩颠簸较小,讲明它的成绩较稳固,甲的颠簸较大,则其方差大,应选: B.【评论】本题考察了方差的意义.方差是用来权衡一组数据颠簸大小的量,方差越大,表示这组数据偏离均匀数越大,即颠簸越大,数据越不牢固;反之,方差越小,表示这组数据散布比较集中,各数据偏离均匀数越小,即颠簸越小,数据越牢固.8.已知△ ABC 的三边长分不是 a, b,c,且对于 x 的一元二次方程x 22ax c2b20 有两个相等的实数根,则可推测△ ABC 必定是().A.等腰三角形 B .等边三角形C.直角三角形D.钝角三角形【专题】运算题.【剖析】依照判不式的意义获得△=(-2a)2-4(c2-b2)=0,而后依照勾股定理的逆定理判断三角形为直角三角形.【解答】解:依照题意得△=(-2a) 2-4( c2-b2)=0,所以 a2+b2=c2,所以△ ABC 为直角三角形,∠ ACB=90°.应选: C.【评论】本题考察了根的判不式:一元二次方程 ax2+bx+c=0(a≠0)的根与△ =b2-4ac 有以下关系:当△> 0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△< 0 时,方程无实数根.也考察勾股定理的逆定理.9.如图,在△OAB中,∠ AOB=55 °,将△ OAB在平面内绕点O 顺时针(旋转到△ OA′B′的地点,使得).A.125°B.70°C.55°D.15°BB′∥ AO ,则旋转角的度数为【专题】平移、旋转与对称.【剖析】据两直线平行,内错角相等可得∠AOB= ∠B'BO=55°,依照旋转的性质可得OB=OB′,而后利用等腰三角形两底角相等可得∠BO B′,即可获得旋转角的度数.【解答】解:∵ BB′∥ AO,∴∠ AOB= ∠B'BO=55°,又∵ OB=OB′,∴△ BOB' 中,∠ BOB'=180°-2×55°=70°,∴旋转角的度数为70°,应选: B.【评论】本题考察了旋转的性质,等腰三角形两底角相等的性质,熟记性质并正确识图是解题的重点.10.已知某四边形的两条对角线订交于点O.动点 P 从点 A 起程,沿四边形的边按 A→B→C 的路径匀速运动到点 C.设点 P 运动的时辰为 x,线段 OP 的长为 y,表示 y 与 x 的函数关系的图象大概如右图所示,则该四边形可能是().A B C D【专题】函数及其图像.【剖析】经过点P 经过四边形各个极点,观看图象的对称趋向咨询题可解.【解答】解: C、D 选项 A→B→C 路线都对于对角线BD 对称,因此函数图象应拥有对称性,故C、D 错误,对于选项 B 点 P 从 A 到 B 过程中OP 的长也存在对称性,则图象前半段也应当拥有对称特色,故 B 错误.应选: A.【评论】本题动点咨询题的函数图象,考察学生对动点运动过程中所产生函数图象的变化趋向判断.解答重点是注意动点抵达临界前后的图象变化二、填空题(本题共24 分,每题 3 分)11.运算:3 5210_________.【专题】运算题.【剖析】先进行二次根式的乘法运算,而后化简后归并即可.【评论】本题考察了二次根式的混淆运算:先把二次根式化为最简二次根式,而后进行二次根式的乘除运算,再归并即可.在二次根式的混淆运算中,如能联合题目特色,灵巧运用二次根式的性质,选择适合的解题门路,常常能事半功倍.12.若平行四边形中两个内角的度数比为1:2,则此中一个较小的内角的度数是°.【剖析】第一设平行四边形中两个内角的度数分不是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,既而求得答案.【解答】解:设平行四边形中两个内角的度数分不是x°, 2x°,则 x+2x=180,解得: x=60,∴此中较小的内角是: 60°.故答案为: 60°.【评论】本题考察了多边形的内角和外角,平行四边形的性质.注意平行四边形的邻角互补.13.如图,一根垂直于地面的木杆在离地面高3m 处折断 ,若木杆折断前的高度为8m,则木杆顶端落在地面的地点离木杆底端的距离为m.【专题】惯例题型.【剖析】由题意得,在直角三角形中,理解了两直角边,运用勾股定理即可求出斜边,从而得出木杆顶端落在地面的地点离木杆底端的距离.