各种水驱特征曲线公式

合集下载

4.2水驱特征曲线分析.

4.2水驱特征曲线分析.

第一阶段:油藏的拟合期
要求系统地观察油藏的生产动态,准确齐全地收集能说明生 产规律的资料,其中包括必要的分析化验资料,深入地分析这些 资料以发现其中带规律性的东西,然后对这些规律性的资料和数 据,按一定的理论方法,如统计分析、曲线拟合等,总结出表达 这些规律的经验公式。
第二阶段:油藏动态的预测期 拟合期生产规律的总结提供了研究方法,但研究的目的使用 这些方法对油藏的未来动态进行预测,包括各种生产指标进行预 测。 第三阶段:方法的校正和完善
fw
R
( SW )
凹型、凸型,S型,三类曲线
1
2
3
4
5
油水粘度比是影响含水上升规律的决定性因素 生产措施调整运用的好坏也是一个重要的因素。
fw
1 1 10[c1 (1.6902c1 ) RD ]
童氏图版
2.含水上升规律(水驱特征曲线)
生产实践表明,一个水驱油藏全面开发并进入稳定生
由于经验方法本身来源于生产规律的直接分析和总结,所以 历史比较久远,但在油藏动态分析的领域中,30年代以后才出现 了一些比较成熟并能普遍使用的经验方法。随着开发油田类型的 增多和研究工作本身的不断完善,近几十年出现了许多具体的方 法和经验公式,这些方法已成为油藏工程方法的一个组成部分。
经验方法的研究和应用分为三个阶段或三个步骤:
对这类油田,认识油田含水上升规律,研究影响含水上 升的因素,制定不同生产阶段的切实可行的控制含水增长的
措施,是开发水驱油田的一件经常性的极为重要的工作。
一、水驱油田含水采油期的划分与含水上升规律
1 .水驱油田含水采油期的划分 无水采油期:含水率〈2% 低含水采油期:含水率2%-20% 中含水采油期:含水率20%-60% 高含水采油期:含水率60%-90% 特高含水采油期:含水率〉90%

水驱特征曲线类型及应用

水驱特征曲线类型及应用

利用水驱曲线法进行油田的动态预测,既适用于天然水驱,又适 用于人工注水开发,是一种非常实用的方法。利用有关水驱曲线法, 可以预测油田的有关开发指标。油田到中后期的含水率不断上升,通 过水驱曲线研究含水上升规律,经过一些合理的措施控制含水率的上 升,从而提高产量,还可以得到极限含水率条件下的产量。相对渗透 率曲线是油藏工程和油藏数值模拟工程计算中的重要参数,通过油田 的实际生产数据,利用水驱曲线法推出相对渗透率曲线,对于油田动 态预测具有十分重要的实际意义。对于一个油田,我们要制定合理的 开采方案,首先要知道可采储量,不然无限量的开采,不仅成本高, 而且产油量也比较低,所以研究油田可采储量是油田开发必须的一个 环节。
(1-7)
累积产油量与含水率之间的关系为:
(1-8)
2.5 张金庆水驱特征曲线法 张金庆先生经过多年统计分析研究,导出了累积产水量与累积产
油量的一中新型水驱曲线关系式:
经推导累积产油量与含水率之间的关系为:
(1-9)
(1-10)
该方法适用于任何原油粘度和类型的水驱油藏。 以上各式中:
-累积产油量,104t; -累积产液量,104t; -累积产水量,104t; - 经济极限含水率,%。
[J].石油钻采工艺,2003,25(5) [5] 王祥,夏竹君,张宏伟,等.利用注水剖面测井资料识别大孔道
的方法研究[J].测井技术,2002,26(2) 作者简介 王国栋(1981-),重庆水利电力职业技术学院讲师。研
究方向:应用概率统计。 (收稿日期:2011-09-28)
(收稿日期:2011-10-14)
(接6页)的主要特征。④与外界互动。作为国家队的主教练从来都 不会缺少聚光灯的环绕,保持与媒体的良好互动,妥善处理与媒体的 关系,不但能树立国家队在公众心中的良好形象,还能借助媒体的传 播力量,为比赛造势。此时主教练就是一个外交家,他既要有外交家 的辞令回答记者的刁难问题,又要保密球队的比赛策略,对于个别敏 感话题还要能巧妙转移,这其中就包括主教练对局势的把握,对信息 传播底线的控制,以及对球队的自信。⑤临场指挥。篮球比赛有其本 身魅力所在,还有比赛进程的不可预知性。40分钟比赛,场上形势瞬 息万变,考验主教练的反应速度和正确的应对决策。主教练要随时根 据场上局势的变化,作出战术调整,或者作出换人调整。进攻乏力, 可能需要换强力中锋,或者加多一个远投手,加强外线得分;防守吃 紧,可能需要调上防守型队员;球队领先,可能需要控制比赛节奏; 比分落后,要加快传球速度,这些变化都需要主教练得临场应变能 力。⑥鼓舞球员士气。在高水平的比赛里,技术层面的差距已经不能 决定比赛的胜负,此时球队的意志和精神上升到主要决定因素。主教 练的工作就是要激发球员的这一层面的能量,此时主教练扮演的是一 个激励者的角色,心理学和管理学方面的造诣需要双管齐下。

