四桥臂三相逆变器的控制策略
一种基于3次谐波注入的并联三相四桥臂逆变器均流控制策略
![一种基于3次谐波注入的并联三相四桥臂逆变器均流控制策略](https://img.taocdn.com/s3/m/bd9ab33f905f804d2b160b4e767f5acfa1c78321.png)
一种基于3次谐波注入的并联三相四桥臂逆变器均流控制策略陈轶涵;任磊;邓翔;龚春英【摘要】三相四桥臂逆变器(3p41)在三相三桥臂逆变器的基础上引入第四桥臂,使得三相能够解耦控制并具备带不对称负载能力,在此基础上采用3次谐波注入可以提高逆变器的直流电压利用率.若将多个三相四桥臂逆变器单元共直流母线并联,能够实现扩容.但是并联单元的电感电流若不采取控制,会导致环流问题,严重时会损坏逆变器.在基于平均电流均流控制策略的基础上,采用一种适用于模拟电路实现的3次谐波注入方式.由于主电路元器件参数的不对称性,并联单元各自生成的3次谐波不对称,增大了并联单元之间的零序环流.针对该问题,提出一种基于各并联单元3次谐波信号平均值法的三相四桥臂逆变器并联均流控制策略.在保留3次谐波注入的同时使得并联模块四个桥臂电感电流得到控制,消除环流,实现了并联桥臂均流.最后通过仿真和实验验证了控制策略的正确性.【期刊名称】《电工技术学报》【年(卷),期】2016(031)004【总页数】10页(P104-113)【关键词】并联三相四桥臂逆变器;平均电流控制;零序环流;3次谐波注入【作者】陈轶涵;任磊;邓翔;龚春英【作者单位】南京航空航天大学江苏省新能源发电与电能变换重点实验室南京210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室南京 210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室南京 210016;南京航空航天大学江苏省新能源发电与电能变换重点实验室南京 210016【正文语种】中文【中图分类】TM46国家自然科学基金资助项目(51377079)。
航空机载电源系统经历了从低压直流、交流恒速恒频、交流变速恒频到高压直流电源系统的发展过程,目前飞行器上普遍应用的主电源系统既有270V高压直流,也有400Hz恒频交流与变频交流[1,2]。
为了给机载三相交流负载供电,三相中频逆变电源作为机载静止功率变换的重要环节,其需求在不断增加,功率容量也逐步提高。
三相四桥臂逆变器的PWM控制策略
![三相四桥臂逆变器的PWM控制策略](https://img.taocdn.com/s3/m/51b1e56031126edb6e1a100e.png)
三相四桥臂逆变器的PWM控制策略与其他三相逆变器相比,三相四桥臂全桥逆变器具有体积小、重量轻、成本低的优点,因此具有很好的应用价值。
该逆变器控制策略主要有空间矢量控制法和滞环控制法,其中对空间矢量控制法的研究较为深入。
三维空间矢量控制法虽然具有电压利用率高、控制灵活、效率高等优点,但其空间矢量图抽象,难以理解,控制时需进行坐标变换,且开关矢量带有根号,控制较为复杂。
滞环控制法的控制思想简单,易于理解,但该方法用于四桥臂逆变器时,需对各相误差电流大小进行判断,从而决定第四桥臂两开关管的开关状态。
因此,控制的实时性和精度受到了影响。
此处研究了一种零序电流注入的PWM 控制策略,该控制策略能实现三相四桥臂逆变器的解耦控制,且控制方法简单,易于理解和实现。
与常规的正弦波调制方法相比,直流母线电压利用率得到了提高,且具有很好的带不平衡负载能力。
2 三相四桥臂逆变器系统模型图1 示出三相四桥臂逆变器主电路结构图。
为便于分析,假设直流电源E 分为两部分,中间点电位为零。
4 个桥臂的中间点电压分别为ua,ub,uc,uN,电感电流分别为iLa,iLb,iLc,三相输出电压分别为uoa,uob,uoc,输出电流分别为ioa,iob,ioc。
三相四桥臂逆变器的状态方程为:三相四桥臂逆变器有8 个开关管器件,用Sa,Sb,Sc,SN 分别表示每个桥臂的开关函数。
当桥臂上管开通,下管关断时,定义此桥臂的开关方式为Si=1(i=a,b,c,N);当桥臂上管关断,下管开通时,定义Si=0。
令SaN=Sa-SN,SbN=Sb-SN,ScN=Sc-SN,则桥臂输出电压与直流侧输入电。
不平衡负载下三相四桥臂逆变器的控制与实现
![不平衡负载下三相四桥臂逆变器的控制与实现](https://img.taocdn.com/s3/m/43f02dff1b37f111f18583d049649b6648d709b3.png)
一、概述在现代电力系统中,逆变器作为电能转换的重要设备,广泛应用于各种领域,如风电、光伏发电、电动汽车等。
三相四桥臂逆变器作为一种常见的逆变器结构,在实际应用中,由于负载不平衡等因素的影响,会对其控制和性能产生一定的影响。
针对三相四桥臂逆变器在不平衡负载下的控制与实现进行研究,对于提高逆变器的稳定性和性能具有重要意义。
二、三相四桥臂逆变器基本结构和工作原理三相四桥臂逆变器是一种常见的逆变器结构,其基本结构由六个功率器件组成,可以实现对三相交流电源的逆变输出。
在正常工作情况下,三相四桥臂逆变器的工作原理是利用PWM技术对输入的直流电压进行调制,从而实现对输出三相交流电压的控制。
在负载平衡的情况下,逆变器可以实现良好的性能。
三、不平衡负载对三相四桥臂逆变器的影响在实际应用中,由于负载的不平衡性,如负载的不对称、不匹配等因素会对三相四桥臂逆变器的工作产生影响。
主要表现在以下几个方面:1. 输出电压波形失真:负载不平衡会导致逆变器输出的三相电压波形失真,影响其稳定性和性能。
2. 电流不平衡:负载不平衡还会导致逆变器输出的三相电流不平衡,存在功率因数低、损耗大等问题。
3. 逆变器保护失效:负载不平衡会加大逆变器内部元件的损耗,使其保护功能失效,从而影响系统的安全性。
四、不平衡负载下三相四桥臂逆变器的控制策略针对不平衡负载下三相四桥臂逆变器的影响,可以采取以下控制策略进行改进和优化:1. 直接控制策略:通过对逆变器输出电压和电流进行实时检测和调整,实现对不平衡负载的即时响应。
2. 功率均衡控制策略:通过对三相输出功率进行均衡调整,实现对负载不平衡的自适应调节,提高逆变器的整体性能。
3. 容错控制策略:在逆变器输出发生不平衡时,引入容错机制,及时对系统进行保护和修复,确保逆变器的稳定运行。
五、不平衡负载下三相四桥臂逆变器的实现技术在实际工程中,对于不平衡负载下三相四桥臂逆变器的实现,可以采用以下技术手段进行:1. 基于DSP的控制算法:利用数字信号处理器(DSP)实现对逆变器的实时控制和调节,提高控制精度和速度。
三相四桥臂逆变器的工作原理分析与控制
![三相四桥臂逆变器的工作原理分析与控制](https://img.taocdn.com/s3/m/1700cf36a517866fb84ae45c3b3567ec102ddc20.png)
三相四桥臂逆变器的工作原理分析与控制工作原理分析:在逆变器的工作过程中,控制器会周期性地对桥臂上的开关状态进行调整。
每个桥臂由两个开关管组成,可以分为上桥臂和下桥臂。
通过合理地控制这些开关管的导通和断开,可以实现稳定的输出电压。
当上桥臂的开关管导通时,直流电源正极的电流会经过对应的桥臂,流向负极。
而当下桥臂的开关管导通时,负极的电流会经过对应的桥臂,流回到直流电源。
通过不断切换上桥臂和下桥臂的开关管状态,可以使电流在直流电源和负载之间循环流动,从而实现交流电流的输出。
控制:为了实现对输出电压的精确控制,控制器需要根据输入信号,即所需输出电压的幅值、频率和相位来确定桥臂的开关状态。
一种常用的控制方法是基于PWM技术的空间矢量调制(SVPWM)控制。
在这种方法中,控制器根据所需输出电压的大小和方向,通过调整上桥臂和下桥臂开关管的导通时间来控制输出电压的幅值和相位。
具体来说,控制器会将所需输出电压在α-β坐标系上对应的矢量进行分解,然后根据所得到的矢量值来确定开关状态。
实际控制中,控制器会根据输入信号来计算相应的开关状态,并通过控制信号发送给桥臂上的开关管。
控制器可以采用各种算法和控制策略来实现精确的电压控制,例如PID控制、模糊控制等。
总结:三相四桥臂逆变器通过合理控制桥臂上的开关状态,可以将直流电能转换为交流电能。
它采用PWM技术,通过调整开关管的导通和断开时间来控制输出电压的幅值、频率和相位。
