一元二次方程解法专项训练以及题型分类
专题04 一元二次方程的应用(八大类型)(题型专练)(原卷版)
专题04 一元二次方程的应用(八大类型)【题型1 一元二次方程应用-变化率】【题型2 一元二次方程应用-传染问题】【题型3 一元二次方程应用-分支问题】【题型4 一元二次方程应用-比赛问题及迁移运用】【题型5 一元二次方程应用-销售问题】【题型6 一元二次方程应用-每每问题】【题型7 一元二次方程应用-几何面积问题】【题型8 一元二次方程应用-几何动态问题】【题型1 一元二次方程应用-变化率】1.(2023春•鄞州区期中)某商品经过连续两次降价,价格由100元降为64元.已知两次降价的百分率都是x,则x满足的方程是()A.64(1﹣2x)=100B.100(1﹣x)2=64C.64(1﹣x)2=100D.100(1﹣2x)=64 2.(2023•东莞市校级一模)某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.25(1+x)2=64B.25(1+x2)=64C.64(1﹣x)2=25D.64(1﹣x2)=253.(2021·松北期末)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x2)=196 D.50+50(1+x)+50(1+2x)=196 4.(2023•沭阳县模拟)某商品原价每件75元,两次降价后每件48元,则平均每次的降价百分率是.5.(2022秋•确山县期中)2022年是中国共产党建党101周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,某市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年8月份该基地接待参观人数10万人,10月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计11月份的参观人数能否突破13.5万人?6.(2022春•沂源县校级月考)受益于国家支持新能源汽车发展等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率.(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?【题型2 一元二次方程应用-分支问题】7.(2022秋•青川县期末)某数学活动小组在开展野外项目实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分枝,主干、枝干和小分枝的总数是31,则这种植物每个枝干长出的小分支个数是()A.4B.5C.6D.7 8.(2022秋•澄海区期末)某校“生物研学”活动小组在一次野外研学实践时,发现某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.若主干、支干和小分支的总数是91,求这种植物每个支干长出的小分支个数是多少?【题型3 一元二次方程应用-传染问题】9.(2022春•南谯区校级期中)新冠肺炎病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“新冠肺炎”疫情初期,有1人感染了“新冠肺炎病毒”,如若得不到有效控制,经过两轮传染后共有196人感染了“新冠肺炎病毒”,则每轮传染中平均一个人传染了()A.12人B.13人C.14人D.15人10.(2023•兴庆区校级一模)有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x 个人,可到方程为()A.1+2x=81B.1+x2=81C.1+x+x2=81D.(1+x)2=81 11.(2022秋•沈丘县月考)若有2个人患了流感,经过两轮传染后共有50人患了流感(这2个人在第二轮传染中仍有传染性),则每轮传染中平均一个人传染人.12.(2023•城关区一模)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.13.(2022秋•天河区校级期末)截止到2022年1月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有196人患新冠肺炎,求每轮传染中平均每个人传染了几个人?14.(2022秋•甘井子区校级期末)有一个人患了流感,经过两轮传染后共有144个人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人患流感?【题型4 一元二次方程应用-比赛问题及迁移运用】15.(2023•东莞市二模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.7B.8C.9D.1016.(2021秋•虎林市校级期末)2021年虎林市教育局组织开展了全市中学生篮球联赛,比赛采用单循环赛制(每两队之间进行一场比赛),共进行了66场比赛,则参加比赛的队伍数量是()A.10B.11C.12D.1317.(2022•黑龙江模拟)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有()个班级.A.8B.9C.10D.11 18.(2023•惠东县一模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,则本次比赛共有参赛队伍()A.8支B.9支C.10支D.11支19.(2022秋•于洪区期末)一次会议上,每两个参加会议的人都相互握了一次手.有人统计一共握了66次手,这次会议到会的人数有多少人()A.8B.10C.12D.14 20.(2022秋•南平期中)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,那么全组有()名同学.A.12B.13C.14D.1521.(2022秋•和平区期末)一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人一共握了10次手,则这次会议到会的人数是人.22.(2022秋•荔湾区校级期末)卡塔尔足球世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,则该小组有支球队.23.(2023春•安徽月考)网课期间小夏写了封保护眼睛的倡议书,用微博转发的方式传播,设计了如下转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共157人参与了此次活动,则x为人.24.(2022秋•蔚县校级期末)一个小组有若干人,新年互送贺卡一张,共送贺卡72张,共有人.25.(2022秋•白云区期末)一次足球联赛,赛制为双循环形式(每两队之间都赛两场),共要比赛90场,共有多少个队参加比赛?【题型5 一元二次方程应用-销售问题】26.(2023春•盐都区月考)某商店分别花20000元和30000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多500千克.(1)该商品的进价是多少?(2)已知该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,若想销售该商品每天获利2000元,该商店需将商品的售价定为多少?27.(2023•中山市一模)某超市以每千克40元的价格购进菠萝蜜,计划以每千克60元的价格销售,为了让顾客得到实惠.现决定降价销售,已知这种菠萝蜜销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式.(2)若超市要想获利2400元,且让顾客获得更大实惠,这种菠萝蜜每千克应降价多少元?28.(2022秋•九龙坡区期末)某图书店在2022年国庆节期间举行促销活动,某课外阅读书进货价为每本8元,标价为每本15元.(1)该图书店举行了国庆大回馈活动,连续两次降价,每次降价的百分率相同,最后以每本9.6元的价格售出,求图书店每次降价的百分率;(2)在九月底该书店老板去进货该书500本,按照(1)两次降价后的价格在国庆节全部售出;国庆节后老板去进货发现进货价上涨了a%,进货量比九月底增加3a%,以标价的八折全部售出后,比国庆节的总利润多1200元,求a%的值.29.(2022秋•平遥县期末)某商店通过网络在一源头厂家进一种季节性小家电,由于疫情影响以及市场竞争,该厂家不得不逐年下调出厂价;(1)2019年这个小家电出厂价是每台62.5元,到2021年同期该品牌小家电出厂价下调为40元,若每年下调幅度相同,请你计算该小家电出厂价平均每年下调的百分率;(2)若明年商场计划按每台40元购一批该品牌小家电,经市场预测,销售定价为50元时,每月可售出500台,销售定价每增加1元,销售量将减少10台.因受库存的影响,每月进货台数不得超过300台;商家若希望月获利8750元,则应进货多少台?销售定价多少元?30.(2023•桂林一模)小王计划经营某种时尚产品的专卖店,已知该产品的进货价为70元/件,售价不能低于80元/件,专卖店每月有800元的固定成本开支,根据市场调研,产品的销售量y(件)随着产品的售价x(元/件)的变化而变化,销售量y与售价x之间的部分对应关系如表:80828486…售价x(元/件)500490480470…销售量y(件)(1)求销售量y(件)与售价x(元/件)的函数关系式;(2)小王预计每月盈利8200元,为尽可能让利于顾客,则该产品的售价每件应定为多少元?31.(2022秋•通川区期末)为了满足社区居民强身健体的需要,政府准备采购若干套健身器材免费提供给社区,经过考察了解,飞跃公司有A,B两种型号的健身器材可供选择,已知飞跃公司2020年每套A型健身器材的售价为2.5万元,2020年每套B型健身器材的售价为2万元,2022年每套A型健身器材售价为1.6万元,每套A型,B型健身器材的年平均下降率相同.(1)求2020年到2022年每套A型健身器材年平均下降率;(2)2022年政府经过招标,决定年内采购并安装飞跃公司A,B两种型号的健身器材共80套,政府采购专项经费总计不超过115.2万元,并且采购A型器材费用不能少于B型器材的费用,请求出所需经费最少的采购方案.32.(2023•抚州一模)某超市经销一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:40455560销售单价x(元/千克)80705040销售量y(千克)(1)求y(千克)与x(元/千克)之间的函数表达式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少千克?33.(2022春•莱芜区期末)某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?【题型6 一元二次方程应用-每每问题】34.(2023春•沙坪坝区校级月考)将进货价格为38元的商品按单价45元售出时,能卖出300个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨x元时,获得的利润为2300元,则下列关系式正确的是()A.(x﹣38)(300﹣5x)=2300B.(x+7)(300+5x)=2300C.(x﹣7)(300﹣5x)=2300D.(x+7)(300﹣5x)=230035.(2021秋•纳溪区期末)某商场经营某种品牌的玩具,购进时的价格是30元/件,根据市场调查:在一段时间内,当销售价格是40元/件时,销售量是600件,当销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售价格为x元/件(x>40),请你分别用含x 的代数式来表示销售量y件和销售该品牌玩具获得的利润w元.(2)在第(1)间的条件下,若商场获得了10000元的销售利润,求该玩具的销售价格应定为多少元/件.36.(2022秋•东明县期末)2022年北京冬季奥运会于2月4日至2月20日在北京市和河北省张家口市联合举行,冬奥会吉祥物为“冰墩墩”.(1)据市场调研发现,某工厂今年二月份共生产500个“冰墩墩”,为增大生产量,该工厂平均每月生产量增加20%,则该工厂在四月份能生产多少个“冰墩墩”?(2)已知某商店“冰墩墩”平均每天可销售20个,每个盈利40元,在每个降价幅度不超过10元的情况下,每下降2元,则每天可多售10件.如果每天要盈利1440元,则每个“冰墩墩”应降价多少元?37.(2022秋•龙岗区期末)“双十一”期间,某网店直接从工厂购进A,B两款保温杯,进货价和销售价如表:(注:利润=销售价﹣进货价)A款保温杯B款保温杯进货价(元/个)3528销售价(元/个)5040(1)若该网店用1540元购进A,B两款保温杯共50个,求两款保温杯分别购进的个数.(2)“双十一”后,该网店打算把B款保温杯降价销售,如果按照原价销售,平均每天可售出4个,经调查发现,每降价1元,平均每天可多售出2个,则将B款保温杯的销售价定为每个多少元时,才能使B款保温杯平均每天的销售利润为96元?38.(2023春•长沙期中)春节是中国的传统节日,每年元旦节后是购物的高峰期,2023年元月某水果商从农户手中购进A、B两种红富士苹果,其中A种红富士苹果进货价为28元/件,销售价为42元/件,其中B种红富士苹果进货价为22元/件,销售价为34元/件.(注:利润=销售价﹣进货价)(1)水果店第一次用720元购进A、B两种红富士苹果共30件,求两种红富士苹果分别购进的件数;(2)第一次购进的红富士苹果售完后,该水果店计划再次购进A、B两种红富士苹果共80件(进货价和销售价都不变),且进货总费用不高于2000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)春节临近结束时,水果店发现B种红富士苹果还有大量剩余,决定对B 种红富士苹果调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B种红富士苹果平均每天销售利润为90元?39.(2023春•北仑区期中)某超市于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?【题型7 一元二次方程应用-几何面积问题】40.(2023春•温州期中)如图,在长为32米,宽为20米的长方形地面上修筑同样宽的小路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设小路的宽为x米,则下面所列方程正确的是()A.32×20﹣32x﹣20x=100B.32x+20x﹣x2=100C.(32﹣x)(20﹣x)+x2=100D.(32﹣x)(20﹣x)=100 41.(2022春•凭祥市期中)如图,在长为30m,宽为15m的长方形地面上修筑同样宽的道路(图中阴影部分),其余部分铺设草坪,要使草坪的面积为406m2,则小路的宽度应为多少()A.1B.1.5C.2D.442.(2023•两江新区一模)如图,某小区居民休闲娱乐中心是一块长方形(长60米,宽40米)场地,被3条宽度相等的绿化带分为总面积为1750平方米的活动场所,如果设绿化带的宽度为x米,由题意可列方程为()A.(60﹣x)(40﹣x)=1750B.(60﹣2x)(40﹣x)=1750C.(60﹣2x)(40﹣x)=2400D.(60﹣x)(40﹣2x)=1750 43.(2023春•涡阳县期中)如图,长方形铁皮的长为10cm,宽为8cm,现在它的四个角上剪去边长为xcm的正方形,做成底面积为24cm2的无盖的长方体盒子,则x的值为()A.2B.7C.2或7D.3或6 44.(2023春•永嘉县校级期中)如图,在高3m,宽4m的长方形墙面上有一块长方形装饰板(图中阴影部分),装饰板的上面和左右两边都留有宽度为x (m)的空白墙面.若长方形装饰板的面积为4m2,则以下方程正确的是()A.(3﹣x)(4﹣x)=4B.(3﹣x)(4﹣2x)=4C.(3﹣2x)(4﹣x)=4D.(3﹣2x)(4﹣2x)=4 45.(2023•碑林区校级模拟)如图,把一块长AB为40cm的长方形硬纸板的四角剪去四个边长为5cm的小正方形,然后把纸板沿虚线折起,做成一个无盖长方体纸盒.若纸盒的体积是1500cm3,则长方形硬纸板的宽为多少?46.(2022秋•城固县期末)如图,现有一块长11cm,宽7cm的长方形硬纸板,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分(图中阴影部分)做成一个底面积为21cm2的无盖长方体盒子,请求出剪去的小正方形的边长.47.(2023•政和县模拟)为培养学生正确的劳动价值观和良好的劳动品质.某校为此规划出矩形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为15米)另三边用木栏围成,中间也用垂直于墙的木栏隔开分成面积相等的两个区域,并在如图所示的两处各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD的一边CD长为x米.(1)矩形ABCD的另一边BC长为米(用含x的代数式表示);(2)矩形ABCD的面积能否为80m2,若能,请求出AB的长;若不能,请说明理由.48.(2022秋•从化区期末)某农场要建一个矩形动物场,场地的一边靠墙(墙AB长度不限),另外三边用木栏围成,木栏总长20米,设动物场CD边的长为xm,矩形面积为ym2.(1)矩形面积y=(用含x的代数式表示);(2)当矩形动物场面积为48m2时,求CD边的长.(3)能否围成面积为60m2矩形动物场?说明理由.【题型8 一元二次方程应用-几何动态问题】49.(2022秋•舞钢市期中)如图,矩形ABCD中,AB=21cm,BC=8cm,动点E从A出发,以3cm/s的速度沿AB向B运动,动点F从C出发,以2cm/s 的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E的运动时间是()A.3s B.s C.3s或s D.2.5s50.(2022•晋中期中)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到C点后停止,点P也随之停止运动,当四边形APQC的面积为9cm2时,则点P运动的时间是()A.3s B.3s或5s C.4s D.5s51.(2022•方城县期末)如图,已知等边三角形ABC的边长为6cm,点P从点A出发,沿A→C→B的方向以2cm/s的速度向终点B运动,同时点Q从点B出发,沿B→A的方向以1cm/s的速度向终点A运动.当点P运动到点B时,两点均停止运动.运动时间记为ts,请解决下列问题:若点P在边AC上,当t为何值时,△APQ为直角三角形?52.(2022秋•江门期末)如图,在△ABC中,∠B=90°,AB=5cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动、同时点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点时,另外一点也随之停止运动.(1)△PQB的面积能否等于9cm2?请说明理由.(2)几秒后,四边形APQC的面积等于16cm2?请写出过程.53.(2021秋•城关区月考)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.若P,Q两点同时出发,当点Q运动到点C 时,P,Q两点同时停止运动.求:(1)几秒后,PQ的长度等于2cm?(2)△PBQ的面积能否等于7cm2?说明理由.54.(2023春•蚌埠月考)△ABC中,∠B=90°,AB=5cm,BC=6cm,点P 从点A开始沿边AB向终点B以1cm/s的速度移动,与此同时,点Q从点B 开始沿边BC向终点C以2cm/s的速度移动,如果点P、Q分别从点A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:BQ=,PB=(用含t的代数式表示);(2)是否存在t的值,使得△PBQ的面积等于4cm2?若存在,请求出此时t 的值;若不存在,请说明理由.。
一元二次方程应用(7个考点七大题型)(原卷版)-九年级数学上册《重难点题型-高分突破》(人教版)