【解答】解:∵一棵垂直于地面的木杆在离地面 3 米处折断,木杆折断前的高度为 8m,故答案为: 4.【评论】本题考察了勾股定理的应用,重要考察学生对勾股定理在实质生活中的运用能力.14.将一元二次方程x28x13 0 经过配方转变成 (x n)2p 的形式( n ,p 为常数),则n=_________,p =_________.【专题】运算题;一元二次方程及应用.【剖析】依照配方法的同样步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加前一次项系数一半的平方求解可得.【解答】解:∵ x2+8x+13=0,∴x2+8x=-13,则 x2+8x+16=-13+16,即( x+4)2=3,∴n=4、p=3,故答案为: 4、3.【评论】本题考察了配方法解一元二次方程,解题时要注意解题步骤的正确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.15.如图,在矩形ABCD 中,对角线 AC,BD 订交于点 O,若∠ AOD=120 °, AB=2 ,则 BC 的长为.【剖析】由条件可求得△ AOB 为等边三角形,则可求得 AC 的长,在Rt△ABC 中,由勾股定理可求得 BC 的长.【解答】解:∵∠ AOD=120 °,∴∠ AOB=60 °,∵四边形 ABCD 为矩形,∴A O=OC=OB ,∴△ AOB 为等边三角形,∴A O=OB=OC=AB=2 ,∴A C=4,【评论】本题重要考察矩形的性质,掌握矩形的对角线相等且相互均分是解题的重点.16.已知一个反比率函数的图象与正比率函数y 2 x的图象有交点,请写出一个知足上述条件的反比率函数的表达式:.【专题】惯例题型.【剖析】写一个经过一、三象限的反比率函数即可.【解答】【评论】本题考察了反比率函数与一次函数的交点咨询题:求反比率函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则二者有交点,方程组无解,则二者无交点.也考察了待定系数法求函数分析式.17.某汽车制造商对新投入市场的两款汽车进行了检查,这两款汽车的各项得分以下表所示:汽车型号安全性能省油效能外观吸引力内部装备A3123B3222(得分讲明: 3 分——极佳, 2 分——优秀, 1 分——尚可赞同)(1)技术员以为安全性能、省油效能、外观吸引力、内部装备这四项的占比分不为 30%,30%,20%,20%,并由此运算获得 A 型汽车的综合得分为 2.2,B 型汽车的综合得分为;(2)请你写出一种各项的占比方式,使得A型汽车的综合得分高于B 型汽车的综合得分.(讲明:每一项的占比大于0,各项占比的和为100%)答:安全性能: ______,省油效能: ______,外观吸引力:______,内部装备: ______.【专题】惯例题型.【剖析】(1)依照加权均匀数的运算公式列式运算即可;(2)要使得 A 型汽车的综合得分高于 B 型汽车的综合得分,依照这两款汽车的各项得分,将 A 型汽车高于 B 型汽车得分的项(内部装备)占比较高,同时将 A 型汽车低于 B 型汽车得分的项(省油效能)占比较低即可.【解答】解: B 型汽车的综合得分为: 3×30%+2×30%+2×20%+2×2 0%=2.3.故答案为 2.3;(2)∵ A 型汽车的综合得分高于 B 型汽车的综合得分,∴各项的占比方式可以是:安全性能: 30%,省油效能: 10%,外观吸引力:10%,内部装备 50%.故答案为 30%,10%,10%,50%.【评论】本题考察的是加权均匀数的求法,掌握公式是解题的重点.18.已知三角形纸片 ABC 的面积为 48,BC 的长为 8.按以下步骤将三角形纸片 ABC 进行裁剪和拼图:第一步:如图 1,沿三角形 ABC 的中位线 DE 将纸片剪成两部分.在线段 DE 上随意取一点 F,在线段 BC 上随意取一点 H,沿 FH 将四边形纸片DBCE 剪成两部分;第二步:如图 2,将 FH 左边纸片绕点 D 旋转 180°,使线段 DB 与 D A 重合;将 FH 右边纸片绕点 E 旋转 180°,使线段 EC 与 EA 重合,再与三角形纸片 ADE 拼成一个与三角形纸片 ABC 面积相等的四边形纸片.