山东省东营市中考数学总复习:二次函数
初三数学《二次函数》知识点总结和经典习题(附答案)
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =--3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
初中数学中考复习二次函数知识点总结归纳整理
初中数学中考复习二次函数知识点总结归纳整理二次函数是中学数学中非常重要的一个内容,也是中考数学中的重点。
下面是对初中数学中考复习二次函数知识点的总结和归纳整理。
一、二次函数的定义1. 二次函数的一般形式:y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
2.二次函数的图像为抛物线,开口方向与a的正负有关。
-当a>0时,抛物线开口向上。
-当a<0时,抛物线开口向下。
二、二次函数的性质1.对称轴:二次函数的对称轴与抛物线的开口方向垂直,其方程为x=-b/2a。
2.顶点:二次函数的顶点位于对称轴上,其坐标为(-b/2a,f(-b/2a))。
-当a>0时,顶点是抛物线的最低点。
-当a<0时,顶点是抛物线的最高点。
3. 判别式:对于二次函数y = ax² + bx + c,其判别式Δ = b² -4ac表示方程ax² + bx + c = 0的根的情况。
-当Δ>0时,方程有两个不相等的实根。
-当Δ=0时,方程有两个相等的实根。
-当Δ<0时,方程没有实根。
4.单调性:-当a>0时,二次函数在对称轴左侧单调递增,右侧单调递减。
-当a<0时,二次函数在对称轴左侧单调递减,右侧单调递增。
三、二次函数的图像特征1.a的正负决定了抛物线的开口方向。
2.,a,的大小决定了抛物线的陡峭程度,a,越大抛物线越陡峭。
3.当b=0时,抛物线经过原点。
4.当c=0时,抛物线经过x轴。
5.当a>0时,函数值在顶点处取得最小值。
6.当a<0时,函数值在顶点处取得最大值。
四、二次函数的方程求解1. 解二次方程ax² + bx + c = 0的一般步骤:- 利用判别式Δ = b² - 4ac判断方程的根的情况。
-若Δ>0,方程有两个不相等的实根,可以用求根公式x₁=(-b+√Δ)/2a和x₂=(-b-√Δ)/2a求解。
东营专版年中考数学复习第三章函数第七节二次函数的综合应用
2019年5月2日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
7
业文档
∴△DMH周长的最大值为
2019年5月2日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
8
业文档
1.(2017·东营冲刺卷)如图所示,二次函数的图象经过点
D(0, 7 3 ),且顶点C的横坐标为4,该图象在x轴上截得线 段AB长9为6.
(1)利用二次函数的对称性直接写出点A,B的坐标. (2)求二次函数的解析式. (3)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点 P的坐标.
23
业文档
(3)设点P的坐标为(x,-x2+3x+4). 当P,N,B,Q构成平行四边形时, ∵平行四边形ABOC中,点A,C的坐标分别是(0,4), (-1,0), ∴点B的坐标为(1,4). 点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点.
2019年5月2日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
∴点A的坐标为(-1,0).
2019年5月2日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
5
业文档
(2)∵抛物线y=ax2+bx+ 3 经过A,B两点,
∴ ∴抛物线的解析式为y=
2019年5月2日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
6
业文档
(3)由题意知,△DMH为直角三角形,且∠M=30°, 当MD取得最大值时,△DMH的周长最大.