专题 1.4一元二次方程应用(7个考点七大题型)【题型1变化率问题】【题型2传播问题】【题型3树枝分叉问题】【题型4单循环和双循环问题】【题型4销售利润与一次函数综合问题】【题型5销售利润每每问题】【题型6几何图形问题】【题型7几何中动点问题】1.(2023•渝中区校级模拟)我校初三某班第一次体育模拟测试平均分为43.2分,经过专业的体育指导和训练后,在之后的第二次和第三次体育模拟测试中,班级平均分稳步提升,第三次体育模拟测试平均分达到46.7分,设该班每次测试班级平均分较上次的增长率相同,均为x,则可列方程为()A.43.2(1+x)=46.7B.46.7(1﹣x)=43.2C.43.2(1+x)2=46.7D.46.7(1﹣x)2=43.2 2.(2023•重庆模拟)某社区为改善环境,加大对绿化的投入,4月对绿化投入25万元,计划6月绿化投入49万元,5月、6月绿化投入的月平均增长率相同.设这两月绿化投入的月平均增长率为x,根据题意所列方程为()A.25(1+x)2=49B.25(1+x)+25(1+2x)=49C.25(1+x)+25(1+x)2=49D.25+25(1+x)+25(1+x)2=493.(2023春•萨尔图区校级期中)某校图书馆六月份借出图书100本,计划七、八月份一共借出图书480本,设七、八月份借出的图书每月平均增长率为x,则根据题意列出的方程是()A.100(1+x)2=480B.100(1+x)+100(1+x)2=480C.100(1﹣x)2=480D.100+100(1+x)+100(1+x)2=4804.(2023•渝中区校级二模)随这疫情消退我国经济强势崛起,2023年某外贸企业二月份的销售额为3亿元,四月份的销售额为6.75亿元.设该企业二月到四月销售额平均月增长率为x,根据题意,可列出的方程是()A.3(1+x)=6.75B.3(x+1)2=6.75C.3+3(1+x)2=6.75D.3+3(1+x)+3(1+x)2=6.755.(2023•长沙一模)长沙已成为国内游客最喜欢的旅游目的地城市之一,调查显示,长沙在2021年五一假期,共接待游客200万人次,在2023年五一假期,共接待游客288万人次.(1)求长沙2021至2023五一假期接待游客人次的平均增长率;(2)茶颜悦色已经成为外地游客在长沙的打卡地,其中幽兰拿铁和声声乌龙是游客最爱的两款产品,已知幽兰拿铁的单价比声声乌龙贵2元,某导游花费216元购买幽兰拿铁的杯数是96元购声声乌龙的两倍,求幽兰拿铁的单价.6.(2023•南海区一模)富强村2020年的人均收入为3.6万元,2022年的人均收入为4.356万元.(1)求富强村人均收入的年平均增长率;(2)如果该村人均收入的年平均长率不变,请估计今年富强村的人均收入为多少万元.7.(2023•澄城县一模)随着环保意识日益深入,我国新能源汽车的生产技术也不断提升.市场上某款新能源汽车1月份的售价为25万元/辆,3月份下降到20.25万元/辆,求该款汽车售价的月平均下降率.8.(2023•兴庆区校级一模)有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x 个人,可到方程为()A.1+2x=81B.1+x2=81C.1+x+x2=81D.(1+x)2=81 9.(2022秋•齐河县期末)新冠病毒传染性极强,如果有1人患病,经过两轮传染后有361人患病,设每轮传染中平均一个人传染了x个人,下列方程正确的是()A.(1+x)2=361B.x2=361C.1+x+x2=361D.x(1+x)=361 10.(2022秋•方城县期末)新冠疫情牵动人心,若有一人感染了新冠,在每轮传染中平均一个人可以传染x个人,经过两轮传染后共有169人感染,若不加以控制,第三轮传染后感染人数为()A.338B.256C.2197D.2028 11.(2023春•诸暨市月考)有2个人患了流感,经过两轮传染后共有50人患了流感,则每轮传染中平均一个人传染的人数是人.12.(2023春•金安区校级月考)去年8月以来,非洲猪瘟疫情在某国横行,今年猪瘟疫情发生势头明显减缓.假如有一头猪患病,经过两轮传染后共有64头猪患病.(1)每轮传染中平均每头患病猪传染了几头健康猪?(2)如果不及时控制,那么三轮传染后,患病的猪会不会超过500头?13.(2022秋•甘井子区校级期末)有一个人患了流感,经过两轮传染后共有144个人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人患流感?14.(2022秋•天河区校级期末)截止到2022年1月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有196人患新冠肺炎,求每轮传染中平均每个人传染了几个人?15.(2022秋•大连期末)有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?16.(2023•虎林市校级一模)某种植物的主干长出若干为数目的支干,每个支干又长出相同数目的小分支,主干、支干和小分支的总数是21,则每个支干长出小分支的个数是()A.6B.4C.3D.5 17.(2023•黑龙江一模)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57个,则这种植物每个支干长出的小分支的个数是()A.8个B.7个C.6个D.5个18.(2022秋•青川县期末)某数学活动小组在开展野外项目实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分枝,主干、枝干和小分枝的总数是31,则这种植物每个枝干长出的小分支个数是()A.4B.5C.6D.7 19.(2022秋•武昌区校级期中)某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,每个枝干长出个小分支.20.(2022秋•澄海区期末)某校“生物研学”活动小组在一次野外研学实践时,发现某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.若主干、支干和小分支的总数是91,求这种植物每个支干长出的小分支个数是多少?21.(2022秋•滨海新区校级期末)某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,每个枝干长出多少小分支?若设每个枝干长出x个小分支.(Ⅰ)分析:根据问题中的数量关系,填表:①主干的数目为;②从主干中长出的枝干的数目为;(用含x的式子表示)③又从上述枝干中长出的小分支的数目为;(用含x的式子表示)(Ⅱ)完成问题的求解.22.(2023•东莞市二模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.7B.8C.9D.10 23.(2023•闽清县校级模拟)某乒乓球比赛的每两队之间都进行1场比赛,共要比赛28场,设共有x支球队参加该比赛,则符合题意的方程是()A.x2=28B.x2=28×2C.D.x(x﹣1)=28×2 24.(2022秋•南华县期末)某女子冰壶比赛有若干支队伍参加了双循环比赛,双循环比赛共进行了56场,共有多少支队伍参加比赛?()A.8B.10C.7D.9 25.(2023•博罗县一模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,则本次比赛共有参赛队伍()A.8支B.9支C.10支D.11支26.(2022秋•集贤县期末)在一次同学聚会上,大家一见面就相互握手(每两人只握一次).大家共握了21次手.设参加这次聚会的同学共有x人,根据题意,可列方程为()A.x(x+1)=21B.x(x+1)=21C.x(x﹣1)=21D.x(x﹣1)=2127.(2023春•拱墅区校级期中)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出方程是()A.x(x+1)=182B.x(x﹣1)=182C.D.28.(2022秋•大丰区期末)为了迎接第二十二届世界杯足球赛,卡塔尔某地区举行了足球邀请赛,规定参赛的每两个队之间比赛一场,赛程计划安排7天,每天安排4场比赛.设比赛组织者邀请了x个队参赛,则下列方程正确的是()A.B.x(x﹣1)=4C.x(x+1)=28D.29.(2023•四川模拟)命题人“魔力”去参加同学聚会,每两个人相互赠送礼品,他发现共送礼40件,若设有x人参加聚会,根据题意可列方程为()A.B.x(x﹣1)=40C.D.x(x+1)=40 30.(2023春•安徽月考)网课期间小夏写了封保护眼睛的倡议书,用微博转发的方式传播,设计了如下转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共157人参与了此次活动,则x为人.31.(2022秋•公安县月考)在一次同学聚会上,每两个人之间都互相赠送了一份礼物,若一共送出了380份礼物,则参加聚会的同学的人数是.32.(2022秋•白云区期末)一次足球联赛,赛制为双循环形式(每两队之间都赛两场),共要比赛90场,共有多少个队参加比赛?33.(2023•中山市校级模拟)某超市以每千克40元的价格购进菠萝蜜,计划以每千克60元的价格销售,为了让顾客得到实惠.现决定降价销售,已知这种菠萝蜜销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式.(2)若超市要想获利2400元,且让顾客获得更大实惠,这种菠萝蜜每千克应降价多少元?34.(2023•杨浦区三模)某商店购进了一种生活用品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数),部分对应值如表:每件售价x(元)91113每天的销售量y(件)1059585(1)求y与x的函数解析式;(2)如果该商店打算销售这种生活用品每天获得425元的利润,那么每件生活用品的售价应定为多少元?35.(2022秋•云梦县期中)某景区新开发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于52元,并且为整数;销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如表所示:销售单价x(元/件)…354045……908070…每天销售数量y(件)(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)若要使每天销售所得利润不低于1200元,请直接写出销售单价x的所有可能取值.36.(2022秋•铁西区期中)某商场销售一种市场需求较大的健身器材,已知每件产品的进价为40元,每年销售该种产品的总费用(不含进货费用)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元/件)之间存在着一次函数关系y=kx+b,且x=60时,y=5;x=80,y=4.(1)求出y与x的解析式;(2)若商场希望该种产品一年的销售利润为55万元,请你为商场定一个销售单价.37.(2023•南海区校级模拟)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如表所示的一次函数关系.…20.52426.526…售价x(元/千克)销售量y(千克)…39322728…(1)某天这种水果的售价为25元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?38.(2023•泸县校级一模)某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系,其图象如图所示.设该商场销售这种商品每天获利w(元).(1)求y与x之间的函数关系式;(2)求w与x之间的函数关系式;(3)该商场规定这种商品每件售价不低于进价且不高于38元,商品要想获得600元的利润,每件商品的售价应定为多少元?39.(2023春•嵊州市校级期中)超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利该店采取了降价措施,在让顾客得到更大实惠的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价6元,则平均每天销售数量为多少件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?40.(2023春•庐阳区校级期中)某公司2月份销售新上市的A产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司销售A产品达到45套,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售A产品每次的增长率;(2)若A产品每套盈利2万元,则平均每月可售30套,为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A产品每套每降0.5万元,公司平均每月可多售出20套;若该公司在5月份要获利70万元,则每套A产品需降价多少?41.(2023春•宁波期中)某商品进价30元,销售期间发现,当销售单价定价50元时,每天可售出100个.临近五一,商家决定开启大促,经市场调研发现,销售单价每下降2元,每天销量增加20个,设每个商品降价x元.(1)求每天销量y(个)关于x(元)的函数关系式;(2)求该商品的销售单价是多少元时,商家每天获利1760元;(3)请说明:商家每天的获利是否能达到3000元?42.(2022秋•代县期末)某电器商店销售某品牌冰箱,该冰箱每台的进货价为2500元,已知该商店去年10月份售出50台,第四季度累计售出182台.(1)求该商店11,12两个月的月均增长率;(2)调查发现,当该冰箱售价为2900元时,平均每天能售出8台;售价每降低50元,平均每天能多售出4台.该商店要想使该冰箱的销售利润平均每天达到5000元,求每台冰箱的售价.43.(2021秋•铁西区校级月考)宾馆有50间房供游客居住,当每间房每天定价为180元时宾馆会住满;当每间房每天的定价加10元时,就会空一间房,如果有游客居住,宾馆还需对居住的每间房每天支出20元的费用.若宾馆每天想获得的利润为10890元,应该将每间房每天定价为多少元?44.(2023春•瓯海区期中)某商场在去年底以每件120元的进价购进一批同型号的服装,一月份以每件150元的售价销售了320件,二、三月份该服装畅销,销量持续走高,在售价不变的情况下,三月底统计知三月份的销量达到了500件.(1)求二、三月份服装销售量的平均月增长率;(2)从四月份起商场因换季清仓采用降价促销的方式,经调查发现,在三月份销量的基础上,该服装售价每降价5元,月销售量增加10件,当每件降价多少元时,四月份可获利10400元?45.(2023春•涡阳县期中)如图,长方形铁皮的长为10cm,宽为8cm,现在它的四个角上剪去边长为xcm的正方形,做成底面积为24cm2的无盖的长方体盒子,则x的值为()A.2B.7C.2或7D.3或646.(2023春•襄州区校级月考)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?47.(2022秋•从化区期末)某农场要建一个矩形动物场,场地的一边靠墙(墙AB长度不限),另外三边用木栏围成,木栏总长20米,设动物场CD边的长为xm,矩形面积为ym2.(1)矩形面积y=(用含x的代数式表示);(2)当矩形动物场面积为48m2时,求CD边的长.(3)能否围成面积为60m2矩形动物场?说明理由.48.(2021秋•集贤县期末)如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的总面积为570平方米,问:道路宽为多少米?49.(2023春•苍南县期中)园林部门计划在某公园建一个长方形花圃ABCD,花圃的一面靠墙(墙足够长),另外三边用木栏围成,如图2所示BC=2AB,建成后所用木栏总长120米,在图2总面积不变的情况下,园林部门在花圃内部设计了一个正方形的网红打卡点和两条宽度相等的小路如图3,小路的宽度是正方形网红打卡点边长的,其余部分种植花卉,花卉种植的面积为1728平方米.(1)求长方形ABCD花圃的长和宽;(2)求出网红打卡点的面积.50.(2023•政和县模拟)为培养学生正确的劳动价值观和良好的劳动品质.某校为此规划出矩形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为15米)另三边用木栏围成,中间也用垂直于墙的木栏隔开分成面积相等的两个区域,并在如图所示的两处各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD的一边CD长为x米.(1)矩形ABCD的另一边BC长为米(用含x的代数式表示);(2)矩形ABCD的面积能否为80m2,若能,请求出AB的长;若不能,请说明理由.51.(2022秋•石狮市期末)为全面落实劳动教育,某校在如图所示的两面成直角的围墙角落(墙足够长),用总长为28米的篱笆围成一个长方形苗圃OABC.设AB=x米,BC=y米.(1)求苗圃OABC的面积;(用含x的代数式表示)(2)若苗圃OABC的面积为192平方米,现要在苗圃OABC的对角线上修一条小道AC,求小道AC的长.52.(2023•播州区一模)如图1,计划在长为30米、宽为20米的矩形地面上修筑两条同样宽的道路①、②(图中阴影部分),设道路①、②的宽为x 米,剩余部分为绿化.(1)道路①的面积为20x平方米;道路②的面积为20x平方米(都用含x的代数式表示);(2)如图2,根据实际情况,将计划修筑的道路①、②改为同样宽的道路③(图中阴影部分),若道路的宽依然为x米,剩余部分为绿化,且绿化面积为551平方米,求道路的宽度.53.(2022秋•昆都仑区期末)如图,一农户准备围建一个矩形猪舍,其中一边靠墙,另外三边用25m长的建筑材料围成,已知墙长为12m,为方便进出,在垂直于墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?54.(2022秋•江门期末)如图,在△ABC中,∠B=90°,AB=5cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动、同时点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点时,另外一点也随之停止运动.(1)△PQB的面积能否等于9cm2?请说明理由.(2)几秒后,四边形APQC的面积等于16cm2?请写出过程.55.(2023春•蚌埠月考)△ABC中,∠B=90°,AB=5cm,BC=6cm,点P 从点A开始沿边AB向终点B以1cm/s的速度移动,与此同时,点Q从点B 开始沿边BC向终点C以2cm/s的速度移动,如果点P、Q分别从点A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:BQ=,PB=(用含t的代数式表示);(2)是否存在t的值,使得△PBQ的面积等于4cm2?若存在,请求出此时t 的值;若不存在,请说明理由.56.(2023春•和平区校级期中)如图A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B 移动,一直到达B点为止,点Q以2cm/s的速度向D点移动,当点P到达B 点时点Q随之停止运动.(1)AP=,BP=,CQ=,DQ=(用含t的代数式表示);(2)t为多少时,四边形PBCQ的面积为33cm2;(3)t为多少时,点P和点Q的距离为10cm.57.(2022秋•江门校级期末)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC 向点C以2cm/s的速度移动,设运动的时间为t秒,有一点到终点运动即停=28cm2?若存在,请求出t的值;止.问:是否存在这样的时刻,使S△DPQ若不存在,请说明理由.58.(2022秋•市北区校级月考)如图,在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C 出发,沿线段CB向点B方向运动.如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动的时间为ts,(0≤t≤5)求:(1)当t为多少秒时,P、Q两点之间的距离是10cm?(2)用含t的代数式表示Rt△CPQ的面积S;(3)当t为多少秒时,?59.(2022春•泗水县期末)已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B 开始沿BC边向点C以2cm/s的速度移动,当Q到达点C时,点Q、P同时停止移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积为4cm2(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度为5cm?。
一元二次方程解法技巧专项训练以及题型分类
一元二次方程解法技巧专项训练以及题型分类本文将介绍一元二次方程的解法技巧,并提供专项训练和题型分类。
通过掌握这些技巧,您将能够更轻松地解决一元二次方程相关的问题。
解法技巧1.因式分解法一元二次方程的一种常用解法是因式分解法。
这种方法适用于方程可以被因式分解的情况。
以下是解决一元二次方程的因式分解法的步骤:1.将方程移项,使其等于零。
2.尝试将方程因式分解为两个一次因式相乘的形式。
3.将每个一次因式设置为零,求解得到方程的根。
2.公式法当一元二次方程无法因式分解时,可以使用公式法解决。
一元二次方程的通用解法公式为:x = (-b ± sqrt(b^2 - 4ac)) / (2a)其中,a、b、c分别是方程中的系数。
3.完全平方公式完全平方公式是另一种用于解决一元二次方程的方法。
它适用于形式为 `(x + a)^2 = b` 或 `(x - a)^2 = b` 的方程。
通过使用完全平方公式,可以简化求解过程。
4.图形法图形法是一种几何解法,通过绘制一元二次方程的图像,可以找到方程的根。
这种方法对于直观理解方程的解非常有帮助。
专项训练和题型分类为了帮助您熟练掌握一元二次方程的解法技巧,我们提供了一些专项训练和题型分类。