控制器根据输入信号计算桥臂的开关状态,并发送给对应的开关管,从而实现对输出电压的精确控制。
基于PID和重复控制的三相四桥臂逆变器的研究
![基于PID和重复控制的三相四桥臂逆变器的研究](https://img.taocdn.com/s3/m/5facbd1b854769eae009581b6bd97f192279bfc6.png)
基于PID和重复控制的三相四桥臂逆变器的研究路颜;高锋阳;张红生【摘要】在三相四桥臂逆变器被解耦成三个单相逆变器的基础上,提出了一种PID与重复控制相结合的控制策略。
首先采用开关周期平均法和旋转坐标变换,建立旋转坐标系下的平均大信号模型,在此模型的基础上设计简单明了的PID控制器。
其次对整个系统进行重复控制器的设计,居于外环的重复控制可以减小周期性扰动产生的畸变,提高系统的稳态性能。
仿真结果表明,在不平衡负载和非线性负载情况下,逆变器都能够保持完好的电压输出特性和良好的动态特性。
%A control strategy with PID and repetitive control was proposed, which was based on the three-phase four-leg inverter being decoupled into three single-phase inverters. Firstly, the switch cycle average method and the rotary coordinate transformation were used to establish average large signal model in rota-ting coordinate system. In addition, a simple PID controller could be designed based on this model. Then , a repetitive controller was applied to the whole system and the repetitive controller in outer loop re-duced the distortion generated by periodic disturbance as well as enhanced steady state performance of the system. The results showed that output voltage characteristics and dynamic state performance of the in-verter were excellent under unbalanced load and nonlinear load conditions.【期刊名称】《郑州大学学报(理学版)》【年(卷),期】2016(048)001【总页数】5页(P91-95)【关键词】三相四桥臂逆变器;单相逆变器;PID控制;重复控制;解耦控制【作者】路颜;高锋阳;张红生【作者单位】兰州交通大学自动化与电气工程学院甘肃兰州730070;兰州交通大学自动化与电气工程学院甘肃兰州730070;兰州交通大学自动化与电气工程学院甘肃兰州730070【正文语种】中文【中图分类】TM464与带分裂电容的三相四线逆变器、组合式三相四线逆变器和工频变压器隔离的三相四线逆变器等拓扑结构相比,三相四桥臂逆变器具有电路形式简单,质量小,体积小以及电压利用率高等优点[1].三相四桥臂逆变器输出电能质量主要取决于调制方法和控制器的设计[2].文献[3—4]采用三维空间PWM调制方法,该方法电压利用率高,开关频率较低,但是计算十分复杂.文献[5—6]采用特定谐波注入法,在一定程度上提高了电压利用率,但它更倾向于在电机驱动方面的应用,不太适合于不间断电源等逆变电源的控制.针对以上问题,本文将PID与重复控制相结合,应用到三相四桥臂逆变器的控制中,得到稳定的三相正弦输出电压,使系统具有良好的鲁棒性和动态特性.三相四桥臂逆变器的拓扑结构如图1所示.可以看出,三相四桥臂逆变器是在普通三相逆变器的基础上增加了一组臂对,该臂对的中点通过电感Ln与负载中性点连接在一起.Udc和ip分别表示直流母线电压与电流,ia、ib、ic和in表示流过各相滤波电感的相电流.Uag、Ubg、Ucg表示A、B、C各相的输出电压.Si(i=a+、a-、b+、b-、c+、c-、f+、f-)表示各个桥臂上开关管的开关函数,当Si=1时,表示此桥臂开通,反之,当Si=0时,表示此桥臂关断.依据开关周期平均法进行运算,得到各相电路的占空比为dag、dbg和dcg,根据电流回路分析可以得到对各个输入变量、输出变量进行相对应的坐标变换:式中:Ud、Uq、U0、id、iq、i0为在旋转坐标系下各相的相电压和相电流;dd、dq、d0为在旋转坐标系下各相的占空比.各个桥臂均已解耦,控制部分设计相对简单.0通道可以完全独立于其他两个通道进行设计,将d、q通道之间的耦合影响部分增添到扰动部分,得到系统在旋转坐标系下的平均大信号模型如图2所示.PID控制具有结构简单、鲁棒性好且易于实现等优点.对三相四桥臂逆变器d轴和q轴的耦合项-ωLiq、ωLid、ωCUq和-ωCUd进行电压前馈解耦,得到旋转坐标系下PID控制的等效模型如图3所示.可以看出,输入参考电压为Ur,负载电流的扰动信号为I0,得到整个系统的闭环传递函数为该系统的闭环特征方程为式中:kd、kp和ki分别表示PID控制中的比例、积分和微分参数;0轴时L=L+3Ln.通过上述分析得知,整个控制系统是一个高阶系统,控制比较复杂.此系统的动态特性主要由主导极点决定,文献[7]详细介绍了极点配置过程,满足系统动态要求的参数为式中:ζ=0.707,n=10,ω=5 000 rad/s,L=Ln=1.8 mH,C=30 μF.可以得到d、q轴的PID控制参数为kd=0.002 3,kp=13.846,ki=47 722.5;0轴的PID控制参数为kd=0.009 2,kp=58.384,ki=190 890.根据内模原理可知,重复控制对死区影响以及其他周期性扰动具有很好的抑制作用,并且能够消除跟踪误差,使系统尽可能地达到无稳态误差形式[8—9],重复控制系统结构框图如图4所示.P(z)是控制对象,死区效应和其他扰动等效为扰动量d(z).1/ZN为周期延迟环节,与Q(z)组合为正反馈延迟环节.固有延迟环节的存在会延缓整个重复控制系统的作用时间,必须添加相位补偿环节Zk,使整个系统提前k拍进行校正.为了提高稳定性,减少稳态误差,加入重复控制增益Kr.S(z)为相位补偿环节,r(z)为输入参考电压,y(z)为输出电压,e(z)为误差值.Q(z)一般为一个低通滤波器[10],也经常取小于1的常数[11],为了设计方便,Q(z)取常数0.95.消除被控对象的谐振峰值,采用陷波器,即零相移滤波器[12],其传递函数为单独的零相移滤波器不具备高频衰减能力,需要与二阶滤波器相互结合.d、q轴传递函数为0轴传递函数为N=200,要求通带内必须要有严格的线性相位,用z9进行补偿.重复控制增益Kr是为了保证系统在中频段和高频段的稳定性,Kr=0.9.系统设计参数如下:直流母线电压为600 V,各相滤波电感为1.8 mH,各相滤波电容为30 μF,开关频率为10 kHz,输出电压频率为50 Hz.1) 当三相四桥臂逆变器接不平衡负载时,令RA=30 Ω,RB=20 Ω,RC=10 Ω时,逆变器的电压、电流输出波形如图5和图6所示.从图6可以看出,由于负载的不同,其电流幅值相差比较大.但是经过闭环控制系统的调整,从图5可以看出,三相输出电压幅值基本一致,调节时间为0.04 s,即在0.04 s以后,整个系统进入基本稳定状态,三相电压的谐波畸变率分别为1.26%、1.31%、1.28%.可以看出,当外界负载因出现干扰发生变化时,电压仍能按照预期的目标输出,具有一定的抗干扰性.2) 当三相四桥臂逆变器接非线性负载时,A相接二极管半波整流阻感负载,令RA=(40+j12) Ω,RB=20 Ω,RC=10 Ω时,逆变器的电压、电流输出波形如图7和图8所示.从图8可以看出,由于接的是非线性负载,电流幅值相差更大.但是经过闭环系统的控制,从图7可以看出,三相输出电压波形较为理想,三相电压的谐波畸变率分别为2.13%、1.43%、1.38%.