图2图1(1)当点 F, H 在如图 2 所示的地点时,请依照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的全部四边形纸片中,其周长的最小值为_________.【专题】综合题.【剖析】(1)利用旋转的旋转即可作出图形;(2)先求出△ ABC 的边长边上的高为 12,从而求出 DE 与 BC 间的距离为6,再判断出 FH 最小时,拼成的四边形的周长最小,即可得出结论.【解答】解:(1)∵ DE 是△ ABC 的中位线,∴四边形 BDFH 绕点 D 顺时针旋转,点 B 和点 A 重合,四边形 CEFH 绕点 E 逆时针旋转,点 C 和点 A 重合,∴补全图形如图 1 所示,(2)∵△ ABC 的面积是 48,BC=8,∴点 A 到 BC 的距离为 12,∵D E 是△ ABC 的中位线,∴平行线 DE 与 BC 间的距离为 6,由旋转知,∠ DAH''= ∠B,∠ CAH'= ∠C,∴∠ DAH''+ ∠BAC+ ∠CAH'=180 °,∴点H'',A,H'在同一条直线上,由旋转知,∠AEF'=∠CEF,∴∠ AEF'+∠CEF'=∠CEF+∠CEF'=180°,∴点 F,E,F'在同一条直线上,同理:点 F,D,F''在同一条直线上,即:点 F',F''在直线 DE 上,由旋转知, AH''=BH ,AH'=CH ,DF''=DF,EF'=EF,F''H''=FH=F'H' ,∴F'F''=2DE=BC=H'H'' ,∴四边形 F'H'H''F''是平行四边形,∴? F'H'H''F''的周长为 2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH ,∵拼成的全部四边形纸片中,其周长的最小时,FH 最小,即:FH⊥BC,∴F H=6,∴周长的最小值为16+2× 6=28,故答案为 28.【评论】本题是四边形综合题,重要考察了旋转的旋转和作图,判断三点共线的方法,平行四边形的判断和性质,判断出四边形 F'H'H''F''是平行四边形是解本题的重点.三、解答题(本题共其他每题 6 分)19.解方程:(1)x2 4 x 5 0 ;解:46 分,第19 题8 分,第 24、25 题每题(2)2 x2 2 x 10 .解:7 分,【专题】惯例题型.【剖析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出 b2-4ac 的值,再代入公式求出即可.【解答】解:(1)x2-4x-5=0,分解因式得:(x-5)(x+1)=0,x-5=0,x+1=0,x1=5,x2=-1;(2)2x2-2x-1=0,a=2,b=-2,c=-1,△=b2-4ac=(-2)2-4×2×( -1)=12>0,【评论】本题考察认识一元二次方程,能选项适合的方法解一元二次方程是解本题的重点.20.如图,正方形 ABCD 的对角线 AC,BD 订交于点 O,将 BD 向两个方向延伸,分不至点 E 和点 F,且使 BE=DF.(1)求证:四边形 AECF 是菱形;(2)若 AC=4,BE=1,斩钉截铁写出菱形 AECF 的边长.(1)证明:(2)菱形 AECF 的边长为 ____________.【专题】几何图形.【剖析】(1)依照正方形的性质和菱形的判断解答即可;(2)依照正方形和菱形的性质以及勾股定理解得答即可.【解答】(1)证明:∵正方形ABCD 的对角线 AC,BD 订交于点 O,∴O A=OC,OB=OD ,∵B E=DF,∴O B+BE=OD+DF ,即 OE=OF.∴四边形 AECF 是平行四边形.∵AC⊥EF,∴四边形 AECF 是菱形.(2)∵ AC=4,∴O A=2 ,∴O B=2,∴O E=OB+BE=3,【评论】本题考察了菱形的性质和判断,解题时要注意选择适合的判定方法.21.已知对于的一元二次方程2x(k 1)x 2k 20 .