光电智能循迹小车制作
智能循迹小车详细制作过程
第二届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告目录第一章引言 (1)1.1 智能车制作概述 (1)1.2 参考文献综述 (1)1.3 技术报告内容与结构 (1)第二章设计方案概述 (3)2.1 总体设计 (3)2.2 具体方案 (3)2.2.1 道路识别模块 (3)2.2.2 速度检测模块 (4)第三章模型车整体设计 (5)3.1 机械部分的调整 (5)3.2 传感器设计与安装 (5)3.2.1 光电管安装: (5)3.2.2 摄像头安装: (6)3.2.3 测速装置 (7)第四章硬件电路设计 (9)4.1 整体介绍 (9)4.2 各模块电路介绍 (10)第五章控制算法实现 (15)5.1 总体软件设计 (15)5.2 路径识别算法 (16)5.2.2 基于光电管的模糊控制算法 (16)5.2.2 基于CMOS的算法 (18)5.2.3 两者的结合 (20)5.3 速度控制算法 (20)第六章调试及主要问题解决 (23)6.1 调试工具 (23)6.2 调试过程 (24)6.3 主要技术参数说明 (25)第七章结论 (27)附录A 参考书目 (I)附录B 部分程序...................................................................................... I I第一章引言1.1 智能车制作概述本队在小车制作过程中,先对比赛内容,要求与规则进行了详细分析,然后按照要求制订了几种设计方案,并对几种方案进行比较敲定最后方案。
根据方案完成小车的总体设计和详细设计(包括底层硬件设计和总体软件设计),在完成了车模组装和改造后,完成了各个模块的硬件电路设计与安装,并进行了控制算法的设计和软件实现,最后进行了整车的调试和优化。
1.2 参考文献综述方案设计过程中参考了一些相关文献,如参考文献所列。
例如文献 1 与 2 单片机嵌入式系统在线开发方法。
案例一、智能循迹小车的设计与实现
3.3 L298N模块简介
工作电压方式:直流 工作电压:信号端(VSS) 4~6V、控制端(VS) 5~36V。 调速方式:直流电动机采用PWM信号平滑调速。 特点:
1、可实现电机正反转及调速。 2、启动性能好,启动转矩大。 3、工作电压可达到36V,4A。 4、可同时驱动两台直流电机,直流电动机采用PWM信号平滑
?3其它如无线语音报站等圈后能报警1循迹小车的原理?判断黑线?编程控制小车左右转2光电检测电路实物图21光电检测路原理图1u1为比较器可以选用lm358lm324lm339lm393等比较器
智能循迹小车的设计与实现
---福建江夏学院 董建怀
实际案例
连续10多年来的赛题。
0、题意
基本要求:在白色地板上,利用电工黑胶布随 意设置一封闭图案,小车能自动沿图案前进。
扩展要求: 1、能显示出走过的路程,走一圈后能报警,
能捡起行驶路径中出现的小铁块并计数显示等。 2、在白色地板上,利用电工黑胶布作为车道
的两边,小车在车道内行驶,其它要求同上。 3、其它(如无线语音报站等)
1、循迹小车的原理
判断黑线 编程控制小车左右转
2、光电检测---电路实物图
2.1 光电检测路原理图
ajmp back ahead: setb ENA
setb ENB lcall delay1 clr ENA clr ENB lcall delay2 setb IN1 setb IN3 clr IN2 clr IN4
ajmp main back: setb ENA
setb ENB clr IN1 clr IN3 setb IN2 setb IN4 ajmp main DELAY1:MOV R4,#10 AA1: MOV R5,#100
光电智能循迹小车制作
、ST188光电传感器:
特点:
1.采用高发射功率红外发光二极管 和高灵敏度光电晶体管组成。 2.检测距离可调范围大,4-13mm 可用。 3.采用非接触检测方式。 (AK发射,CE接收)
、LM393:
特点: 1.含有两路电压比较器。 2.消耗电流小, ICC=0.8mA; 输入失调电压小, VIO=±2mV; 3.输出与TTL,DTL,MOS,CMOS 等兼容;
功能:放大输入信号 驱动电机。
组装:(I/O连接时参考程序I/O定义)
二、软件
1.用keil3对单片机进行程序编写。 2.用AVR fighter 进行程序烧写。
keil主页面:
AVR figLeabharlann ter主页面:最后:在跑道上进行调试。
谢谢!