7章-水驱曲线

7章-水驱曲线

d=?
fw
(7-16)
(2)平均含水饱和度
Soi S w S wi N p A B lg WOR N
(7-17)
水驱曲线法预测结果对比与评价
根据我国宁海油田的实际开发数据,应用我国在标定水驱开发油田可采储量 时推荐的常用方法,进行统一计算,预测当经济极限含水率取fwL=0.98(即98%) 时的可采储量。然后,根据不同方法的线性关系好坏(即相关系数的大小)和确定的 可采储量可靠性,进行必要的评价。
六、含水率曲线
• 常见含水率曲线有三种:凸型\凹形\厂型
• 相渗驱替特征:室内实验的驱油效率数值是含水为100%时的采 出程度,并不反应整个水驱过程,并且,室内的驱油效率的取值 方法与实际油藏的开发并不一致,因此有必要从室内的相渗驱替 特征方面了解整个驱替过程。
• 驱油效率最高的TK102-1上部岩心的水驱曲线基本属于凸形曲线 (图5-3-1),即见水后,含水上升很快;而其余2块驱油效率虽然 相对较低,其水驱特征曲线基本属于S形。在中~中高含水阶段, S51样品的水驱效果还好于TK102上部岩心的结果,在含水为95% 时,二者采出程度基本一致,为42%,而最差的TK102下上部岩 心的采出程度仅为30%。 • 1区3个样品相当一部分的储量要在特高含水即95%以上采出(图 5-3-1), 占整个可采储量的百分数为21%~42%。
低含水阶段采出 厂型含水率曲线:即见水时,含水不快不慢,属于中间类型.
• 相对渗透率是岩石~流体间相互作用的动 态特性参数,相渗曲线是油藏开发设计和 开发效果评价的最重要依据之一。1区目前 只有3块岩心利用稳定流法测试了相渗数据。 由于岩心、试验条件、试验压差及流体粘 度的不同,相渗曲线具体形态不同。其相 渗基本数据统计如表。 • 室内试验岩心样品的含水变化主要取决于 分流方程:

砂岩油藏水驱开发规律变化特点

砂岩油藏水驱开发规律变化特点

砂岩油藏水驱开发规律变化特点第一节、水驱特征曲线的基本关系式 (1)第二节、实际的lgWp ——Np 关系曲线 (6)第三节水驱特征曲线的应用......................................... 1..0..第四节、甲型水驱曲线直线段的校正方法.............................. 1..2第五节、利用水驱曲线推出的规律.................................... 1..4.第六节、水驱油藏开采过程中分段规律................................ 1 (6)第七节、水驱油藏油井含水产油动态规律.............................. 1..8-可编辑修改-砂岩油藏水驱开发规律变化特点第一节、水驱特征曲线的基本关系式、甲型水驱特征曲线1、甲型水驱特征曲线表述累积产水量与累积产油量成半对数线性关 系。

LgW pLgW p A i B i N P LgW P a 1 bRLg 2N o B o w m 3S wi % 1 Bl 沁g 3mn w B w o 1 S W i 4.606 4.606NA i bB i N 3mSzL4.606 R山一一采出程度;N Wp ---------------- 累积产水量,104t 或104m 3;N p ――累积产油量,104t 或104m 3;N ------ 油田的地质储量,104t 或104m 3;分别为原油和地层水的粘度,mPa.s;Bo 、Bw ——分别为原油和地层水的体积系数;Wp ――累积产水量;Np ――累积产油量2.关系式 式中:A a 1岩心出口端的含水饱和度,f.在甲型水驱曲线关系式中,特征直线段截距A i 的大小主要取决于油田的地质储量和油水粘度比;而直线段斜率B i 的大小主要取决于油田的地质储量。

对于地质储量相同而地层油水粘度比不同的油田, 甲型水驱曲线特征直线段的斜率相同, 但地层油水粘度比大的油田,具B1与N 的统计关系式童宪章: B i 75 NB 8.0459陈兀千修正式:B 1 N 1032 S oi分别为地层束缚水饱和度和原始含油饱和度,f; 取决于储层润湿性和孔隙结构的相对渗透率曲线的常数,K roK rw mSwene K ro 、 K rw 分别为油相和水相的相对渗透率,f;m 、 n 有较大的截距。