(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于 0 且小于 1,求k的取值范围.(1)证明:(2)解:【专题】一次方程(组)及应用.【剖析】(1)依照方程的系数联合根的判不式,求得判不式△≥ 0 恒建立,所以得证,(2)利用求根公式求根,依照有一个跟大于 0 且小于 1,列出对于 k 的不等式组,解之即可.【解答】(1)证明:△ =b2-4ac=[-( k+1)]2-4×(2k-2)=k2-6k+9=(k -3)2,∵( k-3)2≥0,即△≥ 0,∴此方程总有两个实数根,解得x1=k-1,x2=2,∵此方程有一个根大于0 且小于 1,而 x2>1,∴0<x1<1,即 0<k-1<1.∴1<k<2,即 k 的取值范围为: 1<k<2.【评论】本题考察了根的判不式,解题的重点是:(1)切记“当△≥ 0时,方程总有两个实数根” ,(2)正确找出不等量关系列不等式组22.小梅在扫瞄某电影评判网站时,搜寻了近来关注到的甲、乙、丙三部电影,网站经过对观众的抽样检查,获得这三部电影的评分数据统计图分不以下:甲、乙、丙三部电影评分情况统计图讲明: 5 分——特意喜欢,4 分——喜欢,3 分——同样,2 分——不喜欢,1 分——特意不喜依照以上资料回答以下咨询题:(1)小梅依照所学的统计知识,对以上统计图中的数据进行了剖析,并经过运算获得这三部电影抽样检查的样本容量,观众评分的均匀数、众数、中位数,请你将下表增补完好:甲、乙、丙三部电影评分情况统计表电影样本容量均匀数众数中位数甲100 3.455乙 3.665丙1003 3.5(2)依照统计图和统计表中的数据,可以推测此中_______电影相对比较受欢迎,原因是.(起码从两个不一样的角度讲明你推测的合理性)【专题】惯例题型;统计的应用.【剖析】(1)依照众数、中位数和均匀数的定义,联合条形图分不求解可得;(2)从均匀数、中位数和众数的意义解答,合理即可.【解答】解:(1)甲电影的众数为 5 分,补全表格以下表所示:甲、乙、丙三部电影评分情况统计表电影样本容量均匀数众数中位数甲100 3.4555乙100 3.6654丙100 3.783 3.5(2)丙,①丙电影得分的均匀数最高;②丙电影得分没有低分.【评论】本题考察了条形统计图,表格,中位数,众数,弄清题意是解本题的重点.23.如图,在平面直角坐标系xOy 中, Rt△ ABC 的直角边 AB 在 x 轴上,∠ ABC=90 °.点 A 的坐标为( 1,0),点 C 的坐标为( 3,4),M 是BC边的中点,函数y k (x0 )的图象经过点M .x(1)求 k 的值;(2)将△ ABC 绕某个点旋转 180°后获得△ DEF(点 A,B,C 的对应点分不为点 D,E,F),且 EF 在 y 轴上,点 D 在函数y k(x0 )的图象上,求直线 DF 的表达式.x 解:(1)(2)【专题】函数思想.【剖析】(1)依照直角三角形的性质和坐标与图形的特色求得点 M 的坐标,将其代入反比率函数分析式求得 k 的值;(2)依照旋转的性质推知:△DEF≌△ABC .故其对应边、角相等:DE= AB ,EF=BC,∠ DEF=∠ABC=90 °.由函数图象上点的坐标特色获得: D (2,3). E( 0,3).联合 EF=BC=4 获得 F( 0,-1).利用待定系数法求得结果.【解答】解:(1)∵ Rt△ABC 的直角边 AB 在 x 轴上,∠ ABC=90 °,点 C 的坐标为( 3,4),∴点 B 的坐标为( 3,0),CB=4.∵M是 BC 边的中点,∴点M 的坐标为( 3,2).∴k=3×2=6.(2)∵△ ABC 绕某个点旋转 180°后获得△ DEF,∴△ DEF≌△ ABC .∴D E=AB ,EF=BC,∠ DEF=∠ABC=90 °.∵点 A 的坐标为( 1,0),点 B 的坐标为( 3,0),∴A B=2.∴D E=2.∵E F 在 y 轴上,∴点D 的横坐标为 2.当 x=2 时, y=3.∴点 D 的坐标为( 2,3).∴点 E 的坐标为( 0,3).∵E F=BC=4,∴点 F 的坐标为( 0,-1).