七年级数学加减消元法练习
七年级下册数学人教版【课堂练】第2课时 用加减消元法解方程组
4.解方程组:
(1)3xx
2y 2y
8 ,① 4. ②
(2)3x
x
y y
8 ,① 4. ②
解:①-②,得2x=4,x=2. 解:①+②得4x=12,x=3.
把x=2代入②,得2+2y=4, 把x=3代入②得3+y=4,
解得y=1.
x 2,
所以方程组的解是
y
1.
解得y=1.
x 3,
所以方程组的解是
15%+25%=40×20%.②
解:把对①两代个入方②程,分得别2整0y理1化60简,,解得得ቊy3xx8+=.55yy=,160.
把y8代入①,得x40.
所以这个方程组的解是ቊx=y4=08,.
探究新知
例3 2台大收割机和5台小收割机同时工作2小时 共收割小麦3.6 hm2,3台大收割机和2台小收割同时 工作5小时共收割小麦8 hm2.1台大收割机和1台小收 割机每小时各收割小麦多少公顷?
4
− −
y+2 4
y−3 3
=0,①
=
1 12
.②
解:①12,整理化简,得4x3y2,③
先化简,再计算.
②12,整理化简,得3x4y2,④
③+④,得7x7y0,即 y=x.
把y=x代入③,得y2,∴y=x=2.
∴这个方程组的解是ቊxy==22,.
拓展延伸
解方程组:ቐ
2x+y 2
=
5x−3y 4
,①
学习重难点
学习重点:用加减消元法解二元一次方程组的基本 步骤. 学习难点:对加减消元法解方程组过程的理解;在 解题过程中进一步体会“消元”思想和“化未知为 已知”的化归思想.
(8.2 第2课时 用加减消元法解方程组)2020年春人教版初中数学七年级下册过关检测试卷附答案
四川绵阳市示范初中(绵阳南山双语学校)2020年春人教版初中数学七年级下册过关检测试卷班级 姓名第八章 二元一次方程组8.2 消元——解二元一次方程组第2课时 用加减消元法解方程组1.用加减法将方程组⎩⎪⎨⎪⎧2x -3y =11,2x +5y =-5中的未知数x 消去后,得到的方程是( )A .2y =6B .8y =16C .-2y =6D .-8y =162.利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×23.用加减消元法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11,下列变形正确的是( ) A .⎩⎪⎨⎪⎧4x +6y =39x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =96x -2y =22 C .⎩⎪⎨⎪⎧4x +6y =69x -6y =33 D .⎩⎪⎨⎪⎧6x +9y =36x -4y =114.(2019·天津)方程组⎩⎪⎨⎪⎧3x +2y =7,6x -2y =11的解是( ) A .⎩⎪⎨⎪⎧x =-1y =5 B .⎩⎪⎨⎪⎧x =1y =2 C .⎩⎪⎨⎪⎧x =3y =-1 D .⎩⎪⎨⎪⎧x =2y =125.解方程组⎩⎪⎨⎪⎧4x -3y =2,4x +3y =1. ①②既可用 消去未知数x ,也可用 消去未知数y.6.(2019·凉山州)方程组⎩⎪⎨⎪⎧x +y =10,2x +y =16的解是 . 7.已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为 . 8.(2019·贺州改编)已知方程组⎩⎪⎨⎪⎧2x +y =3,x -2y =5,则2x +6y 的值是 . 9.(2018·滨州)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -my =5,2x +ny =6的解是⎩⎪⎨⎪⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎪⎨⎪⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是 .10.(2019·眉山)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =k -1,2x +y =5k +4的解满足x +y =5,则k 的值为 .11.解方程组:(1)(2019·广州)⎩⎪⎨⎪⎧x -y =1,①x +3y =9;②(2)⎩⎪⎨⎪⎧x +2y =0,①3x +4y =6;②(3)⎩⎪⎨⎪⎧2x -y =7,①3x +2y =0.②12.解方程组:⎩⎪⎨⎪⎧4x -3y =1,①3x -2y =-1.②13.解方程组:(1)⎩⎪⎨⎪⎧2x +3y =4,①5x +6y =7;②(2)⎩⎪⎨⎪⎧4x +3y =14,①3x +2y =22;②(3)⎩⎪⎨⎪⎧x -y 3=1,①2(x -4)+3y =5.②14.(2019·淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?15.(2019·白银)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?16.已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b 的值.参考答案1.用加减法将方程组⎩⎪⎨⎪⎧2x -3y =11,2x +5y =-5中的未知数x 消去后,得到的方程是(D )A .2y =6B .8y =16C .-2y =6D .-8y =162.利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是(D )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×23.用加减消元法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11,下列变形正确的是(C ) A .⎩⎪⎨⎪⎧4x +6y =39x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =96x -2y =22 C .⎩⎪⎨⎪⎧4x +6y =69x -6y =33 D .⎩⎪⎨⎪⎧6x +9y =36x -4y =114.(2019·天津)方程组⎩⎪⎨⎪⎧3x +2y =7,6x -2y =11的解是(D ) A .⎩⎪⎨⎪⎧x =-1y =5 B .⎩⎪⎨⎪⎧x =1y =2 C .⎩⎪⎨⎪⎧x =3y =-1 D .⎩⎪⎨⎪⎧x =2y =125.解方程组⎩⎪⎨⎪⎧4x -3y =2,4x +3y =1. ①②既可用①-②消去未知数x ,也可用①+②消去未知数y.6.(2019·凉山州)方程组⎩⎪⎨⎪⎧x +y =10,2x +y =16的解是⎩⎪⎨⎪⎧x =6y =4. 7.已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为8. 8.(2019·贺州改编)已知方程组⎩⎪⎨⎪⎧2x +y =3,x -2y =5,则2x +6y 的值是-4. 9.(2018·滨州)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -my =5,2x +ny =6的解是⎩⎪⎨⎪⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎪⎨⎪⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是⎩⎪⎨⎪⎧a =32b =-12. 10.(2019·眉山)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =k -1,2x +y =5k +4的解满足x +y =5,则k 的值为2.11.解方程组:(1)(2019·广州)⎩⎪⎨⎪⎧x -y =1,①x +3y =9;②解:②-①,得4y =8,解得y =2,把y =2代入①,得x -2=1,解得x =3.∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =2.(2)⎩⎪⎨⎪⎧x +2y =0,①3x +4y =6;②解:②-①×2,得x =6.把x =6代入①,得6+2y =0,解得y =-3.∴原方程组的解为⎩⎪⎨⎪⎧x =6,y =-3.(3)⎩⎪⎨⎪⎧2x -y =7,①3x +2y =0.②解:①×2+②,得7x =14.解得x =2. 把x =2代入①,得4-y =7.解得y =-3.∴原方程组的解是⎩⎪⎨⎪⎧x =2,y =-3.12.解方程组:⎩⎪⎨⎪⎧4x -3y =1,①3x -2y =-1.②解:②×3-①×2,得x =-5.把x =-5代入①,得-20-3y =1,解得y =-7.∴原方程组的解为⎩⎪⎨⎪⎧x =-5,y =-7.13.解方程组:(1)⎩⎪⎨⎪⎧2x +3y =4,①5x +6y =7;②解:①×2,得4x +6y =8.③②-③,得x =-1.把x =-1代入①,得2×(-1)+3y =4.解得y =2.∴原方程组的解为⎩⎪⎨⎪⎧x =-1,y =2. (2)⎩⎪⎨⎪⎧4x +3y =14,①3x +2y =22;②解:①×2,得8x +6y =28.③②×3,得9x +6y =66.④④-③,得x =38.把x =38代入①,得4×38+3y =14.解得y =-46.∴原方程组的解为⎩⎪⎨⎪⎧x =38,y =-46.(3)⎩⎪⎨⎪⎧x -y 3=1,①2(x -4)+3y =5.②解:原方程整理,得⎩⎪⎨⎪⎧3x -y =3,③2x +3y =13.④③×3+④,得11x =22,解得x =2.把x =2代入③,得6-y =3,解得y =3.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =3. 14.(2019·淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?解:设每节火车车皮装物资x 吨,每辆汽车装物资y 吨,根据题意,得⎩⎪⎨⎪⎧2x +5y =130,4x +3y =218,解得⎩⎪⎨⎪⎧x =50,y =6. 答:每节火车车皮装物资50吨,每辆汽车装物资6吨.15.(2019·白银)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意,得 ⎩⎪⎨⎪⎧12y +20x =112,12x +20y =144,解得⎩⎪⎨⎪⎧x =2,y =6.答:中性笔和笔记本的单价分别是2元、6元.16.已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b 的值.解:⎩⎪⎨⎪⎧3x -y =5,①4x -7y =1.②①×7-②,得17x =34.解得x =2.把x =2代入①,得y =1.∴此方程组的解是⎩⎪⎨⎪⎧x =2,y =1. 把x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得 ⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解得⎩⎪⎨⎪⎧a =2.5,b =1.。
冀教版七年级下册数学第6章 二元一次方程组 用加减消元法解二元一次方程组
2x+y=4, x-y=-1.
①+②,得3x=3,解得x=1, 把x=1代入①,得y=2. 所以方程组的解为
x=1, y=2.
5.【中考·河北】利用加减消元法解方程组下列做法正确的是2(x+5)y=10,①
A.要消去y,可以将①×5+②×2
5x-3y=6,②
冀教版七年级下
第六章 二元一次方程组
6.2二元一次方程组的解法 第2课时用加减消元法解二元一次方
程组
提示:点击 进入习题
1B 2C 3 见习题 4 见习题 5D
6D 7 见习题 8 见习题 9C 10 -4
答案显示
提示:点击 进入习题
11 A 12 见习题 13 见习题 14 见习题 15 见习题
①-②,得2(n-2)=2,解得n=3.
所以方程组的解为
m=3, n=3.
13.关值于.x,y的方程组与关于x,y2a的xx+-方程5byy组==的-4解相6,同,求(a+2b)2024的 3x-5y=16, bx+ay=-8
解: 根据题意得
2x+5y=-6, 3x-5y=16,
解得xy==-2,2.把xy==-2,2代入方程组abxx-+bayy==4-,8,
16 见习题
答案显示
1.【2021·河北石家庄模拟】在解关于x,y的二元一次方程组时,若①-②
AC..都互可等为直于倒接0数消62去xx++未知abyy数==y,9-,则BD6..a和相互①②b等为( 相反) 数 B
2.【易错:两个方程相减消元时,符号出错】【2020·河北保定第十九中学期
末】解方程组时,①-②,得( )
得22ab+-22ba==4-,8.解得ab==3-,1. 所以(a+2b)2 024=[3+2×(-1)]2 024=1.