谐波畸变率比接不平衡负载的情况要大一些,但是依然满足总谐波畸变率低于5%的要求.接不平衡负载的系统是最难实现控制的,也就是说,它的干扰是最大的,但是三相电压仍然以幅值基本相等的形式输出,证明该系统的鲁棒性较强.图9为逆变器接非线性负载时的拓扑结构图,A相负载为单相半波可控整流电路,在仿真中代表非线性负载,其中电阻R=40 Ω,滤波电感L1=12 mH.通过以上两种情况可以看出,随着负载的变化,三相输出电流的幅值也进行相应变化,三相输出电压通过PID和重复控制的闭环控制,在经过短暂的调整之后,很快达到了预期的效果.在三相四桥臂逆变器解耦为三个单相逆变器的基础上进行设计,将重复控制策略引入三相四桥臂逆变器,结合PID控制,构成双环控制,相辅相成,完成对整个系统的控制与实现,使其输出电压波形能够达到预期的效果.然后在三相不平衡负载和非线性负载的情况下进行仿真验证,仿真结果表明,逆变器输出的电能质量高,谐波含量相对较小,抗干扰能力较强.所设计的PID和重复控制双环控制策略,具有良好的有效性和可行性,整个系统具有很好的鲁棒性和动态特性.【相关文献】[1]DXION J W,GARCIA J J,MORAN L.Control system for three-phase active power filter which simultaneously compensates power factor and unbalanced loads[J] .IEEE transactions on industrial electronics,1995,42(6):636—641.[2]孙尧,粟梅,夏立勋,等.基于最优马尔可夫链的双极四脚矩阵变换器随机载波调制策略[J].中国电机工程学报,2009,29(6):8—14.[3]王晓刚,谢运祥,帅定新,等.四桥臂逆变器的快速三维SVPWM算法[J].华南理工大学学报(自然科学版),2009,37(7):94—99.[4]罗国永,曹怀志,曾明高.三维电压空间矢量控制在三相四桥臂逆变器中的应用[J].变流技术与电力牵引,2008(2):21—23.[5]张方华,丁勇,王慧贞,等.四桥臂三相逆变器的特定谐波消除控制[J].中国电机工程学报,2007,27(7):82—87.[6]宦二勇,宋平岗,叶满园.基于三次谐波注入法的三相四桥臂逆变电源[J].电工技术学报,2005,20(12):43—46.[7]王正仕,林金燕,陈辉明,等.不平衡非线性负载下分布式供电逆变器的控制[J].电力系统自动化, 2008,32(1):48—60.[8]王斌,王凤岩.提高重复控制逆变电源的负载瞬态响应特性[J].电源技术应用,2008,13(2):6—9.[9] 武健,何娜,徐殿国.重复控制在并联有源滤波器中的应用[J].中国电机工程学报,2008,28(18):66—72.[10]TOMIZUKA M, KEMPF C.Design of discrete time repetitive controllers with applicati ons to mechanical systems[C]//Proceedings of 11th IFAC Triennial World Congress.Tallinn, 1990:243—248.[11]TZOU Y Y,OU R S,JUNG S L,et al. High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique[J].IEEE transactions on power electronics,1997,12(4):715—725.[12]郭卫农,陈坚.基于状态观测器的逆变器数字双环控制技术研究[J].中国电机工程学报,2002,22(9):64—68.。
一种三电平三相四桥臂逆变器中点电位平衡策略
![一种三电平三相四桥臂逆变器中点电位平衡策略](https://img.taocdn.com/s3/m/db4a7578b94ae45c3b3567ec102de2bd9605de24.png)
一种三电平三相四桥臂逆变器中点电位平衡策略朱婷婷;邓智泉;王晓琳;王宇【摘要】针对三电平三相四桥臂逆变器数学模型复杂和不对称运行时易导致直流电容中点电位漂移的弊端,本文采用降维策略,将三维数学模型降为平面模型和一维模型的简单叠加;基于空间矢量脉宽调制(SVPWM),分析各种矢量对中点电位的影响,通过合理选择和优化开关矢量,使单个采样周期内流过直流电容中点的平均电流严格为零,从而有效抑制了中点电位的漂移。
仿真和实验结果表明了本文所提算法在宽范围调制比和不对称负载条件下均能有效保证直流侧中点电位的平衡。
%Aimed at the drawbacks of complicated three-dimensional model and neutral point potential drifting in three-level three-phase four-leg inverters, a novel strategy is proposed in this paper. It keeps neutral point potential balanced by descending dimension, analyzes the influence of each switching states on the neutral point potential, and optimizes switching states based on space vector modulation. The average current flowing through the neutral point of DC capacitors is absolutely zero during each sampling period, and hence the neutral point potential is balanced effectively. The simulation and experimental results verify that the proposed strategy can eliminate the neutral point potential drifting with modulation ratio and load conditions over a big range.【期刊名称】《电工技术学报》【年(卷),期】2012(027)006【总页数】6页(P77-82)【关键词】降维;优化调制;三电平;四桥臂;中点电位平衡【作者】朱婷婷;邓智泉;王晓琳;王宇【作者单位】南京航空航天大学自动化学院,南京市210016;南京航空航天大学自动化学院,南京市210016;南京航空航天大学自动化学院,南京市210016;南京航空航天大学自动化学院,南京市210016【正文语种】中文【中图分类】TM4641 引言近年来,传统的三相三桥臂逆变器已在对称运行的电力电子与电力传动领域获得了广泛运用。
四桥臂三相逆变器的控制策略研究
![四桥臂三相逆变器的控制策略研究](https://img.taocdn.com/s3/m/d1e840d976eeaeaad1f3301a.png)
变压器 增加 了系 统 的体 积 和 重量 ; ) 用 四桥 臂 三 3采
而在 不平 衡 负 载 下 , 由于负 序 和零 序 分 量 的存 在, 导致 三相 输 出 电压 不平衡 . 只要 消除负 序和零 序
分 量 的影 响 , 可保证 三相 输 出电压 的对称 . 即 首先 通 过 变 换 阵式 ( ) 1 可实 现从 a c b 坐标 系N  ̄ o , 坐标 系的 p 变换 , 在 O坐标 系下 , 负 序分 量 均 为 交 流量 , 正 而
第2 5卷 第 l期
V0 5 NO. L 2 1
湖 北 工 业 大 学 学
报
21 0 0年 2 月
F b. O1 e 2 O
J u n l fHu e ie st fT c n l g o r a b iUn v r i o e h o o y o y
四桥臂 三相逆 变器 比普 通 的三 相 逆 变器 多 了 1 个 桥臂 , 其控 制也 变得更 加复 杂. 当前较 为 常用 的方