低渗透油藏产量递减规律及水驱特征曲线

低渗透油藏产量递减规律及水驱特征曲线

低渗透油藏产量递减规律及水驱特征曲线低渗透油藏是指储层渗透率低于1mD的油藏,具有开发和开采难度较大的特点。

低渗透油藏产量递减规律是指在油田开采初期,随着单井单元产量的逐渐下降。

水驱特征曲线是指在低渗透油藏中,水驱过程中产量与时间的关系曲线。

下面将详细介绍低渗透油藏产量递减规律和水驱特征曲线。

1.初期产量高,递减速度快:油井开采初期,储层压力高,在储层中形成较大的压力差,使得油井产量较高。

然而,随着时间的推移,渗透率低的储层渗流速度较慢,油井产量递减速度较大。

2.初期产量递减快,后期递减缓慢:油井开采初期,油藏中的自然驱动力较大,油井产量递减较快。

但是,随着油藏压力的降低和水的渗入,后期油井产量递减逐渐缓慢。

3.在一定时期内产量基本稳定:低渗透油藏产量递减的初期非常快,但在一定时期内,油井产量会趋于稳定。

这是由于在此时期内,储层渗透率降低导致的压力差逐渐减小,产量逐渐稳定。

4.老化期产量进一步下降:随着时间的推移,储层中残存油饱和度降低,油井产量进一步下降,进入老化期。

在这个阶段,一般需要采取增产措施,如人工提高压缩气的注入量,进一步提高产能。

水驱特征曲线:水驱特征曲线是低渗透油藏中水驱过程中产量与时间的关系曲线。

水驱是一种常用的增产措施,通过注入水来推动油藏中的原油向油井移动,并提高油井产能。

水驱特征曲线的主要特点包括以下几个方面:1.初始阶段:在注入水的初期,随着水的压力向油藏传播,储层中的原油粘附在孔隙表面开始脱附,并随着水的流动进入油井,使得油井产量快速增加。

2.稳定阶段:随着水的继续注入和孔隙压力的增加,油藏中原油饱和度降低,使得油井产量逐渐稳定。

在这个阶段,注入水的效果逐渐减弱,产量增加缓慢。

3.饱和度降低阶段:随着时间的推移,油层中残存油饱和度降低,油井产量开始递减。

递减速度取决于油藏渗透率和水的渗透能力。

4.插曲阶段:在水驱过程中,由于储层渗透率和孔隙结构的复杂性,储层中可能存在一些非均质性,从而导致一些油井产量的插曲现象。

水驱特征曲线

水驱特征曲线
b:几何意义是直线段对横轴的斜率,1/b则是对纵轴的斜率, 它的物理意义为累积产水量上升10倍所能获得的采油量。1/b 越大,即b值越小,则反应地层条件好,原油性质好,注采井 网及采油速度比较合理,反之b值越大,则反应地层条件不好, 原油性质不好,注采井网及采油速度不合理,开发效果差。
我们进行开发调整的目的就是尽量使曲线变平,使含 水上升速度变缓。
实用文档
甲型水驱曲线的定义就是一个天然水驱 或人工水驱油藏,当它已全面开发并进入稳定 生产以后,含水达到一定程度并逐步上升时, 在单对数坐标纸上以累积产水量的对数为纵坐 标,以累积产油量为横坐标,二者关系是一条 直线
必要条件:全面注水开发并进入稳定生 产以后,含水达到一定程度(50%)
实用文档
这条直线一般从中含水期(20%)开始 出现,如果油田的注采井网,注采强度不变时, 直线性质始终保持不弯,当注采方式变化后, 则出现拐点,但直线关系仍然成立。
实用文档
对于水驱油田来说,无论是依靠人工注 水或是依靠天然水驱采油,在无水采油期结束 后,将长期进行含水生产,其含水率还将逐步 上升,这是影响油田稳产的重要因素。所以, 对这类油田,认识油田含水上升规律,研究影 响含水上升的地质工程因素,制定不同生产阶 段切实可行的控制含水增长的措施,是开发水 驱油田的一件经常性,极为重要的工作。这次 我将和大家共同学习水驱油田含水上升规律及 分析方法。
年度
1996
累产油 164.54
累产水 818.93
单位:万吨。
1997 169 900.5
1998 174.35 1015.61
某油藏近年开发数据
1999
2000
2001
179.44 184.7 189.26

各种水驱特征曲线公式

各种水驱特征曲线公式
方法名称
回归公式
1. 甲型(马克西莫夫-童宪章): (见标准 P14) logWp=a+b*Np
水驱曲线
Np=
1 b
*
(lg(
0.4343 b
) fw
1− fw

a)
2.乙型(沙卓诺夫,超凸型,中低含水): (见标准 P14) logLp=a+b*Np
Np=
1 b
(lg(
0.4343 b
1 1− fw
)

a)
3.丙型(西帕切夫,超凸型): (见标准 P14) Lp/Np=a+b*Lp
1
Np=
1 b
(1 − (a(1 −
fw)) 2 )
4.丁型(纳扎洛夫,超凹型): (见标准 P14) Lp/Np=a+b*Wp
Np=
1 b
(1

((a

1)
1− fw fw
)
1 2
)
5.卡扎柯夫(砂岩及底水灰岩): (见标准书中的石油学报俞启泰 P56、P57)
Np=a-b/Lp^m
1
m
Np=a-(
1 m
b
m
(1

fw)) m+1
6.俞启泰水驱曲线: (见标准 P15)
logNp=a+b*log(Wp/Lp)
Np=10a *{
2bf w
}b
1 − f w + b(1 + f w ) + [1 − f w + b(1 + f w )]2 − 4b2 fw
7.俞启泰 II(砂岩及底水灰岩,中高含水): (见标准书中的石油学报俞启泰 P57、P58)