、103电位器:
特点: 1.10k电阻可调。 2.使用简单。 (就是一个10k的可调电阻)
传感器模块电路图:
电路图:一路传感器(一共5路)
主控模块:
单片机最小系统 基本结构组成: 单片机底座 数据下载底座 自锁开关 排阻 LED 晶振电路 复位电路
驱动模块:
1.直流电机 2.L298N电机驱动模块 (4路输入4路输出)
光电智能循迹小车制作
12级自动化2班 河南理工大学万方科技学院 焦腾飞(学号:1216306xxx) 杨文涛(学号:1216306xxx)
作品简介:
智能小车以51系列单片机为核心控制,应用L298N驱动 直流电机,采用ST188红外光电传感器对小车进行循迹控 制。 小车通过红外传感器获取地面黑线信息,将采集到的 信号送给单片机,通过单片机分析,控制小车两侧直流电 机,利用小车左右两侧电机的转速差进行转向(转大弯、 转小弯)或直走,进而实现小车黑线路线路前进。
智能循迹小车设计与实现
智能循迹小车设计与实现摘要:智能循迹小车是一种能够根据预设的路径自动行驶的装置。
本文主要介绍了智能循迹小车的设计与实现过程,包括硬件设计、软件编程以及测试和优化等内容。
通过使用光电传感器和电机驱动模块,实现了小车的自动行驶功能。
实验结果表明,智能循迹小车能够准确地沿着指定的路径行驶。
关键词:智能循迹小车,光电传感器,电机驱动模块1.引言智能循迹小车是一种基于传感器和控制模块的自动驾驶装置。
它能够通过感知周围环境并根据预先设定的路径进行行驶。
智能循迹小车在工业生产、仓储管理和物流配送等领域具有广泛的应用前景。
本文主要介绍了智能循迹小车的设计与实现过程。
2.硬件设计主控模块采用单片机作为核心处理器,并配备了存储器、通信接口和控制信号输出等功能。
传感器模块主要由光电传感器组成,用于感知小车当前位置和行驶方向。
执行器模块由电机驱动模块组成,用于控制小车的移动。
3.软件编程传感器数据采集模块负责读取光电传感器的输出信号,并进行信号处理和滤波。
路径规划模块通过分析传感器数据,确定小车当前位置和行驶方向,并根据预设的路径规划算法,确定下一步行驶方向。
运动控制模块通过调节电机驱动模块的输入信号,控制小车的运动。
4.测试与优化为了验证智能循迹小车的性能,我们进行了一系列的测试和优化。
首先,我们对传感器进行了校准,以确保其输出信号的准确性。
然后,我们在实际场景中对小车进行了测试,包括行驶精度、速度和稳定性等方面的测试。
根据测试结果,我们对软件进行了调优,并对硬件进行了优化,以提高智能循迹小车的性能。
5.结论本文介绍了智能循迹小车的设计与实现过程。
通过使用光电传感器和电机驱动模块,我们实现了小车的自动行驶功能。
实验表明,智能循迹小车能够准确地沿着指定的路径行驶。
未来,我们将进一步改进小车的设计和算法,以提高其性能和适应性。
1 智能寻迹小车设计与制作指南20120306
更改设计数据 库建立路径
图 1-6 设计数据库的建立
勾选可显示全部 支持的文件类型
图 1-7 选择文件类型对话框
加 载 PCB 元 件封 装库可 以 在 浏览 器的 组 合框 中 , 选 择库 【 Libraries】。 可 用 鼠标 左键 单 击 【Add/Remove】按钮,将出现如图 1-8 所示的关于引入库文件的对话框。
图 1-4 元器件清单 该项目中,整机中所需的电子元器件见图 1-4 所列。下图 1-5 是主要的元件实物与封装规格。
8
LM393 实物
4
3 1
2 5
6
LM393 元件符号
7
LM393 封装 DIP-8
光敏电阻 CSD5
光敏电阻元件符号
光敏电阻封装
电阻实物
电阻元件符号
电阻封装 AXIAL0.3
三极管 8550
或者直接单击主工具栏上的
按钮,屏幕上出现如图 1-16 所示的对话框。 PCB 设计时一般要添
加通用封装库 C:\Program Files\Design Explorer 99 SE\Library\Pcb\Generic Footprints\Advpcb.ddb\PCB
Footprints.lib。
学习指南
1.1 主要元器件及其封装
整机电原理图如图 1-3 所示,LM393 随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧 压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向 上,整个过程是一个闭环控制,因此能快速灵敏地控制。
图 1-3 智能寻迹小车电原理图
图 1-18 创建 PCB 封装库文件鼠标右键操作
基于光电传感器自动循迹的智能车系统设计
第一章绪论1.1智能小车的意义和作用自第一台工业机器人诞生以来,机器人的开展已经普及机械、电子、冶金、交通、宇航、国防等领域。
近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。
人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。
随着科学技术的开展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。
视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当兴旺,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些构造化环境简单的目标。
视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。
但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。
机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。
避障控制系统是基于自动导引小车〔AVG—auto-guide vehicle〕系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。