七年级数学(下)第八章《消元——解二元一次方程组》练习题含答案
七年级数学(下)第八章《消元——解二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用加减消元法解方程组23537x y x y -=⎧⎨=+⎩①②正确的方法是A .①+②得2x =5B .①+②得3x =12C .①+②得3x +7=5D .先将②变为x -3y =7③,再①-③得x =-2【答案】D【解析】先将②变为x -3y =7③,再①-③得x =-2.故选D . 2.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为x =153y-,再代入①D .先将①变形为5y =2x ,再代入② 【答案】D【解析】由①得:5y =2x ,把5y =2x 代入②即可.故选D . 3.解方程组35237x y x y +=⎧⎨+=⎩①②,错误的解法是A .先将①变形为53x y =+,再代入②B .先将①变形为53x y =-,再代入②C .将-②①,消去yD .将2⨯-①②,消去x 【答案】A【解析】用代入法解二元一次方程组时先将①变形为53x y =-,移项要变号,选项A 错误.故选A .4.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 【答案】D(4)第一个方程转化为x =7-y ,代入第二个方程即可消去未知数x ,用代入法比较适宜.故选D .5.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是A .12x y =-⎧⎨=⎩B . 12x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=⎩【答案】A【解析】将方程组中的两个方程相加得3x =-3,解得x =-1,将x =-1代入方程组中得任意一个方程可得y =2,所以12x y =-⎧⎨=⎩.故选A .6.已知方程组323()11x y y x y -=⎧⎨+-=⎩,那么代数式3x -4y 的值为A .1B .8C .-1D .-8【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1,将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B . 7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为 A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】由同类项的定义可得24325y xx y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.8.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m-n的算术平方根为A.±2 B.2C.2 D.4 【答案】C9.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④【答案】C【解析】①中将51xy=⎧⎨=-⎩代入方程组得534513aa-=-⎧⎨+=⎩,解得:a=2,所以①正确;②中将a=2代入方程组中得326x yx y+=⎧⎨-=⎩①②,①+②得x+y=4,所以②错误;③中将a=1代入方程组得333x yx y+=⎧⎨-=⎩,解得3xy=⎧⎨=⎩,将其代入x-2y=3-2×0=3,所以③正确;④中,将方程组中的两个方程相加得x+y=2+a,所以④错误.故选C.二、填空题:请将答案填在题中横线上.10.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.【答案】32【解析】23523x y x y +=⎧⎨+=-⎩①②,①+②得:442x y +=,即12x y +=,13333()322x y x y +=+=⨯=.故答案为:32. 11.方程组221x y x y +=-=⎧⎨⎩的解是__________.【答案】11x y ==⎧⎨⎩【解析】221x y x y +=⎧⎨-=⎩①②,①+②,得:3x =3,解得x =1,把x =1代入①得,y =1.故方程组的解为:11x y ==⎧⎨⎩,故答案为:11x y ==⎧⎨⎩.12.若关于x 、y 的二元一次方程组59x y kx y k+=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.【答案】3413.已知|2x -3y +4|与(x -2y +5)2互为相反数,则(x -y )2019=__________.【答案】1【解析】由题意,得2|234|(25)0x y x y -++-+=,∴2x −3y +4=0,x −2y +5=0,∴x =7,y =6,∴20192019()(76)1x y -=-=,故答案为:1.14.若方程组42ax by ax by -=⎧⎨+=⎩与方程组234456x y x y +=⎧⎨-=⎩的解相同,则a =__________,b =__________.【答案】3319;112-【解析】解方程组234456x y x y +=⎧⎨-=⎩得1911211x y ⎧=⎪⎪⎨⎪=⎪⎩,将1911211x y ⎧=⎪⎪⎨⎪=⎪⎩代入第一个方程组中得1924111119221111a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩,解得3319112a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3319;112-.三、解答题:解答应写出文字说明、证明过程或演算步骤. 15.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.【解析】(1)将①代入②得,32(402)22x x +-=, 解得x =58,故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③, ①+③得:21x =0, 解得:x =0,将x =0代入②,得y =3, 故原方程组的解为:03x y =⎧⎨=⎩.16.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.【解析】由题意可将x +y =5与2x -y =1组成方程组521x y x y +=⎧⎨-=⎩,解得23x y =⎧⎨=⎩,把23x y =⎧⎨=⎩代入4ax +5by =-22,得8a +15b =-22①,把23x y =⎧⎨=⎩代入ax -by -8=0,得2a -3b -8=0②,与②组成方程组,得815222380a b a b +=-⎧⎨--=⎩,解得12a b =⎧⎨=-⎩.17.已知关于,x y 的方程组212x y x y m +=⎧⎨-=⎩①②.(1)若用代入法求解,可由①得:x =__________③,把③代入②解得y =__________,将其代入③解得x =__________,∴原方程组的解为__________;(2)若此方程组的解x y ,互为相反数,求这个方程组的解及m 的值. 【解析】(1)若用代入法求解,可由①得12x y =-③,把③代入②解得14m y -=, 将其代入③解得12m x +=,∴原方程组的解为1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.故答案为:12y -;14m -;12m +;1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.(2)∵方程组的解x y ,互为相反数, ∴x y =-③,将③代入①得21y y -+=, ∴1y =, ∴1x =-,∴2123m x y =-=--=-,∴方程组的解是11x y =-⎧⎨=⎩,3m =-.18.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染325x y x y -=+=⎩∆⎧⎨,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是21x y ==-⎧⎨⎩,你能帮助他补上“口”和“△”的内容吗?说出你的方法.【解析】把x =2,y =-1代入两方程,得3×2-2×(-1)=8,5×2-1=9. ∴被污染的内容是8和9.。
2020春人教版七年级数学下册-典中点习题课件-8.2.2 加减消元法
2.用加减法解方程组22xx- -38yy= =53, ②①时,①-②,得( A )
A.5y=2
B.-11y=8
C.-11y=2
D.5y=8
3.【2019·天津】方程组36xx+-22yy==711,的解是( D )
x=-1 A.y=5
x=1 B.y=2
x=3 C.y=-1
-2 2 6
501
13.请根据图中提供的信息,回答下列问题: (1)一个暖瓶与一个水杯分别是多少元?
解:设一个暖瓶与一个水杯分别为 x 元、y 元, 由题意,得x2+x+y=3y3=8,84.解得xy==83.0, 所以一个暖瓶与一同样的暖瓶和水杯.为了迎接新 年,两家商场都在搞促销活动.甲商场规定:这两种商品 都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某 单位想要买 4 个暖瓶和 15 个水杯,请问选择哪家商场购买 更合算?并说明理由.
9.解方程组:32( (xx+ +yy) )+-(5(xx--y)y)==1156. , 【点拨】本题用换元法解方程组,容易犯偷换概念的错误,误认
为 a 和 b 的值就是原方程组的解. 解:令 x+y=a,x-y=b,则原方程组可化为32aa- +5bb==1156. ,解 得ab==71, .
12.如图①,在 3×3 的方格中,填写了一些整式,使得每行 3 个数、每列 3 个数、对角线上 3 个数的和均相等.
(1)求 x,y 的值; 解:由题意,得33+-42++x2=y-xx+=y+3+2y4-+xx,, 解得xy==2-. 1,
(2)根据求得的 x,y,a,b,c 的值完成图②. 解:由(1)知 x=-1,所以 3+4+x=6, 所以4-+22++2c+=a6=,6,解得ca==06,, -1+a+b=6, b=1. 如图. 3 4 -1
解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)
第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
加减消元法和代入消元法的例题
加减消元法和代入消元法的例题加减消元法和代入消元法是数学中常用的两种解方程的方法。
在本文中,我们将通过例题来详细介绍这两种方法的步骤和应用。
一、加减消元法加减消元法是一种利用方程的加减性质进行消元的方法。
具体步骤如下:1. 将方程中同类项合并。
2. 将方程两边同加或同减一个已知量,使得某一未知量的系数相等。
3. 利用已知量的值求出未知量的值。
下面我们通过一个例题来演示加减消元法的应用。
例题1:已知方程组2x + 3y = 83x - 2y = 7求解x和y的值。
解法:将两个方程进行同类项合并,得到2x + 3y = 83x - 2y = 7将第一个方程两边同乘以2,得到4x + 6y = 16将第二个方程两边同乘以3,得到9x - 6y = 21将上述两个方程相加,得到13x = 37因此,x = 37/13。
将x的值代入第一个方程,得到2(37/13) + 3y = 8解得,y = 2/13。
因此,方程组的解为x = 37/13,y = 2/13。
二、代入消元法代入消元法是一种利用方程的等价性质进行消元的方法。
具体步骤如下:1. 从一个方程中解出一个未知量。
2. 将解得的未知量代入另一个方程中,得到只含有另一个未知量的方程。
3. 解得另一个未知量的值。
下面我们通过一个例题来演示代入消元法的应用。
例题2:已知方程组3x - 2y = 7x + y = 4求解x和y的值。
解法:将第二个方程解出y,得到y = 4 - x。
将y的值代入第一个方程中,得到3x - 2(4 - x) = 7解得,x = 5。
将x的值代入第二个方程中,得到5 + y = 4解得,y = -1。
因此,方程组的解为x = 5,y = -1。
综上所述,加减消元法和代入消元法是两种常用的解方程的方法。
在解方程时,我们可以根据题目的特点选择合适的方法进行求解。
同时,我们也需要注意步骤的正确性和计算的准确性,以确保最终得到的解是正确的。
湘教版数学七年级下册_《加减消元法》拓展训练