侧),与y轴交于C点. (1)求抛物线的解析式和A,B两点的坐标; (2)若点P是抛物线上B,C两点之间的一个动点(不与B,C重 合),则是否存在一点P,使△PBC的面积最大.若存在,请 求出△PBC的最大面积;若不存在,试说明理由;
2019年5月2日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
中考备考数学总复习第12讲二次函数(含解析)
第12讲 二次函数[锁定目标考试]考标要求考查角度1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解. 二次函数是中考考查的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.[导学必备知识]知识梳理一、二次函数的概念一般地,形如y =______________(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二次函数的两种形式:(1)一般形式:____________________________;(2)顶点式:y =a (x -h )2+k (a ≠0),其中二次函数的顶点坐标是________.二、二次函数的图象及性质二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0) 图象(a >0)(a <0) 开口方向 开口向上 开口向下对称轴 直线x =-b 2a 直线x =-b 2a顶点坐标 ⎝⎛⎭⎫-b 2a ,4ac -b 24a ⎝⎛⎭⎫-b 2a ,4ac -b 24a增减性 当x <-b 2a 时,y 随x 的增大而减小;当x >-b 2a 时,y 随x 的增大而增大 当x <-b 2a时,y 随x 的增大而增大;当x >-b 2a时,y 随x 的增大而减小最值 当x =-b 2a 时,y 有最______值4ac -b 24a 当x =-b 2a 时,y 有最______值4ac -b 24a三、二次函数图象的特征与a ,b ,c 及b 2-4ac 的符号之间的关系四、二次函数图象的平移抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的________和大小都相同,只是位置不同.它们之间的平移关系如下:五、二次函数关系式的确定1.设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式.3.设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h )2+k (a ≠0),将已知条件代入,求出待定系数化为一般式.六、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0).2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的________.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.4.设抛物线y =ax 2+bx +c 与x 轴两交点坐标分别为A (x 1,0),B (x 2,0),则x 1+x 2=________,x 1·x 2=________.自主测试1.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-32. 如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四个结论:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )A .2个B .3个C .4个D .1个3.当m =__________时,函数y =(m -3)xm 2-7+4是二次函数.4.(上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________.5.(广东珠海)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.[探究重难方法]考点一、二次函数的图象及性质【例1】 (1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b 2a=--62×(-3)=-1, 4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A .(2)点(-1,y1),(2,y2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y1,y2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y3),∵抛物线对称轴为直线x=1,∴点(0,y3)与点(2,y2)关于直线x=1对称.∴y3=y2.∵a>0,∴当x<1时,y随x的增大而减小.∴y1>y3.∴y1>y2.答案:(1)A(2)>方法总结1.将抛物线解析式写成y=a(x-h)2+k的形式,则顶点坐标为(h,k),对称轴为直线x=h,也可应用对称轴公式x=-b2a ,顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a来求对称轴及顶点坐标.2.比较两个二次函数值大小的方法:(1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断;(3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0 B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax2+bx+c=0的一个根考点二、利用二次函数图象判断a,b,c的符号【例2】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a +b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a+b+c=0;根据-b2a=-1,推出b=2a;根据图象关于对称轴对称,得出与x轴的交点是(-3,0),(1,0);由a-2b+c=a-2b-a-b=-3b<0,根据结论判断即可.