几种重要水驱特征曲线的油水渗流特征_俞启泰

几种重要水驱特征曲线的油水渗流特征_俞启泰

文章编号:0253-2697(1999)01-0056-60几种重要水驱特征曲线的油水渗流特征俞启泰(石油勘探开发科学研究院 北京)摘要:介绍8种重要的水驱特征曲线,推导出表示它们油水渗流特征的含水饱和度~含水率关系,因而加深了对它们水驱特征实质的认识。

由于推导是可逆的,从这个意义上说,也完成了全部8种重要水驱特征曲线的推导。

卡札柯夫水驱曲线是一个通式,俞启泰水驱曲线Ⅰ、西帕切夫水驱曲线、沙卓诺夫水驱曲线是其特例。

俞启泰水驱曲线Ⅰ、西帕切夫水驱曲线和卡札柯夫水驱曲线m >0时,在水驱全过程都是合理的;卡札柯夫水驱曲线m =0即沙卓诺夫水驱曲线,含水高时不适用。

俞启泰水驱曲线Ⅱ也是一个通式,纳札洛夫水驱曲线是其m =1的特例,含水低时不适用。

卡札柯夫水驱曲线和俞启泰水驱曲线Ⅱ共同组成了适用于我国水驱层状油田和底水驱碳酸盐岩油田的广义水驱特征曲线组合,有很大的理论意义与实际应用价值,但求取参数时,使用者判断介入较多,因而它们的特例:参数求解方便的的西帕切夫水驱曲线和纳扎洛夫水驱曲线有很大使用价值。

马克西莫夫—童宪章水驱曲线在含水过低或过高时不适用,能很好描述含水中段的水驱动态,也有很大使用价值,应用时应注意它的适用性的含水界限研究。

俞启泰水驱曲线Ⅲ含水高时不适用,水驱特征类型极为罕见,使用价值很小。

主题词:水驱特征曲线;油水渗流特征;推导;形状;端点;分析;适用性1 前 言自前苏联学者马克西莫夫(М.И.Максимов)1959年提出第一条水驱特征曲线以来[1],到目前为止,已提出了32种水驱曲线之多[2~5]。

水驱曲线由于能综合反映油田生产中的各种影响因素,同时用极简明的关系表达出来,所以它至今在我国和俄罗斯[6,7]等国家仍被广泛应用。

影响水驱特征曲线的最根本的、并起决定作用的因素是油层的油水渗流特征。

因此研究水驱曲线的油水渗流特征,对加深水驱曲线实质的认识无疑有着很大的理论和实际意义。

水驱曲线法的分类

水驱曲线法的分类

水驱曲线法的分类应用于天然水驱和人工注水开发油田的水驱曲线,目前有20余种。

我们选出既有理论依据,又有实用价值的水驱曲线,按其构成、形成分三类加以介绍。

对于每一类中的不同方法,除给出它的关系式,还提出了它的特别应用,但有关的详细推导可查阅参考文献。

一.普通直线关系式1.累积液油比与累积产液量的关系式前苏联学者谢巴切夫和拉扎洛夫,分别于1981年和1982年提出了累积液油比(累积产液量与累积产油量之比)与累积产液量的直线关系式。

后于1995年由文献[1]完成了它在理论上的推导,除得到了有关预测可采储量和含水率的关系式外,并得到了预测可动油储量和水驱体积波及系数的重要关系式。

该水驱曲线法,业内称为丙型水驱曲线,其关系式为:(5-1)式中:Lp—累积产液量,10m;Np—累积产油量,10m;a1—直线的截距;b1—直线的斜率,由下式表示:(5-2)(5-3)式中:Nom—可动油储量,10m;Vp—有效孔隙体积,10m;Soi—原始含油饱和度,小数;Sor—残余油饱和度,小数;Boi—地层原油的原始体积系数。

由(5-1)式对时间t求导,并经过有关变换与整理后得:(5-4)式中:fw—含水率,小数。

当含水率fw取为经济极限含水率fwL之后,由(5-4)式得可采储量的关系式为:(5-5)式中:NR—可采储量,10m; fwL—经济极限含水率,小数。

不同含水率和经济极限含水率条件下的水驱体积波及系数,分别表示为:(5-6)(5-6a)式中:Ev—含水率为fw时的体积波及系数,小数;Eva—含水率为fwL时的体积波及系数,小数。

由(5-1)式至(5-3)式可以看出,丙型水驱曲线的累积液油比(Lp/Np)与累积产液量 (Lp)之间,存在着简单的直线关系,并由直线斜率的倒数可以确定水驱油田的可动油储量 (Nom);由(5-5)式可以确定当含水率达到经济极限时的可采储量(NR);由(5-6)式和(5-6a)式可以分别确定,不同含水率和经济极限含水率时的水驱体积波及系数。