使用传感器感知路线和障碍并作出判断和相应的执行动作。
该智能小车可以作为机器人的典型代表。
它可以分为三大组成局部:传感器检测局部、执行局部、CPU。
机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。
可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。
基于上述要求,传感检测局部考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。
智能小车的执行局部,是由直流电机来充当的,主要控制小车的行进方向和速度。
单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现准确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以准确调速,但单片机型号的选择余地较大。
智能循迹小车详细制作过程
(穿山乙工作室)三天三十元做出智能车基本设计思路:1.基本车架(两个电机一体轮子+一个万向轮)2.单片机主控模块3.电机驱动模块(内置5V电源输出)4.黑白线循迹模块0.准备所需基本元器件1).基本二驱车体一台。
(本课以穿山乙推出的基本车体为例讲解)2).5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。
3).5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。
4).5x7cm洞洞板、LM324比较器芯片各一个;红外对管三对、4.7K电阻3个、330电阻三个、红色3mmLED三个。
一、组装车体(图中显示的很清晰吧,照着上螺丝就行了)二、制作单片机控制模块材料:5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。
电路图如下,主要目的是把单片机的各个引脚用排针引出来,便于使用。
我们也有焊接好的实物图供你参考。
(如果你选用的是STC98系列的单片机在这里可以省掉复位电路不焊,仍能正常工作。
我实物图中就没焊复位)三、制作电机驱动模块材料:5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。
电路图如下,这里我们把电源模块与驱动模块含在了同一个电路板上。
因为电机驱动模块所需的电压是+9V左右(6—15V 均可),而单片机主控和循迹模块所需电压均为+5V。
这里用了一个7805稳压芯片将+9V电压稳出+5V电压。
+9V这是工作室做的电源+驱动模块,仅作参考四、制作循迹模块材料:5x7cm洞洞板、LM324比较器芯片各一个;红外对管三对、4.7K电阻3个、330电阻三个、红色3mmLED三个。
LM324电压比较器工作原理:该芯片内部有四组比较器,原理就是反相输入端Vi—与同相输入端Vi+的电压进行比较,若Vi+大于Vi—则比较器的输出端OUT输出高电平+5V;若Vi+小于Vi—则比较器的输出端OUT输出低电平0V;TCRT5000红外对管工作原理:工作时由蓝色发射管发射红外线,红外线由遮挡物反射回来被接收管接收。
循迹避障智能小车设计
循迹避障智能小车设计一、硬件设计1、车体结构智能小车的车体结构通常采用四轮驱动或两轮驱动的方式。
四轮驱动能够提供更好的稳定性和动力,但结构相对复杂;两轮驱动则较为简单,但在稳定性方面可能稍逊一筹。
在选择车体结构时,需要根据实际应用场景和需求进行权衡。
为了保证小车的灵活性和适应性,车架材料一般选择轻质且坚固的铝合金或塑料。
同时,合理设计车轮的布局和尺寸,以确保小车能够在不同的地形上顺利行驶。
2、传感器模块(1)循迹传感器循迹传感器是实现小车循迹功能的关键部件。
常见的循迹传感器有光电传感器和红外传感器。
光电传感器通过检测反射光的强度来判断黑线的位置;红外传感器则利用红外线的反射特性来实现循迹。
在实际应用中,可以根据小车的运行速度和精度要求选择合适的传感器。
为了提高循迹的准确性,通常会在小车的底部安装多个传感器,形成传感器阵列。
通过对传感器信号的综合处理,可以更加精确地判断小车的位置和行驶方向。
(2)避障传感器避障传感器主要用于检测小车前方的障碍物。
常用的避障传感器有超声波传感器、激光传感器和红外测距传感器。
超声波传感器通过发射和接收超声波来测量距离;激光传感器则利用激光的反射来计算距离;红外测距传感器则是根据红外线的传播时间来确定距离。
在选择避障传感器时,需要考虑其测量范围、精度、响应速度等因素。
一般来说,超声波传感器测量范围较大,但精度相对较低;激光传感器精度高,但成本较高;红外测距传感器则介于两者之间。
3、控制模块控制模块是智能小车的核心部分,负责处理传感器数据、控制电机驱动和实现各种逻辑功能。
常见的控制模块有单片机(如 Arduino、STM32 等)和微控制器(如 PIC、AVR 等)。
单片机具有开发简单、资源丰富等优点,适合初学者使用;微控制器则在性能和稳定性方面表现更优,适用于对系统要求较高的场合。
在实际设计中,可以根据需求和个人技术水平选择合适的控制模块。
4、电机驱动模块电机驱动模块用于控制小车的电机运转,实现前进、后退、转弯等动作。
基于光电传感器的自动循迹小车设计
2010-2011 第二学期光电传感技术院系电子工程学院光电子技术系班级科技0803班姓名熊浩学号********班内序号10考核成绩基于光电传感器的自动循迹小车设计摘要新一代汽车研究与开发将集中表现在信息技术、微电子技术、计算机技术、智能自动化技术、人工智能技术、网络技术、通信技术在汽车上的应用。
智能汽车是是现代汽车发展的方向。
本系统采用光电传感器作为道路信息的采集传感器,单片机为控制系统的核心来处理信号和控制小车行驶。
MC9S12系列单片机在汽车电子控制领域得到广泛应用。
本论文是利用Freescale的MC9S12XS128微控制器对智能车系统进行设计。
智能车系统设计包括硬件电路和控制软件系统的设计。