设直线 DF 的表达式为 y=ax+b,将点 D,F 的坐标代入,∴直线 DF 的表达式为 y=2x-1.【评论】考察了待定系数法求一次函数分析式,反比率函数图象上点的坐标特色,旋转的性质,解题时,注意函数思想和数形联合数学思想的应用.24.在矩形 ABCD 中,BE 均分∠ ABC 交 CD 边于点 E.点 F 在 BC 边上,且 FE⊥AE.(1)如图 1,①∠ BEC=_________°;②在图 1 已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图 2,FH∥CD 交 AD 于点 H,交 BE 于点 M.NH∥BE,NB∥H E,连结 NE.若 AB=4 ,AH=2 ,求 NE 的长.解:(1)②结论:△ _________≌△ _________;证明:图 1(2)【专题】几何综合题.图 2【剖析】(1)依照矩形的性质获得∠ ABC= ∠BCD=90°,依照角均分线的定义获得∠ EBC=45°,依照三角形内角和定理运算即可;(2)利用 ASA 定理证明△ ADE ≌△ ECF;(3)连结 HB ,证明四边形 NBEH 是矩形,获得 NE=BH ,依照勾股定理求出 BH 即可.【解答】解:(1)①∵四边形 ABCD 为矩形,∴∠ ABC= ∠BCD=90°,∵BE 均分∠ ABC ,∴∠ EBC=45°,∴∠ BEC=45°,故答案为: 45;②△ ADE ≌△ ECF,原因以下:∵四边形 ABCD 是矩形,∴∠ ABC= ∠C=∠D=90°, AD=BC .∵FE⊥ AE,∴∠ AEF=90°.∴∠ AED+ ∠FEC=180°-∠AEF=90°.∵∠ AED+ ∠DAE=90 °,∴∠ FEC=∠EAD ,∵B E 均分∠ ABC ,∴∠ BEC=45°.∴∠ EBC=∠BEC.∴B C=EC.∴A D=EC .在△ ADE 和△ ECF 中,∴△ ADE ≌△ ECF;(2)连结 HB ,如图 2,∵FH∥CD,∴∠ HFC=180°-∠C=90°.∴四边形 HFCD 是矩形.∴DH=CF ,∵△ADE ≌△ECF,∴DE=CF.∴DH=DE .∴∠ DHE=∠DEH=45°.∵∠BEC=45°,∴∠ HEB=180°-∠DEH-∠BEC=90°.∵NH∥BE,NB∥HE,∴四边形 NBEH 是平行四边形.∴四边形 NBEH 是矩形.∴N E=BH .∵四边形 ABCD 是矩形,∴∠ BAH=90 °.∵在 Rt △BAH 中, AB=4 ,AH=2 ,【评论】本题考察的是矩形的判断和性质、全等三角形的判断和性质以及勾股定理的应用,掌握全等三角形的判断定理和性质定理是解题的关键.25.当 k 值同样时,我们把正比率函数y1x 与反比率函数yk叫做“关kx联函数”,可以经过图象研究“关系函数”的性质.小明依照学习函数的体会,先以y1 x 与y2 为例对“关系函数”进行了研究.2x下边是小明的研究过程,请你将它增补完好:( 1)如图,在同一坐标系中画出这两个函数的图象.设这两个函数图象的交点分不为 A ,B ,则点 A的坐标为(2 ,1),点B 的坐标为 _________;(2)点P 是函数y2 在第一象限内的图象上一个动点(点P 不与点Bx重合),设点 P 的坐标为(, 2),此中 >0 且 t 2 .t①结论 1:作直线 PA ,PB 分不与 x 轴交于点 C ,D ,则在点 P 运动的过程中,总有 PC=PD .证明:设直线 PA 的分析式为 yax b ,将点 A 和点 P 的坐标代入,a11 2a b,,12 t得解得t.___________. 2 t则直线 PA 的分析式为 y xtt令 y b.2, 0).0 ,可得 x t t 2 ,则点 C 的坐标为( t同理可求,直线 PB 的分析式为 y 1 x t2,点 D 的坐标为 __t t___________.请你连续达成证明 PC=PD 的后续过程:②结论 2:设△ABP 的面积为 S ,则 S 是 t 的函数.请你斩钉截铁写出S 与 t 的函数表达式.【专题】综合题.