常用水驱特征曲线理论研究

常用水驱特征曲线理论研究

一方面可直接将其概括为一般线性关系式 ;另一方面
在线性关系式左端乘
以含
有自
变量
(

Sw
)

特殊
因子
式 (或相干因子) ,可进一步转化为某些特殊非线性关
系式 。将这些关系式与 Welge 方程结合 ,可直接导出
4 类最常用的水驱特征曲线 。
11 1 广义丙型和乙型水驱特征曲线的导出


Sw

Swe 为线形函数关系
1 理论基础
在水驱油为非活塞式条件下 ,利用 BuckleyΟLeverett 线性驱替理论、Welge 驱替前缘方程和油水粘度比在 1~10的范围内的艾富罗斯实验结果 ,得出了平均含水
饱和度
(

Sw
)
和出口端含水饱和度
(
Swe
)
关系式为[
1
]

Swe = 11 5 S w - 01 5 (1 - Sor )
式中 C1 = 1 + 1/ k exp ( Swin / m) 。
将式 (5) ~式 (8) 代入式 (18) ,整理可得
dW p d Np
=
1/
C1
-
1
+
1 k C1
·exp
(1 - Swi ) Np mN
+ Swi / m
(19)
式 (19) 满足初始条件 W p = 0 时 , Np = Np0 。求解上述 常微分方程 ,可得文献[ 7 ]中第 4 种过渡型水驱特征曲 线为
提高采收率研究工作 。EΟmail :gao_wenjun @163 . com
90
石 油 学 报

水驱特征曲线的应用

水驱特征曲线的应用

出口端的含 水率
W 1 1 i Q i F L df df /dS we we w dS w S
we
第一节
基本关系式的推导
根据Эфрос的实验理论研究表明,油水两相 流动的出口端含油率,可由下式表示:
f oe
50
R
3 Ze
式中: foe出口端的含油率, f;
lg W C BN A ......... ..( 1 ) p 1 p 1
第一节
基本关系式的推导
由(1)、(2)、(3)可解出C:
C
2 W W W p 1 p 2 p 3
2 W ( W W p 3 p 1 p 2)
其它开发指标计算公式中,仅对Wp项加 上C即可。
第一节
基本关系式的推导
………….…… (☆)
第一节
基本关系式的推导
2. 累积产水量与累积产油量的关系式
对于油水两相稳定渗流,油水两相的相对渗透
率比或有效渗透率比与出口端含水饱和度的关系,
可表示为:
k mS ro k o/k k o ne we k /k k rw k w w
与储层结构和流体性 质有关的常系数
随着油田持续生产, 含水率、累积产水量的 连续增加,常数C的影响逐渐减小,以至消失,因 此:
l g W A B N p 1 1 p
---甲型水驱特征曲线
若设:
lg W A R p 1 1 o
3 mS oi B N 1 1 4 .606 (原油采出程度) R o N p /N
第一节
基本关系式的推导
k E 3 mS ro oi lg lg n N p k 2 . 303 4 . 606 N rw

油藏工程水驱

油藏工程水驱

求:地质储量,画出水驱曲 o/ Boi =7934×10.17×0.26×0.837×0.86/1.22 =12543吨 基本水驱曲线 100000 甲型水驱曲线 10000
累积产水量
1000 100 10 0 2000 4000 累积产油量 6000 8000
与N及μo/μw有关,它们越大,A2越大
C De
cSwc
cS oi B2 2.303 N
B2与N有关,N越大,B2越小
• 甲型水驱曲线也可写成:
lg(Wp C) A2 2 Ro
cS oi 2 B2 N 2.303
•lg(Wp+C)~Np呈直线,随含水上升和Wp增加,C的影 响减小,中后期半对数图上可得直线。 C的确定 在研究数值范围内取Np1、Np3,然后计算其中点 由Np2查的Wp2(生产数据表 ) N p1 N p 3 N p2 求C值 2 2 W p1 W p 3 W p 2 C W p1 W p 3 2W p 2
N p S oi N
Np o Bo w 1 WOR expc S wc S oi o Bo w d N
取对数
cN p Soi o Bo w cSwc lgWOR lg do Bo w 2.303 2.303N
• 影响因素:相渗曲线:c,d,Swc,Sor;
非均质性越严重直线段出现越晚; 原油粘度越大直线段出现越晚
• 甲乙型水驱曲线比较
–甲型Np、Wp规律性较强,而WOR为瞬时 指标,变化多 –甲型变化缓慢,直线段出现晚,难判断 –两条曲线互用,可判断直线段出现时间
例:大庆油田511井组小井距注水开发实验区, 511井控制含油面积A=7934 m3,he=10.17 m, ф=0.26, soi=0.837,Swc=0.163, μo=0.7cp, Boi=1.122, Bw=1.0,γo=0.86, γw=1.0。其它的生 产数据见表。