《加减消元法》拓展训练一、选择题1.若(x﹣y+3)2+|2x+y|=0,则xy的值为()A.1B.2C.﹣1D.﹣22.若(2x+3y﹣12)2+|x﹣2y+1|=0,则x y=()A.9B.12C.27D.643.解方程组时,小郑正确解得,而小童只看错了c,解得,则a+b+c的值是()A.6B.4C.2D.04.已知a,b满足方程组,则3a﹣2b的值为()A.8B.4C.﹣4D.﹣85.对于代数式ax+b(a,b是常数),当x分别等于4、2、1、﹣1时,小虎同学依次求得下面四个结果:5、2、﹣1、﹣5,其中只有一个是错误的,则错误的结果是()A.5B.2C.﹣1D.﹣56.在等式y=x2+bx+c中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式中b 与c的值分别是()A.b=3,c=2B.b=﹣3,c=﹣2C.b=﹣3,c=2D.b=3,c=﹣2 7.定义一种运算“◎”,规定x◎y=ax﹣by,其中a、b为常数,且2◎3=6,3◎2=8,则a+b的值是()A.2B.﹣2C.D.48.关于x、y的方程组有正整数解,则正整数a为()A.1、2B.2、5C.1、5D.1、2、59.甲乙两人同时解方程组时,甲正确解得,乙因抄错c而解得,则a,c的值是()A.B.C.D.10.方程组的解的个数是()A.1B.2C.3D.4二、填空题11.若的解是方程ax﹣3y=2的一组解,则a的值是.12.定义一种新的运算“※”,规定:x※y=mx+ny2,其中m、n为常数,已知2※3=﹣1,3※2=8,则m※n=.13.对于代数式ax2+bx+c,当x=﹣1时,代数式值为0;当x=2时,代数式值为3;当x=5时,代数式值为60.则10a+2b+c=.14.已知m、n满足,则m2﹣n2的值是.15.如果实数x、y满足方程组,那么x2﹣y2的值为.三、解答题16.解下列方程组:(1)(2)(3)17.对于实数,规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=7,﹣1*3=1.(1)求a、b的值;(2)求1*5的值.18.甲、乙两人解关于x,y的方程组,甲因看错a,解得,乙将其中一个方程的b写成了它的相反数,解得,求a、b的值.19.化简求值已知:(a+2b)2+|2b﹣1|=0,求ab﹣[2ab﹣3(ab﹣1)]的值.20.在等式ax+y+b=0中,当x=5时,y=6;当x=﹣3时,y=﹣10.(1)求a、b的值;(2)若x+y<2,求x的取值范围.《加减消元法》拓展训练参考答案与试题解析一、选择题1.若(x﹣y+3)2+|2x+y|=0,则xy的值为()A.1B.2C.﹣1D.﹣2【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值即可确定出xy的值.【解答】解:∵(x﹣y+3)2+|2x+y|=0,∴,解得:,则xy=﹣2,故选:D.【点评】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.2.若(2x+3y﹣12)2+|x﹣2y+1|=0,则x y=()A.9B.12C.27D.64【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵(2x+3y﹣12)2+|x﹣2y+1|=0,∴,①﹣②×2得:7y=14,解得:y=2,把y=2代入②得:x=3,则原式=9,故选:A.【点评】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.3.解方程组时,小郑正确解得,而小童只看错了c,解得,则a+b+c的值是()A.6B.4C.2D.0【分析】根据题意把和代入ax+by=6组成方程组,解方程组求出a、b的值,把代入cx﹣4y=﹣2求出c,计算得到答案.【解答】解:由题意得,,解得:,把代入cx﹣4y=﹣2,得c=3,∴a+b+c=1+2+3=6,故选:A.【点评】本题考查的是二元一次方程组的解的定义和解法,正确理解题意组成新的方程组是解题的关键.4.已知a,b满足方程组,则3a﹣2b的值为()A.8B.4C.﹣4D.﹣8【分析】方程组两方程相加即可求出所求.【解答】解:,①+②得:3a﹣2b=8,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.对于代数式ax+b(a,b是常数),当x分别等于4、2、1、﹣1时,小虎同学依次求得下面四个结果:5、2、﹣1、﹣5,其中只有一个是错误的,则错误的结果是()A.5B.2C.﹣1D.﹣5【分析】解组成的各个方程组,根据方程组的解逐个判断即可.【解答】解:∵当x分别等于4、2时,代数式的值是5、2,∴代入得:,解得:a=1.5,b=﹣1;∵当x分别等于4、1时,代数式的值是5、﹣1,∴代入得:,解得:a=2,b=﹣3;∵当x分别等于2、1时,代数式的值是2、﹣1,∴代入得:,解得:a=3,b=﹣4;∵当x分别等于1、﹣1时,代数式的值是﹣1、﹣5,∴代入得:,解得:a=2,b=﹣3;∴当x=2时,代数式是2错误,故选:B.【点评】本题考查了解二元一次方程组,能求出每个方程组的解是解此题的关键.6.在等式y=x2+bx+c中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式中b 与c的值分别是()A.b=3,c=2B.b=﹣3,c=﹣2C.b=﹣3,c=2D.b=3,c=﹣2【分析】把x与y的两对值代入已知等式确定出b与c的值即可.【解答】解:根据题意得:,解得:,故选:B.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.定义一种运算“◎”,规定x◎y=ax﹣by,其中a、b为常数,且2◎3=6,3◎2=8,则a+b的值是()A.2B.﹣2C.D.4【分析】利用题中的新定义列出方程组,相减即可求出所求式子的值.【解答】解:根据题中的新定义得:,②﹣①得:a+b=2,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,弄清题中的新定义是解本题的关键.8.关于x、y的方程组有正整数解,则正整数a为()A.1、2B.2、5C.1、5D.1、2、5【分析】解题时先把两方程相加,去掉x,然后根据方程组有正整数解确定正整数a的值.【解答】解:∵方程组有正整数解,∴两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y﹣x=1矛盾,舍去;可能值还有a=2或a=1,这时y=2或y=3与y﹣x=1无矛盾.∴a=1或2.故选:A.【点评】本题考查的是二元一次方程的解法.解题的关键是正确利用方程组有正整数解这一已知条件.9.甲乙两人同时解方程组时,甲正确解得,乙因抄错c而解得,则a,c的值是()A.B.C.D.【分析】(1)根据方程组解的定义,无论c是对是错,甲和乙求出的解均为ax+by=2的解.将和分别代入ax+by=2,组成方程组,从而得出a的值.(2)将甲的正确解代入cx﹣7y=8,从而得出c的值.【解答】解:将和分别代入ax+by=2,得,解得a=4,把代入cx﹣7y=8,得3c+14=8,所以c=﹣2.故选:A.【点评】本题需要对二元一次方程组的解和二元一次方程的解的定义有一个深刻的认识,知道不定方程有无数个解.10.方程组的解的个数是()A.1B.2C.3D.4【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可作出判断.【解答】解:当x>0,y>0时,方程组变形得:,无解;当x>0,y<0时,方程组变形得:,①+②得:2x=14,即x=7,②﹣①得:2y=﹣6,即y=﹣3,则方程组的解为;当x<0,y>0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去,把y=﹣7代入②得:x=﹣3,此时方程组无解;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选:A.【点评】此题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.二、填空题11.若的解是方程ax﹣3y=2的一组解,则a的值是﹣8.【分析】先求出方程组的解,再代入方程,即可求出a.【解答】解:解方程组得:,把代入方程ax﹣3y=2得:﹣a﹣6=2,解得:a=﹣8,故答案为:﹣8.【点评】本题考查了解二元一次方程组的解,解一元一次方程的应用,能得出关于a的一元一次方程是解此题的关键.12.定义一种新的运算“※”,规定:x※y=mx+ny2,其中m、n为常数,已知2※3=﹣1,3※2=8,则m※n=15.【分析】由2※3=﹣1、3※2=8可得,解之得出m、n的值,再根据公式求解可得.【解答】解:根据题意,得:,解得:,则x※y=4x﹣y2,∴4※(﹣1)=4×4﹣(﹣1)2=15,故答案为:15【点评】本题主要考查解二元一次方程组,根据题意列出关于m、n的方程组,并利用加减消元法求得m、n的值是解题的关键.13.对于代数式ax2+bx+c,当x=﹣1时,代数式值为0;当x=2时,代数式值为3;当x=5时,代数式值为60.则10a+2b+c=22.【分析】根据x=﹣1,代数式的值为0,x=2,代数式的值为3,x=5,代数式的值为60,可知a、b、c的数量关系.【解答】解:由题意可得解得:∴10a+2b+c=10×+2×(﹣)﹣=22,故答案为:22.【点评】本题考查了解三元一次方程组,解决本题的关键是根据题意得到方程组.14.已知m、n满足,则m2﹣n2的值是﹣15.【分析】方程组利用加减消元法变形求出m+n与m﹣n的值,原式利用平方差公式分解后代入计算即可求出值.【解答】解:,①+②得:47(m+n)=47,即m+n=1,①﹣②得:﹣(m﹣n)=15,即m﹣n=﹣15,则原式=(m+n)(m﹣n)=﹣15,故答案为:﹣15【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.如果实数x、y满足方程组,那么x2﹣y2的值为.【分析】将第二个方程除以2得x+y=,再将x+y、x﹣y的值代入x2﹣y2=(x+y)(x﹣y)可得答案.【解答】解:由②得x+y=,则x2﹣y2=(x+y)(x﹣y)=×=,故答案为:.【点评】本题主要考查解二元一次方程组,观察到方程组中两个方程的特点及熟练掌握平方差公式是解题的关键.三、解答题16.解下列方程组:(1)(2)(3)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得;(3)利用加减消元法求解可得.【解答】解:(1),①代入②,得:3x+2(2x﹣3)=8,解得:x=2,将x=2代入①,得:y=1,则方程组的解为;(2),①×2,得:10x﹣12y=66 ③,②×3,得:9x+12y=48 ④,③+④,得:19x=114,解得:x=6,将x=6代入②,得:18+4y=16,解得:y=﹣,则方程组的解为;(3),①×3,得:6x+15y=24 ③,②×2,得:6x+4y=10 ④,③﹣④,得:11y=14,解得:y=,将y=代入①,得:2x+5×=8,解得:x=,则方程组的解为.【点评】本题考查了二元一次方程组的解法.解二元一次方程组的基本思想是消元,消元的方法有代入法和加减法.如果题目没有明确指出运用什么方法解方程组,那么需要根据方程组的特点灵活选用解法.一般说来,当方程组中有一个方程的未知数的系数的绝对值是1或常数项是0时,运用代入法求解,除此之外,选用加减法求解,将会使计算较为简便.17.对于实数,规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=7,﹣1*3=1.(1)求a、b的值;(2)求1*5的值.【分析】(1)利用新定义和两组对应值得到,然后利用加减法解方程组即可;(2)由(1)得新运算为:x*y=2x+3y,然后把x=1,y=5代入计算即可.【解答】解:(1)根据题意得,解得a=,b=;(2)由(1)得x*y=x+y,所以1*5=×1+×5=.【点评】本题考查了解二元一次方程组:利用代入消元法或加减消元法解二元一次方程组.18.甲、乙两人解关于x,y的方程组,甲因看错a,解得,乙将其中一个方程的b写成了它的相反数,解得,求a、b的值.【分析】根据二元一次方程组的解的定义,将x=2,y=3分别代入4x﹣by=﹣1,可以求出b的值,再将x=﹣1,y=﹣1代入求出a的值,据此即可得解.【解答】解:将x=2,y=3分别代入4x﹣by=﹣1得:8﹣3b=﹣1,解得:b=3,将x=﹣1,y=﹣1代入4x+3y=﹣1后,左右两边不相等,故:ax﹣3y=5,将x=﹣1,y=﹣1代入后可得:﹣a+3=5,解得:a=﹣2,故答案为:a=﹣2,b=3.【点评】本题主要考查了二元一次方程组的解的定义,牢记二元一次方程组的解是两个方程的公共解是解题的关键,注意总结.19.化简求值已知:(a+2b)2+|2b﹣1|=0,求ab﹣[2ab﹣3(ab﹣1)]的值.【分析】根据(a+2b)2+|2b﹣1|=0,可以求得a、b的值,从而可以求得ab﹣[2ab﹣3(ab﹣1)]的值.【解答】解:∵(a+2b)2+|2b﹣1|=0,∴a+2b=0 2b﹣1=0解得,a=﹣1,b=0.5∴ab﹣[2ab﹣3(ab﹣1)]=ab﹣2ab+3ab﹣3=2ab﹣3=2×(﹣1)×0.5﹣3=﹣1﹣3=﹣4.【点评】根据解二元一次方程组、非负数的性质,解题的关键是明确整式化简求值的方法.20.在等式ax+y+b=0中,当x=5时,y=6;当x=﹣3时,y=﹣10.(1)求a、b的值;(2)若x+y<2,求x的取值范围.【分析】(1)将x=5,y=6;x=﹣3时,y=﹣10分别代入ax+y+b=0中,得到关于a与b的方程组,求出方程组的解即可得到a与b的值;(2)由(1)确定出的函数解析式,结合x+y<2列出关于x的不等式,求出不等式的解集即可得到x的范围.【解答】解:(1)根据题意,得:,整理,得:,①﹣②,得:8a=﹣16,解得:a=﹣2,将a=﹣2代入①,得:﹣10+b=﹣6,解得:b=4;(2)因为a=﹣2、b=4,∴﹣2a+y+4=0,即y=2x﹣4,∵x+y<2,∴x+2x﹣4<2,解得:x<2.【点评】此题考查了解二元一次方程组,以及解一元一次不等式,熟练掌握待定系数法是解本题的关键.。
人教版初中数学消元-解二元一次方程组精选课时练习(含答案)2
y
1
x 2
26.
y
7 2
参考答案
答案第 1页,总 3页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
x 9 27. 2
y 4
x 10
x 6
28.(1)
y
10
(2)
y
4
x 1
29.
y
1
x 2
x 3
30.(1)
y
2
,(2)
y
2
.
x 5
x 3
31.(1)是
y
B.①×(﹣3)+②×2,消去 x
C.①×2﹣②×3,消去 y
D.①×3﹣②×2,消去 x
2.关于 x,y
的方程组
a1x+b1y=c1 a2x+b2y=c2
的解是
x y
= =
4 1
,则关于
x,y
的方程组
a1 a2
x-1 x-1
+b1 +b2
-y -y
=c1 =c2
的解是( )
A.
x y
= =
3 1
B.
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ ”.
(2)请选择一种你喜欢的方法,完成解答.
2x 3y 7
37.解方程组:
x
3
y
8
.
5x 3y n 38.已知关于 x,y 的二元一次方程组 3x 2 y 2n 1 的解适合方程 x+y=6,求 n 的
值.