【剖析】(1)联立方程组求解即可得出结论;(2)①利用待定系数法求出直线 PA 的分析式,再利用待定系数法求出直线PB 的分析式即可求出点 D 坐标,从而判断出 PM 是 CD 的垂直均分线,即可得出结论;②分两种情况利用面积的和差即可得出结论;考试停止后:同( 2)②的方法即可得出结论.令 y=0,考试停止后,你可以对点 P 在函数y2的第三象限内x∴x=t-2,图象上的情况进行近似的研究哟!则点 C的坐标为( t-2,0).∴x=t+2∴点 D 的坐标( t+2,0),如图则点 M 的横坐标为 t.∴CM=t- (t-2)=2,DM= ( t+2)-t=2.∴CM=DM .∴M 为 CD 的中点.∴PM 垂直均分 CD.,过点P 作PM ⊥x轴于点M ,∴PC=PD.【评论】本题是反比率函数综合题,重要考察了待定系数法,三角形的面积的运算方法,线段垂直均分线的性质和判断,掌握坐标系内求几何图形面积的方法是解本题的重点.北京市西城区 2017— 2018 学年度第二学期期末试卷八年级数学附带题2018.7试卷满分: 20 分一、填空题(本题共12 分,每题 6 分)1.观看下边的表格,研究此中的规律并填空:一元二次方程方程的两个根二次三项式分解因式x2x 2 0x1 1 , x22x2x 2 (x 1)(x 2) x23x 4 0x1 1 , x24x23x 4 (x 1)(x 4)3x2x20x2, x213x2x 2 3( x2)( x 1) 1334x29x 2 0x11, x224x29x 2 4( x)( x) 42x27x30x1___,x2___2x27x3____________________ax2bx c0x1m , x2n ax2bx c____________________【专题】因式分解.【剖析】利用公式法对方程的左边进行因式分解.【解答】【评论】考察认识一元二次方程 -因式分解法.因式分解法的确是先把方程的右边化为 0,再把左边经过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为 0,这就能获得两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转变为解一元一次方程的咨询题了(数学转变思想).2.在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形——同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解得将这种方法介绍给同学.(1)依照信息将以下小红的证明思路增补完好:①如图 1,在△ ABC 中,∠ ACB=90 °,四边形 ADEC ,四边形 BCFG,四边形 ABPQ 差不多上正方形.延伸 QA 交 DE于点 M,过点 C 作 CN∥AM 交 DE 的延伸线于点 N,可得四边形 AMNC 的形状是 _________________;②在图 1 中利用“等积变形”可得S正方形ADEC = _____________;③如图 2,将图 1 中的四边形 AMNC 沿直线 MQ 向下平移图 MA1的长度,获得四边形A’ M ’N’ C’,即四边形 QACC ’;④设 CC’交 AB 于点 T,延伸 CC’交 QP 于点 H,在图 2 中再次利用“等积变形”可得S= _____________,四边形QACC '则有 S= _____________;正方形ADEC⑤同理可证S正方形BCFG= S四边形HTBP,所以获得S正方形ADEC+ S正方形BCFG = S正方形ABPQ,从而证了然勾股定理.图 2(2)小芳阅读完小红的证明思路后,对此中的第③步提出了疑咨询,请将以下小红对小芳的讲明增补完好:图 1 中△ ______≌△ ______,则有 ______=AB=AQ ,因为平行四边形的对边相等,从而四边形 AMNC 沿直线 MQ 向下平移 MA 的长度,获得四边形 QACC ’.【专题】矩形菱形正方形.