特高含水期油田新型水驱特征曲线公式推导

特高含水期油田新型水驱特征曲线公式推导

爲比弓夭然毛此仏第41卷第6期OIL&GAS GEOLOGY2020年12月文章编号:0253-9985(2020)06-1282-06doi:10.11743/ogg20200616特高含水期油田新型水驱特征曲线公式推导王英圣,石成方,王继强(中国石油勘探开发研究院,北京100083)摘要:目前国内部分水驱油藏都进入了特高含水阶段,对于特高含水油藏来说,相对渗透率比值与含水饱和度的关系曲线会发生上翘的现象,这也导致推导出的水驱特征曲线在油田特高含水期产生上翘,使得运用常规水驱特征曲线对实际油田生产进行预测会产生较大的偏差。

基于实际油田的数据资料,通过对不同油田区块多条相对渗透率比值与含水饱和度关系曲线上翘后的部分进行拟合分析,给出了新的相对渗透率比值与含水饱和度关系表达式;同时,根据新的相对渗透率比值与含水饱和度关系表达式推导出新型水驱特征曲线,并将其运用于实际油田的生产。

结果表明,新型水驱特征曲线能够很好地预测常规水驱特征曲线产生上翘后的油田生产动态,对特高含水阶段的预测具有较好的适用性。

关键词:水驱特征曲线;曲线拟合;特高含水阶段;水驱开发;可采储量中图分类号:TE321文献标识码:ANew equations for characterizing water flooding inultra-high water-cut oilfieldsWang Yingsheng,Shi Chengfang,Wang Jiqiang(Research Institute of Petroleum Exploration&Development,PetroChina,Beijing100083,China}Abstract:Many oil reservoirs stimulated by water flooding in China have entered the ultra-high water-cut ing the relative permeability ratio versus water saturation curve in the performance prediction of these reservoirs often yields up-warping curves and misleading results.Based on a fitting analysis of the up-warping curves of different oilfields, this study obtained a new expression for the relationship between relative permeability ratio and water saturation.New equations were then deduced to characterize the performance of high water-cut reservoirs.Applications of the equations to oilfields verified their effectiveness in the production prediction of ultra-high water-cut reservoirs.Key words:water flooding characteristic curve,curve fitting,ultra-high water-cut stage,water flooding development, recoverable reserve水驱特征曲线是注水开发油田预测开发动态的油藏工程方法,自陈元千⑴推导出甲型和乙型水驱特征曲线公式以来,水驱特征曲线已经广泛地用于预测油田的开发指标和可采储量⑵。

油田含水规律的研究和预测

油田含水规律的研究和预测

o 一、水驱油田含水采油期划分与含水上升规律●1.水驱油田含水采油期划分(1)无水采油期:含水率小于2%; (2)低含水采油期:含水率2%~20%; (3)中含水采油期:含水率20%~60%; (4)高含水采油期:含水率6%~90%; (5)特高含水采油期:含水率大于90%。

●2.含水上升规律生产实践表明,一个天然水驱或人工水驱的油藏,当 它全面开发并进入稳定生产以后,其含水达到一定程度并 逐步上升时,将有关的两个动态参数在单对数坐标纸上作 图,可得到明显的直线关系,称该曲线为水驱特征曲线。

6-2 油田含水规律的研究和预测油田含水规律的研究和预测o 一、水驱油田含水采油期划分与含水上升规律这条直线一般从中含水期 开始(含水率20%左右)出现, 而到高含水期仍保持不变。

在 油田的注采井网、注采强度保 持不变时,直线性质始终保持 不弯,当注采方式变化后,则 出现拐点,但直线关系仍然成立。

人们就可以运用这一定量规律来描述和预测各油田在 生产过程中的含水变化,产油水情况,最终采收率及可采 储量等。

6-2 油田含水规律的研究和预测油田含水规律的研究和预测 水驱曲线o 二、水驱特征曲线的类型及基本关系式●1.甲型水驱曲线水驱油藏含水达到一定程度后(一般在中、高含水期), 累积产油量与累积产水量的关系曲线在半对数坐标上是一条 直线,其基本关系式为:★常数a的物理意义; ★水驱曲线形态与开发效果。

●2.乙型水驱曲线甲型水驱曲线表达式中各项分别对时间求导后,得到水 油比与累积产水量的关系为:6-2 油田含水规律的研究和预测油田含水规律的研究和预测 aN b W p p / lg lg + = a W Q Q WOR Pw 3 . 2 0== )1 3 .2 ww P f fa W - = ( 或:o 二、水驱特征曲线的类型及基本关系式将水油比与累积产水量的关系代入甲型水驱曲线表达式中,得: 即:其中:●3.无量纲水驱特征公式甲型水驱公式中各项除以原始地质储量得:优点:无论油田大小如何,均可用同样的无量纲参变量表达,数值大小不同反映效果不一样。