答案:①③方法总结根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a决定抛物线的开口方向,c决定抛物线与y轴的交点,抛物线的对称轴由a,b共同决定,b2-4ac决定抛物线与x轴的交点情况.当x=1时,决定a+b+c的符号,当x=-1时,决定a-b+c的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2小明从如图的二次函数y=ax2+bx+c的图象中,观察得出了下面五个结论:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确的结论有()A.2个 B.3个C.4个 D.5个考点三、二次函数图象的平移【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象()A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y=-2x2+4x+1=-2(x-1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y=-2x2的图象.答案:C方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2考点四、确定二次函数的解析式【例4】如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.解:(1)由抛物线的对称性可知AE=BE.∴△AOD≌△BEC.∴OA=EB=EA.设菱形的边长为2m,在Rt△AOD中,m2+(3)2=(2m)2,解得m=1.∴DC=2,OA=1,OB=3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3). (2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧ a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧ a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标.考点五、二次函数的实际应用【例5】 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元). (1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少;(3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元).(2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值. 触类旁通5一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.[品鉴经典考题]1.(湖南株洲)如图,已知抛物线与x 轴的一个交点为A (1,0),对称轴是x =-1,则抛物线与x 轴的另一个交点坐标是( )A .(-3,0)B .(-2,0)C .x =-3D .x =-2 2.(湖南郴州)抛物线y =(x -1)2+2的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)3. (湖南娄底)已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足1x 1+1x 2=12.(1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形P ACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.4.(湖南长沙)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为y =⎩⎪⎨⎪⎧40-x ,25≤x ≤30,25-0.5x ,30<x ≤35(年获利=年销售收入-生产成本-成本).(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.5. (湖南湘潭)如图,抛物线y =ax 2-32x -2(a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.[研习预测试题]1.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( )A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;(2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由. 参考答案【知识梳理】一、ax 2+bx +c (1)y =ax 2+bx +c (a ,b ,c 是常数,a ≠0) (2)(h ,k )二、小 大三、y 轴 左 右四、形状六、2.横坐标 4.-b a c a导学必备知识自主测试1.C2.D ∵抛物线与x 轴有两个交点,∴b 2-4ac >0;与y 轴交点在(0,0)与(0,1)之间,∴0<c <1,∴(2)错;∵-b 2a >-1,∴b 2a<1,∵a <0,∴2a <b ,∴2a -b <0; 当x =1时,y =a +b +c <0,故选D.3.-3 由题意,得m 2-7=2且m -3≠0,解得m =-3.4.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3).∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎪⎨⎪⎧ 0=k +b ,3=4k +b ,解得⎩⎪⎨⎪⎧ k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.