法 有 2种. 文献 E 3 2 采用 三维 电压 空 间矢 量调 制 (D- 3
s VM) 制 , 种控 制 方式 继 承 了 S WM 控 制 的 控 这 VP
[ 稿 日期 ]2 0 — 1 — 1 收 09 2 5
(一 c(+ w ) 。 ) t s
n 一i t n ) s 一 n ) + @
[ 者 简 介]韦 忠 朝 ( 9 3 , ,贵 州 龙 里 人 , 中科 技 大 学 副 教 授 , 究 方 向 : 型特 种 电机 及 其控 制 系 统 、 作 16 一) 男 华 研 新 电力 电子
不平衡负载条件下三相四桥臂逆变器的控制
![不平衡负载条件下三相四桥臂逆变器的控制](https://img.taocdn.com/s3/m/266bdebdd0f34693daef5ef7ba0d4a7302766ccd.png)
不平衡负载条件下三相四桥臂逆变器的控制费兰玲;张凯;蔡院玲【摘要】三相四桥臂逆变器具备外接三相不平衡负载的能力.为改善逆变器系统在严重不平衡负载情况下输出电压的对称性,文中提出一种新颖的控制策略--旋转坐标系下的PIR-P双环控制.当系统接不平衡负栽时,电压外环的PI控制器保证系统的动态性能,谐振控制器保证其稳态精度.最后在旋转坐标系下对系统分别采用PI-P和PIR-P两种双闭环控制器情形作对比仿真.结果表明系统在严重不平衡负载情况下,输出电压负序不平衡度由2.41%减小到0.129%,零序不平衡度由2.25%减小到0.032%.【期刊名称】《通信电源技术》【年(卷),期】2011(028)003【总页数】6页(P4-8,13)【关键词】三相四桥臂逆变器;不平衡负载;谐振控制【作者】费兰玲;张凯;蔡院玲【作者单位】华中科技大学电气与电子工程学院,湖北,武汉,430074;华中科技大学电气与电子工程学院,湖北,武汉,430074;华中科技大学电气与电子工程学院,湖北,武汉,430074【正文语种】中文【中图分类】TM4641 概述基于三相四线制逆变器拓扑结构,提出的三相四桥臂逆变器(four-leg inverter,FLI)广泛应用于功率变换和UPS等场合。
它具有直流母线电压低,开关损耗小,可以接非线性及不平衡负载等优点。
较之于传统的三相三桥臂逆变器,三相四桥臂逆变器通过添加第四条桥臂为非线性及不平衡负载零序电流提供通路,保证逆变器在各种恶劣负载条件下,仍能给负载端提供三相平衡的正弦电压。
其主电路图如图1所示。
在原有三相三桥臂逆变器拓扑结构上发展而来的三相四桥臂逆变器,增加了两个开关管(即:两个开关状态),开关状态由原来的2^3增加为2^4。
与传统逆变器相比较,控制方法更加复杂,这在一定程度上局限了三相四桥臂逆变器的应用。
新增加的第四桥臂与其它三相共用,形成三相电流回路,因此对其它三相桥臂开关的触发和输出电流的激励产生牵制作用。
离网条件下的三相四桥臂逆变器控制策略研究
![离网条件下的三相四桥臂逆变器控制策略研究](https://img.taocdn.com/s3/m/93a9dafaba0d4a7302763a56.png)
基 波正序 、 负序 和零序分量分解 , 研究分别采用正序、 负序和零序旋 转坐标 系下的电压、 电流双 闭环控制 方法 , 搭建了 以英飞凌 X E 1 6 4 F N单 片机为控制核心的硬 件 实验平 台, 并进行 实验研 究, 实验结 果证 明所 用控制方法的正确性。
关键 词 : 离网; 三相 四桥 臂 逆 变 器 ; 对 称 分 量 法
检测与控制
2 0 1 3 年 第5 期( 第2 6 卷, 总 第1 2 7 期 )・ 机械 研究 与应用 ・
离 网条 件 下 的 三 相 四桥 臂 逆 变 器 控 制策 略研 究
李章 清 , 丁 军怀 , 刘成 洋
( 1 . 兰州长城 电X -  ̄4 #有 限公 司, 甘肃 兰州 7 3 0 0 0 0;2 . 天水电气传动研 究所有限责任公司, 甘肃 天水 7 4 1 0 2 0 3 . 天水长城 开关厂有 限公 司, 甘肃 兰州 7 4 1 0 2 0 )
L I Z h a n g — q i n g , D I N G j u n — h u a i ,L I U C h e n g — y a n g
( . L a n z h o u G r e a t w a l l E l e c t r a i c a l C o . , L t d , L a n z h o u G a n s u 7 3 0 0 0 0, C h i n a ;
3 . T i a n g s h u i G r e a t w a l l S w i t c h g e a r o. C , L t d ,T i a n s h u i G a su n 7 4 1 0 2 0, C h i n a )
Ab s t r a c t :A t h r e e - p h a s e f o u r - l e g i n v e r t e r i s d e s i g n e d t o a d a p t t h e u n b a l a n c e l o a d s i n t h e mi c r o g r i d .I t s ma t h e ma t i c a l mo d e l s a r e r e a l i z e d o n t h e a - b -e s t a t i o n a r y f r a me a n d d - q s y n c h r o n o u s r o t a t i o n r e f e r e n c e f r a me r e s p e c t i v e l y,t h e s y mme t r i c a l c o mp o — n e n t me t h o d i s u s e d t o a b s t r a c t t h e f u n d a me n t a l — f r e q u e n c y p o s i t i v e s e q u e n c e, z e r o s e q u e n c e a n d n e g a t i v e s e q u e n c e f o r t h e r e — l a t e d v o l t a g e s a n d c u r r e n t s , t h e o u t e r v o l t a g e l o o p a n d i n n e r c u r r e n t l o o p a r e s t u d i e d b a s e d o n t h e s e q u e n c e c o mp o n e n t s o n t h e d - q s y n c h r o n o u s r o t a t i o n r e f e r e n c e f r a me ,a p r o t o t y p e i n t h e c o r e o f XE1 6 4 F N i s e s t a b l i s h e d .T h e e x p e r i me n t s a r e d o n e a n d
三相四桥臂逆变器的工作原理分析与控制
![三相四桥臂逆变器的工作原理分析与控制](https://img.taocdn.com/s3/m/e211afa4f242336c1fb95e14.png)
三相四桥臂逆变器的工作原理分析与控制-CAL-FENGHAL-(YICAI)-Company One 1三相四桥臂逆变器的工作原理分析与控制在传统的三相全桥逆变爲的娠础上埔加•个桥VF 构成的-M 桥轉逆变器町以产生三个砂 立的输出电压。
通过所熠加的第四桥苗产生一个自山度來控制屮件亢电用•可以便逆变JIH 具仃W 不平衡负载的能丿几木改对采用正咳脉宽调制技术OPWM)的三相半桥逆变器和-相四桥轉 逆变器进行了分析比较•重点分析了正弛波调制和三次淸波注入的PVIM 控制的三楣四桥關逆 变盎工作原理•并进行了仿宜比较。