通过多次练不同类型的题目,您将能够更好地应对各种与一元二次方程相关的问题。
1.因式分解题型在因式分解题型中,您需要将一元二次方程因式分解为两个一次因式相乘的形式,并求解得到方程的根。
2.公式法题型在公式法题型中,您需要根据一元二次方程的系数,使用公式法求解方程并计算得到方程的根。
3.完全平方公式题型在完全平方公式题型中,您需要根据方程形式 `(x + a)^2 = b` 或 `(x - a)^2 = b`,运用完全平方公式求解方程。
4.综合题型综合题型将结合以上不同的解法技巧,要求您根据方程的形式和条件选择合适的解法,并求解得到方程的根。
总结本文介绍了一元二次方程解法技巧,包括因式分解法、公式法、完全平方公式和图形法。
一元二次方程的解法(公式法3种题型)(解析版)
一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。
计算专题一元二次方程解法分类训练专题
一元二次方程分类训练专题一、直接开平方法1.解方程:(1)4x2=9;(2)(x+1)2﹣25=0.2.解方程:(x﹣2)2=18.3.解方程:(2x﹣1)2﹣25=0.4.解方程:2(x﹣1)2﹣18=05.解方程:16(2﹣x)2﹣9=0.6.解方程ax2﹣1=1﹣x2.7.解方程:(y+2)2=(3y﹣1)2.8.解方程:(1)16x2=25;(2)3(x+1)2﹣108=0;(3)(2x+3)2﹣54=0.二、配方法9.解方程x2﹣2x﹣1=0.10.用配方法解方程:x2+6x﹣6=0.11.用配方法解下列关于x的方程:(1)x2+12x+25=0.(2)2x2+4x﹣1998=0.12.用配方法解下列方程(1)3x2﹣4x﹣2=0;(2)6x2﹣2x﹣1=0;(3)2x2+1=3x;(4)(x﹣3)(2x+1)=﹣5.13.用配方法解方程:2x2﹣2x﹣1=0.14.用配方法解方程:(1)x2+7x=﹣;(2)3x2+6x+2=11.15.解方程:3x2﹣6x﹣1=0(配方法).16.解下列方程:x2+6x=﹣3.三、公式法17.用公式法解方程:2x2﹣x﹣5=0.18.解方程:3x2﹣3x﹣1=0.19.解方程:2x2﹣9x+10=0.20.解方程:.21.解方程:3x2﹣5x﹣1=0.22.解方程:5x2+2x﹣1=0.23.用公式法解方程:4x2+x﹣3=0.24.解方程:x2+4x+8=2x+11.四、因式分解法25.因式分解法解方程:x2﹣2x﹣15=0.26.利用因式分解法解方程:2x(x+2)=3(2+x).27.解方程:(1)x2﹣4x+3=0;(2)(x﹣3)2﹣6(x﹣3)+8=0.28.用因式分解法解下列方程.(1)(2x﹣3)2﹣(x﹣2)2=0;(2)2(t﹣1)2+t=1.29.用因式分解法解方程:3x2﹣5x﹣2=0.30.用因式分解法解方程:(1)2x2+3x=0;(2)2(x﹣3)=3x(x﹣3).31.解方程:2x2+3x=2.(因式分解法)32.用因式分解法解方程.(1)x2+4x﹣21=0.(2)(2x﹣1)2﹣(x+3)2=0.33.用因式分解法解方程.(1)x(2x﹣5)=2(2x﹣5).(2)4x2﹣4x+1=(x+3)2.34.解方程:(4﹣3x)+(3x﹣4)2=0(因式分解法).五、换元法35.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.例:用换元法分解因式(x2﹣4x+1)(x2﹣4x+2)﹣12.解:设x2﹣4x=y原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y+5)(y﹣2)=(x2﹣4x+5)(x2﹣4x﹣2)(1)请你用换元法对多项式(x2﹣3x+2)(x2﹣3x﹣5)﹣8进行因式分解;(2)凭你的数感,大胆尝试解方程:(x2﹣2x+1)(x2﹣2x﹣3)=0.36.阅读下面材料:并解答问题为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,解此方程,得y1=1,y2=4.当y=1时,x2﹣1=1,x2=2,∴.当y=4时,x2﹣1=4,∴.∴原方程的解为.以上解题方法就叫换元法,请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.37.请阅读下列材料:问题:解方程(x2﹣1)2﹣5(x2﹣1)+4=0,小明的做法是将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,解得x=±;当y=4时,x2﹣1=4,解得x=±.综合,可得原方程的解为x1=,x2=﹣,x3=,x4=﹣.请你参考小明的思路,解下列方程:x4﹣4x2﹣5=0.38.解方程:x4﹣3x2+2=0解:设x2=m,则原方程变为m2﹣3m+2=0解得,m1=1,m2=2.当m1=1时,x2=1,解得x=±1.当m2=2时,x2=2,解得x=±.所以,原方程的解x1=1,x2=﹣1,x3=,x4=﹣.阅读上述解方程的过程,利用上述方法解答下列问题:(1)解方程:(x2﹣x)2﹣3(x2﹣x)+2=0(2)若(a2+b2)2﹣3a2﹣3b2﹣4=0,求a2+b2的值.参考答案与试题解析一.解答题(共38小题)1.解方程:(1)4x2=9;(2)(x+1)2﹣25=0.【答案】(1)x1=,x2=﹣;(2)x1=4,x2=﹣6.2.解方程:(x﹣2)2=18.【答案】.3.解方程:(2x﹣1)2﹣25=0.【答案】x1=3,x2=﹣2.4.解方程:2(x﹣1)2﹣18=0【答案】见试题解答内容5.解方程:16(2﹣x)2﹣9=0.【答案】,.6.解方程ax2﹣1=1﹣x2.【答案】a≤﹣1时,方程没有实数解;a>﹣1时,x1=﹣,x2=.7.解方程:(y+2)2=(3y﹣1)2.【答案】见试题解答内容8.解方程:(1)16x2=25;(2)3(x+1)2﹣108=0;(3)(2x+3)2﹣54=0.【答案】(1)x1=,x2=﹣.(2)x1=5,x2=﹣7.(3)x1=,x2=.9.解方程x2﹣2x﹣1=0.【答案】,.10.用配方法解方程:x2+6x﹣6=0.【答案】.11.用配方法解下列关于x的方程:(1)x2+12x+25=0.(2)2x2+4x﹣1998=0.【答案】(1),;(2),.12.用配方法解下列方程(1)3x2﹣4x﹣2=0;(2)6x2﹣2x﹣1=0;(3)2x2+1=3x;(4)(x﹣3)(2x+1)=﹣5.【答案】(1)x1=+,x2=﹣;(2)x1=+,x2=﹣;(3)x1=1,x2=;(4)x1=2,x2=.13.用配方法解方程:2x2﹣2x﹣1=0.【答案】x1=+,x2=﹣.14.用配方法解方程:(1)x2+7x=﹣;(2)3x2+6x+2=11.【答案】(1),;(2)x1=1,x2=﹣3.15.解方程:3x2﹣6x﹣1=0(配方法).【答案】,.16.解下列方程:x2+6x=﹣3.【答案】x1=﹣3+,x2=﹣3﹣.17.用公式法解方程:2x2﹣x﹣5=0.【答案】x1=,x2=18.解方程:3x2﹣3x﹣1=0.【答案】,.19.解方程:2x2﹣9x+10=0.【答案】x1=,x2=2.20.解方程:.【答案】,.21.解方程:3x2﹣5x﹣1=0.【答案】x1=,x2=.22.解方程:5x2+2x﹣1=0.【答案】x1=,.23.用公式法解方程:4x2+x﹣3=0.【答案】x1=,x2=﹣1.24.解方程:x2+4x+8=2x+11.【答案】x1=1,x2=﹣3.25.因式分解法解方程:x2﹣2x﹣15=0.【答案】x1=5,x2=﹣3.26.利用因式分解法解方程:2x(x+2)=3(2+x).【答案】x1=﹣2,x2=1.5.27.解方程:(1)x2﹣4x+3=0;(2)(x﹣3)2﹣6(x﹣3)+8=0.【答案】(1)x1=1,x2=3;(2)x1=5,x2=7.28.用因式分解法解下列方程.(1)(2x﹣3)2﹣(x﹣2)2=0;(2)2(t﹣1)2+t=1.【答案】(1)x1=,x2=1;(2)t1=1,t2=.29.用因式分解法解方程:3x2﹣5x﹣2=0.【答案】,x2=2.30.用因式分解法解方程:(1)2x2+3x=0;(2)2(x﹣3)=3x(x﹣3).【答案】(1)x1=0,x2=﹣;(2)x1=3,x2=.31.解方程:2x2+3x=2.(因式分解法)【答案】x1=,x2=﹣2.32.用因式分解法解方程.(1)x2+4x﹣21=0.(2)(2x﹣1)2﹣(x+3)2=0.【答案】(1)x1=﹣7,x2=3;(2)x1=﹣,x2=4.33.用因式分解法解方程.(1)x(2x﹣5)=2(2x﹣5).(2)4x2﹣4x+1=(x+3)2.【答案】(1)x1=2.5,x2=2;(2)x1=4,x2=﹣.34.解方程:(4﹣3x)+(3x﹣4)2=0(因式分解法).【答案】x1=,x2=.35.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.例:用换元法分解因式(x2﹣4x+1)(x2﹣4x+2)﹣12.解:设x2﹣4x=y原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y+5)(y﹣2)=(x2﹣4x+5)(x2﹣4x﹣2)(1)请你用换元法对多项式(x2﹣3x+2)(x2﹣3x﹣5)﹣8进行因式分解;(2)凭你的数感,大胆尝试解方程:(x2﹣2x+1)(x2﹣2x﹣3)=0.【答案】见试题解答内容36.阅读下面材料:并解答问题为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,解此方程,得y1=1,y2=4.当y=1时,x2﹣1=1,x2=2,∴.当y=4时,x2﹣1=4,∴.∴原方程的解为.以上解题方法就叫换元法,请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.【答案】x1=3,x2=﹣2.37.请阅读下列材料:问题:解方程(x2﹣1)2﹣5(x2﹣1)+4=0,小明的做法是将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,解得x =±;当y=4时,x2﹣1=4,解得x =±.综合,可得原方程的解为x1=,x2=﹣,x3=,x4=﹣.请你参考小明的思路,解下列方程:x4﹣4x2﹣5=0.【答案】,.38.解方程:x4﹣3x2+2=0解:设x2=m,则原方程变为m2﹣3m+2=0解得,m1=1,m2=2.当m1=1时,x2=1,解得x=±1.当m2=2时,x2=2,解得x =±.所以,原方程的解x1=1,x2=﹣1,x3=,x4=﹣.阅读上述解方程的过程,利用上述方法解答下列问题:(1)解方程:(x2﹣x)2﹣3(x2﹣x)+2=0(2)若(a2+b2)2﹣3a2﹣3b2﹣4=0,求a2+b2的值.【答案】(1)x1=,x2=,x3=2,x4=﹣1.(2)4.第11页(共11页)。
一元二次方程的应用题专练
一元二次方程的应用题专练(七大类型)一、解一元二次方程应用题的步骤1.“审、设、列、解、验、答”.2.审一定要清晰不是所有的条件都要用上, 还有用来验根的, 再有就是等量关系。
3.设可以直接设也可以间接设, 有单位的, 一定要记得带单位;4.列列方程时一定要用题中的原数;5.验一元二次方程两个根, 一定要看是否都符合;6.答回到实际问题中二、各种类型题训练(一)利润问题1.公式: 售价—进价=单个利润单个利润×销售量=总利润2.降价销售例: 西瓜经营户以2元/千克的价格购进一批小型西瓜, 以3元/千克的价格出售, 每天可售出200千克。
为了促销, 该经营户决定降价销售。
经调查发现, 这种小型西瓜每降价0.1元/千克, 每天可多售出40千克。
另外, 每天的房租等固定成本共24元。
该经营户要想每天盈利200元, 应将每千克小型西瓜的售价降低多少元?练习: (1).某商店购进一种商品, 进价30元. 试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系: P=100-2X, 若商店每天销售这种商品要获得200元的利润, 那么每件商品的售价应定为多少元?每天要售出这种商品多少件?(2)服装柜在销售中发现某品牌童装平均每天可售出20件, 每件盈利40元。
为了迎接“六一”儿童节, 商场决定采取适当的降价措施, 扩大销售量, 增加盈利, 减少库存。
经市场调查发现, 如果每件童装每降价4元, 那么平均每天就可多售出8件。
要想平均每天在销售这种童装上盈利1200元, 那么每件童装应降价多少元?(3)某商场礼品柜台购进大量贺卡,一种贺卡平均每天可销售500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的措施,调查发现,如果每降价0.1元,那么商场平均每天多售出300张,商场要想每天盈利160元,每张贺卡应该降价多少元?(4).利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源, 待货物售出后再进行结算, 未售出的由厂家负责处理)。
一元二次方程经典题型汇总
一元二次方程经典题型汇总将一元二次方程化为完全平方形式,然后两边开平方根,得到方程的解。
2、因式分解法:将一元二次方程化为两个一次因式的乘积形式,然后根据乘积为零的性质求解。
3、配方法:通过添加或减少一个适当的常数,将一元二次方程化为完全平方形式,然后利用完全平方公式求解。
4、公式法:利用求根公式,直接求解一元二次方程的解。
三、例题解析1、用直接开平方法求解方程x2+6x+9=0.解:将方程变形为(x+3)2=0,然后两边开平方根,得到x=-3.所以方程的解为x=-3.2、用因式分解法求解方程x2-5x+6=0.解:将方程因式分解为(x-2)(x-3)=0,然后根据乘积为零的性质得到x=2或x=3.所以方程的解为x=2或x=3.3、用配方法求解方程2x2-5x+2=0.解:为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。
可以发现,2x2-5x+2=2(x-1)(x-2)+2,所以方程可以化为2(x-1)2=0.然后利用完全平方公式,得到x=1或x=2.所以方程的解为x=1或x=2.4、用公式法求解方程3x2-4x+1=0.解:根据求根公式,方程的解为x=[4±√(16-4*3*1)]/(2*3),化简可得到x=1/3或x=1.所以方程的解为x=1/3或x=1.四、练题1、用直接开平方法求解方程2x2-12x+18=0.2、用因式分解法求解方程x2+7x+10=0.3、用配方法求解方程x2+4x-5=0.4、用公式法求解方程x2-2x+1=0.5、求解方程2x2-5x-3=0的解法有哪些?分别求出方程的解。
答案:1、将方程变形为x2-6x+9=0,然后利用直接开平方法,得到x=3.所以方程的解为x=3.2、将方程因式分解为(x+5)(x+2)=0,然后根据乘积为零的性质,得到x=-5或x=-2.所以方程的解为x=-5或x=-2.3、为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。
第21章一元二次方程(压轴必刷30题7种题型专项训练)(原卷版)-2024-2025学年九年级数学上
第21章一元二次方程(压轴必刷30题7种题型专项训练)一.解一元二次方程-配方法(共1小题)1.(2022秋•仙桃校级月考)小明在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.我们称小明这种解法为“平均数法”.(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.解:原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.(x+a)2﹣b2=5,(x+a)2=5+b2.直接开平方并整理,得.x1=c,x2=d.上述过程中的a、b、c、d表示的数分别为,,,.(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.二.解一元二次方程-因式分解法(共1小题)2.(2021秋•高安市校级月考)阅读下面的例题:解方程:x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=1(不合题意,舍去),x2=﹣2∴原方程的根是x1=2,x2=﹣2.请参照例题解方程x2﹣|x﹣3|﹣3=0,则此方程的根是.三.换元法解一元二次方程(共1小题)3.(2021秋•高州市月考)先阅读,再解题解方程(x﹣1)2﹣5(x﹣1)+4=0,可以将(x﹣1)看成一个整体,设x﹣1=y,则原方程可化y2﹣5y+4=0,解得y1=1;y2=4,当y=1时,即x﹣1=1,解得x=2,当y=4时,即x﹣1=4,解得x=5,所原方程的解为x1=2,x2=5请利用上述这种方法解方程:(3x﹣5)2﹣4(5﹣3x)+3=0.四.根的判别式(共4小题)4.(2022秋•宝应县校级月考)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.5.(2022春•雷州市月考)已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.6.(2022秋•罗山县校级月考)已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.7.(2022秋•仪陇县月考)已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.五.根与系数的关系(共5小题)8.(2021春•拱墅区月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.9.(2021秋•冷水滩区校级月考)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a、b是方程x2+15x+5=0的二根,则=(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知和是关于x,y的方程组的两个不相等的实数解.问:是否存在实数k,使得y1y2﹣=2?若存在,求出的k 值,若不存在,请说明理由.10.(2021春•崇川区校级月考)已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.11.(2021秋•顺德区月考)已知方程a(2x+a)=x(1﹣x)的两个实数根为x1,x2,设.(1)当a=﹣2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由.12.(2020秋•椒江区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2﹣ac=0;我们记“K=b2﹣ac”即K=0时,方程ax2+bx+c=0为倍根方程;下面我们根据此结论来解决问题:(1)方程①x2﹣x﹣2=0;方程②x2﹣6x+8=0这两个方程中,是倍根方程的是(填序号即可);(2)若(x﹣2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;(3)关于x的一元二次方程x2﹣n=0(m≥0)是倍根方程,且点A(m,n)在一次函数y=3x﹣8的图象上,求此倍根方程的表达式.六.配方法的应用(共1小题)13.(2021秋•建瓯市校级月考)先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)七.一元二次方程的应用(共17小题)14.(2022秋•岳阳县校级月考)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?15.(2022春•宜秀区校级月考)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?16.(2022秋•中原区校级月考)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价(元)8040销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?17.(2022秋•南海区校级月考)在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,两条纵向,一条横向,横向与纵向互相垂直,(如图),把耕地分成大小相等的六块作试验田,要使实验地面积为570m2,问道路应为多宽?18.(2023春•莱芜区期中)如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.19.(2022春•拱墅区校级月考)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC 和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”必有实数根;(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积.20.(2021春•崇川区校级月考)某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)21.(2021秋•莲池区校级月考)毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2500元,问第二周每个纪念品的销售价格为多少元?22.(2022秋•佛山月考)如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C开始沿CA边运动,速度为1cm/s,与此同时,点E从点B开始沿BC边运动,速度为2cm/s,当点E到达点C时,点D同时停止运动,连接AE,设运动时间为ts,△ADE的面积为S.(1)是否存在某一时刻t,使DE∥AB?若存在,请求出此时刻t的值,若不存在,请说明理由.(2)点D运动至何处时,S=S△ABC?23.(2022秋•胶州市校级月考)如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?24.(2022秋•沙坪坝区校级月考)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?25.(2022秋•渝水区校级月考)已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.26.(2022秋•宜兴市月考)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?27.(2022秋•宜阳县月考)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)花圃的面积为米2(用含a的式子表示);(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价为105920元?28.(2022秋•仙桃校级月考)已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.29.(2021秋•开州区校级月考)今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.30.(2022秋•中原区校级月考)如图所示,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,P、Q 分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.点P停止运动时点Q也停止运动.(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P、Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?。