探究考点方法触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0;∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0.由题图知当x =-1时,y >0,即a -b +c >0.对称轴是直线x =13, ∴-b 2a =13,即2a +3b =0; 由⎩⎪⎨⎪⎧a -b +c >0,2a +3b =0,得c -52b >0. 又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0. ∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3. ∴m =6.(2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3). 触类旁通5.解:(1)(10+7x ) (12+6x )(2)y =(12+6x )-(10+7x )=2-x .(3)∵w =2(1+x )(2-x )=-2x 2+2x +4,∴w =-2(x -0.5)2+4.5.∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元. 品鉴经典考题1.A 点A 到对称轴的距离为2,由抛物线的对称性知,另一个交点的横坐标为-3,所以另一个交点坐标为(-3,0).2.D3.解:(1)由已知得x 1+x 2=m 2-2,x 1x 2=-2m .∵1x 1+1x 2=12,即x 1+x 2x 1x 2=12, ∴m 2-2-2m =12, 解得m =1或m =-2.当m =1时,y =x 2+x -2,得A (-2,0),B (1,0);当m =-2时,y =x 2-2x +4,与x 轴无交点,舍去.∴这个二次函数的解析式为y =x 2+x -2.(2)由(1)得A (-2,0),B (1,0),C (0,-2).假设存在一点P ,使四边形P ACB 是平行四边形,则PB ∥AC 且PB =AC ,根据平移知识可得P (-1,2),经验证P (-1,2)在直线y =x +3上,故在直线y =x +3上存在一点P (-1,2),使四边形P ACB 为平行四边形.4.解:(1)当x =28时,y =40-28=12.所以,产品的年销售量为12万件.(2)①当25≤x ≤30时,W =(40-x )(x -20)-25-100=-x 2+60x -925=-(x -30)2-25,故当x =30时,W 最大为-25,即公司最少亏损25万元;②当30<x ≤35时,W =(25-0.5x )(x -20)-25-100=-12x 2+35x -625=-12(x -35)2-12.5,故当x =35时,W 最大为-12.5,及公司最少亏损12.5万元,综上所述,的第一年,公司亏损,最少亏损是12.5万元;(3)①当25≤x ≤30时,W =(40-x )(x -20-1)-12.5-10=-x 2+61x -862.5, 令W =67.5,则-x 2+61x -862.5=67.5,化简得x 2-61x +930=0,x 1=30,x 2=31,此时,当两年的总盈利不低于6.75万元时,x =30.②当30<x ≤35时,W =(25-0.5x )(x -20-1)-12.5-10=-12x 2+35.5x -547.5, 令W =67.5,则-12x 2+35.5x -547.5=67.5, 化简得x 2-71x +1 230=0,x 1=30,x 2=41,此时,当两年的总盈利不低于67.5万元时,30<x ≤35.所以,到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x ≤35.5.解:(1)将点B (4,0)代入y =ax 2-32x -2(a ≠0)中,得a =12.∴抛物线的解析式为y =12x 2-32x -2. (2)∵当12x 2-32x -2=0时,解得x 1=4,x 2=-1, ∴A 点坐标为(-1,0),则OA =1.∵当x =0时,y =12x 2-32x -2=-2,∴C 点坐标为(0,-2),则OC =2.在Rt △AOC 与Rt △COB 中,OA OC =OC OB =12, ∴Rt △AOC ∽Rt △COB .∴∠ACO =∠CBO .∴∠ACB =∠ACO +∠OCB =∠CBO +∠OCB =90°.∴△ABC 为直角三角形.∴△ABC 的外接圆的圆心为AB 中点,其坐标为⎝⎛⎭⎫32,0.(3)连接OM .设M 点坐标为⎝⎛⎭⎫x ,12x 2-32x -2,则S △MBC =S △OBM +S △OCM -S △OBC =12×4×⎝⎛⎭⎫-12x 2+32x +2+12×2×x -12×2×4 =-(x -2)2+4.∴当x =2时,△MBC 的面积有最大值为4,点M 的坐标为(2,-3).研习预测试题1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D.4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎪⎨⎪⎧1-b +c =0,1+b +c =-2,解得⎩⎪⎨⎪⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2, ∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y 取得最大值,②错误. 7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b -2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎪⎨⎪⎧ 4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧ a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t . ∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295. ∴10-t =7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L 2与L 1有关图象的两条相同的性质:对称轴为直线x =2或顶点的横坐标为2;都经过A (1,0),B (3,0)两点.②线段EF 的长度不会发生变化.∵直线y =8k 与抛物线L 2交于E ,F 两点,∴kx 2-4kx +3k =8k ,∵k ≠0,∴x 2-4x +3=8,解得x 1=-1,x 2=5.∴EF =x 2-x 1=6,∴线段EF 的长度不会发生变化.。