水驱特征曲线分析

水驱特征曲线分析

• 乙型水驱曲线为: log(WOR)=-1.824+5.33×10-4Np
第三节 产量递减规律
• 油田开发的基本模式
任何驱动类型和开发方式的油气田,其开发的全过 程都可划分为产量上升阶段、产量稳定阶段和产量 递减阶段。
– 油藏投产阶段:井数迅速增加,注采系统逐步完善;采 油量很快达到最高水平。
影响因素:相渗曲线:c,d,Swc,Sor;
非均质性越严现越晚
• 甲乙型水驱曲线比较
– 甲型Np、Wp规律性较强,而WOR为瞬时 指标,变化多
– 甲型变化缓慢,直线段出现晚,难判断 – 两条曲线互用,可判断直线段出现时间
例:大庆油田511井组小井距注水开发实验区, 511井控制含油面积A=7934 m3,he=10.17 m, ф=0.26, soi=0.837,Swc=0.163, μo=0.7cp, Boi=1.122, Bw=1.0,γo=0.86, γw=1.0。其它的生 产数据见表。
求:地质储量,画出水驱曲线,预测水驱的最 终采收率。
解: N=Aheфsoiγo/ Boi =7934×10.17×0.26×0.837×0.86/1.22 =12543吨 甲型水驱曲线
曲线的校正,选取三 点,计算出C值的大小。 C=100。
log(Wp+c)=1.215+5.25×10-4Np
• 由甲型水驱曲线
第二节 水驱特征曲线分析
由于经验方法本身来源于生产规律的直接分析和总结,所以 历史比较久远,但在油藏动态分析的领域中,1930年代以后 才出现了一些比较成熟并能普遍使用的经验方法。随着开发 油田类型的增多和研究工作本身的不断完善,近几十年出现 了许多具体的方法和经验公式,这些方法已成为油藏工程方 法的一个组成部分。

第四章水驱曲线

第四章水驱曲线

不同油水粘度比的油田水驱特征有显著的差异。低粘度油田, 油水粘度比低,开发初期含水上升缓慢,在含水率与采出程度的关 系曲线上呈凹形曲线,主要储量在中低含水期采出。这是由水驱油 非活塞性所决定的,储层的润湿性和非均匀性更加剧了这种差异。
我国主要油田原油属石蜡基原油,粘度普遍较高,这就形
成了一个重要特点。高含水期是注水开发油田的一个重要阶段,在 特高含水阶段仍有较多储量可供开采。
上式可简化为:
B A ln R
(9)
这就是水驱规律曲线的一种表达方式,表明采出程度与 水油比之间是单对数关系。与水驱规律曲线的基本表达式是
等价的。
2. 水驱规律曲线的基本公式
水驱规律曲线可用下式表示:
N P algWP lg b (10)
lgWP
式中,NP——累积产油量; WP——累积产水量;
Байду номын сангаас
这条直线一般从中含水期(含水率在 20 %)即可出现,而到
高含水期仍保持不变。在油田的注采井网,注采强度保持不变时,
直线性也始终保持不变;当注采方式变化后,则出现拐点,但直
线关系仍然成立。图中的含水达 47%左右时,直线出现拐点,其 原因在于此时采取了一定的调整措施。
水驱曲线
二、水驱规律曲线的基本原理及其表达式
(15)
利用上两式可以预测某一含水率时的累积产油和累积产水, 或累积产油达某一值时含水率为多少。
3. 估算水驱可采储量及最终水驱采收率 当水油比达到极限水油比时Rmax ,或含水率达到极限含水 率 fmax时,可得水驱可采储量NPmax :
a N P max a lg( Rmax lg b 2.3
fw
R
( SW )

水驱特征曲线2

水驱特征曲线2

2 水驱特征曲线的分析与应用
2.1 水驱特征曲线基本理论
累积产油量、累积产水量、累积产液量和含水率(水油比)等动态指标之间在不同坐标系中会出现比较明显的线性关系,通常把这种类型的曲线叫做水驱特征曲线。

油田综合含水上升到一定阶段后,某一具体开发层系的累积采油量(NP)和累积采水量
(WP)之间存在着下述统计关系
Pb PNaeW
两端取对数可得
ln pPabWN
该关系曲线称为水驱特征曲线。

式中
WP——累积采水量
NP——累积采油量104t
a——水驱特征曲线的截距
b——水驱特征曲线的斜率
b的物理意义是采出单位油量的同时所采出的水量的对数值,它主要受地质以及开发方案部署等因素的影响,b值越小,说明开发效果越好。

a的物理意义则为累积采油量与累积采水量对数值之差。

a值除受影响b值的诸因素制约外,还受注水时间开始的早晚油水粘度比的大小等因素的影响,无水采收率越大,油水粘度比越小,则a 值越小,这意味着开发初期效果较好。

对式(2-2)进行时间求导和变换,可得累积采水量与含水率之间的关系式和累积采油量与含水率之间的关系式
式中
f W ——含水率。

当油田极限含水率为 98%时由式(2-4)得到油田可采储量计算公式为
式中NR——可采储量,104t。

将式(
(2-4
)中的累积采油量换成采出程度
,
并对式(
2-4
)两端微分
,
得到油
田含水上升率计算公式
()/1RW W W d bf f fd=-(2-6)式中
/RW
d f d——含水上升率;R——采出程度。