关键字:智能车;光电传感器;自动循迹;控制算法;PID;引言自动循迹智能车是一个集环境感知、规划决策、自动驾驶等多种功能于一体的综合系统。
除了特殊潜在的军用价值外,还因其在公路交通运输中的应用前景受到很多国家的普遍关注。
近年来其智能化研究取得了很大进展,而其智能主要表现为对路径的自动识别和跟踪控制上。
路径跟踪问题的研究正吸引着国内外计算机视觉、车辆工程与控制领域学者们越来越多的注意,得出了很多有意义的成果。
这些方法可分为两类,即传统控制方法和智能控制方法。
传统控制方法多建立在精确数学模型基础上,而自动引导车系统具有复杂的动力学模型,是一个非线性、时延系统,由于各种不确定因素的存在,精确的数学模型难以获得,只能采用理想化模型来近似,所得到控制律较为繁琐,给实际应用造成不便。
随着近年智能控制论的兴起,一些智能控制方法如模糊控制,神经网络等逐步走向完善,尤其是模糊控制理论在很多地方显示出相当的应用价值,以此为基础,设计新概念的控制器受到人们很大关注。
同时,人们也正考虑这在各种方面包括硬件和软件的综合技术开发和研究探索,智能车的技术将会趋于成熟并得到广泛的应用。
本课题利用传感器识别路径,将赛道信息进行存储,利用单片机控制智能车行进。
基于光电传感器自动循迹小车设计
摘要制作自动寻迹小车所涉及的专业知识包括控制、模式识别、传感技术、汽车电子、电气、计算机、机械等诸多学科。
为了使小车能够快速稳定的行驶,设计制作了小车控制系统。
在整个小车控制系统中,如何准确地识别路径及实时地对智能车的速度和方向进展控制是整个控制系统的关键。
由于此小车能够自动寻迹,加速,减速.故又被称作为智能车.本智能车控制系统设计以MC9S12XS128微控制器为核心,通过两排光电传感器检测小车的位置和运动方向来获取轨道信息,根据轨道信息判断出相应的轨道类型,并分配不同的速度给硬件电路加以控制,完成了在变负荷条件下对速度的快速稳定调节。
红外对射传感器用于检测智能车的速度,以脉宽调制控制方式〔PWM〕控制电机和舵机以到达控制智能车的行驶速度和偏转方向。
软件是在CodeWarrior 5.0的环境下用C语言编写的,用PID控制算法调节驱动电机的转速和舵机的方向,完成对模型车运动速度和运动方向的闭环控制。
智能车能够准确迅速地识别特定的轨道,并沿着引导线以较高的速度稳定行驶。
整个智能车系统涉及车模机械构造的改装、传感器电路设计及控制算法等多个方面。
经过屡次反复的测试,最终确定了现有的智能车模型和各项控制参数。
关键词:MC9S12XS128;PID;PWM;光电传感器;智能车ABSTRACTMaking automatic tracing car involved the professional knowledge including control, pattern recognition, sensing technology, automobile electronics, electrical, computer, machinery and so on many subjects. According to the technical requirements of the contest, we design the intelligent vehicle control system. In the entire control system of the smart car, how to accurately identify the road and real-time control the speed and direction of the Smart Car is the key to the whole control system.Because this car can automatic tracing, accelerate, slowing down. So it is also known as intelligent car this intelligent vehicle control system design take the MC9S12XS128 micro controller as a core, examines car's position and the heading through two row of photoelectric sensors gains the racecourse information, judges the corresponding racecourse type according to the racecourse information, and assigned the different speed to control for the hardware circuit, has completed in changes under the load condition to the speed fast stable adjustment. The infrared correlation sensor uses in examining the intelligent vehicle's speed, (PWM) controls the electrical machinery and the servo by the pulse-duration modulation control mode achieves the control intelligence vehicle's moving velocity and the deflection direction.The software is under the CodeWarrior 5.0 environment with the C language compilation, actuates electrical machinery's rotational speed and servo's