中考数学常考易错点《二次函数》知识点梳理
中考数学常考易错点《二次函数》知识点梳理一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(a≠0)的函数。
2.二次函数的系数a与开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
3. 二次函数的零点:二次函数的零点即函数的解,即满足方程y=ax²+bx+c=0的x的值。
4.二次函数的顶点:二次函数的顶点是函数图像的最低点(a>0,开口向上)或最高点(a<0,开口向下)。
二、图像与性质1. 平移变换:对于二次函数y=ax²+bx+c,若将函数向左平移h个单位,记作y=a(x-h)²+bx+c;向上平移k个单位,记作y=a(x-h)²+bx+(c+k)。
2. 对称轴:对于二次函数y=a(x-h)²+bx+c,其对称轴为x=h。
3.最值:当二次函数开口向上时,最小值等于顶点的纵坐标;当二次函数开口向下时,最大值等于顶点的纵坐标。
4.单调性:若a>0,则二次函数是单调递增的;若a<0,则二次函数是单调递减的。
1. 因式分解:二次函数可以通过因式分解的方法求解,对于形如y=x²+bx+c的二次函数,可以通过找到满足(x+p)(x+q)=0的p和q来求解。
2. 二次方程的解与二次函数的零点:对于二次函数y=ax²+bx+c,当y=0时,可以得到ax²+bx+c=0,即二次方程。
所以二次函数的零点就是二次方程的根。
3.二次函数与坐标变换:二次函数可以通过坐标变换的方法进行图像的绘制与分析。
根据函数中的系数和平移变化,我们可以找到相关的坐标点,进而绘制出图像。
四、易错点1.没有注意二次函数系数与开口方向之间的关系,导致图像的绘制错误。
2.对于二次函数的平移变换不够熟练,不能正确确定平移的方向和单位。
3.没有理解二次函数的最值和单调性,导致在题目中的应用出现错误。
中考复习二次函数知识点总结
中考复习二次函数知识点总结二次函数是中考数学中的重要知识点之一、下面我将从函数的定义、图像特征、解析式以及一些常见题型进行总结,希望对中考复习有所帮助。
一、函数的定义:函数是数学中最基本的概念之一,它是描述两个集合之间对应关系的规则。
在二次函数中,我们通常用y来表示函数的值,用x表示自变量。
二、图像特征:1.开口方向:二次函数的图像在x轴上开口的方向可以通过二次项的系数(即a的正负性)来判断。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2.对称轴:二次函数的图像总是关于一个垂直于x轴的直线对称。
这条直线称为二次函数的对称轴,它的方程为x=-b/(2a)。
3.顶点坐标:对称轴与二次函数图像的交点称为顶点,它的坐标为:(-b/(2a),f(-b/(2a)))4.单调性:当a>0时,二次函数图像在对称轴左侧递减,在对称轴右侧递增;当a<0时,二次函数图像在对称轴左侧递增,在对称轴右侧递减。
注意:二次函数的图像开口向上时,在对称轴上有一个最小值,反之开口向下时,在对称轴上有一个最大值。
三、解析式:一般情况下,二次函数的解析式可以写成:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
特殊情况下,二次函数的解析式还有以下两种形式:1.完全平方式:y=a(x-p)^2+q,其中p、q为常数。
此时,二次函数的对称轴的方程为x=p,顶点的坐标为(p,q)。
2.二次项因式可能性:y=a(x-h)(x-k),其中h、k为常数。
此时,二次函数的对称轴的方程为x=(h+k)/2,顶点的坐标为((h+k)/2,a(h+k)/4)。
四、常见题型:1.求顶点坐标:根据二次函数的解析式,可以直接读出顶点的坐标。
2.求对称轴方程:根据二次函数的解析式,可以直接读出对称轴的方程。
3.求图像开口方向:判断二次项的系数a的正负性即可。
4.求单调性:根据图像特征可以判断。
5. 求零点:令y=0,解方程ax^2+bx+c=0即可。
山东省中考数学 二次函数备考复习
• (1)求抛物线的解析式;
• (3)若点E在x轴上,点P在抛物线上.是否 存在以A,C,E,P为顶点且以AC为一边的 平行四边形?若存在,直接写出P的坐标;若 不存在,请说明理由.
当AC=PE时,四边形ACEP为平行四边形.
∵C(0,-3), ∴可令P(x,3),由
3 x2 9 x 3 3, 即 44
•
注意问题
• 函数图像中点的横纵坐标与二条线段之间 的转化。(符号问题,平面直角坐标系中 两点之间线段长度)
注意问题
• 当绘画出函数图象后,一定要分析图像的 性质及基本图形的特征,例如出现等腰直 角三角形,平行四边形等等二次函数
• 例.已知,如图抛物线y=ax2+3ax+c(a>0) 与y轴交于点C,与x轴交于A,B两点,点A在 点B左侧.点B的坐标为(1,0),OC=3OB.
命题趋势
命题趋势
命题趋势
• 2015年可能在稳定的基础上继续在二次函 数的应用、探究性方面进行探索。我们一 线老师祈祷压轴题中的二次函数题能适当 降低难度。
注意问题
• 二次函数应用中容易忽视的问题——自变 量的取值范围
ቤተ መጻሕፍቲ ባይዱ
• 解:(1)由题意得: y=3 0﹣ ,且0<x≤90,且x为10的正整数倍.…………2分 (2)w=(120﹣20+x)(30﹣ ), …………4分 整理,得w=﹣ x2+20x+3000.…………5分 (3)w=﹣ x2+20x+3000 =﹣ (x﹣100)2+4000.…………7分 ∵ ,∴抛物线的开口向下,当x<100时,w随x的增大而增大, 又0<x≤90,因而当x=90时,利润最大,此时一天订住的房间 数是:30﹣ =21间,最大利润是:3990元.…………10分 答:一天订住21个房间时,宾馆每天利润最大,最大利润为 3990元.