21三相半桥逆变器的工作原理分析2L1三相半桥逆变器输出纹波分析半逆变器的开关频率远犬丁•输出频申时.逆变器输山电尺上喪包含调制频率及典済波、开 关频率及其谐液的边频帶I M Q 心SPWM 逆变器屮TT 咲频率远人丁输山频率.因此打次済波群远离基波-经过滤液JB 谐液須到了抑制.逆变器输出璀木上只剩卜・^5波电压°木节利用平均侑 模羽何•将输出电rR/i :->b 开关周期内的平均值近似为输出电爪堪波分蛍的瞬时値來分析电感 电流和输出电压上的纹泼S用2丄所示为-棚半桥逆变器主电路图「询半桥逆变器毎相的工作方成勺单相半桥祁同. Jfl —+11的电路結构图如国2.2所示,化一个开关周期内订; |.0<f<d(f)7:JF一卒开关周期内输出电压的平均値为:□ 〉-护JL 中• d(b = yP +»JsinSE] • m 为调制比•取 MJ = 1 •则输Hl 电JE 为:c-乙J3■£' s阳2・2甲柑半桥逆变器V,G 心心=n 0 □圏2丄三相丫桥逆变湍主电路 QB图2 3输出电压U,⑦和电感电流g ⑦变化曲线图23示出了输出电压纯(F)和电感电流纹波山丄①的变化曲线•町以frill.输出电爪过零 处电感I:的电流纹波址大.址大电感电流纹波为:B 叽=AfL输出滤溅电容充电的平均电流为:A «-<=T电容在T /2时何间隔内充电M 】・所以输出电爪纹波为:3 (f)«生 L “ C 2 P1L2三相半桥逆变器输入电容电压纹波分析逆变器的间级为DC/DC 变换器时.逆变器的输入端电容的的电流可认为是•氏流Sb逆变器的输入电容承担功率解IS 的功能何,在三相半桥逆变器中・输入电容还具仃抑制中虑电 位偏移的作用。
三相四桥臂逆变器的新型分序控制策略研究
![三相四桥臂逆变器的新型分序控制策略研究](https://img.taocdn.com/s3/m/1ea472272af90242a895e5b0.png)
2 O年 l 01 1月
电 力 电子 技 术
Po rEl cr nis we e to c
Vo.4,No 1 1 4 .1 No e e 0 0 v mb r2 1
三相四桥臂逆变器的新型分序控制策略研究
陈 红 兵
(. 樊 学 院 , 理 与 电子 工 程 系 , 北 襄 樊 1 襄 物 湖 4 15 ; 0 3 20 0 ) 3 0 9 2合 肥 工 业大 学 , . 电气 与 自动 化 工 程 学 院 , 徽 合 肥 安
关 键 词 : 变 器 ;分 序 算 法 :前 馈 解 耦 控 制 逆 中 图分 类 号 :M 6 T 44 文 献标 识 码 : A 文 章 编 号 :0 0 lO (0 0 1- 0 5 0 10 一 O X 2 1 )1 0 2 — 3
Re e r h n Co t o t a e y Ba e n a No e s a c o n r lS r t g s d o v l De o po ii n Se e c e ho f Thr e p s ur l g I e t r cm sto qu n e M t d o e - ha e Fo -e nv r e
摘要: 在不 平衡 负载 或非 线性 负载 条件 下 , 现有 的三 相 四桥 臂逆 变器 控制 方法 不 能彻底 解 决逆 变器 输 出 电压 的完 全对称 性 问题 。针对 该 问题 , 首先 建立 了逆 变器 的数 学模型 , 在此 基础 上 , 采用 新 型 的分 序策 略对控 制量 进行 了分序 , 并用前馈 法对系 统进行 解耦 。其次 , 设计 了控 制系 统参数 。最 后 , 通过 实验证 明 了所提 的控制 方 法是 正确可行 的 , 并且优 于 正序 同步 旋转坐 标系 下的 比例 积分双 环控 制 g
三相四桥臂逆变器的控制策略研究
![三相四桥臂逆变器的控制策略研究](https://img.taocdn.com/s3/m/dded6c4b2b160b4e767fcfbc.png)
毕业设计(论文)三相四桥臂逆变器的控制策略研究完成日期2011年12月19日论文题目:三相四桥臂逆变器的控制策略研究专业:电气工程及其自动化本科生:(签名)指导教师:(签名)摘要为了适应平衡或不平衡负载、线性或非线性负载的要求,三相四桥臂逆变器是针对解决三相不平衡负载而提出的一种新型拓扑。
这种拓扑最大的优点是在三相负载不平衡时保持三相输出电压的对称输出,而且和其他三相四线制逆变器相比,系统的体积和重量又比较小。
首先,本文介绍了三相四桥臂逆变器的发展概况和一些比较常见的拓扑构,同时还介绍了几种三相四桥臂逆变器的调制策略。
其次,本文通过建立四桥臂三相逆变器的数学模型,由数学模型可以得到四桥臂三相逆变器中输出电压和电感电流等各个变量之间的关系,从而实现对输出电压的控制。
最后,三相四桥臂的控制策略主要有不对称分量法,滞环电流控制,空间矢量控制,PWM控制。
电流滞环控制的硬件电路设计简单,但存在开关频率不固定,输出滤波器设计困难,输出波形质量差,空间矢量控制(SVM)技术具有较高的电压利用率,且通过对零矢量的合理控制可以降低谐波含量或降低开关损耗,因此是一种较好的控制方法。
为了消除输出相电压的静态误差,本文讨论了一种基于PI调节器改进的电压调节方案。
同时,空间矢量控制也可以应用到三相四桥臂逆变器中。
此方法具有提高电压利用率,降低总谐波失真,减小开关频率的特点,并且实现简单。
通过MATLAB仿真软件对上述的控制系统进行了仿真验证,结果证明了控制方案的有效。
关键词:三相四桥臂逆变器;电流滞环;三维SVM控制Subject: Control Strategy of Three-Phase Four-leg Inverter Specialty: Electrical Engineering and AutomationName: Jia Honghua (Signature)Instructor: Zhang Yufeng (Signature)AbstractIn order to adapt to the balance or not balance the load, linear or nonlinear load demand, three phase four bridge arm inverter is solve the unbalanced three-phase load and put forward a new type of topology. This topology is the biggest advantages in three-phase load balance not keep three-phase output voltage of symmetry output, and and other three-phase four wire inverter, compared the bulk and weight of the system and smaller.First, this paper introduces the three phase four bridge arm inverter the development situation and some of the more common topology structure, and also introduces several three-phase four bridge arm inverter modulation of the strategy.Secondly, this paper establish four bridge three-phase inverter arm of the mathematical model, the model can get four bridge three-phase inverter arm of the output voltage and current, inductance of the relationship between the different variables, so it can realize the output voltage control.Finally, three phase four arms of the bridge to the asymmetric control strategy of main component method, hysteresis current control, the space vector control, PWM control. Current hysteresis control hardware