direction with the PID control algorithm adjustment, completes to the model vehicle velocity of movement and the heading closed-loop control. The intelligent vehicle can distinguishthe specific racecourse rapidly accurately, and along inlet line by the high speed control travel.The entire intelligent vehicle system involves the vehicle mold mechanism the re-equipping, the sensor circuit design and the control algorithm and so on many aspects. After the repeated test, has determined the existing intelligent vehicle model and each controlled variable finally many times.Keywords:MC9S12XS128; PID;PWM;photoelectric sensor; smart car目录第一章绪论 (1)1.1引言 (1)1.2本文设计方案概述 (2)1.2.1总体设计 (2)1.2.2传感器设计方案 (2)1.2.3控制算法设计方案 (6)第二章机械构造设计 (7)2.1前轮倾角的调整 (7)2.2齿轮传动机构调整 (8)2.3后轮差速机构调整 (8)2.4红外传感器的固定 (9)2.5小车重心的调整 (9)2.6齿轮啮合间隙的调整 (10)第三章硬件电路的设计 (11)3.1系统硬件概述 (11)3.2电源模块的设计 (12)3.2.1 LM2940供电电路 (14)3.2.2 LM2596供电电路 (16)3.3电机驱动模块 (18)3.3.1模块介绍 (18)3.3.2使用说明 (18)3.3.3电压电流测试结果 (20)3.4舵机控制模块 (22)3.5路径识别模块 (23)3.7单片机模块的设计 (26)3.8硬件电路局部总结 (27)第四章软件系统设计 (28)4.1智能车控制算法监测平台 (28)4.2主程序流程图 (29)4.3系统的模块化构造 (30)4.3.1时钟初始化 (30)4.3.2串口初始化 (30)4.3.3 PWM初始化 (32)4.4中断处理流程 (34)4.5小车控制算法 (34)4.5.1舵机控制 (36)4.5.2速度控制 (37)4.6坡道的处理 (40)4.7弯道策略分析 (40)第五章开发与调试 (42)5.1软件开发环境介绍 (42)5.2智能车整体调试 (46)5.2.1 舵机调试 (46)5.2.2 电机调试 (46)5.2.3 动静态调试 (46)第六章结论 (48)6.1智能车的主要技术参数说明 (48)6.2总结 (48)6.3缺乏与展望 (48)参考文献 (50)致 (51)附录1 (52)附录2 (64)附录3 (82)第一章绪论1.1引言思路及技术方案是一个工程工程的灵魂。
循迹智能车的设计与制作实验报告
电子技术选修课姓名:学号:专业:题目:循迹智能车的设计与制作实验报告设计地点:设计日期:成绩:指导老师:2015年4月10日一、硬件组装:1、车模套件1万向轮2车底板3驱动轮4主控板5传感器2、车模组装车模组装一:万向轮的安装车模组装二:驱动轮安装1上长脚螺丝2上专用紧固件3固定轮子4固定到小车底盘上(提前焊接电机连接线)二、硬件电路设计与制作1硬件构成原理图2硬件组成1检测单元控制器利用安装于车体前方的循迹传感器实时检测小车的位置,根据小车所处的位置及时调整小车的运行速度和方向,使得小车能够始终沿着引导线运行。
红外对管光电传感器,采用软件编程实现数字化编码。
红外对管:检测原理:当发射管发出的光线照射在赛道的不同位置时,接收管的状态发生较大变化,通过相应的处理电路就可以获得此时的状态值,进行路径的判断。
贴近白色赛道,传感器输出电压达到最大值:约4.7V;远离白色赛道,传感器输出电压达到最小值:约0.2V;贴近黑色赛道,传感器输出电压:约为0.7V。
为保证循迹智能汽车能够按照赛道引导线运行,一般需要多个传感器同时检测赛道。
理论上讲,所用的传感器越多,对赛道的检测则越精确,控制越灵活,但是,当传感器数量增多时,占用的单片机管脚增多,处理电路也增多,消耗的电量也越多。
因此,从实际应用的角度考虑,需合理选择传感器的数量。
另外,传感器的不同排列方式也会对赛道的检测有不同的作用。
循迹传感器采用的是灰度传感器,当传感器位于不同的位置(黑色引导线、白板)时,输出电压值不同,控制器通过对循迹传感器电压值的采样,获取道路信息。
2电机驱动智能汽车由直流电机提供动力,电机由车载直流电源供电,小车在运行过程中需要根据赛道设定合适的速度,即需要对电机速度进行控制。
因此,一般需要通过电机驱动电路向电机提供可以调节输出电压的电源,以控制小车的速度。
使用L298N电机驱动芯片:L298N硬件电路原理图L298N是ST公司生产的一种高电压、大电流电机驱动芯片。
智能循迹小车实验报告
智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。
通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。
二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。
红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。
通过比较接收管的信号强度,即可判断小车是否偏离轨迹。
2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。
PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。
3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。
根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。
三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。
将直流电机与驱动模块连接,并安装在小车底盘上。
将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。
2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。
通过串口调试助手,将编写好的程序下载到单片机开发板中。
3、调试与优化启动小车,观察其在轨迹上的行驶情况。
根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。
不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。
电子实习--智能循迹小车制作
电子技术电子实习报告学院:专业班级:学号:学生姓名:指导教师:完成时间:成绩:电子实习--智能循迹小车制作一.实习目的通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。
进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。
该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制。
一. 实习的内容、安排本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块。
工作原理:利用红外采集模块中的红外发射接收对管检测路面上的轨迹将轨迹信息送到单片机单片机采用模糊推理求出转向的角度和行走速度,然后去控制行走部分最终完成智能小车可以按照路面上的轨迹运行。
实习的具体实现1.系统概述小车的硬件主要包括51单片机最小系统以及3大模块:即电源模块、电机驱动模块、红外循迹模块。
智能小车循迹系统框图红外寻迹是利用红外光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动1.电源模块供电系统的原理图如下7805INPUTOUTPUTINPUTOUTPUT780612v单片机及模块供电电机供电7805的5V 输出给单片机以及各个功能模块供电,7806的6V 输出给点击供电作为动力电源。
7805与7806要公地。
电源PCB 安装图2.电机驱动模块驱动芯片比较常见的是15脚Multiwatt 封装的L298N ,内部包含4通道逻辑驱动电路。
可以方便的驱动两个直流电机,或一个两相步进电机。
L298内部的原理图如下IN1IN2ENAOUT1OUT2OUT3OUT4IN3IN4ENB6V动力电源OUT1与OUT2与小车的一个电机的正负极相连,OUT3与OUT4与小车的另一个电机的正负极相连,单片机通过控制IN1与IN2,IN3与IN4分别控制电机的正反转。
智能循迹小车的设计与制作
• 147•引言:智能循迹小车,能沿着预先设计的路径不停歇的运行,为智能工厂和智能车间提供零件的传送、产品传送和工具传送,同时在车上安装监控装置,随时了解车间工作情况,日夜不停歇工作,极大的提高了企业的生产效率,且极大的降低了企业车间成本,深受智能化车间欢迎。
1 电路设计本论文设计的电路图如下,电路分为四个单元电路,分别是电源部分、电机驱动部分、电压比较器和传感器单元电路。
在电路设计环节广泛查阅相关资料,确定元器件参数,保证单元电路之间完美配合,可靠运行,设计的电路图如图1所示:图12 元器件清单表(表1)3 电路实施用Proteus 软件绘制电路图并仿真成功后,生成PCB 电路板,订制5份元器件对电路进行试验试运行,试运行后再回到电路设计环节完善电路方案。
最后将电路方案发给PCB 板生产商批量生产,在电子商务市场上销售和用于本校学生实验实训中使用,极大的激发了电气自动化技术、电子信息工程技术、机电一体化技术学生的学习兴趣,提高了学生的动手实践能力和解决实际问题的能力,经过实施,有很好的影响力。
表1序号电路符号名称规格数量备注1IC1集成运算放大器电路LM39312/集成电路座8脚13C1,C2电解电容100 uF 24R1,R2可调电阻10kΩ25R3,R4色环电阻 3.3 kΩ26R5,R6,R11,R12色环电阻51Ω47R7,R8色环电阻 1 kΩ28R9,R10色环电阻10Ω29R13,R14光敏电阻CDS5210R15色环电阻200-680Ω111D1,D2发光二极管F3绿色212LED3发光二极管F5红色113D4,D5发光二极管F5红色214Q1,Q2PNP三极管8550/9012215S1电源开关7*7mm 116M1,M2减速电机ZY-2217/车轮/218/硅胶轮胎/219/自攻螺丝M2.5*10220/螺母M3621/沉头螺丝M3*8222/沉头螺丝M3*30423/万向轮螺母M5 1 24/万向轮螺丝M5*27125/万向轮M5126/电池盒AA*2127/金属电机固定片428/电路板ZYD2-1129/导线/1智能循迹小车的设计与制作炎黄职业技术学院 雷时荣 孙俊菊• 148•4 电路装配(1)按电路图和电路板上的标识依次将色环电阻、8脚IC 、开关、电位器、三极管、电解电容、发光二极管焊接在电路板上,注意IC 座的方向,不要焊错。
智能寻迹小车设计方案
智能寻迹小车设计方案智能寻迹小车设计方案一、项目概述智能寻迹小车是一种能够自主行走并根据黑线路径进行导航的小型机器人。
本设计方案旨在实现小车的自主控制和路径识别功能,为用户提供一个可以根据预定路径行走的智能小车。