中考数学复习7:二次函数
中考数学复习7:二次函数知识集结知识元二次函数知识讲解二次函数的识别1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2.二次函数的结构特征:(1)等号左边是函数,右边是关于自变量的二次式,的最高次数是2;(2)是常数,是二次项系数,是一次项系数,是常数项.二次函数的图象与性质1.二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.2.二次函数的基本形式及性质(1)二次函数基本形式:的性质:a 的绝对值越大,抛物线的开口越小.(2)的性质:(上加下减)的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.(3)的性质:(左加右减)(4)的性质:3.二次函数的性质(1)当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;的符号开口方向顶点坐标对称轴性质向上x=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下x=h时,随的增大而减小;时,随的增大而增大;时,有最大值.的符号开口方向顶点坐标对称轴性质向上x=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下x=h时,随的增大而减小;时,随的增大而增大;时,有最大值.当时,有最小值.(2)当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.二次函数图象的变换1.二次函数图象的平移方法一:(1)将抛物线解析式转化成顶点式,确定其顶点坐标;保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:(2)平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:(1)沿轴平移:向上(下)平移个单位,变成(或)(2)沿x轴平移:向左(右)平移个单位,变成(或)2.二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达(1)关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;(2)关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;(3)关于原点对称关于原点对称后,得到的解析式是;(4)关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.(5)关于点对称关于点对称后,得到的解析式是;关于原点对称后,得到的解析式是.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.待定系数法求二次函数解析式1.二次函数解析式的表示方法(1)一般式:(,,为常数,);(2)顶点式:(,,为常数,);(3)两根式:(,,是抛物线与轴两交点的横坐标).【注意】任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.2.待定系数法求二次函数解析式:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:(1)已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;(3)已知抛物线与轴的两个交点的横坐标,一般选用两根式;(4)已知抛物线上纵坐标相同的两点,常选用顶点式.二次函数系数与图象之间的关系1.二次项系数二次函数中,作为二次项系数,显然.(1)当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;(2)当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2.一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.(1)在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.(2)在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”3.常数项(1)当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;(2)当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;(3)当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数的实际应用1.列二次函数解应用题列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式,对于应用题要注意以下步骤(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式这就是二次函数;(4)按题目要求,结合二次函数的性质解答相应的问题;(5)检验所得解是否符合实际,即是否为所提问题的答案;(6)写出答案.要点诠释:常见的问题,求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.2.建立二次函数模型求解实际问题的一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.注意:(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题.利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.二次函数与方程和不等式1.一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2.抛物线的图象与轴一定相交,交点坐标为,;3.二次函数常用解题方法总结:(1)求二次函数的图象与轴的交点坐标,需转化为一元二次方程;(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;(3)根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;(4)二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.4.