circuit design is simple, but the existing switching frequency is not fixed, output filter design difficulties, poor quality of output waveform, the space vector control (SVM) technology has high voltage utilization, and through to the zero vector can reduce the reasonable control of the harmonic content or reduce switch loss, so is a better control method. In order to eliminate the phase voltage output static error, this paper discusses the PI adjuster based on improved voltage regulation scheme.In the meantime, the space vector control can also be applied to three phase four bridge arm inverter. This method is raising voltage utilization rate, reduce the total harmonic distortion, reducing switch frequency, and the characteristic of implementation is simple. MATLAB simulation software of the above through the control system is simulated, and the results proved effective control scheme.Keyword:four-leg three-phase inverter ;hysteresis current control;three-dimensional SVM control目录第1章绪论 (1)1.1课题背景 (1)1.2 本文的主要研究内容 (2)第2章三相四桥臂逆变器的发展概况 (3)2.1 三相四线逆变器的拓扑 (4)2.2 三相四桥臂逆变器调制策略概况 (7)2.2.1对称分量法 (7)2.2.2 电流滞环控制 (8)2.2.3 PWM控制 (8)2.2.4 二维空间矢量控制 (9)2.2.5 三维空间矢量调制 (9)2.2.6 基于载波的谐波注入调制 (9)2.3本章小结 (10)第3章三相逆变器的数学模型 (11)3.1在ABC静止坐标系中建立三相三桥逆变器的数学模型 (11)3.2 在ABC静止坐标系中建立三相四桥臂逆变器的数学模型[19] (15)3.3 三相四桥逆变器在dqo旋转坐标系中的数学模型 (16)3.4本章小结 (18)第4章三相四桥逆变器的空间矢量调制方案 (19)4.1空间矢量调制概述 (19)4.2空间合成矢量运动轨迹的确定 (20)4.3空间矢量分析 (25)4.4三维空间开关矢量 (26)4.5三维空间矢量调制控制方案 (29)4.5.1 MA TLAB简介 (29)4.5.2 使用滞后比较器的瞬时空间电流相量控制法 (30)4.5.3 简化的双环三态电流滞环电压调节器 (32)4.6仿真试验实现与结果 (34)4.6.1 双环三态电流滞环电压调节仿真 (34)4.6.2 简化双环三态电流滞环电压调节仿真 (42)4.7本章小结 (44)第5章全文总结与展望 (45)5.1全文总结 (45)5.2全文展望 (45)参考文献 (46)致谢 (48)第1章绪论随着社会工业的发展,当今社会对电力供电质量与安全可靠性要求越来约高对交流输入电源的稳压精度也要求越来越高。
三相四桥臂逆变器的设计与解耦控制
![三相四桥臂逆变器的设计与解耦控制](https://img.taocdn.com/s3/m/6fad0b290722192e4536f6cc.png)
分类号密级U D C学 位 论 文三相四桥臂逆变器的设计与解耦控制作者姓名:王狄指导教师:张化光教授副导师:陈宏志讲师申请学位级别:硕士学科类别:工学学科专业名称:电力电子与电力传动论文提交日期:2008年2月22日论文答辩日期:2008年2月26日学位授予日期:答辩委员会主席:评阅人:东北大学2008 年2月A Thesis for the Degree of Master in Power Electronics and Electric DrivesDesign and Decoupling Control Strategy of theThree-phase Four-leg InverterBy Wang DiSupervisor : Professor Zhang HuaguangNortheastern UniversityFebruary 2008独创声明本人声明所呈交的学位论文是在导师的指导下完成的。
论文中取得的研究成果除加以标注和致谢的地方外,不包含其他人已经发表或撰写过的研究成果,也不包括本人为获得其他学位而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示诚挚的谢意。
学位论文作者签名:签字日期:学位论文版权使用授权书本学位论文作者和指导教师完全了解东北大学有关保留、使用学位论文的规定:即学校有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。
本人同意东北大学可以将学位论文的全部或部分内容编入有关数据库进行检索、交流。
(如作者和导师同意网上交流,请在下方签名:否则视为不同意)学位论文作者签名:导师签名:签字日期:签字日期:东北大学硕士学位论文摘要三相四桥臂逆变器的设计与解耦控制摘要分布式能源是世界能源发展的最新方向,也是与信息时代相伴而生的互联网式的能源系统。
以微型燃气轮机为动力的发电机组,同时配以电力变换装置的微型供电系统,成为分布式能源重点。
基于三相4桥臂的逆变器优化冗余控制策略研究
![基于三相4桥臂的逆变器优化冗余控制策略研究](https://img.taocdn.com/s3/m/13722e06f78a6529647d5393.png)
( 中国石 油 大学 信 息与控 制 工程 学院 , 山东 青岛 2 6 6 5 5 5 )
摘要 : 提 出 了一 种 基 于 三 相 4桥 臂 的逆 变 器 优 化 冗 余 控 制 策 略 — — 第 4桥 臂 模 式 切 换 法 。 通 过 分 析 逆 变
器故障后各桥臂的工作状态 , 确 定 故 障后 逆 变 器 的 电压 空 间矢 量 分 布 图 , 并根据 S V P WM 控 制 算 法 , 制 定 逆 变 器优化冗余控制策略 , 维持逆变器持续运行 , 提高逆变器的工作可靠性。采用该控制方法 , 通 过 第 4桥 臂 模 式
s wi t c h i n g o f t h e f o u r t h l e g ,wa s p r o p o s e d . T h e d i a g r a m o f v o l t a g e s p a c e v e c t o r d i s t r i b u t i o n i s d e t e r mi n e d b y a n ly a z i n g t h e p o s t — f a u l t s t a t e o f e a c h l e g . T h e o p t i ma l r e d u n d a n t c o n t r o l s t r a t e y ,w g h i c h c a n ma i n t a i n t h e c o n t i n u o u s w o r k o f
电 气传 动 2 0 1 3年 第 4 3卷 第 3期
E L E C T R I C D R I V E 2 0 1 3 V o 1 . 4 3 N o . 3
基于三相 4桥 臂 的逆变器优化 冗余控制策 略研 究