试卷第 4页,总 6页
x
x
y
y
3.2
3.2
的解为(
)
七年级下册二元一次方程加减消元法
七年级下册二元一次方程加减消元法示例文章篇一:《二元一次方程的加减消元法:像魔法一样的数学解法》嗨,小伙伴们!今天我想跟你们聊聊七年级下册的二元一次方程的加减消元法。
这可真是个超级有趣又超级有用的东西呢!我记得刚开始学二元一次方程的时候,我就像走进了一个迷宫,那些x和y就像调皮的小精灵,在方程式里跳来跳去,搞得我晕头转向。
比如说有这样两个方程:2x + 3y = 8和3x - 2y = -1。
看着这两个方程,我当时就想,这可怎么解呀?就好像面前有两团乱麻,根本不知道从哪里下手。
后来呀,老师就给我们讲了这个加减消元法。
这加减消元法就像是一个神奇的魔法棒。
它的原理呢,其实很简单。
如果我们能把两个方程中的一个未知数变得一样,然后一加或者一减,不就可以把这个未知数给消掉了吗?就好像是在玩消消乐一样。
比如说对于上面那两个方程,我们想消掉y。
那我们就要让y前面的数字变得一样。
第一个方程里y前面是3,第二个方程里y前面是- 2。
那我们就给第一个方程乘以2,给第二个方程乘以3。
这样第一个方程就变成了4x + 6y = 16,第二个方程就变成了9x - 6y = - 3。
这时候你看,y前面的数字一个是6,一个是- 6,就像两个势均力敌的小怪兽,只要把这两个方程加起来,y就被消掉啦。
加起来就得到13x = 13,那x就等于1了。
这就像找到了打开宝藏的一把小钥匙。
再比如说有另外两个方程:5x + y = 12和3x - y = 4。
这里呀,y的系数一个是1,一个是- 1,这多好呀,都不用乘什么数了,直接把这两个方程加起来就行。
就像两个小伙伴手拉手,一加起来就变成8x = 16,那x就等于2啦。
我和我的同桌还经常为了这个加减消元法争论呢。
有一次他说:“我觉得这个方法好难呀,为什么要把系数变得一样呢?”我就说:“你想啊,如果不把系数变得一样,你怎么能消掉一个未知数呢?这就好比你要把两个不同大小的苹果堆放在一起,你得先把它们切成一样大小的块儿呀。
数学:6.4用加减消元法解二元一次方程组同步练习1(北京课改版七年级下)1
用加减消元法解二元一次方程组 同步练习【主干知识】1.方程组231534m n m n +=⎧⎨+=⎩中,n 的系数的特别是_______,所以我们只要将两式________,•就可以消去未知数,化成一个一元一次方程,达到消元的目的.2.方程组532534m n m n -+=⎧⎨+=⎩中,m 的系数的特别是________,所以我们只要将两式________,就可以消去未知数m ,化成一个一元一次方程,进而求得方程组的解.3.•用加减法解二元一次方程组时,••两个方程中同一个未知数的系数必须________•或_______,•即它们的绝对值______.•当未知数的系数的符号相同时,•用_______;当未知数的系数的符号相反时,用_______.•当方程组里两个方程的同一个未知数的系数成整数倍时,可以利用________性质,将方程经过简单变形,•使这个未知数的系数的绝对值________,再用加减法消元,进一步求得方程组的解.4.方程组421721x y x y +=⎧⎨-=⎩里两个方程只要两边________,就可以消去未知数________. 5.方程组3133131x y x y +=⎧⎨-=-⎩的两个方程只要两边_______,就可以消去未知数_______.6.用加减法解二元一次方程组21349x y x y -=⎧⎨+=⎩时,你能让两个方程中x 的系数相等吗?•你的办法是_________. 7.用加减法解方程组326231x y x y +=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( )966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩A .(1)(2)B .(2)(3)C .(3)(4)D .(4)(1)8.用加减法解二元一次方程组2931x y x y +=⎧⎨-=-⎩.【点击思维】1.用加减法解二元一次方程组的关键是使方程组里两个方程中同一个未知数系数的绝对值_______,然后把方程两边分别相______或____,实现化二元为______,从而解出它的解.3.判断正误:(1)已知方程组238329x y x y +=⎧⎨+=⎩则x 、y 的值都是负值 ( ) (2)方程组373272282383x x x y x x y y -⎧=⎪-=⎧⎪⎨⎨+-=⎩⎪=⎪⎩与有相同的解 ( ) (3)方程组606030%60%10%60220x y x y x y x y +=+=⎧⎧⎨⎨+=⨯+=⎩⎩与解相同 ( ) 4.解下列方程组:(1)35132718x y x y -=⎧⎨+=⎩ 2(2)34x y y z z x +=⎧⎪+=⎨⎪+=⎩【基础能力训练】1.对于方程组2353433x yx y-=⎧⎨+=⎩而言,你能设法让两个方程中x的系数相等吗?你的方法是_______;若让两个方程中y的系数互为相反数,你的方法是________.2.用加减消元法解方程组358752x yx y-=⎧⎨+=⎩将两个方程相加,得()A.3x=8 B.7x=2 C.10x=8 D.10x=103.用加减消元法解方程组231354y xx y+=⎧⎨-=-⎩,①-②得()A.2y=1 B.5y=4 C.7y=5 D.-3y=-34.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩正确的方法是()A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-25.已知方程组5112mx n xmy n y+==⎧⎧⎨⎨-==⎩⎩的解是,则m=_______,n=_______.6.在方程组341236x yx y+=⎧⎨-=⎩中,若要消x项,则①式乘以_______得______③;•②式可乘以______得________④;然后再③④两式_______即可.7.在341236x yx y+=⎧⎨-=⎩中,①×③得________③;②×4得_____④,这种变形主要是消________.8.•用加减法解0.70.31725x yx y+=⎧⎨-+=⎩时,•将方程①两边乘以________,•再把得到的方程与②相________,可以比较简便地消去未知数________.9.方程组356234x yx y-=⎧⎨-=⎩,②×3-①×2得()A.-3y=2 B.4y+1=0 C.y=0 D.7y=-810.已知23x yx y-=⎧⎨+=⎩,则xy的值是()A.2 B.1 C.-1 D.211.方程组1325y xx y+=⎧⎨+=⎩的解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩12.已知2441x xy y=-=⎧⎧⎨⎨==⎩⎩和都是方程y=ax+b的解,则a和b的值是()A.1111...2222 5311 a a a aB C Db b b b⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎩⎩⎩⎩13.用合适的方法解下列方程组:(1)4022356515(2)(3) 322242133 y x x y x yx y x y x y=-+=+=⎧⎧⎧⎨⎨⎨+=-=-=-⎩⎩⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x y x y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩ 349323(4)4(5)12105353217x z x y x y y x x y z -=-⎧+--⎪===-⎨⎪++=⎩15.如果二元一次方程组1532234ax by x ax by y -==⎧⎧⎨⎨+==⎩⎩的解是,则a-b=______.【综合创新训练】16.在方程y=kx+b 中,当x=2时,y=2;当x=-4时,y=-16,求当x=1时,y=_______.17.已知a 、b 都是有理数,观察下表中的运算,在空格处填上数.a 、b 的运算 a+b a-b 1a b+ 运算的结果 -49 -9718.若方程组431(1)3x y ax a y +=⎧⎨+-=⎩的解与x 与y 相等,则a 的值等于( ) A .4 B .10 C .11 D .1219.已知方程组22331x y k x y k +=⎧⎨+=-⎩的解x 和y 的和等于6,k=_______.20.甲、乙两位同学一起解方程组2,32ax by cx y +=⎧⎨-=-⎩,甲正确地解得11x y =⎧⎨=-⎩,乙仅因抄错了题中的c ,解得26x y =⎧⎨=-⎩,求原方程组中a 、b 、c 的值.21.已知232x y a x y a+=⎧⎨-=⎩,求x y 的值.【探究学习】皇帝巧算牛马价有一年,康熙皇帝微服南巡,在扬州城一个集市上看见两个公差正和几个卖牛马的伙计争执,只听伙计苦苦央求两公差:“这位大爷,按我们讲好的价钱,您买4•匹马,6头牛,共48两银子;这位大爷,您买3匹、5头牛,共38两银子,加起来,•一共是86两银子,可是你们只给了80两,还少6两,我们可亏不起这么多呀!•”而两位公差不仅不补给银子,反而瞪眼呵斥,强赶牛、马要走.正在这时,身着便服的康熙,走到公差面前说:“买卖公平,这是天经地义的事,一匹马,一头牛都有个价,要想买牛马,该付多少银子,就付多少银子,怎么能仗势欺人!”甲公差见此人竟敢当众管教他们,大怒:“你找死呀!你知道一匹马、一头牛是什么价?”康熙微微一笑,略略思索了一会儿,便说:“我事先不知道,但可以算出来,马每匹6两,牛每头4两!”伙计们和围观的人一听无不惊奇,而公差去恼羞成怒,上前就要抓康熙,此时,康熙从口袋里掏出玉玺,公差一看,方知皇帝驾到,吓得魂飞魄散,连忙跪下求饶. 原来,康熙是一位精通数学的皇帝,他当时是用算术的方法求出马和牛的价格的.同学们,你不妨用二元一次方程算一算,看与康熙皇帝求得的结果一样吗?。
初一数学下册知识点《解二元一次方程组--加减消元法》150例题及解析
初一数学下册知识点《解二元一次方程组--加减消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共45小题,共135.0分)1.已知等腰三角形的两边长分別为a、b,且a、b满足,则此等腰三角形的周长为( )A. 7或8B. 6或10C. 6或7D. 7或10【答案】A【解析】【分析】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选A.2.如果关于x,y的二元一次方程组的解x,y满足x-y=7,那么k的值是()A. -2B. 8C.D. -8【答案】A【解析】【分析】此题考查了二元一次方程组的解法,二元一次方程组的解,以及二元一次方程的解,熟练掌握二元一次方程组的解法是解本题的关键.把k看作已知数求出方程组的解,代入已知方程求出k的值即可.【解答】解:,①×3-②得:y=2k+1,把y=2k+1代入①得:x=-3k-2,代入x-y=7得:-3k-2-2k-1=7,解得:k=-2,故选A.3.用加减法解方程组时,若要求消去y,则应()A. ①×3+②×2B. ①×3-②×2C. ①×5+②×3D. ①×5-②×3【答案】C【解析】解:用加减法解方程组时,若要求消去y,则应①×5+②×3,故选:C.利用加减消元法消去y即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.已知方程组,与的值之和等于2,则的值为()A. 4B. -4C. 3D. -3【答案】A【解析】【分析】此题考查学生灵活利用消元法解方程组的能力,是一道基础题.此题的关键在于把k看作常数解方程组.把方程组中的k看作常数,利用加减消元法,用含k的式子分别表示出x与y,然后根据x与y的值之和为2,列出关于k的方程,求出方程的解即可得到k 的值.【解答】解:,①×2-②×3得:y=2(k+2)-3k=-k+4,把y=-k+4代入②得:x=2k-6,又x与y的值之和等于2,所以x+y=-k+4+2k-6=2,解得:k=4,故选A.5.用加减法解方程组时,下列四种变形中正确的是()A. B. C. D.【答案】C【解析】解:用加减法解方程组时,下列四种变形中正确的是,故选:C.方程组中第一个方程左右两边乘以2,第二个方程左右两边乘以3,将两方程y系数化为互为相反数,利用加减法求解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减6.方程组的解为()A. B. C. D.【答案】D【解析】解:,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为;故选:D.方程组利用加减消元法求出解即可;此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.7.利用加减消元法解方程组,下列做法正确的是()A. 要消去y,可以将①×5+②×2B. 要消去x,可以将①×3+②×(-5)C. 要消去y,可以将①×5+②×3D. 要消去x,可以将①×(-5)+②×2【答案】D【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.加减消元法的条件是同一个未知数的系数要相同或互为相反数,相同用减法,相反用加法,解答此题根据加减消元法解答即可.【解答】解:利用加减消元法解方程组,要消去y,可以将①×3+②×5;要消去x,可以将①×(-5)+②×2,故选D.8.已知a,b满足方程组,则a+b的值为()A. -4B. 4C. -2D. 2【答案】B【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:解法1:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,解法2:①+②得:4a+4b=16,则a+b=4,故选:B.9.若方程mx+ny=6的两个解是,,则m,n的值为()A. 4,2B. 2,4C. -4,-2D. -2,-4【答案】A【解析】【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.将x与y的两对值代入方程计算即可求出m与n的值.【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.10.已知方程组和有相同的解,则的值为( ).A. 15B. 14C. 12D. 10【答案】D【解析】【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将第一个方程组中第一个方程与第二个方程组的第二个方程联立求出x与y的值,代入剩下的两方程计算即可求出a与b的值,再代入a-2b求值.【解答】解:根据题意得:,①×2+②得11x=11,x=1,把x=1代入①得5+y=3,y=-2,把x=1,y=-2代入,得,a-2b=14-4=10,故选D.11.若满足方程组的x与y互为相反数,则m的值为()A. 1B. -1C. 11D. -11【答案】C【解析】解:由题意得:y=-x,代入方程组得:,消去x得:=,即3m+9=4m-2,解得:m=11,故选:C.由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.已知与都是方程y=kx+b的解,则k与b的值为()A. ,B. ,C. ,D. ,【答案】A【解析】【分析】此题主要考查利用加减消元法解方程组的方法,关键是把x、y的值代入原方程中,得出关于k和b的方程组.将与代入方程y=kx+b,得到关于k和b的二元一次方程组,再求出k和b的值.【解答】解:把与代入方程y=kx+b,得到关于k和b的二元一次方程组,解这个方程组,得.故选A.13.已知方程组和有相同的解,则a-2b的值为().A. 15B. 14C. 12D. 10【答案】D【解析】【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将第一个方程组中第一个方程与第二个方程组的第二个方程联立求出x与y的值,代入剩下的两方程计算即可求出a与b的值,再代入求值.【解答】解:根据题意得:,①×2+②得11x=11,x=1,把x=1代入①得5+y=3,y=-2,把x=1,y=-2代入得,a-2b=14-4=10.故选D.14.