二次函数与不等式之间的关系:判别式二次函数的图象一元二次方程的根有两相异实根有两相等实根没有实根不等式的解集或任意实数无无同理开口向下的利用上面的规律可以得出.二次函数与一次函数的综合1.二次函数与一次函数值的比较:(1)二次函数等于一次函数:二次函数与一次函数交点;(2)二次函数大于一次函数:二次函数图象在一次函数上方;(3)二次函数小于一次函数:二次函数图象在一次函数下方.2.二次函数与一次函数(直线)交点个数问题:联立方程组,整理成一元二次方程一般式:(1)△>0时,二次函数与一次函数有两个交点;(2)△=0时,二次函数与一次函数有一个交点;(3)△<0时,二次函数与一次函数无交点;3.二次函数与线段交点个数问题:先确定抛物线的解析式,画出图形:(1)当抛物线最小值大于线段所在直线的纵坐标时,与线段无公共点;当抛物线最大值小于线段所在直线的纵坐标时,与线段无公共点;(2)当抛物线顶点在线段BC上,此时抛物线与线段有一个公共点;(3)当线段的一个端点在抛物线上时,此时可作为临界情况.二次函数与几何综合1.面积问题(1)三角形面积:抛物线与坐标轴围成的三角形面积:求出抛物线与x轴、y轴交点坐标,表示出三角形的底和高求面积;(2)四边形的面积:求四个点围成的四边形的面积:根据点的坐标得到线段的长度,通过分割法,把四边形分成几个三角形的面积之和,分别求出各个面积相加即可.2.几何最值问题(1)线段之和最短:通过轴对称,找出对称点连结,求出该线段的长度即是最小值,主要利用两点之间线段最短的性质.(2)周长最短问题:通过轴对称,找出对称点连结,三角形周长最短问题就转化成线段之和最短问题,求出该线段的长度,再得到周长最小值.(3)面积的最大值问题:根据面积的分割,利用水平宽度×铅直高度,求出面积的表达式是二次函数的形式,再利用配方法求出顶点坐标,顶点的纵坐标就是面积的最大值.例题精讲二次函数例1.'如图,已知抛物线经过两点A (-3,0),B (0,3),且其对称轴为直线x =-1.(1)求此抛物线的解析式;(2)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 的面积的最大值,并求出此时点P 的坐标.'例2.'如图,在平面直角坐标系中,抛物线y =x 2+bx +c 与x 轴交于点A (3,0)、点B (-1,0),与y 轴交于点C .(1)求拋物线的解析式;(2)过点D (0,3)作直线MN ∥x 轴,点P 在直线NN 上且S △PAC =S △DBC ,直接写出点P 的坐标.'例3.'在平面直角坐标系xOy中,抛物线y=ax2+bx-与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上。
中考专题复习二次函数知识点总结
中考专题复习二次函数知识点总结知识点一:二次函数的定义1.二次函数的定义:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数.其中a是二次项系数,b是一次项系数,c是常数项.知识点二:二次函数的图象与性质⇒⇒⇒抛物线的三要素:开口、对称轴、顶点2. 二次函数()2=-+的图象与性质y a x h k(1)二次函数基本形式2=的图象与性质:a的绝对值越大,抛物线的开口越小y ax(2)2=+的图象与性质:上加下减y ax c(3)()2y a x h =-的图象与性质:左加右减(4)二次函数()2y a x h k =-+的图象与性质3. 二次函数c bx ax y ++=2的图像与性质(1)当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. (2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax 经过适当的平移得到具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:,已知图象上三点或三对、的值,通常选择一般式.②顶点式:,已知图象的顶点或对称轴,通常选择顶点式.③交点式:,已知图象与轴的交点坐标、.(4)求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. (5)抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. ②b 和a 共同决定抛物线对称轴的位置由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故 如果0=b 时,对称轴为y 轴;如果0>a b(即a 、b 同号)时,对称轴在y 轴左侧; 如果0<ab(即a 、b 异号)时,对称轴在y 轴右侧.③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置当0=x 时,c y =,所以抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ),故 如果0=c ,抛物线经过原点; 如果0>c ,与y 轴交于正半轴; 如果0<c ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数c bx ax y ++=2,当0y =时,得到一元二次方程20ax bx c ++=,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)y 轴与抛物线c bx ax y ++=2得交点为(0,)c .(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx n y ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题。
中考总复习:二次函数--知识讲解(基础)