二、技术原理智能寻迹小车的核心技术包括光电传感器模块、控制模块和驱动模块。
光电传感器模块用于感知黑线路径,控制模块用于辨识路径信号并控制小车的行走方向,驱动模块用于控制小车的轮子转动。
小车通过光电传感器模块获取黑线路径的信号,经过控制模块的处理后,驱动模块控制轮子的转动实现小车的行走。
三、硬件配置1. 光电传感器:用于感知黑线路径,采用多个红外线光电二极管和光敏二极管进行测量。
2. 控制模块:采用单片机作为控制核心,用于接收和处理光电传感器的信号,并根据信号控制车轮转动。
3. 驱动模块:采用直流电机作为驱动装置,驱动车轮的转动。
四、软件架构1. 信号处理算法:根据光电传感器模块的输出信号,设计信号处理算法,将感知到的黑线路径转化成可识别的控制信号。
2. 路径识别算法:分析感知到的黑线路径信号,识别出黑线的走向,并根据识别结果控制小车的行走方向。
3. 控制算法:根据路径识别算法的结果,控制驱动模块产生适当的电压,实现小车轮子的转动。
五、功能实现1. 自主行走功能:小车能够根据识别的黑线路径自主地行走,避免碰撞障碍物或偏离路径。
2. 路径识别功能:小车能够准确地识别黑线路径,并根据路径进行相应的控制。
3. 远程控制功能:用户可以通过无线遥控器对小车进行远程控制,包括行走方向和速度的控制。
六、性能指标1. 导航准确性:小车在正确识别黑线路径的情况下完成整个行程,保持在路径上的偏离范围小于5mm。
2. 响应速度:小车对路径信号的处理和控制反应时间小于100ms。
3. 可靠性:小车在连续行走1小时内不发生故障,并能正常完成指定的行走任务。
七、安全性考虑1. 碰撞检测:小车装配超声波传感器,能够检测前方的障碍物并自动停止行走,避免碰撞事故的发生。
智能循迹避障小车设计
智能循迹避障小车设计本文是基于单片机控制的一款智能循迹避障小车,由传感模块、电源模块、驱动模块、调试模块和单片块组成。
利用单片机控制、电源驱动电路、红外对管和超声波检测黑线与障碍物,当右侧传感器检测到黑线时,小车往右侧偏转,左侧的传感器检测到黑线时,小车往左侧偏转,并能控制电动小车的速度及转向,从而实现自动循迹避障的功能。
标签:避障;循迹;智能小车11.1 总体设计思路本系统采用集成设计方案。
通过高发射功率红外光电二极管和高灵敏度光电晶体管组成的传感器循迹模块判断黑线路经,然后由STC单片机通过IO口控制L298N驱动模块改变两个直流电机的工作状态,最后实现小车循迹。
1.2小车循迹避障部分设计思路小车循迹避障部分是能够采集周围环境障碍物的信息,并返回至单片机进行处理,其组成部分包括:环境信息采集电路、放大电路、单片机控制电路。
路线采集电路一般有脉冲调制的反射式红外发射接收器和信号放大器组成,脉冲调制的反射式红外发射接收器根据不同颜色对光的反射程度不同,将路线信息送至放大器,放大器可作为比较器可作简单的滤波,放大器将从脉冲调制的反射式红外发射接收器返回的信号转化为单片机可识别的电平信号后送入单片机。
STC单片机可根据接收的信息判断路线的信息,实现对左右两侧直流电机工作状态的控制,以实现左右转向,最终实现循迹功能。
2 小车的硬件电路设计2.1 单片机的选型选择一款8051系列速度快、功耗低、抗干扰性好的单片机。
它的高效寻址方式、大容量Flash、EEPROM、A/D转换、硬件乘法器、硬件脉宽调制器(PWM)等功能特点,较好的实现了强大的功能与超低功耗的结合。
而且在功能同样的情况下,管脚较少封装体积小,价格比其他型号便宜,因此具有很好的性价。
2.2 微处理器模块电路微处理器用STC单片机构成的最小系统组成,其包括晶振、一个复位电路和一个小车运行模式选择按键。
其中晶振大小为16MHz,复位开关为微动开关,模式选择开关则为带锁开关,可实现模式选择的锁定,以便主程序查询。
基于光电传感器的智能小车循迹模块设计
【注】本课程设计既可以作为传感器课程设计也可以作为单片机课程设计,只需稍加修改偏向课程设计报告书课程名称:题目:基于光电传感器的智能小车寻迹模块设计系(院):学期:专业班级:姓名:学号:目录一、设计目的 (1)二、题目的具体设计要求 (1)三、系统的总体实现原理、方案设计 (1)1.国内外发展现状 (1)2.文献综述 (1)3.系统的总体实现原理 (2)4.总体方案设计 (2)4.1主控模块选用方案对比 (2)4.2传感器选用方案对比 (3)4.3传感器的安装方案对比 (3)四、传感器选用 (4)1.选用型号及特点 (4)2.内部结构及工作原理 (4)3.传感器工作电路设计及说明 (5)五、其它各部分单元电路设计 (6)1.控制模块 (6)2.电源模块 (7)3.电机及驱动模块 (7)3.1电机 (7)3.2驱动 (7)六、系统总电路原理图(见附录三) (9)1.系统总体说明 (9)2.软件设计 (10)2.1小车循迹流程图 (10)2.2中断程序流程图 (11)七、仿真与调试(见附录四) (11)八、总结与心得体会 (12)参考文献 (12)附录一:元器件清单 (13)附录二:单片机测试程序 (13)附录三:系统总电路原理图 (15)附录四:Proteus原理仿真图 (16)1.直行 (17)2.二级右转 (18)3.二级左转 (19)智能小车寻迹模块设计报告一、设计目的1. 能较全面地巩固和应用“传感器及检测技术”课程中所学的基本理论和基本方法,并初步掌握小型数字系统设计的基本方法。
2. 通过《传感器及检测技术》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。
进一步理解传感器及检测系统的设计和应用。
3. 培养独立思考、独立准备资料、独立设计规定功能的数字系统的能力。
4. 培养书写综合设计报告的能力。
二、题目的具体设计要求1.设计一个基于光电传感器的自动寻迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色轨迹行驶。
智能循迹小车设计方案
智能循迹小车设计方案智能循迹小车设计方案智能循迹小车是一种能够根据预设路径自主行驶的无人驾驶车辆。
本设计方案旨在实现一辆智能循迹小车的设计与制作。