专题训练。一元二次方程的解法
专题训练。
一元二次方程的解法专题训练:一元二次方程的解法一、一元二次方程的解法分类练1.直接开方法1) 解 $1(x-2)^2=8$。
2) 解 $2(x+1)^2-6=0$。
2.配方法1) 解 $4x-x^2+2=0$。
2) 解 $(2x-1)^2=x(3x+2)-7$。
3.公式法1) 解 $x^2=2x+1$。
2) 解 $2x^2-2=3x$。
3) 解 $3x^2-6x=5$。
4.因式分解法1) 解 $x^2-32x=0$。
2) 解 $x^2-3x-3=0$。
3) 解 $x(x-2)=8$。
二、一元二次方程解法的灵活运用5.若$x=-1$是关于$x$的一元二次方程$ax^2+bx-2=0(a\neq0)$的一个根,则$2017-2a+2b$的值等于()。
A。
$2019$ B。
$2015$ C。
$2013$ D。
$2011$6.若关于$x$的一元二次方程$(a-1)x^2-2x+1=0$有两个不相等的实数根,则$a$的取值范围是()。
A。
$a>2$ B。
$a<2$ C。
$a<2$且$a\neq1$ D。
$a<-2$7.已知等腰三角形的边长分别为$a,b,2$,且$a,b$是关于$x$的一元二次方程$x^2-6x+n-1=0$的两个根,则$n$的值为()。
A。
$9$ B。
$10$ C。
$9$或$10$ D。
$8$或$10$8.若$a$满足不等式组$\begin{cases}1-a\leq1,\\2a-1\geq2,\end{cases}$则关于$x$的方程$(a-2)x^2-(2a-1)x+a+2=0$的根的情况是()。
A。
有两个不相等的实数根 B。
有两个相等的实数根 C。
没有实数根 D。
以上三种情况都有可能9.无论$x$取任何实数,代数式$x^2-6x+m$都有意义,则$m$的取值范围是()。
10.若关于$x$的方程$(a-6)x^2-8x+6=0$有实数根,则整数$a$的最大值是()。
一元二次方程解法专项训练以及题型分类
一元二次方程题型分类讲解一元二次方程解法《基础训练篇》(1)直接开平方1.方程 (3x -1)2=-5的解是 。
2.用直接开平方解下列方程:(1)4x 2-1=0 ; (2)(x+4)2= 9; (3)81(x-2)2=16 ; (4)4(2x+1)2-36=0 ; (5)22)32()2(+=-x x(4)因式分解法1、填写解方程2-2-3=0x x 的过程解: x -3 x 1-3x+x=-2x所以2-2-3=x x (x- )(x+ )即(x- )(x+ )=0 即x- =0或x+ =0 ∴x 1=__________,x 2=__________2、用十字相乘法解方程6x 2-x -1=0解: 2x 12x- x=-x所以6x 2-x -1=(2x )( ) 即(2x )( )=0 即2x =0或 =0 ∴x 1=__________,x 2=__________例题1、26=x x 2、4(3+)7(3+)x x x 3、244-y+=039y4、22-1=9x x (2) 5、20322--x x =0;练习:解方程1、22-3=0x x 2、(3)3(3)x x x 3、24-12x-9=0x 4、22-3=25+4x x ()()5、22-3=-9x x () 6.3x 2+7x -6=0 ; 7.2216-3(4)x x 8.22(-3)+436x x9.(-3)2(2)x x (x+2) 10.2(4-3)+44-3+4=0x x ()11. 2x 2+5x +2=0; 12.27196=0x x(2)配方法1、填空:(1)x 2+6x+ =(x+ )2;(2)x 2-2x+ =(x- )2;(3)x 2-5x+ =(x- )2;(4)x 2+x+ =(x+ )2;(5)x 2+px+ =(x+ )2; 2、用配方法解下列方程:(1)x 2-6x-16=0; (2)x 2+3x-2=0; (3)x 2+23x-4=0; (4)x 2-32x-32=0.(3)公式法1.用公式法解下列方程:(1) 3 y 2-y-2 = 0 (2) 2 x 2+1 =3x (3)4x 2-3x-1=x-2 (4)3x(x-3)=2(x-1)(x+1)一元二次方程考点以及典型例题《提高篇》(考点一:一元二次方程的定义)题型(一)判断一元二次方程1、下列方程中,关于x 的一元二次方程是( ) A.()()12132+=+x x B.02112=-+x xC.02=++c bx ax D. 1222-=+x x x 2、关于x 的方程2320ax x -+=是一元二次方程,则( )A 、0a >;B 、0a ≠;C 、1a =; D 、a ≥0. 题型(二)考查一般形式3、方程20x x -=的一次项系数是 ,常数项是 . 4、方程2x x 232=-化成一般形式是 ,其中二次项系数式是 ,一次项系数是 ,常数项是 。
第二章 一元二次方程 综合题型归类 培优练习(含详解)
一元二次方程-综合题型归类 培优练习【综合题型一】一元二次方程➼➻解法【综合①】一元二次方程的解法➼➻解一元二次方程★✭分式方程★✭换元法1.(2008·浙江温州·中考真题)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①2310x x -+=;①2(1)3x -=;①230x x -=;①224x x -=.2.(2019·内蒙古呼和浩特·统考中考真题)用配方法求一元二次方程()()23616x x +-=的实数根.3.(2019·上海·中考真题)解分式方程:228122-=--x x x x.4.(2020·湖北荆州·统考中考真题)阅读下列问题与提示后,将解方程的过程补充完整,求出x 的值.问题:解方程2250x x ++=(提示:可以用换元法解方程),()0t t =≥,则有222x x t +=,原方程可化为:2450t t +-=,续解:2212(1)121x x x x x x +++-÷+++,其中x 满足220x x --=.6.(2020·四川广元·统考中考真题)先化简,再求值:2111a a a a a a--⎛⎫-+÷ ⎪+⎝⎭,其中a 是关于x 的方程2230x x --=的根.【综合题型二】解一元二次方程➼➻根的判别式★✭韦达定理★✭换元法【综合①】根的判别式➼➻求参数取值范围★✭证明7.(2017·北京·中考真题)已知关于x 的方程()23220x k x k -+++=(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k 的取值范围8.(2013·山东淄博·中考真题)关于x 的一元二次方程()2a 6x 8x 90--+=有实根.(1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根;①求2232x 72x x 8x 11---+的值.9.(2016·北京·中考真题)关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.【综合②】根的判别式✭★韦达定理➼➻求参数取值范围★✭证明10.(2022·湖北十堰·统考中考真题)已知关于x 的一元二次方程22230x x m --=.(1) 求证:方程总有两个不相等的实数根;(2) 若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.11.(2021·湖北荆门·统考中考真题)已知关于x 的一元二次方程26210x x m -+-=有1x ,2x 两实数根.(1)若11x =,求2x 及m 的值;(2)是否存在实数m ,满足()()126115x x m --=-?若存在,求出求实数m 的值;若不存在,请说明理由.12.(2022·四川南充·中考真题)已知关于x 的一元二次方程2320x x k ++-=有实数根.(1) 求实数k 的取值范围.(2) 设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值.【综合题型三】一元二次方程的应用【综合①】一元二次方程的应用➼➻增长率问题★✭传播问题13.(2022·四川眉山·中考真题)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1) 求该市改造老旧小区投入资金的年平均增长率;(2) 2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加14.(2022·广西南宁·校联考一模)有两个人患了流感,经过两轮传染后共有242人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)若一个患流感的人打一个喷嚏喷出的病毒粒子(忽略触角近似于球体)达8000万个,且该流感病毒粒子的直径为160纳米.请完成下列填空及问题:①用科学记数法表示数据8000万个为__________个;①如图,若把8000万个病毒粒子最大纵切面圆面相切放在一条直线上,求这些病毒粒子纵切面的总直径是多少米?(参考数据:1纳米910-=米)15.(2017·广西桂林·中考真题)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1) 求该市这两年投入基础教育经费的年平均增长率;(2) 如果按(1)中基础教育经费投入的年平均增长率计算.该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校.若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【综合②】一元二次方程的应用➼➻图形问题★✭营销问题16.(2010·湖北宜昌·中考真题)如图,有一块等腰梯形的草坪,草坪上底长48米,下底长108米,上下底相距40米,现要在草坪中修建一条横、纵向的“H”型甬道,甬道宽度相等,甬道面积是整个梯形面积的213.设甬道的宽为x米.(1)求梯形ABCD的周长;17.(2021·山东日照·统考中考真题)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y (桶)与每桶降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?18.(2021·山东烟台·统考中考真题)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?19.(2012·山西·中考真题)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【挑战题型一】一元二次方程➼➻阅读材料问题★✭规律问题20.(2022·湖北黄石·统考中考真题)阅读材料,解答问题:材料1为了解方程()22213360x x -+=,如果我们把2x 看作一个整体,然后设2y x ,则原方程可化为213360y y -+=,经过运算,原方程的解为1,22x =±,3,43x =±.我们把以上这种解决问题的方法通常叫做换元法.材料2已知实数m ,n 满足210m m --=,210n n --=,且m n ≠,显然m ,n 是方程210x x --=的两个不相等的实数根,由韦达定理可知1m n +=,1mn =-.根据上述材料,解决以下问题:(1) 直接应用:方程42560x x -+=的解为_______________________;(2) 间接应用:已知实数a ,b 满足:422710a a -+=,422710b b -+=且a b ,求44a b +的值; (3) 拓展应用:已知实数x ,y 满足:42117m m +=,27n n -=且0n >,求241n m+的值.21.(2022·四川凉山·统考中考真题)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a 材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:①一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,①m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求n mm n+的值.(3)思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求11s t-的值.22.(2018·贵州黔东南·统考中考真题)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.23.(2022·安徽合肥·校考二模)观察下列图形中小黑点个数与等式的关系,按照其图形与等式的规律,解答下列问题:=第1个等式:1221+=++=+=第2个等式:4682+=+=第3个等式:912183+=+=第4个等式:1620324(1)写出第5个等式:________.(2)写出你猜想的第n个等式:________(用含n的等式表示).(3)若第n组图形中左右两边各有210个小黑点,求n.24.(2018·江苏常州·中考真题)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”x=的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【挑战题型二】一元二次方程➼➻拓展问题★✭探究问题25.(2014·四川凉山·统考中考真题)实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点…容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗?如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+…+(n﹣2)+(n﹣1)+n,可以发现.2×[1+2+3+…+(n﹣2)+(n﹣1)+n]=[1+2+3+…+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+…3+2+1]把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到1+2+3+…+(n﹣2)+(n﹣1)+n=1n(n+1)2n(n+1)这就是说,三角点阵中前n项的点数的和是12下列用一元二次方程解决上述问题n(n+1)设三角点阵中前n行的点数的和为300,则有12整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究处前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能使600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.26.(2022·山东青岛·统考二模)实际问题:婚礼上有116名宾客,地面上水平放置了一个长方体蛋糕,要保证这116名宾客都能分得蛋糕(忽略大小,水平切割的方向只能与地面平行,垂直切割只能与地面垂直),小明说我10刀即可完成任务,你认为小明是怎样切这个蛋糕才能完成任务.问题探究:为解决这个问题我们从最简单的长方形分割开始研究.探究一:用一条直线分一个长方形,最多可以分成几部分?如图1所示,一条线来分多出1部分,最多分成1+1=2部分;探究二:用2条直线分一个长方形,最多可以分成几部分?如图2所示,第2条线与第一条线相交,多出2部分,最多分成1+1+2=4部分;探究三:用3条直线分一个长方形,最多可以分成几部分?如图3所示,第3条线与前2条线相交,多出3部分,最多分成1+1+2+3=7部分;探究四:用4条直线分一个长方形,最多可以分成几部分?如图4所示,第4条线与原来3条线相交,多出4部分,最多分1+1+2+3+4=11部分;(1)探究五:用5条直线分一个长方形,第5条线与原来4条线相交,多出部分,即最多分成部分;(2)探究六:用n条直线分一个长方形,最多可以分成部分;(用含n的代数式表示)(3)探究七:我们可以将开始提出的问题转化为切割长方体,借助以上探究长方形切割的结论如何将长方体切割成14块?我们只需要在探究三的基础上,先在长方体中竖直切割3刀最多分成7块,平行于地面切一刀,此时4刀可切成7×2=14块.探究八:如何用最少的切割次数,将一个长方体蛋糕切割成44块,请说明切割过程,无需画图;切割的方向只能与地面平行,垂直切割只能与地面垂直),小明说我10刀即可完成任务,你认为小明是怎样切这个蛋糕?请说明切割的过程,无需画图.27.(2020·山东青岛·中考真题)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.参考答案1.①x =①1x =①10x =,23x =;①1x = 【分析】①利用公式法求解即可.①利用直接开平方法求解即可.①利用因式分解法求解即可;①利用配方法求解即可;解:①2310x x -+=; ①a =1,b =-3,c =1, ①①=(-3)2-4×1×1=5>0,①x =即12x x ==; ①2(1)3x -=;①x -1=①1211x x == ①230x x -=; ①x (x -3)=0 ①x =0或x =3 ①10x =,23x =; ①224x x -= ①22141x x -+=+ ①()215x -=;①1x -=①1211x x ==2.1x 2x 【分析】首先把方程化为一般形式为2x 2-9x -34=0,然后变形为29x x 172﹣=,然后利用配方法解方程. 解:原方程化为一般形式为22x 9x 340﹣﹣=, 29x x 172﹣=, 298181x x 1721616-++=,29353x 416-()=,所以12x 【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.3.x =-4.【分析】首先去分母,化为整式方程,然后合并同类项,把未知数的系数化为1,最后检验求得的结果是否使原分式有意义,即可得到答案.解:去分母得2x 2-8=x 2-2x , 移项、整理得x 2+2x -8=0, 解得:x 1=2,x 2=-4.经检验:x =2是增根,舍去;x =-4是原方程的根. ①原方程的根是x =-4.