如果2x+3y-z=0,且x-2y+z=0,那么的值为()A. -B. -C.D. -3【答案】A【解析】【分析】本题考查用加减法解二元一次方程组,关键是掌握两个方程中含有三个未知数,为不定方程组,只能用一个未知数来表示另外两个未知数,然后化简即可.根据原题中虽然有三个未知数,但是可把2x+3y-z=0和x-2y+z=0组成方程组,把其中的z当成已知量,解关于x,y的方程组,得x、y用含有z的代数式来表示,即可求出的值.【解答】解:,①×2+②×3得7x+z=0,即z=-7x,所以==-.故选A.15.若关于x,y的方程组的解满足x-y>-,则m的最小整数解为()A. -3B. -2C. -1D. 0【答案】C【解析】解:,①-②得:x-y=3m+2,∵关于x,y的方程组的解满足x-y>-,∴3m+2>-,解得:m>-,∴m的最小整数解为-1,故选:C.方程组中的两个方程相减得出x-y=3m+2,根据已知得出不等式,求出不等式的解集即可.本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整数解等知识点,能得出关于m的不等式是解此题的关键.16.二元一次方程组的解是()A. B. C. D.【答案】D【解析】解:,①+②得,2x=6,解得,x=3,把x=3代入①得,y=-1,则方程组的解为:,故选:D.利用加减法解出二元一次方程组即可.本题考查的是二元一次方程组的解法,掌握用加减法解二元一次方程组的一般步骤是解题的关键.17.方程组的解为,则被遮盖的前后两个数分别为()A. 1、2B. 1、5C. 5、1D. 2、4【答案】C【解析】解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.根据方程组的解满足方程组中的每个方程,代入求值可求出被遮盖的前后两个数.本题考查了解二元一次方程组,利用方程组的解满足每个方程即可.18.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是()A. 1B. 2C. 3D. 4【答案】B【解析】解:①-②,得3y=k+7,∴y=;①+2×②,得3x=13k-8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.解方程组,先用含k的代数式表示出x、y,根据x+y=9,得到关于k的一元一次方程,求解即可.本题考查了二元一次方程组的解法,解决本题的关键是用含k的代数式表示出方程组中的x、y.19.若方程组中x与y互为相反数,则m的值是()A. 1B. -1C. -36D. 36【答案】C【解析】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故选:C.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.方程组的解是()A. B. C. D.【答案】B【解析】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选:B.方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.21.若3x2a+b y2与-4x3y3a-b是同类项,则a-b的值是()A. 0B. 1C. 2D. 3【答案】A【解析】解:∵3x2a+b y2与-4x3y3a-b是同类项,∴,①+②得:5a=5,即a=1,把a=1代入①得:b=1,则a-b=1-1=0,故选:A.利用同类项的定义列出方程组,求出方程组的解得到a与b的值,即可确定出a-b的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.二元一次方程组的解是()A. B. C. D.【答案】B【解析】解:,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为,故选:B.方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.已知方程组,x与y的值之和等于2,则k的值为()A. -2B. -C. 2D.【答案】D【解析】【分析】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:8(x+y)=4k+2,即x+y=,代入x+y=2得:=2,解得:k=,故选:D.24.若方程组的解中x与y相等,则m的值为()A. 10B. -10C. 20D. 3【答案】A【解析】解:由题意得,解得,把x=,y=代入(m-1)x+(m+1)y=4得,(m-1)+(m+1)=4,解得m=10,故选:A.将2x+3y=1与x=y组成方程组,求出x、y的值,再代入(m-1)x+(m+1)y=4即可求出m的值.本题考查了二元一次方程组的解,求出x与y的值是解题的关键.25.在方程组中,代入消元可得()A. 3y-1-y=7B. y-1-y=7C. 3y-3=7D. 3y-3-y=7【答案】D【解析】解:将x=y-1代入3x-y=7,得:3(y-1)-y=7,去括号,得:3y-3-y=7,故选:D.将第2个方程代入第1个方程,再去括号即可得.本题考查了解二元一次方程的代入法.代入法解二元一次方程组的一般步骤:(1)变形组中的一个方程,用含一个未知数的代数式表示出另一个未知数;(2)代入另一个方程;(3)求解方程得未知数的值;(4)把该值代入变形后的方程,求出另一个未知数的值.26.解方程组时,把①代入②,得()A. 2(3y-2)-5x=10B. 2y-(3y-2)=10C. (3y-2)-5x=10D. 2y-5(3y-2)=10【答案】D【解析】解:把①代入②得:2y-5(3y-2)=10,故选:D.根据二元一次方程组解法中的代入消元法求解.此题考查了解二元一次方程组,利用了消元的思想.27.方程3x+y=6的一个解与方程组的解相同,则k的值为()A. B. C. 2 D. -2【答案】A【解析】【分析】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.将k看做已知数求出方程组的解得到x与y,代入已知方程计算即可求出k的值.【解答】解:,①+②×2得,,代入①得,y=-,∴,代入方程3x+y=6,∴,解得,k=,故选A.28.如果方程组的解也是方程3x-my=8的一个解,则m的值是()A. -2B. -1C. 1D. 2【答案】D【解析】【分析】此题考查了二元一次方程组的解和用加减法解二元一次方程组,方程组的解即为能使方程组中两方程成立的未知数的值.求出已知方程组的解得到x与y的值,代入方程3x-my=8中,即可求出m的值.【解答】解:,①+②×4得:11x=22,解得:x=2,将x=2代入②得:4-y=5,解得:y=-1,∴方程组的解为,将x=2,y=-1代入3x-my=8中得:6+m=8,解得m=2.故选D.29.已知方程组,则x-y的值是()A. 2B. -2C. 0D. -1【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组两方程相减即可求出所求.【解答】解:,②-①得:x-y=2,故选:A.30.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A. 9B. 1,9C. 0,1,81D. 1,81【答案】A【解析】【分析】本题考查了方程组的解,正确理解3+m是10和15-m的公约数是关键.首先解方程组求得方程组的解是:,则3+m是12和15-m的公约数,且是正整数,据此即可求得m的值,求得代数式的值.【解答】解:两式相加得:(3+m)x=12,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是12和15-m的公约数.又∵m是正整数,∴m+3=4或m+3=6或m+3=12,解得m=1或m=3或m=9,当m=1时,y=,不是整数,不符合题意;当m=3时,y=2,是整数,符合题意;当m=9时,y=,不是整数,不符合题意,故m=3则m2=9.故选A.31.已知方程组和有相同的解,则a,b的值为()A. a=2,b=3B. a=-11,b=7C. a=3,b=2D. a=7,b=-11【答案】B【解析】【分析】此题考查了二元一次方程组的解,二元一次方程组的两个方程的公共解叫做二元一次方程组的解.二元一次方程组的解必须同时满足方程组中的两个方程.将两方程组中的第一个方程联立,求出x与y的值,代入两方程组中的第二个方程中得到关于a与b的方程组,求出方程组的解即可得到a与b的值.【解答】解:先解方程组,解得:,将x=2、y=3代入另两个方程,得方程组:,解得:.故选B.32.若满足方程组的x与y互为相反数,则m的值为()A. 1B. -1C. 11D. -11【答案】C【解析】【分析】本题考查了含参二元一次方程组的解法,用含m的代数式表示出x和y的值,列出关于m的一元一次方程是解答本题的关键.解方程组,用含m的代数式表示出x和y的值,再把求得的x和y的值代入到x+y=0,得到关于m的一元一次方程,解这个关于m的方程即可求出m的值. 【解答】解:方程组,①+②得,5x=3m+2,∴,①×2-②×5得,5y=-4m+9,∴,∵x与y互为相反数,∴,解之得,m=11.故选C.33.已知5|x+y-3|+(x-2y)2=0,则( )A. B. C.【答案】C【解析】【分析】本题考查绝对值的概念和绝对值及偶次方的非负数性,根据题意最后得到一个二元一次方程组,解方程组得到x,y的值,代入计算即可得到答案.【解答】解:已知式中的|x+y-3|及(x-2y)2都是非负数,若两个非负数的和是0,则每个非负数都是0,即可求得x,y的值.根据题意,得,解得,故选C.34.若方程组的解满足x+y=0,则k的值为()A. -1B. 1C. 0D. 不能确定【答案】B【解析】【分析】本题主要考查二元一次方程组的解法及一元一次方程组的解法,可先利用加减消元法解二元一次方程组求解x,y,再根据x+y=0可得到关于k的一元一次方程,解方程即可求解k值.【解答】解:①-②×2得-3y=-3k-3,解得y=k+1,将y=k+1代入②得x+2(k+1)=2,解得x=-2k,∵x+y=0,∴-2k+k+1=0,解得k=1,故选B.35.关于x的方程2x-4=3m和x+2=m有相同的解,则m的值是()A. 10B. -8C. -10D. 8【答案】B【解析】【分析】本题考查了同解方程,联立两个同解方程得出方程组是解题关键.根据同解方程的解相等,联立同解方程,可得方程组,根据加减消元法,可得答案.【解答】解:联立2x-4=3m和x+2=m,得,②×2-①,得-m=8,解得m=-8.36.由方程组,可得出与的关系是()A. B. C.【答案】C【解析】【分析】本题考查了加减消元法解二元一次方程组的知识点,解题关键点是熟练掌握加减消元法解二元一次方程组的计算步骤,比较简单.把两式相加即可得到关于x、y的关系式,即可解答.【解答】解:,①+②得,x+y=7.故选C.37.若关于x、y的方程组的解互为相反数,则m的值为()A. -7B. 10C. -10D. -12【答案】C【解析】解;解得,x、y互为相反数,∴=0,m=-10,故选:C.根据解方程组的步骤,可得方程组的解,根据解方程组,可得方程组的解,根据方程组的解互为相反数,可得一元一次方程,根据解一元一次方程,可得答案.本题考查了二元一次方程组,先求出方程组的解,再求出m的值.38.如果和互为相反数,那么x、y的值为()A. x=3,y=2B. x=2,y=3C. x=0,y=5D. x=5,y=0【答案】D【解析】【分析】本题考查了非负数的性质和解二元一次方程组.根据互为相反数的两个数的和为0,可得二元一次方程组,解二元一次方程组可得答案.【解答】解:(x+y-5)2与|3y-2x+10|互为相反数,即(x+y-5)2+|3y-2x+10|=0,∴由得:y=0,将y=0代入(1)得:x=5,所以方程组的解为.故选D.39.已知方程组,那么x+y的值为( )A. -1B. 1C. 0D. 5【答案】D【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组两方程相加即可求出所求.【解答】解:,①+②得:3x+3y=15,则x+y=5,故选D.40.利用加减消元法解方程组下列做法正确的是A. 要消去y,可以将①×2+②×3B. 要消去x,可以将①×3+②×(-5)C. 要消去y,可以将①×5+②×3D. 要消去x,可以将①×(-5)+②×3【答案】D【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组中x与y的系数特点,利用加减消元法判断即可.【解答】解:利用加减消元法解方程组,做法正确的是要消去x,可以将①×(-5)+②×3,故选D.41.若方程组与方程组有相同的解,则a、b的值分别为()A. 1,2B. 1,0C. ,D. ,【答案】A【解析】【分析】此题考查了同解方程组,先根据已知方程组求出未知数的值,再把未知数的值代入另一个方程组中得到新的方程组,解此方程组求得要求的字母的值是解得此类题的常用方法. 根据两个方程组有相同的解,即有一对x和y的值同时满足四个方程,所以可以先求出第二个方程组的解,再把求得的解代入第一个方程组中,得到一个新的关于a、b的二元一次方程组,再求出a、b的值即可.【解答】解:先解得:,把代入方程组得:,解得:;故选A.42.二元一次方程组的解是()A. B. C. D.【答案】A【解析】【分析】本题主要考查了二元一次方程组的解法,二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.本题考查的是二元一次方程组的解法.此题用加减法或代入法解,也可以用检验法来解,以加减法最简单.【解答】解:由①+②,得2x=-2,解得:x=-1;把x=-1代入②,得y=3.即原方程组解为.故选A.43.已知方程组的解也是方程的解,则k的值是A. B. C. D.【答案】A【解析】【分析】解答此题需要充分理解二元一次方程的概念,灵活组合方程,以使计算简便,根据二元一次方程组的概念,先解方程组,得到x,y的值后,代入4x-3y+k=0求得k的值.【解答】解:解方程组,得:,把x,y代入4x-3y+k=0得:-40+45+k=0解得:k=-5.故选:A.44.已知方程组,则x+y的值为()A. ﹣1B. 0C. 2D. 3【答案】D本题考查了解二元一次方程组,注意简便方法的运用,熟练掌握.把①和②相加即可得出3x+3y的值,再除以3即可.【解答】解:①+②得,3x+3y=9,故x+y=3,故选D.45.若与都是方程y =kx+b的解,则k与b的值分别为()A. K=,b=-4B. K=-,b=4C. K=,b=4D. K=-,b=-4【答案】A【解析】【分析】此题主要考查了二元一次方程的解,以及加减消元法解二元一次方程组,要熟练掌握,将题给两组解代入方程中,可得关于k、b的二元一次方程组,采用代入消元法或者加减消元法解之即可.【解答】解:∵与与都是方程y=kx+b的解,∴∴故选A.二、填空题(本大题共22小题,共66.0分)46.对于实数x,y,定义新运算x※y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3※5=15,4※7=28,则5※9=______.【答案】41【解析】【分析】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.已知等式利用题中的新定义化简求出a与b的值,代入原式计算即可得到结果.【解答】解:根据题中的新定义得:,①×4-②×3得:-b=-25,即b=25,把b=25代入①得:a=-37,则原式=-37×5+25×9+1=41.故答案为:41.47.若二元一次方程组和的解相同,则x= ______ ,y=______ .【答案】3;-2此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,联立两方程组中不含a与b的方程组成方程组,求出x与y的值即可.【解答】解:联立得:,①+②×3得:5x=15,即x=3,把x=3代入②得:y=-2,故答案为3;-2.48.关于x,y的二元一次方程组的解是正整数,则整数p的值为____________.【答案】5或7【解析】解:,②×3得:3x+3y=3p,③,①-③得:2x=23-3p,x=,②×5得:5x+5y=5p,④,④-①得:2y=5p-23,y=,∵x,y是正整数,∴,解得:<p<,∵p为整数,∴p=5,6,7,又∵x,y是正整数,∴p=6时,不合题意舍去,∴p=5或7,故答案为:5或7.49.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是______.