一、方案需求:1. 路径规划与控制:根据预设的路径,小车能够准确、迅速地在指定道路上行驶,并能随时调整方向和速度。
2. 传感器控制与反馈:小车具备多种传感器,能够实时感知周围环境和道路状况,如通过红外线传感器检测道路上的障碍物。
3. 自主导航与避障能力:小车能够自主判断并决策前进、转弯或避让,确保安全行驶。
当感知到障碍物时,能及时做出反应避开障碍。
二、方案设计:1. 硬件设计:a. 小车平台:选择合适的小车底盘,具备稳定性和承重能力,大小和外观可以根据实际需求进行设计。
b. 传感器系统:包括红外线传感器、超声波传感器和摄像头等,用于感应周围环境和道路状况。
c. 控制系统:采用单片机或嵌入式控制器,以实现传感器数据的处理、决策和控制小车运动。
2. 软件设计:a. 路径规划与控制算法:通过编程实现路径规划算法,将预设路径转换为小车可以理解的指令,控制小车的运动和转向。
b. 感知与决策算法:根据传感器获取的数据,实时判断周围环境和道路状况,做出相应的决策,例如避开障碍物或调整行驶速度。
c. 系统界面设计:为方便操作和监测,设计一个人机交互界面,显示小车的状态信息和传感器数据。
三、方案实施:1. 硬件实施:根据设计要求选择合适的硬件部件,并将它们组装在一起,搭建小车平台和安装传感器。
确保传感器按照预期工作稳定。
2. 软件实施:使用合适的编程语言开发控制程序。
编写路径规划、感知与决策算法,并将其与硬件系统绑定在一起。
通过测试和调试确保程序的正常运行。
3. 功能测试:对小车进行现场测试,包括路径规划、感知与决策的功能、反应时间和精度等方面的测试。
根据测试结果进行优化和调整。
四、方案展望:1. 增加智能化功能:进一步发展智能循迹小车的功能,添加更多的传感器和算法,实现更高级的自主导航和避障能力。
光电循迹小车实验报告
一、实验目的1. 了解光电循迹小车的工作原理和结构组成。
2. 掌握光电循迹小车的设计与制作方法。
3. 熟悉51单片机在光电循迹小车中的应用。
4. 提高动手能力和创新思维。
二、实验原理光电循迹小车是利用光电传感器检测地面上的黑色线条,通过单片机处理信号,控制电机驱动小车按照预设路径行驶。
实验中,采用红外光电传感器作为检测元件,当传感器检测到黑色线条时,输出低电平信号;当检测到白色路面时,输出高电平信号。
三、实验器材1. 51单片机开发板2. 红外光电传感器3. 直流电机驱动模块4. 2个直流电机5. 小车底盘6. 电池7. 连接线8. 黑色胶带四、实验步骤1. 准备工作(1)将黑色胶带粘贴在地面上,作为小车行驶的路径。
(2)将红外光电传感器固定在小车前部,使其能够垂直于地面。
(3)将直流电机驱动模块连接到51单片机开发板上的相应接口。
(4)将电池连接到开发板上的电源接口。
2. 硬件连接(1)将红外光电传感器的一端连接到单片机的P1.0端口,另一端连接到地。
(2)将直流电机驱动模块的A、B端分别连接到单片机的P2.0和P2.1端口。
(3)将两个直流电机分别连接到驱动模块的M1和M2端口。
3. 软件设计(1)编写程序,使单片机能够读取红外光电传感器的信号。
(2)根据信号判断小车是否在黑色线条上行驶,若在黑色线条上,则保持小车匀速行驶;若不在,则根据偏差调整小车转向。
(3)编写程序,控制直流电机驱动模块,实现小车的转向和速度调节。
4. 调试与测试(1)上电后,观察小车是否能够按照预设路径行驶。
(2)若小车无法按照预设路径行驶,检查硬件连接是否正确,调整传感器位置,或修改程序参数。
(3)当小车能够按照预设路径行驶后,进行测试,观察小车在直线和弯道上的表现。
五、实验结果与分析1. 实验结果经过调试,小车能够按照预设路径行驶,并在直线和弯道上保持稳定。
2. 实验分析(1)红外光电传感器能够有效地检测黑色线条,为小车提供稳定的循迹信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组装:(I/O连接时参考程序I/O定义)
二、软件
1.用keil3对单片机进行程序编写。 2.用AVR fighter 进行程序烧写。
keil主页面:
AVR fighter主页面:
最后:
在跑道上进行调试。
谢谢!
、103电位器:
特点: 1.10k电阻可调。 2.使用简单。 (就是一个10k的可调电阻)
传感器模块电路图:
电路图:一路传感器(一共5路)
主控模块:
单片机最小系统 基本结构组成: 单片机底座 数据下载底座 自锁开关 排阻 LED 晶振电路 复位电路
驱动模块:
1.直流电机 2.L298N电机驱动模块 (4路输入4路输出)
光电智能循迹小车制作
12级自动化2班 河南理工大学万方科技学院 焦腾飞(学号:1216306xxx) 杨文涛(学号:1216306xxx)
作品简介:
智能小车以51系列单片机为核心控制,应用L298N驱动 直流电机,采用ST188红外光电传感器对小车进行循迹控 制。 小车通过红外传感器获取地面黑线信息,将采集到的 信号送给单片机,通过单片机分析,控制小车两侧直流电 机,利用小车左右两侧电机的转速差进行转向(转大弯、 转小弯)或直走,进而实现小车黑线路线路前进。
、ST188光电传感器:
特点:
1.采用高发射功率红外发光二极管 和高灵敏度光电晶体管组成。 2.检测距离可调范围大,4-13mm 可用。 3.采用非接触检测方式。 (AK发射,CE接收)
、LM393:
特点: 1.含有两路电压比较器。 2.消耗电流小, ICC=0.8mA; 输入失调电压小, VIO=±2mV; 3.输出与TTL,DTL,MOS,CMOS 等兼容;
制作目的:
通过一个完整的单片机系统设计制作,来提高自己单 片机实际应用能力(软件编程硬件电路设计相结合),提 高自己的动手能力,解决实际问题的能力。
小车组成:
一、硬件 二、软件
一、硬件
硬件
传感器模块 (收集数据)
主控模块 (处理数据)
执行模块 (电机驱动)
硬件模块:
1.传感器模块:
1.ST188反射式光电传感器 2.电位比较器LM393 3.103可调电阻