【点拨】此题考查解分式方程,解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法;注意解分式方程要检验,避免产生增根.4.11x =-21x =-.【分析】利用因式分解法解方程t 2+4t -5=0得到t 1=-5,t 2=11=,然后进行检验确定原方程的解.解:续解:()229t +=,23t ∴+=±,解得11t =,25t =-(不合题意,舍去),1t ∴=,221x x +=,2(1)2x ∴+=,1211x x ∴=-=-经检验都是方程的解.【点拨】本题考查了换元法解方程,涉及了无理方程及一元二次方程的解法.看懂提示是解决本题的关键.换元法的一般步骤:设元、换元、解元、还元.5.x (x +1);6【分析】先求出方程220x x --=的解,然后化简分式,最后选择合适的x 代入计算即可. 解:①220x x --= ①x =2或x =-1 ①2212(1)121x x x x x x +++-÷+++ =()221212()111x x x x x x +++÷+++-=()2222()11x x x x x ++÷++ =()()22112x x x x x ++⨯++=x (x +1)①x =-1分式无意义,①x =2当x =2时,x (x +1)=2×(2+1)=6.【点拨】本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x 的值是解答本题的易错点.6.a 2+2a+1;16【分析】首先将括号里面通分,进而因式分解各项,化简求出即可. 解:2111a a a a a a--⎛⎫-+÷ ⎪+⎝⎭ ()()1111a a a a a a a a ⎡⎤-+-=-⨯⎢⎥-⎣⎦ ()()()1111a a a a aa+-+=⨯-()21a =+=a 2+2a+1①a 是关于x 的方程2230x x --=的根, ①a 2-2a -3=0, ①a=3或a=-1, ①a 2+a≠0, ①a≠-1, ①a=3,①原式=9+6+1=16.【点拨】此题主要考查了分式的化简求值以及一元二次方程的解,正确化简分式是解题关键. 7.(1)证明见分析;(2)10k -<<【分析】(1)证出根的判别式240b ac ∆=-≥即可完成; (2)将k 视为数,求出方程的两个根,即可求出k 的取值范围. 解:(1)证明:1,(3),22a b k c k ==-+=+22224[(3)]41(22)21(1)0b ac k k k k k ∆=-=-+-⨯⨯+=-+=-≥①方程总有两个实数根(2)()23220x k x k -+++=①3(1)2k k x +±-=①121,2x k x =+= ①方程有一个小于1的正根①011k <+< ①10k -<<【点拨】本题考查一元二次方程根的判别式与方程的根之间的关系,熟练掌握相关知识点是解题关键. 8.(1)a 的最大整数值为7.(2)①12x 4x 4==①292-【分析】(1)根据一元二次方程的定义和根的判别式得到()644a 690∆=-⨯-⨯≥且a 60-≠,解得7a 79≤且a≠6,然后在此范围内找出最大的整数.(2)①把a 的值代入方程得到2x 8x 90-+=,然后利用求根公式法求解.①由于2x 8x 90-+=则2x 8x 9-=-,把2x 8x 9-=-整体代入所求的代数式,再变形得到()272x 8x 2-+,再利用整体思想计算即可.解:(1)根据题意() a 60{644a 690-≠∆=-⨯-⨯≥,解得 a 6{7a 79≠≤.①a 的最大整数值为7.(2)①当a=7时,原方程变形为2x 8x 90-+=, 6441928∆=-⨯⨯=,①x 4==①12x 4x 4== ①①2x 8x 90-+=,①2x 8x 9-=-. ①()()2222232x 732x 7777292x 2x 2x 16x 2x 8x 29x 8x 119112222---=-=-+=-+=⨯-+=--+-+【点拨】本题考查根据一元二次方程根的情况求参数,掌握①与根的情况之间的关系是关键.9.(1)m >-54;(2)x 1=0,x 2=-3.【分析】(1)由方程有两个不相等的实数根即可得出Δ>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m =1,将m =1代入原方程,利用因式分解法解方程即可得出结论. 解:(1)①关于x 的一元二次方程2x +(2m +1)x +2m ﹣1=0有两个不相等的实数根, ①Δ=()()2221411m m +-⨯⨯-=4m +5>0, 解得:m >54-;(2)m =1,此时原方程为2x +3x =0, 即x (x +3)=0, 解得:1x =0,2x =﹣3.【点拨】本题考查了一元二次方程的根的情况,解一元二次方程,解决此题的关键是正确的计算. 10.(1) 见分析(2) 1m =±【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值. 解:(1)()22224241(3)412b ac m m ∆=-=--⨯⋅-=+, ①2120m ≥, ①241240m +≥>,∴该方程总有两个不相等的实数根;(2)方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-, ①25αβ+=, ①52αβ=-, ①522ββ-+=, 解得:3β=,1α=-, ①23133m -=-⨯=-,即1m =±.【点拨】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系. 11.(1)25x =,3m =;(2)存在,2m =【分析】(1)根据题意可得①>0,再代入相应数值解不等式即可,再利用根与系数的关系求解即可; (2)根据根与系数的关系可得关于m 的方程,整理后可即可解出m 的值. 解:(1)由题意:Δ=(−6)2−4×1×(2m −1)>0, ①m <5,将x 1=1代入原方程得:m =3, 又①x 1•x 2=2m −1=5, ①x 2=5,m =3;(2)设存在实数m ,满足()()126115x x m --=-,那么 有()1212615x x x x m -++=-⋅, 即6(21)615m m --+=-, 整理得:28120m m -+=, 解得2m =或6m =. 由(1)可知5m <, ①6m =舍去,从而2m =, 综上所述:存在2m =符合题意.【点拨】本题主要考查了根的判别式,以及根与系数的关系,关键是掌握一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.以及根与系数的关系:x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,12b x x a +=-,12cx x a=.12.(1) k 174≤;(2) k =3【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. (1)解:①一元二次方程2320x x k ++-=有实数根. ①∆≥0,即32-4(k -2)≥0, 解得k 174≤(2)①方程的两个实数根分别为12,x x , ①12123,2x x x x k -+==-, ①()()12111x x ++=-, ①121211x x x x +++=-, ①2311k --+=-, 解得k =3.【点拨】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.13.(1) 20% (2) 18个【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.(1)解:设该市改造老旧小区投入资金的年平均增长率为x , 根据题意得:21000(1)1440x +=, 解这个方程得,10.2x =,2 2.2x =-, 经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%. (2)设该市在2022年可以改造y 个老旧小区, 由题意得:80(115%)1440(120%)y ⨯+≤⨯+, 解得181823y ≤. ①y 为正整数,①最多可以改造18个小区. 答:该市在2022年最多可以改造18个老旧小区.【点拨】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.14.(1) 10个人(2) ①7810⨯;①12.8米【分析】(1)设每轮传染中平均一个人传染了x 个人,根据“有两个人患了流感,经过两轮传染后共有242人患了流感”建立方程,解方程即可得;(2)①根据科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)即可得;①利用160纳米乘以8000万即可得.(1)解:设每轮传染中平均一个人传染了x 个人, 由题意得:22(1)242x +=,解得1210,12==-x x (不符题意,舍去), 答:每轮传染中平均一个人传染了10个人. (2)解:①8000万34781010810=⨯⨯=⨯, 故答案为:7810⨯;①9729716010810 1.6101081012.8--⨯⨯⨯=⨯⨯⨯⨯=(米), 答:这些病毒粒子最大纵切面的总直径是12.8米.【点拨】本题考查了一元二次方程的应用、科学记数法、负整数指数幂与同底数幂乘法的应用,正确建立方程和熟练掌握科学记数法是解题关键.15.(1) 该市这两年投入基础教育经费的年平均增长率为20% (2) 2021年最多可购买电脑880台【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x ,根据2018年及2020年投入的基础教育经费金额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据年平均增长率求出2021年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,取其中的最大值即可.(1)解:设该市这两年投入基础教育经费的年平均增长率为x , 根据题意得:5000(1+x )2=7200, 解得:x 1=0.2=20%,x 2=−2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%;(2)解:2021年投入基础教育经费为7200×(1+20%)=8640(万元), 设购买电脑m 台,则购买实物投影仪(1500−m )台, 根据题意得:3500m +2000(1500−m )≤86400000×5%, 解得:m ≤880,答:2021年最多可购买电脑880台.【点拨】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2018年及2020年投入的基础教育经费金额,列出关于x 的一元二次方程;(2)根据总价=单价×数量,列出关于m 的一元一次不等式.16.(1)256米 (2)(128-2x )米 (3)4米解:(1)在等腰梯形ABCD 中, AD =EF =48,()121(10848)23050AE BC DF BC BE CF BC EF AB CD ⊥⊥==-=-=∴===,,,,∴梯形ABCD 的周长=AB +BC +CD +DA =50+108+50+48=256(米).···· 2分(2)甬道的总长:402482(1282)x x ⨯+-=-米.··············· 4分 (3)根据题意,得 21(1282)40(48108)132x x -=⨯⨯+.····················· 7分 整理,得x 2−64x +240=0, 解之得x 1=4,x 2=60.因6048>,不符合题意,舍去. 答:甬道的宽为4米.···························· 10分17.(1)y =10x +100;(2)这种消毒液每桶实际售价43元【分析】(1)设y 与x 之间的函数表达式为y kx b =+,将点(1,110)、(3,130)代入一次函数表达式,即可求解; (2)根据利润等于每桶的利润乘以销售量得关于x 的一元二次方程,通过解方程即可求解. 解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+, 将点(1,110)、(3,130)代入一次函数表达式得:1101303k bk b=+⎧⎨=+⎩,解得:10100k b =⎧⎨=⎩,故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=, 整理,得210240x x --=. 解得112x =,22x =-(舍去). 所以5543x -=.答:这种消毒液每桶实际售价43元.【点拨】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润=总利润得出一元二次方程是解题关键.18.(1)50元;(2)八折【分析】(1)设每件的售价定为x 元,根据利润不变,列出关于x 的一元二次方程,求解即可; (2)设该商品至少打m 折,根据销售价格不超过(1)中的售价列出一元一次不等式,解不等式即可. 解:(1)设每件的售价定为x 元, 则有:60(1020)(40)(6040)205xx -⨯+⨯-=-⨯,解得:125060x x ==,(舍),答:每件售价为50元;(2)设该商品至少打m 折, 根据题意得:62.55010m ⨯≤, 解得:8m ≤,答:至少打八折销售价格不超过50元.【点拨】本题主要考查一元二次方程的实际应用以及一元一次不等式的应用,找准等量关系列出方程是解决问题的关键.19.(1)4元或6元;(2)九折【分析】(1)设每千克核桃降价x 元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.解:(1)设每千克核桃应降价x 元根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.①要尽可能让利于顾客,①每千克核桃应降价6元此时,售价为:60﹣6=54(元),54100%=90%60⨯ 答:该店应按原售价的九折出售.【点拨】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.20.(1) 1x ,2x =3x 4x =(2)454(3) 15【分析】(1)利用换元法降次解决问题;(2)模仿例题解决问题即可;(3)令21m =a ,-n =b ,则2a +a -7=0,2b +b =0,再模仿例题解决问题. (1)解:令y =2x ,则有2y -5y +6=0,①(y -2)(y -3)=0,①1y =2,2y =3,①2x =2或3,①1x =2x =3x =4x =故答案为:1x =,2x =3x 4x =。
专题训练 一元二次方程的解法
专题训练 一元二次方程的解法类型一 一元二次方程的解法分类练习1.用直接开方法解下列方程:(1)13(x -2)2=8; (2)2(x +1)2-6=0.2.用配方法解下列方程:(1)4x -x 2+2=0; (2)(2x -1)2=x(3x +2)-7.3.用公式法解一元二次方程:(1)x 2=2x +1; (2)2x 2-2=3x ; (3)3x 2-6x =5.4.用因式分解法解下列方程:(1)x 2-32x =0; (2)x 2-1=3x +3; (3)x(x -2)=8.类型二 一元二次方程解法的灵活运用5.若x =-1是关于x 的一元二次方程ax 2+bx -2=0(a ≠0)的一个根,则2 017-2a +2b 的值等于( )A .2 019B .2 015C .2 013D .2 0116.若关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a >2B .a <2C .a <2且a ≠1D .a <-27.已知等腰三角形的边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两个根,则n 的值为( )A .9B .10C .9或10D .8或108.若a 满足不等式组⎪⎩⎪⎨⎧>-≤-,221,112a a 则关于x 的方程(a -2)x 2-(2a -1)x +a +12=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上三种情况都有可能9.无论x 取任何实数,代数式x 2-6x +m 都有意义,则m 的取值范围是________.10.若关于x 的方程(a -6)x 2-8x +6=0有实数根,则整数a 的最大值是________.11.对于实数a ,b ,我们定义一种运算“﹡”为:a ﹡b =a 2-ab ,例如:1﹡3=12-1×3,若x ﹡4=0,则x =________.12.用恰当的方法解下列方程:(1)(2x -1)2=9; (2)x 2-2x -288=0; (3)8y 2+10y =3;(4)x 2+3x -4=0; (5)x 2-6x +9=(5-2x)2.13.(2015·梅州)已知关于x 的方程mx 2-(m +2)x +2=0(m ≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.。
解一元二次方程(十字相乘法)专项训练
解一元二次方程(十字相乘法)专项训练一、一元二次方程的解法归类:1.直接开平方法:适合的形式。
)0()(2≥=+k k h x 如: 解:07)5(2=--x 57,57,75,7)5(212+-=+=±=-=-x x x x 2.配方法:→万能方法(比较适合二次项系数等于1,而且一次项系数是偶数的方程)关键步骤:方程两边都加上一次项系数一半的平方。
如: 解:1562=+x x 362,362,623,24)3(,915962122--=-=±=+=++=++x x x x x x 注:代数式的配方,应先提取二次项系数,将二次项系数变成1,再进行配方。
因为代数式没有两边,无法进行两边都加上一次项系数一半的平方,所以必须加多少再减多少,而且配方与常数项无关,所以常数项必须放到括号以外。
如:455)23(37427)23(37)49493(37)3(379322222+--=++--=+-+--=+--=++-x x x x x x x x 3.公式法:→万能方法(系数比较大的方程不太适合)如: 解:∵∴∴0122=-+x x ,1,1,2-===c b a ,9)1(24142=-⨯⨯-=-ac b 431±-=x 4.因式分解法:①提公因式法:如1)2)(1(+=-+x x x 解:3,1,0)3)(1(,0)12)(1(,0)1()2)(1(21=-==-+=--+=+--+x x x x x x x x x ②运用平方差公式:))((22b a b a b a -+=-如 解:0)12(22=--x x 1,31,0)1)(13(,0)12)(12(21===--=--+-x x x x x x x x ③运用完全平方公式:, 222)(2b a b ab a +=++222)(2b a b ab a -=+-如: 解:016)1(8)1(2=++-+x x 3,0)3(,0)41(2122===-=-+x x x x ④十字相乘法:如: 解:0652=++x x 3,2,0)3)(2(21-=-==++x x x xx x x x x 523=+0)3)(2(=++x x 又如: 解:035682=-+x x 47,25,0)74)(52(21=-==-+x x x x 2547-x x x 62014=+- 0)74)(52(=-+x x 二、十字相乘法专题练习:(1) (2)01072=++x x 0672=++x x (3)(4)0862=+-x x 01582=+-x x (5)(6)01662=-+x x 0122=--x x (7)(8)03722=++x x 071362=+-x x (9)(10)0101962=++x x 0351162=--x x 三、用恰当的方法解方程:(1)(2)02732=-x 142=-x x (3) (4)42)2(3-=-x x x 01522=+-x x(5) (6)01492=+-x x 07252=--x x。
二次函数与一元二次方程(五大类型)(题型专练)(原卷版)