4.2水驱特征曲线分析

4.2水驱特征曲线分析

或:
aR WP 2.3
(12)
aR 乙型曲线 N P a lg lg b (13) 2.3 利用上式可以预测某一水油比时的累积产油和累积产水,或累 积产油达某一值时水油比为多少。
2. 含水率与累积产油、累积产水的关系 由含水率fW与水油比之间的关系可得含水率与累积产油、累 积产水之间的关系。
lgWP
WP1 WP3 WP22 C WP1 W P32WP 2
在确定了参数 C 以后,其它两个参数和 b 可以用回归分析中 的经验数据处理方法确定,如平均法、最小二乘法等。
NP(百万吨)
( 百 万 吨 )
(20)
校正水驱规律曲线
对于校正水驱曲线,其水油比及含水的公式与未经校正的
基本相同,其差别仅在于把原来用 WP表示的参数改为WP+C,如 水油比和含水率公式为:
上式可简化为:
B A ln R
(9)
这就是水驱规律曲线的一种表达方式,表明采出程度与 水油比之间是单对数关系。与水驱规律曲线的基本表达式是
等价的。
2. 水驱规律曲线的基本公式
水驱规律曲线可用下式表示:
N P algWP lNP——累积产油量; WP——累积产水量;
水量的对数与累积产油量的关系曲线,即水驱规律曲线不是一
条直线而是一条减速递增(即平缓上升)的曲线。
下图所示为某边水-溶解气驱油田产量变化曲线。
lgWP ( 百 万 吨 )
NP(百万吨)
校正水驱规律曲线
因为这类水驱曲线不是直线,因而不便于用直线外推来计 算今后含水上升规律和预测采收率。为了使这种类型的水驱规 律曲线便于应用,就需要进行校正。最好的校正方法就是将它
三、 水驱规律曲线的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 b
(1 − (a(1 −
fw)) 2 )
12.采出程度-瞬时水油比法:(见胜利文档)
R=a+b*log ( 1 − 1) fw
13. 采出程度与含水的积-瞬时水油比法:(见胜利文档)
R*
f w =a+b*log (
1 fw
− 1)
14.采出程度-瞬时含油法:(见胜利文档)
R=a+b*log(1- f w )
18.采出程度-油水比法(S 型):(见胜利文档)
R=a+b*[ 1 − log( 1 − 1) ]
fw
fw
19. 采出程度-瞬时含水法:(见胜利文档)
log(R)=a+b*log( f w )
R= 10a
*
f
b w
15.剩余油程度-瞬时含油法:(见胜利文档)
log(1-R)=a+b*log(1- f w )
R=1-10a * (1 − f w )b
16.采出程度-瞬时含水法:(见胜利文档)
log(R)=a+b* f w
R=10a+b* fw
17 采出程度-水油比法(凹形)(见胜利文档)
R=a+b*log( f w ) 1− fw
方法名称
回归公式
1. 甲型(马克西莫夫-童宪章): (见标准 P14) logWp=a+b*Np
水驱曲线
Np=
1 b
*
(lg(
0.4343 b
) fw
1− fw

a)
2.乙型(沙卓诺夫,超凸型,中低含水): (见标准 P14) logLp=a+b*Np
Np=
1 b
(lg(
0.4343 b
1 1− fw
)

a)
3.丙型(西帕切夫,超凸型): (见标准 P14) Lp/Np=a+b*Lp
1
Np=
1 b
(1 − (a(1 −
fw)) 2 )
4.丁型(纳扎洛夫,超凹型): (见标准 P14) Lp/Np=a+b*Wp
Np=
1 b
(1

((a

1)
1− fw fw
)
1 2
)
5.卡扎柯夫(砂岩及底水灰岩): (见标准书中的石油学报俞启泰 P56、P57)
1
Np= 1−((a+1)(1− fw))2
b
logWp=a+b*log(Wp/Np)
) Np=10
a
(
b −1 b
fw 1− fw
b−1
(见胜利文档)Np=10
a
(
b b−1
fw 1− fw
) b−1
11 累积液油比-累积产油量法(西帕切夫曲线,凸型)(见胜利文档)
Lp/Np=a+b*Np
1
Np=
Np=a-b/Lp^m
1
m
Np=a-(
1 m
b
m
(1

fw)) m+1
6.俞启泰水驱曲线: (见标准 P15)
logNp=a+b*log(Wp/Lp)
Np=10a *{
2bf w
}b
1 − f w + b(1 + f w ) + [1 − f w + b(1 + f w )]2 − 4b2 fw
7.俞启泰 II(砂岩及底水灰岩,中高含水): (见标准书中的石油学报俞启泰 P57、P58)
Np=a-b/Wp^m
1
Np=a-b
m +1
(
1 m
1− fw fw
)
m m +1
8.俞启泰 III(低中含水): (见标准书中的石油学报俞启泰 P57、P58)
Np=a+b*Wp/Np
Np=
a 2
+
b 2
fw 胜利文档) Wp/Np=a+b*Lp
10.累积产水-累积水油比: (见油藏工程软件集成)
相关文档
最新文档