三相四桥臂逆变器控制策略分析
![三相四桥臂逆变器控制策略分析](https://img.taocdn.com/s3/m/cfb3fbf318e8b8f67c1cfad6195f312b3169eb1f.png)
目录第一章绪论 (1)1.1前言 (1)1.2 课题的研究意义与背景 (4)1.3本文研究的主要内容 (8)第二章 三相四桥臂逆变器的控制策略 (9)2.1 PWM控制 (9)2.2 滞环电流控制 (12)2.3 空间矢量控制 (14)2.3.1 二维空间矢量调制 (14)2.3.2 基于αβγ坐标系的三维空间矢量调制 (18)2.4 本章小结 (22)第三章 基于abc坐标系的空间矢量调制与逆变器调压实现 (23)3.1 基于abc坐标系下三维空间矢量调制 (23)3.1.1 空间矢量的定义 (23)3.1.2 空间矢量的合成 (25)3.1.3 各矢量作用时间的计算 (26)3.1.4 开关矢量的组合方式 (27)3.2 参考电压的计算 (28)3.2.1 对称分量法 (28)3.2.2 参考电压 (30)3.3 逆变器的调压原理 (32)3.4 本章小结 (34)第四章 系统的实验设计 (35)4.1 主电路参数设计 (35)4.1.1 功率开关管的选择 (35)4.1.2 滤波器的设计 (36)4.2 控制电路的设计 (37)4.2.1 DSP的资源分配 (37)4.2.2外围电路设计 (39)4.2.3 采样电路的设计 (40)4.3 系统的软件设计 (41)4.4 本章小结 (42)第五章 三相四桥臂逆变器SVM调制的仿真 (43)5.1 三相四桥臂SVM仿真模型的建立 (43)5.1.1 MATLAB简介 (43)5.1.2 三相四桥臂SVM调制仿真模型 (44)5.1.3 仿真参数的设置 (45)5.2 开环系统的仿真 (46)5.3 闭环系统的仿真 (48)5.4 本章小结 (53)第六章 总结与展望 (54)6.1本文工作总结 (54)6.2 进一步工作的设想 (55)参考文献 (56)附录 攻读硕士学位期间撰写的论文 (59)致谢 (60)第一章绪论1.1前言现如今,伴随着国内外工业与科技的日益发展,用电设备已经应用于社会的各行各业,成为人类生产生活中不可或缺的一部分,电能的开发与利用显得尤为重要。
四桥臂三相逆变器的控制策略
![四桥臂三相逆变器的控制策略](https://img.taocdn.com/s3/m/6a19445efd0a79563d1e72c5.png)
四桥臂三相逆变器的控制策略阮新波严仰光摘要提出了一种新型的三相四线逆变器,它有四个桥臂,第四个桥臂用来构成中点,从而省去了三相三桥臂逆变器中的中点形成变压器,减小了逆变器的体积和重量。
针对这种逆变器,本文提出了一种电流调节器,它根据三相滤波电感电流和给定电流的误差值最大的那相选择逆变器的开关模态。
为了消除输出相电压的静态误差,本文讨论了一种基于PI调节器改良的电压调节方案。
仿真结果说明,本文的思路是可行的。
本文为构造大功率、高效率的三相四线逆变器提供了可靠的理论根底。
关键词:三相逆变器控制策略The Control Strategy for Three-Phase Inverter with Four Bridge LegsRuan Xinbo Yan Yangguang〔Nanjing University of Aeronaut ics & Astronautics 210016 China〕Abstract A novel three phase inverter with four bridge legs i s presented in this paper.The inverter eliminates the neutral forming transforme r by adding a bridge leg to form neutral point to provide balanced voltages to a ny kinds of three phase loads.The principle of the inverter is analyzed,and a ne w current regulator,which chooses switching modes according to the maximum cur rent error of filter inductance current and the reference current is proposed.Th e modified voltage regulator on the basis of PI regulator is proposed to elimina te output voltage static error under any load conditions.Keywords:Three-phase Inverters Control strategies1 引言三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在输出端加入一个中点形成变压器(Neutral Formed Transformer,NFT),如图1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四桥臂三相逆变器的控制策略阮新波严仰光摘要提出了一种新型的三相四线逆变器,它有四个桥臂,第四个桥臂用来构成中点,从而省去了三相三桥臂逆变器中的中点形成变压器,减小了逆变器的体积和重量。
针对这种逆变器,本文提出了一种电流调节器,它根据三相滤波电感电流和给定电流的误差值最大的那相选择逆变器的开关模态。
为了消除输出相电压的静态误差,本文讨论了一种基于PI调节器改进的电压调节方案。
仿真结果表明,本文的思路是可行的。
本文为构造大功率、高效率的三相四线逆变器提供了可靠的理论基础。
关键词:三相逆变器控制策略The Control Strategy for Three-Phase Inverter with Four Bridge LegsRuan Xinbo Yan Yangguang(Nanjing University of Aeronaut ics & Astronautics 210016 China)Abstract A novel three phase inverter with four bridge legs i s presented inthis paper.The inverter eliminates the neutral forming transforme r by addinga bridge leg to form neutral point to provide balanced voltages to a ny kindsof three phase loads.The principle of the inverter is analyzed,and a ne w current regulator,which chooses switching modes a ccording to the maximum cur rent error of filter inductance current and the reference current is proposed.Th e modified voltage regulator on the basis of PI regulator is proposed to elimina te output voltage static error under any load conditions.Keywords:Three-phase Inverters Control strategies1 引言三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在输出端加入一个中点形成变压器(Neutral Formed Transformer,NFT),如图1所示。
中点形成变压器是变比为1的自耦变压器,工作频率为输出交流电的频率,体积和重量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也就越大。