专题07 二次函数与一元二次方程(五大类型)【题型1:二次函数与x轴交点问题】【题型2: 图像法确定一元二次方程的根】【题型3:已知函数值y求X的取值范围】【题型4:二次函数与不等式的关系】【题型5:二次函数综合】【题型1:二次函数与x轴交点问题】1.(2023•南充模拟)针对抛物线y=x2﹣(a+1)x+a与x轴公共点的情况,下列说法正确的是()A.有两个公共点B.有一个公共点C.一定有公共点D.可能无公共点2.(2023•许昌二模)若抛物线y=x2+4x+c与x轴没有交点,则c的值可以是()A.﹣4B.0C.4D.83.(2023•南充模拟)针对抛物线y=x2﹣(a+1)x+a与x轴公共点的情况,下列说法正确的是()A.有两个公共点B.有一个公共点C.一定有公共点D.可能无公共点4.(2023春•梅江区校级月考)二次函数y=x2﹣2x﹣1与x轴交点个数情况为()A.有两个不同的交点B.只有一个交点C.没有交点D.无法确定5.(2022秋•集贤县期末)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为()A.m=0或B.C.m=1或D.m=1或m=06.(2022秋•阜宁县期末)抛物线y=x2﹣bx﹣1与x轴交点的个数为()A.0个B.1个C.2个D.以上都不对7.(2022秋•新城区期末)二次函数y=x2﹣2x+1的图象与x轴的交点个数是()A.0个B.1个C.2个D.不能确定8.(2023•三江县校级一模)若二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的解为()A.x1=﹣2,x2=3B.x1=﹣1,x2=3C.x1=0,x2=3D.x1=1,x2=3【题型2: 图像法确定一元二次方程的根】9.(2022秋•林州市期末)根据如表中代数式ax2+bx的取值情况,可知方程ax2+bx ﹣6=0的根是()x……﹣3﹣2﹣10123……ax2+bx……12620026……A.x1=0,x2=1B.x2=﹣1,x1=2C.x1=﹣2,x2=3D.x1=﹣3,x2=4 10.(2023•澄城县一模)若二次函数y=ax2+bx+c的图象经过点(﹣1,0),(2,0),则关于x的方程ax2+bx+c=0的解为()A.x1=﹣1,x2=2B.x1=﹣2,x2=1C.x1=1,x2=2D.x1=﹣1,x2=﹣211.(2022秋•宛城区期末)根据下表中代数式ax2+bx的取值情况,可知方程ax2+bx﹣6=0的根是()x…﹣3﹣2﹣10123…ax2+bx…12620026…A.x1=0,x2=1B.x1=﹣1,x2=2C.x1=﹣2,x2=3D.x1=﹣3,x2=4【题型3:已知函数值y求X的取值范围】12.(2022秋•长春期末)已知二次函数y=ax2+bx+c的部分图象如图所示,当y>0时,x的取值范围是()A.x>﹣3B.﹣3<x<1C.x<﹣3或x>1D.x<1 13.(2022秋•合肥月考)如图所示的是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5 14.(2022•泸县校级一模)二次函数y=ax2+bx+c的部分图象如图所示,则关于x的不等式ax2+bx+c≥2的解集是()A.x≤2B.x≤0C.﹣3≤x≤0D.x≤﹣3或x≥0 15.(2022秋•萧山区月考)已知抛物线y=x2+bx的对称轴为直线x=3,则关于x的不等式x2+bx<﹣8的取值范围是()A.1<x<5B.2<x<4C.0<x<6D.﹣1<x<7 16.(2022秋•泰山区校级月考)二次函数y=a2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c<0的解集是()A.x>﹣3B.x<1C.﹣3<x<1D.x<﹣3或x>1 17.(2023•泸县校级一模)二次函数y=x2﹣2x﹣3.若y>﹣3,则自变量x的取值范围是()A.x<0或x>2B.x<1或x>3C.0<x<2D.1<x<3 18.(2022秋•金东区期末)已知抛物线y=﹣3x2+bx+c经过点A(0,2)、B (4,2),则不等式﹣3x2+bx+c<2的解集是.【题型4:二次函数与不等式的关系】19.(2022秋•同江市期末)如图,已知y1=ax2+bx+c(a≠0)与y2=kx+b(k≠0)相交于A(﹣1,0)、B(﹣4,3)两点,则y1>y2的x的取值范围是()A.x<﹣4B.﹣4<x<﹣1C.x>﹣1D.x<﹣4或x>﹣120.(2023•娄底模拟)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2﹣mx+c<n的解集为()A.x>﹣1B.x<3C.﹣1<x<3D.x<﹣3或x>1 21.(2022秋•保定期末)如图,已知抛物线y=ax2+bx+c与直线y=kx+m交于A(﹣3,﹣1),B(0,3)两点.则关,于x的不等式ax2+bx+c≤kx+m的解集是.22.(2022秋•番禺区校级期末)如图,直线y=x﹣1与抛物线y=x2﹣3x+2都经过点A(1,0)和B(3,2),则不等式x﹣1>x2﹣3x+2的解集是.23.(2022秋•市中区期末)如图,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象交于点A(﹣1,3),B(4,2).如图所示,则能使y1<y2成立的x的取值范围是.【题型5:二次函数综合】24.(2022秋•武城县月考)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.25.(2021秋•天津期末)如图,已知抛物线y=﹣x2+mx+3与x轴交于A、B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)求△ABC的面积;(3)点P是抛物线对称轴1上的一个动点,当P A+PC的值最小时,求点P 的坐标.26.(2022秋•青龙县月考)如图,抛物线y=ax2﹣4ax+3(a≠0)的图象交直线l:y=x+1于A,B两点,与x轴的另一个交点为C,与y轴交于点D.(1)求抛物线的解析式;(2)连接AD,BD,求△ADB的面积;(3)若抛物线的对称轴上存在一动点E,使EA+ED的值最小,求点E的坐标.27.(2022秋•黔东南州月考)如图,抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0),与y轴相交于点C.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上是否存在上点P,使得以点A、C、P为顶点的三角形是直角三角形,若存在,求出点P坐标若不存在,请说明理由.28.(2022秋•越秀区校级月考)抛物线y=﹣x2+2x+8与x轴交于A,B两点(A 在B的左侧),与y轴交于点C,点M是抛物线在x轴上方部分一动点,过点M作直线MH⊥y轴于H.(1)如图1,当HM=3时,求△ABM的面积;(2)如图2,若△MCO是以CO为底的等腰三角形,求点M的坐标.29.(2022秋•平桂区期末)如图,二次函数y=ax2+bx+5的图象经过点(1,8),且与x轴交于A、B两点,与y轴交于点C,其中点A(﹣1,0),M为抛物线的顶点.(1)求二次函数的解析式;(2)求△MCB的面积;(3)在坐标轴上是否存在点N,使得△BCN为直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.30.(2022秋•萧山区期中)已知二次函数y=x2﹣2mx+2m2﹣2.(1)若m=2,则该抛物线的对称轴为;若A(m﹣2,y1),B(m+1,y2)两点在该二次函数图象上,则y1与y2的大小关系为;(2)若该函数图象的顶点到x轴的距离等于2,试求m的值;(3)若抛物线在1≤x≤3时,对应的函数有最大值3,求m的值.31.(2022秋•汉川市期中)在平面直角坐标系xOy中,抛物线与x 轴交于O,A两点,过点A的直线与y轴交于点C,交抛物线于点D.(1)直接写出点A,C,D的坐标;(2)如图1,点B是直线AC上方第一象限内抛物线上的动点,连接AB和BD,求△ABD面积的最大值;(3)如图2,若点M在抛物线上,点N在x轴上,当以A,D,M,N为顶点的四边形是平行四边形时,求点N的坐标.。
一元二次方程的应用题分类题型汇总
一元二次方程的应用题分类题型汇总一元二次方程作为高中数学中的重要知识点,是数学中的重要内容之一。
在学习一元二次方程的过程中,掌握其应用题的解题方法和技巧是非常重要的。
一元二次方程的应用题主要分为以下几类:一、开平方型应用题这类题型主要是通过一元二次方程的开方运算来解题,常见的题目包括:物体自由下落问题、两船相遇问题、地平线问题等。
例如:一个物体从100米高的地方自由下落,求它落地时的速度是多少?解:根据自由落体运动公式,可以列出方程h=gt^2,再可得方程100=4.9t^2,解出t=2s,代入vt=gt,解得v=9.8m/s。
二、三角形型应用题这类题型主要是通过一元二次方程的几何意义来解题,常见的题目包括:三角形的边长问题、三角形的面积问题、三角形的高问题等。
例如:一个三角形的面积为24平方厘米,底长为6厘米,求其高是多少?解:设三角形的高为h,则可得方程24=6h/2,解得h=8。
三、投影型应用题这类题型主要是通过一元二次方程的投影意义来解题,常见的题目包括:物体投射问题、光的反射问题、图像放大缩小问题等。
例如:一枚炮弹以初速度20m/s与水平面夹角30°的角度射出,求炮弹落地的水平距离是多少?解:设炮弹飞行的时间为t,则可得方程h=20t*sin30°-4.9t^2,代入可得t=40/39s,再代入可得落地的水平距离为20*40/39*cos30°=38.84m。
四、应用文型应用题这类题型主要是通过一元二次方程的应用文意义来解题,常见的题目包括:距离、速度、时间问题、消费问题、利润问题等。
例如:甲乙两地相距240公里,分别以60公里/小时和80公里/小时的速度开车同时出发相向而行,几小时后相遇?解:设相遇的时间为t,则可得方程60t+80t=240,解得t=2小时。
以上是一元二次方程的应用题的主要分类和题型汇总,掌握这些题型的解题方法和技巧,将对学生在解题过程中起到很大的帮助。
一元二次方程的解法重难点题型专训
一元二次方程的解法重难点题型专训一元二次方程在中学数学中是一个非常重要的内容,它涉及到方程的解法、图像的性质、以及实际问题的应用等多个方面。
在学习一元二次方程的过程中,学生往往会遇到一些重难点的题型,这些题型需要我们有深入、全面的理解和掌握。
接下来,我们就来对一元二次方程的解法重难点题型进行专项训练和剖析。
一、基本概念回顾我们需要回顾和理解一元二次方程的基本概念。
一元二次方程是指形如ax²+bx+c=0的方程,其中a≠0。
在解一元二次方程时,我们通常会运用求根公式、配方法、因式分解等不同的方法。
一元二次方程的解可能包括两个实数解、两个虚数解、或者重根等多种情况。
1. 求根公式:对于一元二次方程ax²+bx+c=0,其求根公式为x=[-b±√(b²-4ac)]/(2a)。
2. 配方法:当一元二次方程难以直接使用求根公式时,我们可以尝试通过配方法将方程化简成完全平方式,然后再求解。
3. 因式分解:一元二次方程的解也可以通过因式分解来求得,这一方法通常适用于特殊的题型。
以上是一元二次方程的基本概念和解法方法,接下来我们会围绕这些方法来训练重难点题型。
二、重难点题型专练1. 关于实数根和虚数根的情况:有些一元二次方程可能没有实数解,而是有两个虚数解,例如x²+1=0这样的方程。
这种情况下,我们需要掌握虚数的性质和运算方法,以及如何判断方程的根的情况。
2. 关于一元二次方程在几何问题中的应用:一个抛物线与x轴交于两点,我们需要求抛物线的方程,并且要求交点的坐标。
这种情况下,我们需要将实际问题转化为代数方程,并运用一元二次方程的相关知识进行求解。
3. 关于一元二次方程的应用拓展:如何通过已知一元二次方程的根,求解与该方程有关的其他问题,这需要我们将方程的栠与系数之间的关系联系起来,进行推导和拓展。
三、个人观点和理解在学习和教学一元二次方程时,我认为重难点题型的训练是非常重要的。
解一元二次方程练习题(四种解法)
一 直接开方法
类型
I: ax2
=
b
x2
=
b a
b a
0
x
=
b (结果要分母有理化)
a
类型 II: a2 = b2 a = b或a = −b
(1) x2 = 9
(2) 4x2 = 25
(3) ( x +1)2 = 16
(4) 4(2x −1)2 = 81
一元二次方程的解法专题训练
三 公式法
x = −b b2 − 4ac 2a
步骤: 第一步:写成一般式; 第二步:找出 a,b,c;
第三步:计算 = b2 − 4ac ;
第四步:若△≥0,则代入公式;若△≥0,则原方程无实数解;
(1) x2 + 2x −1 = 0
(2) 2x2 + 4x = 1
(7) 300x2 − 40x +1 = 0
(8) ( x − 3)( x + 2) = 6
一元二次方程的解法专题训练
综合练习
(1) x2 − 6x + 8 = 0
(2) x2 − 4x = 1
(3) x2 −12x + 20 = 0
(4) x2 − 40x + 300 = 0
(5) x2 −100x + 2400 = 0
(5) (2x +1)2 = ( x − 3)2
(6) 250( x +1)2 = 360
(7)100(1− x)2 = 81
(8) 440( x +1)2 = 633.6
(9) −2( x − 4)2 + 9 = 5
初中数学《一元二次方程的解法》十大题型含解析
一元二次方程的解法【十大题型】【题型1直接开平方法解一元二次方程】【题型2配方法解一元二次方程】【题型3公式法解一元二次方程】【题型4因式分解法解一元二次方程】【题型5十字相乘法解一元二次方程】【题型6用适当方法解一元二次方程】【题型7用指定方法解一元二次方程】【题型8用换元法解一元二次方程】【题型9解含绝对值的一元二次方程】【题型10配方法的应用】知识点1:直接开平方法解一元二次方程根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥0)或(mx+n)2=p(p≥0,m≠0)的形式;②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.【题型1直接开平方法解一元二次方程】1(23-24九年级上·广东深圳·期中)将方程(2x-1)2=9的两边同时开平方,得2x-1=,即2x-1=或2x-1=,所以x1=,x2=.【答案】±33-32-1【分析】依照直接开平方法解一元二次方程的方法及步骤,一步步解出方程即可【详解】∵(2x-1)2=9∴2x-1=±3∴2x-1=3,2x-1=-3∴x1=2,x2=-1【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键2(23-24九年级上·贵州遵义·阶段练习)用直接开平方解下列一元二次方程,其中无解的方程为()A.x2+9=0B.-2x2=0C.x2-3=0D.(x-2)2=0【答案】A【分析】根据负数没有平方根即可求出答案.【详解】解:(A )移项可得x 2=-9,故选项A 无解;(B )-2x 2=0,即x 2=0,故选项B 有解;(C )移项可得x 2=3,故选项C 有解;(D )x -2 2=0,故选项D 有解;故选A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.3(23-24九年级上·陕西渭南·阶段练习)如果关于x 的一元二次方程x -5 2=m -7可以用直接开平方求解,则m 的取值范围是.【答案】m ≥7【分析】根据平方的非负性得出不等式,求出不等式的解集即可.【详解】解:∵方程x -5 2=m -7可以用直接开平方求解,∴m -7≥0,解得:m ≥7,故答案为:m ≥7.【点睛】本题考查了解一元二次方程和解一元一次不等式,能得出关于m 的不程是解此题的关键.4(23-24九年级上·河南南阳·阶段练习)小明在解一元二次方程时,发现有这样一种解法:如:解方程x x +4 =6.解:原方程可变形,得:x +2 -2 x +2 +2 =6.x +2 2-22=6,x +2 2=10.直接开平方并整理,得.x 1=-2+10,x 2=-2-10.我们称小明这种解法为“平均数法”(1)下面是小明用“平均数法”解方程x +5 x +9 =5时写的解题过程.解:原方程可变形,得:x +a -b x +a +b =5.x +a 2-b 2=5,∴x +a 2=5+b 2.直接开平方并整理,得.x 1=c ,x 2=d .上述过程中的a 、b 、c 、d 表示的数分别为______,______,______,______.(2)请用“平均数法”解方程:x -5 x +7 =12.【答案】(1)7,2,-4,-10.(2)x 1=-1+43,x 2=-1-43.【分析】(1)仿照平均数法可把原方程化为x +7 -2 x +7 +2 =5,可得x +7 2=9,再解方程即可;(2)仿照平均数法可把原方程化为x +1 -6 x +1 +6 =12,可得x +1 2=48,再解方程即可;【详解】(1)解:∵x +5 x +9 =5,∴x +7 -2 x +7 +2 =5,∴x +7 2-4=5,∴x +7 2=9,∴x +7=3或x +7=-3,解得:x 1=-4,x 2=-10.∴上述过程中的a 、b 、c 、d 表示的数分别为7,2,-4,-10.(2)∵x -5 x +7 =12,∴x +1 -6 x +1 +6 =12,∴x +1 2-36=12,∴x +1 2=48,∴x +1=43,x +1=-43,解得:x 1=-1+43,x 2=-1-43.【点睛】本题考查的是一元二次方程的解法,新定义运算的含义,理解平均数法结合直接开平方法解一元二次方程是解本题的关键.知识点2配方法解一元二次方程将一元二次方程配成(x +m )2=n 的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2配方法解一元二次方程】1(23-24九年级上·广东深圳·期中)用配方法解方程,补全解答过程.3x 2-52=12x .解:两边同除以3,得______________________________.移项,得x 2-16x =56.配方,得_________________________________,即x -112 2=121144.两边开平方,得__________________,即x -112=1112,或x -112=-1112.所以x 1=1,x 2=-56.【答案】x 2-56=16x x 2-16x +112 2=56+112 2 x -112=±1112【分析】方程两边除以3把二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】3x 2-52=12x .解:两边同除以3,得x 2-56=16x .移项,得x 2-16x =56.配方,得x2-16x+1122=56+112 2,即x-1 122=121144.两边开平方,得x-112=±1112,即x-112=1112,或x-112=-1112.所以x1=1,x2=-5 6.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.2(23-24九年级下·广西百色·期中)用配方法解方程x2-6x-1=0时,配方结果正确的是()A.x-32=9 B.x-32=10 C.x+32=8 D.x-32=8【答案】B【分析】此题考查了配方法求解一元二次方程,解题的关键是掌握配方法求解一元二次方程的步骤.根据配方法的步骤,求解即可.【详解】解:x2-6x-1=0移项得:x2-6x=1配方得:x2-6x+9=1+9即x-32=10故选:B3(24-25九年级上·全国·假期作业)用配方法解方程:x2+2mx-m2=0.【答案】x1=-m+2m,x2=-m-2m【分析】本题考查了解一元二次方程--配方法.先移项,再进行配方,最后开方即可得.【详解】解:移项得x2+2mx=m2,配方得x2+2mx+m2=m2+m2,即x+m2=2m2,所以原方程的解为:x1=-m+2m,x2=-m-2m.4(2024·贵州黔东南·一模)下面是小明用配方法解一元二次方程2x2+4x-8=0的过程,请认真阅读并完成相应的任务.解:移项,得2x2+4x=8第一步二次项系数化为1,得x2+2x=4第二步配方,得x+22=8第三步由此可得x+2=±22第四步所以,x1=-2+22,x2=-2-22第五步①小明同学的解答过程,从第步开始出现错误;②请写出你认为正确的解答过程.【答案】①第三步;②详见解析【分析】本题主要考查了解一元二次方程,熟练掌握配方法,先将方程2x2+4x-8=0变为x2+2x=4,然后配方为x+12=8,再开平方即可.【详解】解:①小明同学的解答过程,从第三步开始出现错误;②2x2+4x-8=0,移项,得2x2+4x=8,二次项系数化为1,得x2+2x=4,配方,得x+12=5,由此可得x+1=±5,所以,x1=-1+5,x2=-1-5.知识点3公式法解一元二次方程当b2-4ac≥0时,方程ax2+bx+c=0(a≠0)通过配方,其实数根可写为x=-b±b2-4ac2a的形式,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式,把各项系数的值直接代入这个公式,这种解一元二次方程的方法叫做公式法.【题型3公式法解一元二次方程】1(23-24九年级上·山西大同·阶段练习)用公式法解关于x的一元二次方程,得x= -6±62-4×4×12×4,则该一元二次方程是.【答案】4x2+6x+1=0【分析】根据公式法的公式x=-b±b2-4ac2a,可得方程的各项系数,即可解答.【详解】解:∵x=-b±b2-4ac2a=-6±62-4×4×12×4,∴a=4,b=6,c=1,从而得到一元二次方程为4x2+6x+1=0,故答案为:4x2+6x+1=0.【点睛】本题考查了用公式法解一元二次方程,熟记公式是解题的关键.2(23-24九年级上·广东深圳·期中)用公式法解一元二次方程:x-23x-5=0.