【答案】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解即可.【解答】解:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得.故答案为.50.已知两方程组与有公共解,则的值为_____【答案】-1【解析】【分析】此题考查了二元一次方程组的解和二元一次方程组的解法的知识点,方程组的解即为能使方程组中两方程都成立的未知数的值.联立两方程组中不含a与b的方程组成方程组,求出x与y的值,代入剩下两个方程求出a与b的值,代入原式计算即可得到结果.【解答】解:联立得:,由①+②得:7x=14,即x=2,把x=2代入①得:y=3,把代入得:,解得:,把代入,得:原式=.故答案为-1.51.方程组的解是______.【答案】【解析】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.根据加减消元法,可得答案.本题考查了解二元一次方程组,利用加减消元法是解题关键.52.已知|x+y-3|+(x-2y)2=0,则x-y=______.【答案】1【解析】解:∵|x+y-3|+(x-2y)2=0,∴,①-②,得:3y=3,解得y=1,将y=1代入①,得:x+1=3,解得x=2,则x-y=2-1=1,故答案为:1.根据非负数的性质得出,再利用加减消元法解之可得x和y的值,代入计算可得.此题考查了非负数的性质和解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.53.已知m,n满足方程组则m+n=________,_____.【答案】1;-【解析】【分析】本题考查了加减消元法解二元一次方程组,可将两式相加求解m+n,再将两式相减即可求解m-n的值.【解答】解:,①+②得201m+201n=201,∴m+n=1;①-②得5m-5n=-9,∴m-n=,故答案为1;.54.若+(x+2y-3)2=0,则x+y的值为______.【答案】-1【解析】解:∵+(x+2y-3)2=0,∴,①+②,得:3x+3y=-3,则x+y=-1,故答案为:-1.根据非负数性质得出关于x、y的方程组,将两方程相加后两边都除以3即可得.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.55.若,则x-y=______.【答案】3【解析】解:,①+②得:4x-4y=12,方程两边同时除以4得:x-y=3,故答案为:3.利用加减消元法解之即可.本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.56.若|x+3y-5|与(3x-y-3)2互为相反数,则2x+y=______.【答案】4【解析】解:由题意知|x+3y-5|+(3x-y-3)2=0,则,①+②,得:4x+2y=8,所以2x+y=4,故答案为:4.先根据相反数的性质得出|x+3y-5|+(3x-y-3)2=0,再由非负数的性质得出关于x、y的方程组,将两个方程相加后两边除以2即可得.本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键,本题注意利用系数的特点不需要求出x、y的值.57.已知|5x-y+9|与|3x+y-1|互为相反数,则x+y=______.【答案】3【解析】【分析】此题考查了绝对值的非负性,相反数的概念,代数式求值以及解二元一次方程组,解题关键是掌握非负数的性质.解题时,利用互为相反数两数之和为0以及非负数的性质列出方程组,求出方程组的解得到x与y的值,即可求出x+y的值.【解答】解:根据题意得:|5x-y+9|+|3x+y-1|=0,可得,①+②得:8x=-8,解得:x=-1,把x=-1代入①得:y=4,则x+y=-1+4=3,故答案为3.58.对于任意的x、y,若存在a、b使得8x+y(a﹣2b)=ax﹣2b(x﹣2y)恒成立,则a+b=____.【答案】14【解析】解:∵8x+y(a-2b)=ax-2b(x-2y)恒成立,∴8x+y(a-2b)=(a-2b)x+4by,∴a-2b=8,a-2b=4b解得:a=12,b=2,a+b=12+2=14.故答案为:14将已知等式右边展开,再比较等式左右两边对应项系数即可.本题考查了单项式乘多项式,等式恒成立,等式左右两边对应项系数相等是解题的关键.59.若关于x,y的二元一次方程组的解满足,则k的值是_____;【答案】2【解析】【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.方程组中两方程相加表示出x+y,代入x+y=1求出k的值即可.【解答】解:,①+②得:3(x+y)=3k-3,解得:x+y=k-1,代入x+y=1中得:k-1=1,解得:k=2,故答案为2.60.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为________【答案】4【解析】【分析】本题考查了二元一次方程组的解法,涉及到因式分解相关知识点,解二元一次方程组有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.利用加减消元法易得x、y的解,由x、y均为整数可解得m的值.【解答】解:关于x、y的方程组:①+②得:(3+m)x=10,即把③代入②得:∵方程的解x、y均为整数,∴3+m既能整除10也能整除15,即3+m=5,解得m=2,∴,故答案为4.61.已知x、y满足方程组:,则(x+y)x﹣y的值为.【答案】【解析】【分析】本题主要考查了解二元一次方程组的知识.根据题意,通过对方程组的两方程相加减求出x+y与x-y的值,代入原式计算即可得出结果.【解答】解:由题意得,①+②得:7(x+y)=21,即x+y=3,①-②得:-3(x-y)=3,即x-y=-1,则原式==.故答案为.62.在关于x,y的方程组:①;②中,若方程组①的解是,则方程组②的解是______.【答案】【解析】解:∵方程组①的解是,∴解得,∴方程组②为,整理,可得,(1)×4-(2),可得35x=68,解得x=,把x=代入(2),解得y=,∴方程组②的解是.故答案为:.首先根据:方程组①的解是,可得:,据此求出a、b的值各是多少;然后把求出的a、b的值代入方程组②,再应用加减消元法,求出方程组②的解是多少即可.此题主要考查了二元一次方程组的解,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.63.关于x,y的二元一次方程组,且x-y=18,则实数a的值为______.【答案】-90【解析】解:,①+②×2得:7x=8a-8解得:x=,①×3-②得:7y=10a+46,解得:y=,代入x-y=18得:-=18,解得a=-90,故答案为-90.方程组把a看做已知数表示出x与y,代入已知等式计算即可求出a的值.本题考查解二元一次方程组,解题的关键是熟练掌握基本知识,属于中考常考题型.64.已知,那么x+y的值为______.【答案】3【解析】【分析】本题考查了解二元一次方程组及求代数式的值,解题关键是掌握所求代数式与方程组的关系.把两个方程直接相加即可得出x+y的值.【解答】解:∵,∴①+②得,3x+3y=9,∴x+y=3.。
[K12学习]2019年春七年级数学下册第2章二元一次方程2.3第2课时加减消元法练习新版浙教版
2.3 解二元一次方程组第2课时 加减消元法知识点 加减消元法解二元一次方程组对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.用加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化成相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程(注意:一般在消去一个字母时,考虑用另一个字母系数大的式子减系数小的式子);(3)解这个一元一次方程,得到一个未知数的值;(4)将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值. (5)写出方程组的解.解方程组:⎩⎪⎨⎪⎧3x +2y =21,3x -4y =3.一 加减消元法解二元一次方程组教材例2变式题用加减法解方程组:⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17.[归纳总结] 运用加减消元法解方程组时,首先要观察两个方程中同一个未知数的系数,若系数相等,则将这两个方程相减;若系数互为相反数,则将这两个方程相加,就可以消去该未知数.若系数既不相等也不互为相反数,我们应该设法使用等式的性质,将同一个未知数的系数化为相等或互为相反数.注意:(1)把某个方程乘一个数时,方程两边的每一项都要和这个数相乘;(2)把两个方程相加减时,一定要把两个方程两边分别相加减.二 灵活选择适当的方法解二元一次方程组教材补充题用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧6s +3t =13,3s -t =5;(2)⎩⎪⎨⎪⎧5x -6y =17,4x +3y =28.[归纳总结] 二元一次方程组解法的选取主要取决于未知数的系数,当方程组中某未知数的系数较简单,如系数为1或-1时,常选用代入消元法;当方程组中某未知数的系数相等或互为相反数或成倍数关系时,常选用加减消元法.[反思] 请观察下面解方程组⎩⎪⎨⎪⎧4x +3y =6,2x -y =4的过程,并判断该过程是否正确,若不正确,请写出正确的解法.解:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得y =-2.把y =-2代入②,得2x -(-2)=4,x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =-2.一、选择题1.将方程-12x +y =1中含x 的项的系数化为3,则以下结果中,正确的是( )A .3x +y =1B .3x +6y =1C .3x -6y =1D .3x -6y =-62.方程组⎩⎪⎨⎪⎧x +y =5,①2x +y =10,②由②-①得到的正确的方程是( )A .3x =10B .x =5C .3x =-5D .x =-53.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11时,有下列四种变形,其中正确的是( )A .⎩⎪⎨⎪⎧4x +6y =3,9x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =9,6x -2y =22C .⎩⎪⎨⎪⎧4x +6y =6,9x -6y =33D .⎩⎪⎨⎪⎧6x +9y =3,6x -4y =11 4.方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 后,得到的方程是( )A .y =4B .-7y =14C .7y =14D .y =145.2015·河北利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解为( )A .⎩⎪⎨⎪⎧x =-1,y =2B .⎩⎪⎨⎪⎧x =-2,y =3 C .⎩⎪⎨⎪⎧x =2,y =1 D .⎩⎪⎨⎪⎧x =2,y =-17.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .38.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B .34 C .43D .-43二、填空题9.用加减法解二元一次方程组⎩⎪⎨⎪⎧11x -3y =4,①13x -6y =-5,②将方程①两边乘________,再把得到的方程与方程②相__________,可以消去未知数________.10.2016·温州方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.11.已知二元一次方程组⎩⎪⎨⎪⎧3x +4y =28,①4x +3y =7,②不解方程组,直接求x +y 与x -y 的值,则x+y =________,x -y =________.12.2015·咸宁如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为________. 13.已知方程3x2m +5n +9+4y4m -2n -7=2是关于x ,y 的二元一次方程,则m =________,n=________.三、解答题14.用加减法解方程组:(1)⎩⎪⎨⎪⎧3x -y =2,3x +2y =11;(2)⎩⎪⎨⎪⎧x 2-y +13=1,3x +2y =10.15.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =1,3x -2y =11; (2)⎩⎪⎨⎪⎧5x +3y =6,5x -2y =-4;(3)⎩⎪⎨⎪⎧4x -3y =39,7x +4y =-15; (4)⎩⎪⎨⎪⎧2(2x +5y )=3.6,5(3x +2y )=8.16.如果二元一次方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a 的解是二元一次方程3x -5y -38=0的一个解,请你求出a 的值.17.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,3x -5y =16和方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8的解相同,求代数式3a +7b 的值.1.[技巧性题目] 在解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一位同学把c 看错而得到⎩⎪⎨⎪⎧x =-2,y =2,正确的解应是⎩⎪⎨⎪⎧x =3,y =-2,求a ,b ,c 的值.2.[技巧性题目] 如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎪⎨⎪⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是什么?详解详析【预习效果检测】[解析] 解方程组⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②两个方程中x 的系数相等,因此,可直接由①-②消去未知数x .解:⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②①-②,得6y =18,解得y =3. 把y =3代入方程②,得 3x -4×3=3,解得x =5.所以原方程组的解是⎩⎪⎨⎪⎧x =5,y =3.【重难互动探究】例1 [解析] 方程组中两个方程的同一未知数的系数均不成倍数关系,则需选定一个系数相对简单的未知数,将两个方程通过变形使其绝对值相等,再进行消元.解:⎩⎪⎨⎪⎧2x +3y =12,①3x +4y =17,②①×3,得6x +9y =36,③ ②×2,得6x +8y =34,④③-④,得y =2,把y =2代入①,得x =3.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =2.例2 [解析] 用适当的方法解方程组要求同学们能认真观察方程组中各项系数的特征,根据代入消元法和加减消元法的解题思路选择简捷的方法求解.故(1)可选择代入法求解,(2)可选择加减法求解.解:(1)⎩⎪⎨⎪⎧6s +3t =13,①3s -t =5,②由②,得t =3s -5,③把③代入①,得6s +3(3s -5)=13, 解得s =2815.把s =2815代入③,得t =35.所以原方程组的解为⎩⎪⎨⎪⎧s =2815,t =35.(2)⎩⎪⎨⎪⎧5x -6y =17,①4x +3y =28,② ②×2,得8x +6y =56,③ ①+③,得13x =73,所以x =7313.把x =7313代入②,得4×7313+3y =28,所以y =2413. 所以原方程组的解为⎩⎪⎨⎪⎧x =7313,y =2413.【课堂总结反思】[反思] 该过程不正确.正确的解法如下:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得5y =-2,y =-25.把y =-25代入②,得2x -⎝ ⎛⎭⎪⎫-25=4,x =95. ∴原方程组的解是⎩⎪⎨⎪⎧x =95,y =-25.