图1 带NFT的三相逆变器Fig.1 Three-phase inverter with NFT为了省去中点形成变压器,减小逆变器的体积和重量,可以在图1所示的逆变器的基础上加入一个桥臂来构成中点,将三相输出的公共点(即中点)接在该桥臂上,从而构成四桥臂三相逆变器,如图2所示。
图2 四桥臂三相逆变器Fig.2 Three-phase inverter with four legs2 逆变器的开关模态分析从图2可以看出,每个桥臂有两种开关方式,即上管导通,下管关断,定义为u i=1或v=1 ;或者下管导通,上管关断,定义为u i=0或v=0。
那么由四个桥臂组成的逆变器有24=16 种开关模态。
引入开关电压矢量U=(u1,u2,u3,v),实际上(0,0,0,0)和(1,1,1,1)两个开关模态是一样的。
在这两种开关模态下,三相电路均处于自由续流状态,故四桥臂逆变器有15种有效的开关模态。
从图2中可以看出,四桥臂三相逆变器相当于三个单相逆变器的组合,VT1、VT2、VT7、VT8构成A相逆变器,VT3、VT4、VT7、VT8构成B相逆变器,VT5、VT6、VT 7、VT8构成C相逆变器,三相逆变器共用了由VT7、VT8组成的桥臂。
从文献[1]中我们知道,单相逆变器存在三种开关模态,即式中i=1,2,3,分别代表A相、B相和C相如果三个独立的单相逆变器组成三相逆变器,那么三相开关模态(M1,M2,M3)有3 3=27种。
由于四桥臂三相逆变器省去了两个桥臂,因而它对三相输出电流的激励要相互牵制,不能同时存在相反方向的激励,下列12种开关模态不存在:(0,1,-1),(0,-1 ,1),(1,0,-1),(-1,0,1),(1,-1,0),(-1,1,0),(1,-1,1),(-1,1, 1),(1,1,-1),(-1,-1,1),(-1,1,-1),(1,-1,-1)。
也就是说只存在27-1 2=15种开关模态,这与前面采用开关电压矢量U=(u1,u2,u3,v)分析的15种开关模态是相互吻合的。
表1中列出了四桥臂三相RDCLI的15种存在的开关模态及对应的器件开关情况。
表1 逆变器开关模态及对应的器件开关情况Tab.1 Switching modes and on/off of the corresponding switches 三相开关模态对应的器件开关情况A相(M1) B相(M2) C相(M3) u1u2u3v0 0 0 0 0 0 01 1 1 10 0 1 0 0 1 00 0 -1 1 1 0 10 1 0 0 1 0 00 1 1 0 1 1 00 -1 0 1 0 1 10 -1 -1 1 0 0 11 0 0 1 0 0 01 0 1 1 0 1 01 1 0 1 1 0 01 1 1 1 1 1 0-1 0 0 0 1 1 1-1 0 -1 0 1 0 1-1 -1 0 0 0 1 1-1 -1 -1 0 0 0 1表1中所列的15种开关模态,如果某相的开关模态M i是1,则该相所加的是正向输入电压+V in,相电流是增加的;反之,假如某相的开关模态M i是-1,则该相所加的是反向输入电压-V in,相电流是减小的;而某相的开关模态M i如果是 0,该相就处于自然续流状态,电流增加或减小的趋势较小。
3 最大误差电流调节器在单相逆变器中,我们可以选用滞环电流脉冲调制器(Hysteresis Current Pulse Modulato r,HCPM),它是一个有滞环的三态调节器[1],如图3所示。
该调节器周期性地对滤波电感电流i Lf和电流给定信号i*Lf进行采样和保持(Sample/Hold ,S/H)。
在每个采样点上,如果i L f与i*Lf之间的误差小于-h(h为滞环),HCPM把输入电压V in正向加到滤波器两端,即+1(+V in),使滤波电感电流增大;如果i Lf与i*Lf之间的误差大于h,HCPM把V in反向加到滤波器两端,即-1(-V in),使滤波电感电流减小;假如 i Lf与i*Lf之间的误差的绝对值小于h,就让滤波器两端短路,即使逆变器处于自然续流状态。
图3 HCPM的控制框图Fig.3 Block diagram of HCPM在四桥臂三相逆变器中,可以采用三个HCPM来分别控制三相逆变器,但是必须处理好不存在的12种开关模态。
如果出现+1、-1共存的模态,就要把这些不存在的开关模态转换到存在的15种开关模态中去,是以+1,或者以0,还是以-1为基准来选择开关模态呢?关键是抓主要矛盾。
在采样点上,计算出各相滤波电感电流与对应相的电流给定信号的误差绝对值,以电流误差绝对值最大的那相为基准,即一旦出现12种开关模态中的一个,就以电流误差绝对值最大的那相的开关模态为基准,其他相的开关模态如果与基准相的一样,就取该开关模态,如果不一样,就让它选择自然续流状态,即0模态。
这就是“最大误差电流调节方案”(Maximu m Error CurrentRegulator,MECR)。
例如,在某一采样点上,HCPM决定下一开关周期中逆变器的开关模态是(-1,-1,1),A相此时的电流误差绝对值最大,根据最大误差电流调节方案,A 相选-1模态,B相也选-1模态,而C相应该选择0模态。
图4是最大误差电流调节器的原理框图。
4 电压调节器为了提高变换器的动态响应速度,一般采用双闭环控制,电流调节器是内闭环,电压调节器是外闭环。
目前电压外环普遍采用PI调节器,对于直流变换器来说,PI 调节器是无差调节,但是对于交流逆变器,在负载变化时,其输出电压是变化的,也就是说,输出电压是有静差的。
为了消除由于负载变化等原因引起的电压静差,文献[2]提出了一种基于PI调节器进的电压调节器,它是在PI调节器的基础上,加入一个负载电流正反馈信号i of和一个电压给定信号的微分支路。
负载电流正反馈信号与PI调节器的输出信号i r以及电压给定信号的微分信号相加,作为电流调节器的电流给定信号。
我们称这种电压调节方案为负载电流前馈电压调节器,图5是它的控制框图。
图4 最大误差电流调节器的原理框图Fig.4 Block diagram of the maximum error current regulator图5 负载电流前馈电压调节器控制框图Fig.5 Blocking diagram of the load current feed-forward voltage regulator 利用自动控制理论分析可得,负载电流前馈电压调节器的调节特性与负载无关,无论负载如何变化,输出电压都等于电压给定,而PI调节器则没有这种调节特性。
5 仿真结果及分析图6是采用最大误差电流调节器和负载电流前馈电压调节器,四桥臂三相逆变器的仿真结果。
图6a为三相对称阻性负载;图6b是三相不对称负载,A相是阻性满载,B相是感性负载,功率因数为0.75,C相是空载。
输出为115V/400Hz的三相交流电。
表2列出了系统参数相同,电压外环不对称负载的仿真结果。
图6 仿真结果Fig.6 Simulational results从表2中可以看出,负载电流前馈电压调节器所得到的外特性很好,无论什么性质的负载,均能得到三相对称的输出电压,输出电压的THD低于2%。
从图6中可以明显看出,这种新型的电源系统在各种极端条件下,均具有良好的动态特性。
四桥臂三相逆变器实现了三相电压的解耦控制,各相电压均独立进行调节。
在三相三桥臂逆变器中,三相电压是相互耦合的,为了对三相电压进行解耦控制,需要加入解耦电路。
四桥臂三相逆变器控制简单,性能优于三桥臂逆变器。
表2 不同电压调压器的仿真结果Tab.2 Simulated results under different voltage waveforms调节器负载电流前馈电压调节器PI调节器A相B相C相A相B相C相功率1kW 1kVA 0 1kW 1kVA 0 功率因数 1.0 0.75 1.0 0.75输出相电压/V 115.28 115.48 115.02 99.23 107.25 119 .29输出相电压的THD(%) 1.37 1.84 1.65 1.45 1.88 2 .05滤波电感电流/A 12.66 6.68 4.45 10.30 6.28 4.61滤波电感电流的3.49 7.55 13.91 3.57 8.12 14.70THD(%)负载电流/A 13.29 13.34 0.0 9.85 11.50 0.0注:电流均指有效值,电压均指基波值。