解:方程化为3x2-11x+10=0.a=3,b=,c=10.Δ=b 2-4ac =-4×3×10=1>0.方程实数根.x ==,即x 1=,x 2=53.【答案】-11(-11)2有两个不相等的--11 ±12×311±162【分析】根据公式法解一元二次方程的解法步骤求解即.【详解】解:方程化为3x 2-11x +10=0.a =3,b =-11,c =10.Δ=b 2-4ac =-11 2-4×3×10=1>0.方程有两个不相等的实数根.x =--11 ±12×3=11±16,即x 1=2,x 2=53.故答案为:-11;(-11)2;有两个不相等的;--11 ±12×3;11±16;2.【点睛】本题考查公式法解一元二次方程,熟练掌握公式法解一元二次方程的解法步骤是解答的关键.3(23-24九年级上·河南三门峡·期中)用公式法解方程-ax 2+bx -c =0 (a ≠0),下列代入公式正确的是()A.x =-b ±b 2-4a ×(-c )2×(-a ) B.x =b ±b 2-4ac2a C.x =b ±b 2-4a ×(-c )2×(-a ) D.x =-b ±b 2-4ac2a【答案】B【分析】先将方程进行化简,然后根据一元二次方程的求根公式,即可做出判断.【详解】解:方程-ax 2+bx -c =0 (a ≠0)可化为ax 2-bx +c =0由求根公式可得:x =-(-b )±(-b )2-4ac 2a =b ±b 2-4ac 2a 故选:B【点睛】本题主要考查了一元二次方程的求根公式,准确的识记求根公式是解答本题的关键.4(23-24九年级上·广东深圳·期中)用求根公式法解得某方程ax 2+bx +c =0(a ≠0)的两个根互为相反数,则()A.b =0B.c =0C.b 2-4ac =0D.b +c =0【答案】A【分析】根据求根公式法求得一元二次方程的两个根x 1、x 2,由题意得x 1+x 2=0,可求出b =0.【详解】∵方程ax2+bx+c=0(a≠0)有两根,∴Δ=b2-4ac≥0且a≠0.求根公式得到方程的根为x=-b±b2-4ac2a,两根互为相反数,所以x1+x2=0,即-b+b2-4ac2a+-b-b2-4ac2a=0,解得b=0.故选:A.【点睛】本题考查了解一元二次方程-公式法,相反数的意义,熟练掌握用公式法解一元二次方程是解题的关键.知识点4因式分解法解一元二次方程当一个一元二次方程的一边是0,另一边能分解为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4因式分解法解一元二次方程】1(23-24九年级下·安徽亳州·期中)关于x的一元二次方程x x-2=2-x的根是()A.-1B.0C.1和2D.-1和2【答案】D【分析】本题主要考查了解一元二次方程,先移项,然后利用因式分解法解方程即可得到答案.【详解】解:∵x x-2=2-x,∴x x-2+x-2=0,∴x+1x-2=0,∴x+1=0或x-2=0,解得x=-1或x=2,故选:D.2(23-24九年级上·陕西榆林·阶段练习)以下是某同学解方程x2-3x=-2x+6的过程:解:方程两边因式分解,得x x-3=-2x-3,①方程两边同除以x-3,得x=-2,②∴原方程的解为x=-2.③(1)上面的运算过程第______步出现了错误.(2)请你写出正确的解答过程.【答案】(1)②(2)过程见解析【分析】(1)根据等式的性质作答即可;(2)先移项,然后用因式分解法求解.【详解】(1)解:∵x-3可能为0,∴不能除以x-3,∴第②步出现了错误故答案为②.(2)解:方程两边因式分解,得x x-3=-2x-3,移项,得x x-3+2x-3=0,∴x-3x+2=0,∴x1=3,x2=-2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.3(23-24九年级下·安徽安庆·期中)对于实数m,n,定义运算“※”:m※n=m2-2n,例如:2※3=22 -2×3=-2.若x※5x=0,则方程的根为()A.都为10B.都为0C.0或10D.5或-5【答案】C【分析】本题考查的知识点是新定义运算、解一元二次方程,解题关键是理解题意.现根据新定义运算得出一元二次方程,再求解即可.【详解】解:根据定义运算m※n=m2-2n可得,x※5x=0即为x2-5x·2=0,即x x-10=0,∴x1=0,x2=10,则方程的根为0或10.故选:C.4(13-14九年级·浙江·课后作业)利用因式分解求解方程(1)4y2=3y;(2)(2x+3)(2x-3)-x(2x+3)=0.【答案】(1)y1=0,y2=34;(2)x1=-32,x2=3【分析】(1)利用移项、提公因式法因式分解求出方程的根;(2)利用提公因式法分解因式求出方程的根.【详解】(1)4y2=3y;4y2-3y=0y(4y-3)=0y=0或4y-3=0∴y1=0,y2=34,故答案为:y1=0,y2=3 4;(2)(2x+3)(2x-3)-x(2x+3)=0(2x+3)(x-3)=02x+3=0或x-3=0 x1=-32,x2=3,故答案为:x1=-32,x2=3.【点睛】本题考查利用因式分解解方程,关键是防止丢掉方程的根.例如:解方程4y2=3y时,给方程两边同除以y,解得y=34,而丢掉y=0的情况.【题型5十字相乘法解一元二次方程】1(23-24九年级下·广西百色·期中)以下是解一元二次方程ax2+bx+c=0(a≠0)的一种方法:二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2排列为:然后按斜线交叉相乘,再相加,得到a1c2+a2c1,若此时满足a1c2+a2c1=b,那么ax2+bx+c=0(a≠0)就可以因式分解为(a1x +c1)(a2x+c2)=0,这种方法叫做“十字相乘法”.那么6x2-11x-10=0按照“十字相乘法”可因式分解为()A.(x-2)(6x+5)=0B.(2x+2)(3x-5)=0C.(x-5)(6x+2)=0D.(2x-5)(3x+2)=0【答案】D【分析】根据“十字相乘法”分解因式得出6x2-11x-10=(2x-5)(3x+2)即可.【详解】∵∴6x2-11x-10=2x-53x+2=0.故选:D.【点睛】本题主要考查了利用因式分解法解一元二次方程以及十字相乘法分解因式,正确分解常数项是解题关键.2(23-24九年级上·江西上饶·期末)试用十字相乘法解下列方程(1)x2+5x+4=0;(2)x2+3x-10=0.【答案】(1)x1=-4,x2=-1;(2)x1=2,x2=-5.【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案.【详解】(1)解:x2+5x+4=0x+4=0x+1x+4=0或x+1=0∴x1=-4,x2=-1;(2)解:x2+3x-10=0x+5=0x-2x+5=0或x-2=0∴x1=2,x2=-5.3(23-24九年级下·广西梧州·期中)解关于x的方程x2-7mx+12m2=0得()A.x1=-3m,x2=4mB.x1=3m,x2=4mC.x1=-3m,x2=-4mD.x1=3m,x2=-4m【答案】B【分析】本题主要考查了解一元二次方程,掌握运用十字相乘法求解即可.直接运用十字相乘法解一元二次方程即可.【详解】解:x2-7mx+12m2=0,x-3mx-4m=0,x-3m=0或x-4m=0,x1=3m,x2=4m.故选B.4(23-24九年级下·重庆·期中)阅读下面材料:材料一:分解因式是将一个多项式化为若干个整式积的形式的变形,“十字相乘法”可把某些二次三项式分解为两个一次式的乘积,具体做法如下:对关于x,y的二次三项式ax2+bxy+cy2,如图1,将x2项系数a=a1⋅a2,作为第一列,y2项系数c=c1⋅c2,作为第二列,若a1c2+a2c1恰好等于xy项的系数b,那么ax2+bxy+cy2可直接分解因式为:ax2+bxy+cy2=a1x+c1ya2x+c2y示例1:分解因式:x2+5xy+6y2解:如图2,其中1=1×1,6=2×3,而5=1×3+1×2;∴x2+5xy+6y2=(x+2y)(x+3y);示例2:分解因式:x2-4xy-12y2.解:如图3,其中1=1×1,-12=-6×2,而-4=1×2+1×(-6);∴x2-4xy-12y2=(x-6y)(x+2y);材料二:关于x,y的二次多项式ax2+bxy+cy2+d x+ey+f也可以用“十字相乘法”分解为两个一次式的乘积.如图4,将a=a1a2作为一列,c=c1c2作为第二列,f=f1f2作为第三列,若a1c2+a2c1=b,a1f2+a2f1=d,c1f2+c2f1=e,即第1、2列,第1、3列和第2、3列都满足十字相乘规则,则原式分解因式的结果为:ax2+bxy+cy2+d x+ey+f=a1x+c1y+f1a2x+c2y+f2;示例3:分解因式:x2-4xy+3y2-2x+8y-3.解:如图5,其中1=1×1,3=(-1)×(-3),-3=(-3)×1;满足-4=1×(-3)+1×(-1),-2=1×(-3)+1×1,8=(-3)×(-3)+(-1)×1;∴x2-4xy+3y2-2x+8y-3=(x-y-3)(x-3y+1)请根据上述材料,完成下列问题:(1)分解因式:x2+3x+2=;x2-5xy+6y2+x+2y-20=;(2)若x,y,m均为整数,且关于x,y的二次多项式x2+xy-6y2-2x+my-120可用“十字相乘法”分解为两个一次式的乘积,求出m的值,并求出关于x,y的方程x2+xy-6y2-2x+my-120=-1的整数解.【答案】(1)(x+1)(x+2),(x-3y+5)(x-2y-4);(2)m=54m=-56,x=-1y=4和x=2y=-4【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【详解】解:(1)①1=1×1,2=1×2,3=1×1+1×2,∴原式=(x+1)(x+2);②1=1×1,6=(-2)×(-3),-20=5×(-4)满足(-5)=1×(-2)+1×(-3),1=1×5+1×(-4),2=(-2)×5+(-3)×(-4)∴原式=(x-3y+5)(x-2y-4);(2)①1-35a1c1f11-2-4a2c2f2{a1c2+a2c1=-5a1f22+a2f1=1c1f2+c2f1=2②1-21013-12{a1c2+a2c1=1a1f2+a2f1=-2c1f2+c2f1=m1-2-121310(x-2y+10)(x+3y-12)=x2+xy-6y2-2x+my-120∴m=54(x-2y-12)(x+3y+10)=x2+xy-6y2-2x+my-120∴m=-56当m=54时,(x-2y+10)(x+3y-12)=-1{x-2y+10=1x+3y-12=-1或{x-2y+10=-1x+3y-12=1,x=-75y=245(舍),{x=-1y=4当m=-56时,(x-2y-12)(x+3y+10)=-1{x-2y-12=1x+3y+10=-1或{x-2y=12=1x+3y+10=1,{x=2y=-4或x=695y=25(舍)综上所述,方程x2+xy-6y2-2x+my-120=-1的整数解有{x=-1y=4和{x=2y=-4;方法二:x2+xy+(-6y2)-2x+my-120=(x+3y)(x-2y)-2x+my-12y =(x+3y+a)(x-2y+b)=(x+3y)(x-2y)+(a+b)x+(3b-2a)y+ab {a+b=-2⇒{a=-123b-2a=m ab=-120 b=10或{a=10⇒m=54b=-12m=-56.【点睛】本题考查了因式分解的方法--十字相乘法,弄清题目中的十字相乘的方法是解题关键.【题型6用适当方法解一元二次方程】1(23-24九年级上·江苏宿迁·期末)用适当的方法解下列方程:(1)x2=4x;(2)x-32-4=0;(3)2x2-4x-5=0;(4)x-1x+2=2x+2.【答案】(1)x1=4,x2=0(2)x1=5,x2=1(3)x1=2+142,x2=2-142(4)x1=-2,x2=3【分析】本题考查了一元二次方程的解法,解一元二次方程-因式分解法,公式法,熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)利用解一元二次方程-因式分解法进行计算,即可解答;(3)利用解一元二次方程-公式法进行计算,即可解答;(4)利用解一元二次方程-因式分解法进行计算,即可解答.【详解】(1)解:x2-4x=0x x-4=0,解得x1=4,x2=0(2)解:x-3-2x-3+2=0x-5x-1=0,解得x1=5,x2=1(3)解:∵a=2,b=-4,c=-5∴b2-4ac=-42-4×2×-5=16--40=56∴x=4±562×2=2±142解得x1=2+142,x2=2-142(4)解:x-1x+2-2x+2=0x+2x-1-2=0,x+2x-3=0,∴x+2=0,x-3=0,解得x1=-2,x2=32(23-24九年级上·山西太原·期中)用适当的方法解下列一元二次方程:(1)x2+4x-2=0;(2)x x+3=5x+15.【答案】(1)x1=6-2,x2=-6-2(2)x1=-3,x2=5【分析】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)利用配方法解方程;(2)先移项,再利用提公因式法解方程.【详解】(1)解:移项,得x2+4x=2,配方,得x2+4x+4=2+4,x+22=6,两边开平方,得x+2=±6,所以,x1=6-2,x2=-6-2;(2)解:原方程可变形为:x x+3=5x+3,x x+3-5x+3=0,x+3x-5=0,x+3=0或x-5=0,所以,x1=-3,x2=53(23-24九年级下·山东泰安·期末)用适当的方法解下列方程(1)3x2=54;(2)x+13x-1=1;(3)4x2x+1=32x+1;(4)x2+6x=10.【答案】(1)x1=32,x2=-32(2)x1=-1+73,x2=-1-73(3)x1=-12,x2=34(4)x1=-3+19,x2=-3-19【分析】(1)方程整理后,利用直接开平方法求解即可;(2)方程整理后,利用求根公式法求解即可;(3)方程利用因式分解法求解即可;(4)方程利用配方法求解即可.【详解】(1)解:方程整理得:x2=18,开方得:x=±32,解得:x1=32,x2=-32;(2)解:方程整理得:3x2+2x-2=0,这里a=3,b=2,c=-2,∵△=22-4×3×(-2)=4+24=28>0,∴x=-2±276=-1±73,解得:x1=-1+73,x2=-1-73;(3)解:方程移项得:4x(2x+1)-3(2x+1)=0,分解因式得:(2x+1)(4x-3)=0,所以2x+1=0或4x-3=0,解得:x1=-12,x2=34;(4)解:配方得:x2+6x+9=19,即(x+3)2=19,开方得:x+3=±19,解得:x1=-3+19,x2=-3-19.【点睛】此题考查了解一元二次方程-因式分解法,公式法,直接开平方法,配方法,熟练掌握根据方程的特征选择恰当的解法是解本题的关键.4(23-24九年级上·海南省直辖县级单位·期末)用适当的方法解下列方程.(1)(x+2)2-25=0;(2)x2+4x-5=0;(3)2x2-3x+1=0.【答案】(1)x1=3,x2=-7(2)x1=1,x2=-5(3)x1=12,x2=1【分析】(1)利用平方差公式,可以解答此方程;(2)利用因式分解法解方程即可;(3)利用因式分解法解方程即可.【详解】(1)解:(x+2)2-25=0,(x+2-5)(x+2+5)=0,∴x-3=0或x+7=0,解得x1=3,x2=-7;(2)解:x2+4x-5=0,x-1x+5=0,∴x-1=0或x+5=0,解得x1=1,x2=-5;(3)解:2x2-3x+1=0,2x-1x-1=0,∴2x-1=0或x-1=0,解得x1=12,x2=1.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【题型7用指定方法解一元二次方程】1(23-24九年级下·山东日照·期末)用指定的方法解下列方程:(1)4(x-1)2-36=0(直接开方法)(2)x2+2x-3=0(配方法)(3)(x+1)(x-2)=4(公式法)(4)2(x+1)-x(x+1)=0(因式分解法)【答案】(1)x1=4,x2=-2;(2)x1=1,x2=-3;(3)x1=3,x2=-2;(4)x1=-1,x2=2.【分析】(1)直接利用开方法进行求解即可得到答案;(2)直接利用配方法进行求解即可得到答案;(3)直接利用公式法进行求解即可得到答案;(4)直接利用因式分解法进行求解即可得到答案;【详解】解:(1)∵4x-12-36=0∴(x-1)2=9,∴x-1=±3,∴x1=4,x2=-2;(2)∵x2+2x=3,∴x2+2x+1=4,∴(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3;(3)∵x2-x-6=0,∴△=1-4×1×(-6)=25,∴x=1±252=1±52,∴x1=3,x2=-2;(4)∵2x+1-x x+1=0∴(x+1)(2-x)=0,∴x+1=0或2-x=0,∴x1=-1,x2=2.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.2(23-24九年级下·山东烟台·期中)用指定的方法解方程:(1)x2-4x-1=0(用配方法)(2)3x2-11x=-9(用公式法)(3)5x-32=x2-9(用因式分解法)(4)2y2+4y=y+2(用适当的方法)【答案】(1)x1=5+2,x2=-5+2(2)x1=11+136,x2=11-136(3)x1=3,x2=92(4)y1=12,y2=-2【分析】本题考查了解一元二次方程,正确掌握相关性质内容是解题的关键.(1)运用配方法解方程,先移项再配方,然后开方即可作答.(2)先化为一般式,再根据Δ=b2-4ac算出,以及代入x=-b±Δ2a进行化简,即可作答.(3)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.(4)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.【详解】(1)解:x2-4x-1=0移项,得x2-4x=1配方,得x 2-4x +4=1+4,即x -2 2=5∴x -2=±5解得x 1=5+2,x 2=-5+2;(2)解:3x 2-11x =-93x 2-11x +9=0Δ=b 2-4ac =121-4×3×9=121-108=13∴x =11±136解得x 1=11+136,x 2=11-136;(3)解:5x -3 2=x 2-95x -3 2-x 2-9 =05x -3 2-x -3 x +3 =0x -3 5x -3 -x +3 =x -3 4x -18 =0则x -3=0,4x -18=0解得x 1=3,x 2=92;(4)解:2y 2+4y =y +22y 2+4y -y +2 =02y y +2 -y +2 =02y -1 y +2 =0∴2y -1=0,y +2=0解得y 1=12,y 2=-2.3(23-24九年级上·新疆乌鲁木齐·期中)用指定的方法解方程:(1)12x 2-2x -5=0(用配方法)(2)x 2=8x +20(用公式法)(3)x -3 2+4x x -3 =0(用因式分解法)(4)x +2 3x -1 =10(用适当的方法)【答案】(1)x 1=2+14,x 2=2-14(2)x 1=10,x 2=-2(3)x 1=3,x 2=0.6(4)x 1=-3,x 2=43【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.【详解】(1)移项,得:12x 2-2x =5,系数化1,得:x 2-4x =10,配方,得:x 2-4x +4=14,(x -2)2=14,x -2=±14,∴x 1=2+14,x 2=2-14;(2)原方程可变形为x 2-8x -20=0,a =1,b =-8,c =-20,Δ=(-8)2-4×1×-20 =64+80=144>0,原方程有两个不相等的实数根,∴x =-b ±b 2-4ac 2a =8±1442=8±122,∴x 1=10,x 2=-2;(3)原方程可变形为:x -3 x -3+4x =0,整理得:x -3 5x -3 =0,解得x 1=3,x 2=0.6;(4)原方程可变形为:3x 2+5x -2-10=0,整理得:3x 2+5x -12=0,3x -4 x +3 =0,∴x 1=-3,x 2=43【点睛】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.4(23-24九年级上·河北邯郸·期中)按指定的方法解下列方程:(1)x 2=8x +9(配方法);(2)2y 2+7y +3=0(公式法);(3)x +2 2=3x +6(因式分解法).【答案】(1)x 1=9,x 2=-1.(2)x 1=-3,x 2=-12.(3)x 1=-2,x 2=1.【分析】(1)先把方程化为x 2-8x +16=25,可得x -4 2=25,再利用直接开平方法解方程即可;(2)先计算△=72-4×2×3=49-24=25>0,再利用求根公式解方程即可;(3)先移项,再把方程左边分解因式可得x +2 x -1 =0,再化为两个一次方程,再解一次方程即可.