【剖析】依照平行四边形的性质、正方形的性质、全等三角形的判断和性质、等高模型即可解决咨询题;【解答】解:(1)∵四边形 ACED 是正方形,∴A C∥MN ,∵ AM ∥CN,∴四边形 AMNC 是平行四边形,∴S正方形 ADEC=S 平行四边形 AMNC ,∵AD=AC ,∠D=∠ACB ,∠DAC= ∠MAB ,∴∠ DAM= ∠CAB ,∴△ ADM ≌△ ACB ,∴A M=AB=AQ ,∴图 1 中的四边形 AMNC 沿直线 MQ 向下平移 MA 的长度,获得四边形 A′M ′N′C′,即四边形 QACC ′,∴S四边形 QACC′ =S 四边形 QATH,则有 S 正方形 ADEC=S 四边形 QA TH,∴同理可证 S 正方形 BCFG=S 四边形 HTBP,所以获得 S 正方形 ADEC+S 正方形 BCFG=S 正方形 ABPQ;故答案为平行四边形, S 四边形 AMNC ,S 四边形 QATH,S 四边形 QATH;(2)由( 1)可知:△ ADM ≌△ ACB ,∴AM=AB=AQ ,故答案为 ADM ,ACB , AM ;【评论】本题考察平行四边形的性质、正方形的性质、全等三角形的判断和性质、等高模型等知识,解题的重点是学会增添常用协助线,结构特意四边形解决咨询题,属于中考创新题目.二、解答题(本题8 分)3.在△ ABC 中, M 是 BC 边的中点.(1)如图 1,BD,CE 分不是△ ABC 的两条高,连结 MD ,ME,则 M D 与 ME 的数目关系是 ________________;若∠ A=70 °,则∠ DME=________°;(2)如图 2,点 D, E 在∠ BAC 的外面,△ ABD 和△ ACE 分不是以AB ,AC 为斜边的直角三角形,且∠ BAD= ∠CAE=30 °,连结 MD ,ME .①判断(1)中 MD 与 ME 的数目关系能否依旧建立,并证明你的结论;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是( ) A .B .C .D .10.下列计算正确的是( ) A .2 B .C .D .=﹣311.如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,CD 是AB 边上的中线,则CD 的长是( )A .20B .10C .5D .12.一次函数y=kx +b 的图象如图所示,则k 、b 的符号( )A .k <0,b >0B .k >0,b >0C .k <0,b <0D .k >0,b <0 13.下列命题中,为真命题的是( ) A .有一组邻边相等的四边形是菱形 B .有一个角是直角的平行四边形是矩形 C .有一组对边平行的四边形是平行四边形 D .对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表: 月用水量(吨)3458户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3二、选择题(每小题3分,共24分)题号 9 10 11 12 13 14 15 16 答案DCCABCBD三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+ ∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分解方程组得:⎪⎩⎪⎨⎧==3045b k …………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形, OD=21BD,OC=21AC,BD=AC ∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∵PE ⊥BC ,PF ⊥CQ ,BC ⊥DC∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPF+∠BPE=90°,∵∠BPF+∠QPF=90°,∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。

相关文档
最新文档