【作业高效训练】[课堂达标] 1.D 2.B3.[解析] C 根据等式的基本性质进行检验,发现正确答案为C . 4.B 5.D 6.D7.[解析] D 两式相加,可得3x +3y =9,故x +y =3.8.[解析] B 解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k. 把x ,y 的值代入二元一次方程2x +3y =6,得2×7k +3×(-2k)=6,解得k =34.9.[答案] 2 减 y[解析] ①×2,得22x -6y =8,③ ③-②可消去y.10.[答案] ⎩⎪⎨⎪⎧x =3,y =111.[答案] 5 -21[解析] ①+②,得7x +7y =35,即x +y =5.②-①,得x -y =-21. 12.[答案] -5413.[答案] 1 -2[解析] 根据二元一次方程的定义可知,x ,y 的次数都是1,所以得方程组:⎩⎪⎨⎪⎧2m +5n +9=1,4m -2n -7=1, 解方程组,得⎩⎪⎨⎪⎧m =1,n =-2.14.[解析] 方程组(2)较复杂,可先通过化简,将其变形为二元一次方程组的一般形式后再消元.解:(1)⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11,②②-①,得3y =9,解得y =3.把y =3代入①,得3x -3=2,解得x =53.所以原方程组的解是⎩⎪⎨⎪⎧x =53,y =3.(2)原方程组可化简为⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10,②①+②,得6x =18,解得x =3.将x =3代入①,得 9-2y =8,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12.15.[解析] 认真观察每个方程组,发现方程组(1)用加减法求解比较简便;(2)未知数x的系数相同,可通过相减消去“x”,用加减法比较简便;(3)是一个较复杂的方程组,用加减法求解较合适;(4)需先将此方程组化简,再确定求解方法.解:(1)⎩⎪⎨⎪⎧x +2y =1,①3x -2y =11,②①+②,得4x =12,解得x =3.把x =3代入①,得3+2y =1, 解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-1.(2)⎩⎪⎨⎪⎧5x +3y =6,①5x -2y =-4,② ①-②,得5y =10,解得y =2. 把y =2代入①,得5x +3×2=6, 解得x =0.所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =2.(3)⎩⎪⎨⎪⎧4x -3y =39,①7x +4y =-15,② ①×4,得16x -12y =156,③ ②×3,得21x +12y =-45,④ ③+④,得37x =111, 解得x =3.把x =3代入①,得4×3-3y =39, 解得y =-9.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-9.(4)将原方程组化简为⎩⎪⎨⎪⎧4x +10y =3.6,①15x +10y =8,②②-①,得11x =4.4,解得x =0.4.把x =0.4代入①,得1.6+10y =3.6, 解得y =0.2.所以原方程组的解为⎩⎪⎨⎪⎧x =0.4,y =0.2.16.[解析] 用方程组中的a 分别表示x ,y ,再把x ,y 的值代入3x -5y -38=0,即可求得a 的值.解:解方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a ,得⎩⎪⎨⎪⎧x =3a ,y =-2a. 把⎩⎪⎨⎪⎧x =3a ,y =-2a代入方程3x -5y -38=0, 得3×3a-5×(-2a)-38=0, 解得a =2.17.解:⎩⎪⎨⎪⎧2x +5y =-6,①3x -5y =16,②①+②,得5x =10,x =2.把x =2代入①,得2×2+5y =-6,y =-2.将⎩⎪⎨⎪⎧x =2,y =-2代入方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8,得 ⎩⎪⎨⎪⎧2a +2b =-4,2b -2a =-8, 解这个方程组,得⎩⎪⎨⎪⎧a =1,b =-3,所以3a +7b =3×1+7×(-3)=-18.[数学活动]小初高学习+K12小初高学习+K12 1.[解析] 根据题意,把⎩⎪⎨⎪⎧x =-2,y =2代入方程ax +by =2,得关于a ,b 的一个方程,再把⎩⎪⎨⎪⎧x =3,y =-2代入方程ax +by =2,得关于a ,b 的另一个方程,组成方程组,求得a ,b 的值.把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8,即可求得c 的值. 解:把⎩⎪⎨⎪⎧x =-2,y =2,⎩⎪⎨⎪⎧x =3,y =-2分别代入方程ax +by =2, 得⎩⎪⎨⎪⎧-2a +2b =2,3a -2b =2, 解得⎩⎪⎨⎪⎧a =4,b =5. 把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8, 得3c +14=8,解得c =-2.即a =4,b =5,c =-2.2.解:设x +y =m ,x -y =n ,所求方程组可变形为⎩⎪⎨⎪⎧3m -an =16,2m +bn =15.由题意,可得该方程组的解为⎩⎪⎨⎪⎧m =7,n =1,由此可得到关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =7,x -y =1,解得⎩⎪⎨⎪⎧x =4,y =3.故所求方程组的解是⎩⎪⎨⎪⎧x =4,y =3.。
人教版七年级数学下册8.2.2消元(加减法)
2( 2 x 5 y ) 3.6 5(3 x 2 y ) 8
去括号,得:
4 x 10 y 3.6 15 x 10 y 8
① ②
②-①,得: 11x=4.4, 解得
x=0.4
把x=0.4代入①中,得:y=0.2
同减异加
你来说说:
利用加减消元法解方程组时,在方程组的两 个方程中: (1)某个未知数的系数互为相反数,则可以直接 把这两个方程中的两边分别相加, 消去这个未知数; (2)如果某个未知数系数相等,则可以直接
把这两个方程中的两边分别相减, 消去这个未知数
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些? 特点: 同一个未知数的系数相同或互为相反数 基本思路: 加减消元: 二元 主要步骤: 加减 求解 消去一个未知数 分别求出两个未知数的值 一元
应用( B )
A.①-②消去y B.①-②消去x B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是(B )
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、指出下列方程组求解过程 中有错误步骤,并给予订正: 7x-4y=4 ①
5x-4y=-4 ② 解:①-②,得 2x=4-4, x=0 解: ①-②,得 2x=4+4, x=4 3x-4y=14 ① 5x+4y=2
把y= -1代入② , 7 解得: x
解:由①×6,得 2x+3y=4 ③ 由②×4,得
2x - y=8 ④
2
所以原方程组
7 x 的解是 2 y 1
七年级数学下册第1章二元一次方程组1.2二元一次方程组的解法1.2.2加减消元法第2课时习题课件新版
【归纳】如果方程组中的两个方程,未知数的系数的绝对值不 相等,可以在每个方程两边都分别乘以一个适当的数,使两个 方程中有一个未知数的系数的绝对值相等,然后再加减消元.
【预习思考】 如何确定每个方程两边都乘的适当的数? 提示:(1)若方程组中两个方程某一未知数的系数成倍数关系时, 一般情况,其中的一个方程两边都乘以该倍数或其相反数. (2)若方程组中未知数的系数不是倍数关系,先确定要消去的未 知数,再找出该未知数系数的最小公倍数,每个方程都乘以该 未知数系数与最小公倍数的约数或其约数的相反数.
把x=2代入②得:4-3y=1,y=1,所以 xy
2, 1.
(2)①×2-②×3得:25n=-25,即n=-1,
把n=-1代入②得,
6m-3×(-1)=15,m=2,
所以
m n
2, 1
.
1.用加减消元法解二元一次方程组
4x3y5 6x5y3
①, ②.
为了消去未知数x,①式乘以a,②式乘以b,则a,b两值可以是
×3-②×2才能消去x. 答案:3 2
4.若关于x,y的方程y= m x 6 的两个解是
nn
x 1,
y
1,
x 2,
y
1,
则m=______,n=_______.
【解析】把解代入方程,得
1
m n
6, n
1
2m n
6. n
化简得:nn6
m,解得
2m 6,
m 4,
n
2.
答案:4 2
第2课时
加减消元法解二元一次方程组
探究:解方程组
3x4y16 5x6y32
①, ②.
(1)观察方程组里的两个方程,_不__能__(填写“能”或“不能”) 直接用加减消元法求解. (2)如何才能消去方程组中的未知数x? 答:_①__×__5_-_②__×__3_. (3)如何才能消去方程组中的未知数y? 答:_①__×__3_+_②__×__2_.
春七年级数学下册 第2章 二元一次方程 2.3 第2课时 加减消元法练习 (新版)浙教版.doc
2.3 解二元一次方程组第2课时 加减消元法知识点 加减消元法解二元一次方程组对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.用加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化成相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程(注意:一般在消去一个字母时,考虑用另一个字母系数大的式子减系数小的式子);(3)解这个一元一次方程,得到一个未知数的值;(4)将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值. (5)写出方程组的解.解方程组:⎩⎪⎨⎪⎧3x +2y =21,3x -4y =3.一 加减消元法解二元一次方程组教材例2变式题用加减法解方程组:⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17.[归纳总结] 运用加减消元法解方程组时,首先要观察两个方程中同一个未知数的系数,若系数相等,则将这两个方程相减;若系数互为相反数,则将这两个方程相加,就可以消去该未知数.若系数既不相等也不互为相反数,我们应该设法使用等式的性质,将同一个未知数的系数化为相等或互为相反数.注意:(1)把某个方程乘一个数时,方程两边的每一项都要和这个数相乘;(2)把两个方程相加减时,一定要把两个方程两边分别相加减.二 灵活选择适当的方法解二元一次方程组教材补充题用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧6s +3t =13,3s -t =5;(2)⎩⎪⎨⎪⎧5x -6y =17,4x +3y =28.[归纳总结] 二元一次方程组解法的选取主要取决于未知数的系数,当方程组中某未知数的系数较简单,如系数为1或-1时,常选用代入消元法;当方程组中某未知数的系数相等或互为相反数或成倍数关系时,常选用加减消元法.[反思] 请观察下面解方程组⎩⎪⎨⎪⎧4x +3y =6,2x -y =4的过程,并判断该过程是否正确,若不正确,请写出正确的解法.解:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得y =-2.把y =-2代入②,得2x -(-2)=4,x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =-2.一、选择题1.将方程-12x +y =1中含x 的项的系数化为3,则以下结果中,正确的是( )A .3x +y =1B .3x +6y =1C .3x -6y =1D .3x -6y =-62.方程组⎩⎪⎨⎪⎧x +y =5,①2x +y =10,②由②-①得到的正确的方程是( )A .3x =10B .x =5C .3x =-5D .x =-53.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11时,有下列四种变形,其中正确的是( )A .⎩⎪⎨⎪⎧4x +6y =3,9x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =9,6x -2y =22C .⎩⎪⎨⎪⎧4x +6y =6,9x -6y =33D .⎩⎪⎨⎪⎧6x +9y =3,6x -4y =11 4.方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 后,得到的方程是( )A .y =4B .-7y =14C .7y =14D .y =145.2015·河北利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解为( )A .⎩⎪⎨⎪⎧x =-1,y =2B .⎩⎪⎨⎪⎧x =-2,y =3C .⎩⎪⎨⎪⎧x =2,y =1D .⎩⎪⎨⎪⎧x =2,y =-17.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .38.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B .34 C .43D .-43二、填空题9.用加减法解二元一次方程组⎩⎪⎨⎪⎧11x -3y =4,①13x -6y =-5,②将方程①两边乘________,再把得到的方程与方程②相__________,可以消去未知数________.10.2016·温州方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.11.已知二元一次方程组⎩⎪⎨⎪⎧3x +4y =28,①4x +3y =7,②不解方程组,直接求x +y 与x -y 的值,则x+y =________,x -y =________.12.2015·咸宁如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为________. 13.已知方程3x2m +5n +9+4y4m -2n -7=2是关于x ,y 的二元一次方程,则m =________,n=________.三、解答题14.用加减法解方程组:(1)⎩⎪⎨⎪⎧3x -y =2,3x +2y =11;(2)⎩⎪⎨⎪⎧x 2-y +13=1,3x +2y =10.15.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =1,3x -2y =11; (2)⎩⎪⎨⎪⎧5x +3y =6,5x -2y =-4;(3)⎩⎪⎨⎪⎧4x -3y =39,7x +4y =-15; (4)⎩⎪⎨⎪⎧2(2x +5y )=3.6,5(3x +2y )=8.16.如果二元一次方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a 的解是二元一次方程3x -5y -38=0的一个解,请你求出a 的值.17.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,3x -5y =16和方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8的解相同,求代数式3a +7b 的值.1.[技巧性题目] 在解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一位同学把c 看错而得到⎩⎪⎨⎪⎧x =-2,y =2,正确的解应是⎩⎪⎨⎪⎧x =3,y =-2,求a ,b ,c 的值.2.[技巧性题目] 如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎪⎨⎪⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是什么?详解详析【预习效果检测】[解析] 解方程组⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②两个方程中x 的系数相等,因此,可直接由①-②消去未知数x .解:⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②①-②,得6y =18,解得y =3. 把y =3代入方程②,得 3x -4×3=3,解得x =5.所以原方程组的解是⎩⎪⎨⎪⎧x =5,y =3.【重难互动探究】例1 [解析] 方程组中两个方程的同一未知数的系数均不成倍数关系,则需选定一个系数相对简单的未知数,将两个方程通过变形使其绝对值相等,再进行消元.解:⎩⎪⎨⎪⎧2x +3y =12,①3x +4y =17,②①×3,得6x +9y =36,③ ②×2,得6x +8y =34,④③-④,得y =2,把y =2代入①,得x =3.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =2.例2 [解析] 用适当的方法解方程组要求同学们能认真观察方程组中各项系数的特征,根据代入消元法和加减消元法的解题思路选择简捷的方法求解.故(1)可选择代入法求解,(2)可选择加减法求解.解:(1)⎩⎪⎨⎪⎧6s +3t =13,①3s -t =5,②由②,得t =3s -5,③把③代入①,得6s +3(3s -5)=13, 解得s =2815.把s =2815代入③,得t =35.所以原方程组的解为⎩⎪⎨⎪⎧s =2815,t =35.(2)⎩⎪⎨⎪⎧5x -6y =17,①4x +3y =28,② ②×2,得8x +6y =56,③ ①+③,得13x =73,所以x =7313.把x =7313代入②,得4×7313+3y =28,所以y =2413. 所以原方程组的解为⎩⎪⎨⎪⎧x =7313,y =2413.【课堂总结反思】[反思] 该过程不正确.正确的解法如下:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,② ②×2,得4x -2y =8.③ ①-③,得5y =-2,y =-25.把y =-25代入②,得2x -⎝ ⎛⎭⎪⎫-25=4,x =95. ∴原方程组的解是⎩⎪⎨⎪⎧x =95,y =-25.【作业高效训练】[课堂达标] 1.D 2.B3.[解析] C 根据等式的基本性质进行检验,发现正确答案为C . 4.B 5.D 6.D7.[解析] D 两式相加,可得3x +3y =9,故x +y =3.8.[解析] B 解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k.把x ,y 的值代入二元一次方程2x +3y =6,得2×7k +3×(-2k)=6,解得k =34.9.[答案] 2 减 y[解析] ①×2,得22x -6y =8,③ ③-②可消去y.10.[答案] ⎩⎪⎨⎪⎧x =3,y =111.[答案] 5 -21[解析] ①+②,得7x +7y =35,即x +y =5.②-①,得x -y =-21. 12.[答案] -5413.[答案] 1 -2[解析] 根据二元一次方程的定义可知,x ,y 的次数都是1,所以得方程组:⎩⎪⎨⎪⎧2m +5n +9=1,4m -2n -7=1, 解方程组,得⎩⎪⎨⎪⎧m =1,n =-2.14.[解析] 方程组(2)较复杂,可先通过化简,将其变形为二元一次方程组的一般形式后再消元.解:(1)⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11,②②-①,得3y =9,解得y =3.把y =3代入①,得3x -3=2,解得x =53.所以原方程组的解是⎩⎪⎨⎪⎧x =53,y =3.(2)原方程组可化简为⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10,②①+②,得6x =18,解得x =3.将x =3代入①,得 9-2y =8,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12.15.[解析] 认真观察每个方程组,发现方程组(1)用加减法求解比较简便;(2)未知数x的系数相同,可通过相减消去“x”,用加减法比较简便;(3)是一个较复杂的方程组,用加减法求解较合适;(4)需先将此方程组化简,再确定求解方法.解:(1)⎩⎪⎨⎪⎧x +2y =1,①3x -2y =11,②①+②,得4x =12,解得x =3.把x =3代入①,得3+2y =1, 解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-1.(2)⎩⎪⎨⎪⎧5x +3y =6,①5x -2y =-4,② ①-②,得5y =10,解得y =2. 把y =2代入①,得5x +3×2=6, 解得x =0.所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =2.(3)⎩⎪⎨⎪⎧4x -3y =39,①7x +4y =-15,② ①×4,得16x -12y =156,③ ②×3,得21x +12y =-45,④ ③+④,得37x =111, 解得x =3.把x =3代入①,得4×3-3y =39, 解得y =-9.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-9.(4)将原方程组化简为⎩⎪⎨⎪⎧4x +10y =3.6,①15x +10y =8,②②-①,得11x =4.4,解得x =0.4.把x =0.4代入①,得1.6+10y =3.6, 解得y =0.2.所以原方程组的解为⎩⎪⎨⎪⎧x =0.4,y =0.2.16.[解析] 用方程组中的a 分别表示x ,y ,再把x ,y 的值代入3x -5y -38=0,即可求得a 的值.解:解方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a ,得⎩⎪⎨⎪⎧x =3a ,y =-2a. 把⎩⎪⎨⎪⎧x =3a ,y =-2a 代入方程3x -5y -38=0, 得3×3a-5×(-2a)-38=0, 解得a =2.17.解:⎩⎪⎨⎪⎧2x +5y =-6,①3x -5y =16,②①+②,得5x =10,x =2.把x =2代入①,得2×2+5y =-6,y =-2.将⎩⎪⎨⎪⎧x =2,y =-2代入方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8,得 ⎩⎪⎨⎪⎧2a +2b =-4,2b -2a =-8, 解这个方程组,得⎩⎪⎨⎪⎧a =1,b =-3,所以3a +7b =3×1+7×(-3)=-18.[数学活动]1.[解析] 根据题意,把⎩⎪⎨⎪⎧x =-2,y =2代入方程ax +by =2,得关于a ,b 的一个方程,再把⎩⎪⎨⎪⎧x =3,y =-2代入方程ax +by =2,得关于a ,b 的另一个方程,组成方程组,求得a ,b 的值.把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8,即可求得c 的值. 解:把⎩⎪⎨⎪⎧x =-2,y =2,⎩⎪⎨⎪⎧x =3,y =-2分别代入方程ax +by =2, 得⎩⎪⎨⎪⎧-2a +2b =2,3a -2b =2, 解得⎩⎪⎨⎪⎧a =4,b =5. 把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8, 得3c +14=8,解得c =-2.即a =4,b =5,c =-2.2.解:设x +y =m ,x -y =n ,所求方程组可变形为⎩⎪⎨⎪⎧3m -an =16,2m +bn =15.由题意,可得该方程组的解为⎩⎪⎨⎪⎧m =7,n =1,由此可得到关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =7,x -y =1,解得⎩⎪⎨⎪⎧x =4,y =3.故所求方程组的解是⎩⎪⎨⎪⎧x =4,y =3.。
湘教版七年级数学下册课后作业:1.2.2加减消元法(第2课时)(含答案)
课时作业(四) 加减消元法(第2课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.(2013·凉山州中考)已知方程组{2x +y =4,x +2y =5,则x+y 的值为( ) A.-1 B.0 C.2 D.32.方程组{3x −5y =6 ①,2x −3y =4 ②,将②×3-①×2得( ) A.-3y=2 B.4y+1=0C.y=0D.7y=-83.小明在解关于x,y 的二元一次方程组{x +⊗y =3,3x −⊗y =1时得到了正确结果{x =⊕,y =1.后来发现“⊗”“⊕”处被墨水污损了,请你帮他找出“⊗”“⊕”处的值分别是( )A.⊗=1,⊕=1B.⊗=2,⊕=1C.⊗=1,⊕=2D.⊗=2,⊕=2二、填空题(每小题4分,共12分)4.若单项式3x m+2n y 和-4x 3y 3m-2n 的和为单项式,则m= ,n= .5.已知代数式x 2+bx+c,当x=1时,其值是8;当x=-1时,其值为-2,则b= ,c= .6.方程组{a x +by =26,cx +5y =18的解应为{x =4,y =−2,一个同学把c 看错了.因此解得{x =7,y =3.则a+b+c= .三、解答题(共26分)7.(8分)(2013·黄冈中考)解方程组:{2(x −y)3−(x +y)4=−112,3(x +y)−2(2x −y)=3.8.(8分)若关于x,y 的方程3x-2ny=m-n 有一个解为{x =2,y =−1,此时m 比n 的一半大1,则m,n 的值分别为多少?【拓展延伸】 9.(10分)学过了二元一次方程组的解法后,课堂上老师又写出了一个题目:你会解这个方程组吗?x y x y 3 ,610x y x y 1 .610+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩①② 小明、小刚、小芳争论了一会儿,他们分别写出了一种方法.小明:把原方程组整理得8x 2y 90 ,2x 8y 30 ,+=⎧⎨+=-⎩③④ ④×4-③得30y=-210,所以y=-7,把y=-7代入③得8x=104,所以x=13,即{x =13,y =−7.小刚:设x +y6=m,x −y10=n,则③+④得m=1,③-④得n=2.即{x +y6=1,x−y10=2,所以{x +y =6,x −y =20,所以{x =13,y =−7. 小芳:①+②得2(x +y)6=2,x +y =6 ③,①−②得2(x −y)10=4,x −y =20④, ③④组成方程组③+④得x =13,③−④得y =−7,即{x =13,y =−7, 老师看过,非常高兴,特别是小刚,方法独特,像小刚这种解方程组的方法叫换元法,你能用换元法解下列方程组吗?{3x −2y 6+2x +3y 7=1,3x −2y 6−2x +3y 7=5.答案解析1.【解析】选 D.{2x +y =4 ①,x +2y =5 ②,对①变形,得y=4-2x ③,将③代入②中,得x+2(4-2x)=5,去括号,得x+8-4x=5,化简,得x=1,将x=1代入②中,得y=2.故x+y=3.2.【解析】选C.②×3得:6x-9y=12 ③,①×2得:6x-10y=12 ④,③-④得:y=0.3.【解析】选B.将{x =⊕,y =1代入方程组,两方程相加,得x=⊕=1,将x=y=1代入方程x+⊗y=3中,得1+⊗=3,⊗=2.4.【解析】由题意得{m +2n =3,3m −2n =1,解得{m =1,n =1.答案:1 15.【解析】由题意得{1+b +c =8,1−b +c =−2,解得{b =5,c =2. 答案:5 2 6.【解析】把{x =4,y =−2代入方程组{a x +by =26,cx +5y =18得{4a −2b =26 ①,4c −10=18 ②,由②得c=7,把{x =7,y =3代入ax+by=26得7a+3b=26③,①③组成方程组{4a −2b =26,7a +3b =26,4a-2b=26可转化为b=2a-13,把b=2a-13代入7a+3b=26,得a=5. 把a=5代入③得,b=-3.所以a=5,b=-3,c=7.所以a+b+c=5+(-3)+7=9.答案:97.【解析】原方程组整理得{5y −x =3 ①,5x −11y =−1②,由①得,x=5y-3 ③,将③代入②得,25y-15-11y=-1,14y=14,y=1,将y=1代入③得x=2.所以原方程组的解为{x =2,y =1.8.【解析】将{x =2,y =−1代入3x-2ny=m-n,得6+2n=m-n,由m 比n 的一半大1得m-12n=1.联立得{6+2n =m −n,m −12n =1,解得{m =0,n =−2.所以m 的值为0,n 的值为-2.9.【解析】设3x−2y 6=a,2x+3y7=b,则①+②得a=3, ①-②得b=-2,即{3x−2y 6=3,2x+3y 7=−2, 所以{3x −2y =18,2x +3y =−14,解得{x =2,y =−6, 所以原方程组的解为{x =2,y =−6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
夏邑县济阳初中七年级数学教学案
课 题:加减消元法练习
班级: 学生姓名:
1.用加减法解下列方程组34152410x y x y +=⎧⎨-=⎩
较简便的消元方法是:将两个方程_______,消去未知数_______.
2.已知方程组23
32x y x y -=⎧⎨+=⎩
,用加减法消x 的方法是__________;用加减法消y 的方法是________.
3.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.
(1) 32155423
x y x y -=⎧⎨-=⎩ 消元方法___________. (2) 731232m n n m -=⎧⎨+=-⎩
消元方法_____________. 4.方程组241x y x y +=⎧⎨
+=⎩ 的解_________. 5.方程2353
x y x -+==3的解是_________. 6.已知方程342--n m x -5143-+n m y =8是关于x 、y 的二元一次方程,则m =_____,n =_______.
7.二元一次方程组941611
x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( )
A .4
B .-4
C .8
D .-8
8.解方程组35123156x y x y +=⎧⎨-=-⎩比较简便的方法为( )
A .代入法
B .加减法
C .换元法
D .三种方法都一样
9.若二元一次方程2x +y =3,3x -y =2和2x -my =-1有公共解,则m 取值为( )
A .-2
B .-1
C .3
D .4
10.已知方程组51mx n my m +=⎧⎨-=⎩的解是12x y =⎧⎨=⎩
,则m =________,n =________. 11.已知(3x +2y -5)2与│5x +3y -8│互为相反数,则x =______,y =________.
12.若方程组22ax by ax by +=⎧⎨
-=⎩与234456
x y x y +=⎧⎨-=-⎩的解相同,则a =________,b =_________.
13.甲、乙两人同求方程ax-by=7的整数解,甲正确的求出一个解为
1
1
x
y
=
⎧
⎨
=-
⎩
,•乙把ax
-by=7看成ax-by=1,求得一个解为
1
2
x
y
=
⎧
⎨
=
⎩
,则a、b的值分别为( )
A.
2
5
a
b
=
⎧
⎨
=
⎩
B.
5
2
a
b
=
⎧
⎨
=
⎩
C.
3
5
a
b
=
⎧
⎨
=
⎩
D.
5
3
a
b
=
⎧
⎨
=
⎩
14.解方程组:
(1)
2312
3417
x y
x y
+=
⎧
⎨
+=
⎩
(2)
6
32
3()2()28
x y x y
x y x y
+-
⎧
+=
⎪
⎨
⎪+--=
⎩
15.若方程组
23
352
x y m
x y m
+=
⎧
⎨
+=+
⎩
的解满足x+y=12,求m的值.
16.已知方程组
2526
4
x y
ax by
+=-
⎧
⎨
-=-
⎩
和方程组
3536
8
x y
bx ay
-=
⎧
⎨
+=-
⎩
的解相同,求(2a+b)2005的值.
17.已知方程组
8
2
x y
x y
+∆=
⎧
⎨
∆-=
⎩
中,x、y的系数部已经模糊不清,但知道其中□表示同一个数,
•△也表示同一个数,
1
1
x
y
=
⎧
⎨
-
⎩
是这个方程组的解,你能求出原方程组吗?。