【详解】(1)解:x 2=8x +9,移项得:x 2-8x =9,∴x 2-8x +16=25,配方得:x-42=25,∴x-4=5或x-4=-5,解得:x1=9,x2=-1.(2)解:2y2+7y+3=0,∴△=72-4×2×3=49-24=25>0,∴x=-7±254=-7±54,∴x1=-3,x2=-12.(3)解:x+22=3x+6,移项得:x+22-3x+2=0,∴x+2x-1=0,∴x+2=0或x-1=0,解得:x1=-2,x2=1.【点睛】本题考查的是一元二次方程的解法,掌握“配方法,公式法,因式分解法解一元二次方程”是解本题的关键.【题型8用换元法解一元二次方程】1(23-24九年级下·浙江杭州·期中)已知a2+b2a2+b2+2-15=0,求a2+b2的值.【答案】3【分析】先用换元法令a2+b2=x(x>0),再解关于x的一元二次方程即可.【详解】解:令a2+b2=x(x>0),则原等式可化为:x(x+2)-15=0,解得:x1=3,x2=-5,∵x>0,∴x=3,即a2+b2=3.a2+b2的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意a2+b2为非负数是本题的关键.2(23-24九年级下·安徽合肥·期中)关于x的方程x2+x2+2x2+2x-3=0,则x2+x的值是()A.-3B.1C.-3或1D.3或-1【答案】B【分析】本题考查解一元二次方程,熟练掌握用换元法解方程是解题的关键.设x2+x=t,则此方程可化为t2+2t-3=0,然后用因式分解法求解即可.【详解】解:设x2+x=t,则此方程可化为t2+2t-3=0,∴t-1t+3=0,∴t-1=0或t+3=0,解得t1=1,t2=-3,∴x2+x的值是1或-3.∵x2+x=-3,即x2+x+3=0,Δ=12-4×1×3=-11<0方程无解,故x2+x=-3舍去,∴x2+x的值是1,故选:B.3(23-24九年级上·广东江门·期中)若a+5ba+5b+6=7,则a+5b=.【答案】1或-7【分析】本题主要考查解一元二次方程,设a+5b=x,则原方程可变形为x x+6=7,方程变形后运用因式分解法求出x的值即可得到结论.【详解】解:设a+5b=x,则原方程可变形为x x+6=7,整理得,x2+6x-7=0,x-1x+7=0,x-1=0,x+7=0,∴x=1,x=-7,即a+5b=1或-7,故答案为:1或-7.4(23-24九年级上·山东临沂·期中)利用换元法解下列方程:(1)2x4-3x2-2=0;(2)(x2-x)2-5(x2-x)+4=0.【答案】(1)x1=2,x2=-2(2)x1=1+172,x2=1-172,x3=1+52,x4=1-52【分析】(1)根据换元思想,设y=x2,则y=2或y=-12,由此即可求解;(2)设y=x2-x,则y=4或y=1,由此即可求解.【详解】(1)解:(1)设y=x2,则原方程化为2y2-3y-2=0,∴y=2或y=-12,当y=2时,x2=2,∴x1=2,x2=-2,当y=-12时,x2=-12,此时方程无解,∴原方程的解是x1=2,x2=-2.(2)解:设y=x2-x,则原方程化为y2-5y+4=0,∴y=4或y=1,当y=4时,x2-x=4,∴x1=1+172,x2=1-172,当y=1时,x2-x=1,∴x3=1+52,x4=1-52.∴原方程的解是x1=1+172,x2=1-172,x3=1+52,x4=1-52.【点睛】本题主要考查换元思想解高次方程,掌握我一元二次方程的解法是解题的关键.【题型9解含绝对值的一元二次方程】1(23-24九年级上·陕西榆林·阶段练习)阅读下面的材料,解答问题.材料:解含绝对值的方程:x2-3|x|-10=0.解:分两种情况:①当x≥0时,原方程化为x2-3x-10=0解得x1=5,x2=-2(舍去);②当x<0时,原方程化为x2+3x-10=0,解得x3=-5,x4=2(舍去).综上所述,原方程的解是x1=5,x2=-5.请参照上述方法解方程x2-|x+1|-1=0.【答案】x1=2,x2=-1【分析】根据题意分两种情况讨论,化简绝对值,然后解一元二次方程即可求解.【详解】解:分两种情况:①当x+1≥0,即x≥-1时,原方程化为x2-x+1-1=0,解得x1=2,x2=-1;②当x+1<0,即x<-1时,原方程化为x2+x+1-1=0,解得x3=0(舍去),x4=-1(舍去).综上所述,原方程的解是x1=2,x2=-1.【点睛】本题考查了解一元二次方程,分类讨论是解题的关键.2(23-24九年级上·内蒙古赤峰·期中)解方程x2+2|x+2|-4=0.【答案】x1=0,x2=-2【分析】对x+2进行分类讨论,先把绝对值号化简后方程变形为一般的一元二次方程,再利用因式分解法解出方程的解,最后结合x的取值范围最终确定答案即可.【详解】解:①当x+2≥0,即x≥-2时,方程变形得:x2+2(x+2)-4=0∴x2+2x=0∴x(x+2)=0∴x1=0,x2=-2;②当x+2<0,即x<-2时,方程变形得:x2-2(x+2)-4=0∴x2-2x-8=0∴(x+2)(x-4)=0∴x1=-2(舍去),x2=4(舍去)∴综上所述,原方程的解是x1=0或x2=-2.【点睛】本题考查了含绝对值的方程、一元二次方程的解法等知识,渗透了分类讨论的思想.3(23-24九年级下·安徽滁州·阶段练习)解方程x2-22x+3+9=0.【答案】x1=1,x2=3【分析】分x≥-32与x<-32,化简绝对值得到一元二次方程,解一元二次方程即可求解.【详解】当2x+1≥0,即x≥-32时,原方程可化为:x2-2(2x+3)+9=0整理得:x2-4x+3=0解得:x1=1,x2=3当2x+1<0,即x<-32时,原方程可化为:x2+2(2x+3)+9=0整理得x2+4x+15=0∵Δ=42-4×1×15=-44<0,∴此方程无实数解,综上所述,原方程的解为:x1=1,x2=3【点睛】本题考查了解一元二次方程,分类讨论化简绝对值是解题的关键.4(23-24九年级上·山西太原·阶段练习)解方程x2-|x-5|-2=0【答案】x1=-1+292,x2=-1-292【分析】根据题意分x-5≥0和x-5<0两种情况,分别解方程即可.【详解】解:①当x-5≥0时,即x≥5时,原方程化为x2-x+5-2=0,即x2-x+3=0,a=1,b=-1,c=3,∴Δ=b2-4ac=-12-4×1×3=-11<0,∴原方程无解,②当x-5<0时,即x<5时,原方程化为x2+x-5-2=0,即x2+x-7=0,a=1,b=1,c=-7,∴Δ=b2-4ac=12-4×1×-7=29>0x=-1±292×1解得:x1=-1+292,x2=-1-292.【点睛】此题考查了解含绝对值的一元二次方程,解题的关键是根据题意分两种情况讨论.【题型10配方法的应用】1(23-24九年级上·河北沧州·期中)【项目学习】配方法是数学中重要的一种思想方法.它是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵y+22≥0,∴y+22+4≥4∴当y =-2时,y 2+4y +8的最小值是4.(1)【类比探究】求代数式x 2-6x +12的最小值;(2)【举一反三】若y =-x 2-2x 当x =________时,y 有最________值(填“大”或“小”),这个值是________;(3)【灵活运用】已知x 2-4x +y 2+2y +5=0,则x +y =________;(4)【拓展应用】如图某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为15m ),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,栅栏的总长度为24m .当BF 为多少时,矩形养殖场的总面积最大?最大值为多少?【答案】(1)3(2)-1;大;1(3)1(4)当BF =4m ,矩形养殖场的总面积最大,最大值为48m 2.【分析】本题主要考查了配方法的应用,熟练掌握配方法是解题的关键:(1)把原式利用配方法变形为x -3 2+3,再仿照题意求解即可;(2)把原式利用配方法变形为-x +1 2+1,再仿照题意求解即可;(3)把原式利用配方法变形为x -2 2+y +1 2=0,再利用非负数的性质求解即可;(4)设BF =xm ,则CF =2BF =2xm ,则BC =3xm ,进而求出AB =24-3x 3m ,则S 矩形ABCD =3x ⋅24-3x 3=-3x -4 2+48,据此可得答案.【详解】(1)解:x 2-6x +12=x 2-6x +9 +3=x -3 2+3,∵x -3 2≥0,∴x -3 2+3≥3,∴当x =3时,x 2-6x +12的最小值为3;(2)解:y =-x 2-2x=-x 2-2x -1+1=-x+12+1,∵x+12≥0,∴-x+12≤0,∴-x+12+1≤1,∴当x=-1时,y=-x2-2x有最大值,最大值为1,故答案为:-1;大;1;(3)解:∵x2-4x+y2+2y+5=0,∴x2-4x+4+y2+2y+1=0,∴x-22+y+12=0,∵x-22≥0,y+12≥0,∴x-22=y+12=0,∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1;(4)解:设BF=xm,则CF=2BF=2xm,∴BC=3xm,∴AB=24-3x3m,∴S矩形ABCD =3x⋅24-3x3=-3x2+24x=-3x-42+48,∵x-42≥0,∴-3x-42≤0,∴-3x-42+48≤48,∵AD=BC=3x≤15,∴0<x≤5,∴当x=4时,S矩形ABCD最大,最大值为48,∴当BF=4m,矩形养殖场的总面积最大,最大值为48m2.2(2023·河北石家庄·一模)已知A=x2+6x+n2,B=2x2+4x+n2,下列结论正确的是()A.B-A的最大值是0B.B-A的最小值是-1C.当B=2A时,x为正数D.当B=2A时,x为负数【答案】B【分析】利用配方法表示出B-A,以及B=2A时,用含n的式子表示出x,确定x的符号,进行判断即可.【详解】解:∵A=x2+6x+n2,B=2x2+4x+n2,∴B-A=2x2+4x+n2-x2+6x+n2=2x2+4x+n2-x2-6x-n2=x2-2x=x-12-1;∴当x=1时,B-A有最小值-1;当B=2A时,即:2x2+4x+n2=2x2+6x+n2,∴2x2+4x+n2=2x2+12x+2n2,∴-8x=n2≥0,∴x≤0,即x是非正数;故选项A,C,D错误,选项B正确;故选B.【点睛】本题考查整式加减运算,配方法的应用.熟练掌握合并同类项,以及配方法,是解题的关键.3(23-24九年级上·四川攀枝花·期中)已知三角形的三条边为a,b,c,且满足a2-10a+b2-16b+89= 0,则这个三角形的最大边c的取值范围是()A.c>8B.5<c<8C.8<c<13D.5<c<13【答案】C【分析】先利用配方法对含a的式子和含有b的式子配方,再根据偶次方的非负性可得出a和b的值,然后根据三角形的三边关系可得答案.【详解】解:∵a2-10a+b2-16b+89=0,∴(a2-10a+25)+(b2-16b+64)=0,∴(a-5)2+(b-8)2=0,∵(a-5)2≥0,(b-8)2≥0,∴a-5=0,b-8=0,∴a=5,b=8.∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.4(23-24九年级下·浙江宁波·期中)我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例如:已知x可取任何实数,试求二次三项式x2+2x+3的最小值.解:x2+2x+3=x2+2x+1+2=(x+1)2+2;∵无论x取何实数,都有(x+1)2≥0,∴(x+1)2+2≥2,即x2+2x+3的最小值为2.【尝试应用】(1)请直接写出2x2+4x+10的最小值______;【拓展应用】(2)试说明:无论x取何实数,二次根式x2+x+2都有意义;【创新应用】(3)如图,在四边形ABCD中,AC⊥BD,若AC+BD=10,求四边形ABCD的面积最大值.【答案】(1)8;(2)见解析;(3)25 2【分析】(1)利用配方法把2x2+4x+10变形为2(x+1)2+8,然后根据非负数的性质可确定代数式的最小值;(2)利用配方法得到x2+x+2=x+122+74,则可判断x2+x+2>0,然后根据二次根式有意义的条件可判断无论x取何实数,二次根式x2+x+2都有意义;(3)利用三角形面积公式得到四边形ABCD的面积=12⋅AC⋅BD,由于BD=10-AC,则四边形ABCD的面积=12⋅AC⋅10-AC,利用配方法得到四边形ABCD的面积=-12(AC-5)2+252,然后根据非负数的性质解决问题.【详解】解:(1)2x2+4x+10=2x2+2x+10=2x2+2x+1-1+10=2(x+1)2+8,∵无论x取何实数,都有2(x+1)2≥0,∴(x+1)2+8≥8,即x2+2x+3的最小值为8;故答案为:8;(2)x2+x+2=x+122+74,∵x+122≥0,∴x2+x+2>0,∴无论x取何实数,二次根式x2+x+2都有意义;(3)∵AC⊥BD,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程题型分类讲解
一元二次方程解法《基础训练篇》
(1)直接开平方
1.方程 (3x -1)2=-5的解是 。
2.用直接开平方解下列方程:
(1)4x 2-1=0 ; (2)(x+4)2 = 9; (3)81(x-2)2=16 ; (4)4(2x+1)2-36=0 ; (5)2
2
)32()2(+=-x x
(4)因式分解法
1、填写解方程2-2-3=0x x 的过程
解: x -3 x 1
-3x+x=-2x
所以2-2-3=x x (x- )(x+ )
即(x- )(x+ )=0 即x- =0或x+ =0 ∴x 1=__________,x 2=__________
2、用十字相乘法解方程6x 2-x -1=0
解: 2x 1
2x- x=-x
所以6x 2-x -1=(2x )( ) 即(2x )( )=0 即2x =0或 =0 ∴x 1=__________,x 2=__________
例题1、26=x x 2、4(3+)7(3+)x x x = 3、
244-y+=0
39y
4、2
2-1=9x x (2) 5、20322--x x =0;
练习:解方程
1、22-3=0x x
2、(3)3(3)x x x -=-
3、24-12x-9=0x
4、22
-3=25+4x x ()()
5、2
2-3=-9x x () 6.3x 2 +7x -6=0 ; 7.2216-3(4)x x =+ 8.22
(-3)+436x x =
9.(-3)2(2)x x =+(x+2) 10.2
(4-3)+44-3+4=0x x ()
11. 2x 2 +5x +2=0; 12.27196=0x x --
(2)配方法
1、填空:
(1)x 2+6x+ =(x+ )2;(2)x 2-2x+ =(x- )2;
(3)x 2-5x+ =(x- )2;(4)x 2+x+ =(x+ )2;(5)x 2+px+ =(x+ )2; 2、用配方法解下列方程:
(1)x 2-6x-16=0; (2)x 2+3x-2=0; (3)x 2+23x-4=0; (4)x 2-32x-3
2
=0.
(3)公式法
1.用公式法解下列方程:
(1) 3 y 2-y-2 = 0 (2) 2 x 2+1 =3x (3)4x 2-3x-1=x-2 (4)3x(x-3)=2(x-1)(x+1)
一元二次方程考点以及典型例题《提高篇》
(考点一:一元二次方程的定义)
题型(一)判断一元二次方程
1、下列方程中,关于x 的一元二次方程是( ) A.()()12132
+=+x x B.
02112
=-+x x
C.02=++c bx ax D. 122
2-=+x x x 2、关于x 的方程2
320ax x -+=是一元二次方程,则( )A 、0a >;B 、0a ≠;C 、1a =; D 、a ≥0. 题型(二)考查一般形式
3、方程2
0x x -=的一次项系数是 ,常数项是 . 4、方程2x x 232=
-化成一般形式是 ,其中二次项系数式是 ,一次
项系数是 ,常数项是 。
题型(三)根据定义求字母系数的值。
(主要是利用定义及其隐含条件)
5、关于x 的方程(m-n )x 2+mx+m=0,当m 、n 满足_________时,是一元一次方程;当m 、n 满足_________时,是一元二次方程
(考点二:一元二次方程的解)
题型(一)利用一元二次方程的解求字母系数的值
1、1.已知一元二次方程032
=+-mx x 的一个根为1,则m 的值为____________.
2、一元二次方程02
=++c bx ax
,若x=1是它的一个根,则a+b+c= ,若a -b+c=0,则方程必有一根是。
3.关于x 的一元二次方程(m-2)x 2+(2m-1)x+m 2-4=0的一个根是0,则m 的值是( ) A.2 B 、-2 C 、2或者-2 D 、1
2
4、方程()()02
=-+-+-a c x c b x b a 的一个根为( )A. 1- B. 1 C. c b - D. a -
题型(二)求代数的值
1、已知322
-+y y 的值为2,则1242
++y y 的值为 。
2、已知a 是0132
=+-x x 的根,则=-a a 622。
3、若a 是方程012
=-+x x 的一个根,则代数式2
3
40002000a a +的值为 。
4、已知1x =是一元二次方程2
400ax bx +-=的一个解,且a b ≠,求22
22a b a b
--的值.
题型(三)、利用一元二次方程三种变形巧解等式求值问题(主要是降次思想的运用) 1、已知,则的值是________。
2、已知
,则
的值是( )A. 1989 B. 1990 C. 1994 D. 1995
3、设,则 。
题型(四):利用方程的解构造方程 (这类题往往结合根与系数的关系出题) 1、已知b a ≠,0122
=--a a ,0122
=--b b ,求=+b a
2:若0122
=--a a ,0122
=--b b ,则
a
b
b a +的值为 。
(考点四:一元二次方程的解法)
1、对于方程()()()()2222140;2230;3320;441290;x x x x x x x -=+=--=-+=
()()()
()()2
2225336;670;76;8241x x x x x x =-==+=把最适宜解法的序号填在下面的横线上。
(1)直接开平方法___________;(2)因式分解法_______; (3)配方法_______;(4)求根公式法_________。
2.用恰当的方法解方程
① 2
430x x --= ② 2(3)2(3)0x x x -+-=
2
410x x +-=
(考点五:配方法在其它方面的运用)
题型(一)运用配方的知识求完全平方式中的字母系数的值。
(这类题也可以利用判别式求)
6、当m 为 时,代数式m x x +-82
为完全平方式,当k 为 时,代数式32
+-kx x 是完全平方
式。
当m 为 时,代数式2
26m x x ++为完全平方式。
7.已知(a+b)2=17,ab=3.求(a-b)2的值.
题型(二)利用配方法求代数式的最值或取值范围。
7、不论x,y 是什么实数,代数式7422
2
+-++y x y x 的值( )
A、总不小于2, B、总不小于7 C、可以为任何实数 D、可能为负数
8、当x 为何值时,2722
+-x x 有最小值,并求出这个最小值 9.用配方法证明1062
-+-x x 的值恒小于0.
题型(三)利用配方法解一些特殊方程 1、已知04112
2
=---+
x x x
x ,则=+x x 1
. 2、如果4122411-++-=--+
+b a c b a ,那么c b a 32-+的值为 。
3、已知,x、y y x y x 013642
2
=+-++为实数,求y
x 的值。
(考点六:一元二次方程根的判断)
1.已知关于x 的一元二次方程()21210a x x --+=有两个不相等的实数根,则a 的取值范围是 A 、a <2
B 、a >2
C 、a <2且a ≠l
D 、a <﹣2
2.已知关于x 的一元二次方程01)12()2(2
2
=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ) A. 4
3
>
m B. 43≥
m C. 4
3
>m 且2≠m D. 4
3
≥
m 且2≠m 3.已知关于x 的一元二次方程02)1(2=++-x k x k 有解,求k 的取值范围 . 4.如果关于x 的一元二次方程kx 2-21k +x +1=0有两个不相等的实数根,那么k 的取值范围是
5.关于x 的方程(k -2)x 2-4x +1=0有实数根,则k 满足的条件是 .
7.若关于x 的方程2
2(2)0ax a x a +++=有实数解,那么实数a 的取值范围是_____________.
8.设242210,210a a b b +-=--=,且2
10ab -≠,则5
2231ab b a a ⎛⎫+-+ ⎪⎝⎭
=________。