中考总复习:二次函数—知识讲解(基础)【考纲要求】1.二次函数的概念常为中档题.主要考查点的坐标、确定解析式、自变量的取值范围等; 2.二次函数的解析式、开口方向、对称轴、顶点坐标等是中考命题的热点;3.抛物线的性质、平移、最值等在选择题、填空题中都出现过,覆盖面较广,而且这些内容的综合题一般较难,在解答题中出现.【知识网络】【考点梳理】考点一、二次函数的定义一般地,如果2y ax bx c =++(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 要点诠释:二次函数2y ax bx c =++(a ≠0)的结构特征是:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.(2)二次项系数a ≠0.考点二、二次函数的图象及性质1.二次函数2y ax bx c =++(a ≠0)的图象是一条抛物线,顶点为24,24b ac b aa ⎛⎫-- ⎪⎝⎭.2.当a >0时,抛物线的开口向上;当a <0时,抛物线的开口向下.3.①|a|的大小决定抛物线的开口大小.|a|越大,抛物线的开口越小,|a|越小,抛物线的开口越大. ②c 的大小决定抛物线与y 轴的交点位置.c =0时,抛物线过原点;c >0时,抛物线与y 轴交于正半轴;c <0时,抛物线与y 轴交于负半轴.③ab 的符号决定抛物线的对称轴的位置.当ab =0时,对称轴为y 轴;当ab >0时,对称轴在y 轴左侧;当ab <0时,对称轴在y 轴的右侧.4.抛物线2()y a x h k =++的图象,可以由2y ax =的图象移动而得到.将2y ax =向上移动k 个单位得:2y ax k =+. 将2y ax =向左移动h 个单位得:2()y a x h =+.将2y ax =先向上移动k(k >0)个单位,再向右移动h(h >0)个单位,即得函数2()y a x h k =-+的图象. 要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.考点三、二次函数的解析式1.一般式:2+y ax bx c =+(a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2y ax bx c =++,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)y a x x x x a =--≠.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a x x x x =--,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式. 3.顶点式:2()(0)y a x h k a =-+≠.若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k =-+,将已知条件代入,求出待定系数,最后将解析式化为一般形式.4.对称点式:12()()(0)y a x x x x m a =--+≠.若已知二次函数图象上两对称点(x 1,m),(x 2,m),则可设所求二次函数为12()()(0)y a x x x x m a =--+≠,将已知条件代入,求得待定系数,最后将解析式化为一般形式.要点诠释:已知图象上三点或三对、的值,通常选择一般式.已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数).已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).考点四、二次函数2y ax bx c =++(a ≠0) 的图象的位置与系数a 、b 、c 的关系 1.开口方向:a >0时,开口向上,否则开口向下. 2.对称轴:02b a ->时,对称轴在y 轴的右侧;当02b a-<时,对称轴在y 轴的左侧. 3.与x 轴交点:240b ac ->时,有两个交点;240b ac -=时,有一个交点;240b ac -<时,没有交点.要点诠释:当x =1时,函数y =a+b+c ; 当x =-1时,函数y =a-b+c ;当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方; 当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方.考点五、二次函数的最值1.当a >0时,抛物线2y ax bx c =++有最低点,函数有最小值,当2bx a=-时,244ac b y a -=最小.2.当a <0时,抛物线2y ax bx c =++有最高点,函数有最大值,当2bx a=-时,244ac b y a -=最大.要点诠释:在求应用问题的最值时,除求二次函数2y ax bx c =++的最值,还应考虑实际问题的自变量的取值范围.【典型例题】类型一、应用二次函数的定义求值1.二次函数y=x 2-2(k+1)x+k+3有最小值-4,且图象的对称轴在y 轴的右侧,则k 的值是 . 【思路点拨】因为图象的对称轴在y 轴的右侧,所以对称轴x=k+1>0,即k >-1;又因为二次函数y=x 2-2(k+1)x+k+3有最小值-4,所以y 最小值= 442(k+3)-(2k+2)=-4,可以求出k 的值.【答案与解析】解:∵图象的对称轴在y 轴的右侧, ∴对称轴x=k+1>0, 解得k >-1,∵二次函数y=x 2-2(k+1)x+k+3有最小值-4,∴y 最小值= 442(k+3)-(2k+2)=k+3-(k+1)2=-k 2-k+2=-4,整理得k 2+k-6=0, 解得k=2或k=-3,∵k=-3<-1,不合题意舍去, ∴k=2.【总结升华】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.举一反三:【变式】已知24(3)k k y k x +-=+是二次函数,求k 的值.【答案】∵24(3)k k y k x+-=+是二次函数,则242,30k k k ⎧+-=⎨+≠⎩,由242k k +-=得260k k +-=,即(3)(2)0k k +-=,得13k =-,22k =.显然,当k =-3时, 原函数为y =0,不是二次函数.∴ k =2即为所求.类型二、二次函数的图象及性质的应用2.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ).A .2(1)3y x =--- B .2(1)3y x =-+-C .2(1)3y x =--+ D .2(1)3y x =-++【思路点拨】抛物线的平移问题,实质上是顶点的平移,原抛物线y=-x 2顶点坐标为(0,0),向左平移1个单位,然后向上平移3个单位后,顶点坐标为(-1,3),根据抛物线的顶点式可求平移后抛物线的解析式. 【答案】 D ;【解析】根据抛物线的平移规律可知:2y x =-向左平移1个单位可变成2(1)y x =-+,再向上平移3个单位后可变成2(1)3y x =-++.【总结升华】(1)2y ax =图象向左或向右平移|h|个单位,可得2()y a x h =-的图象(h <0时向左,h >0时向右).(2)2y ax =的图象向上或向下平移|k|个单位,可得2y ax k =+的图象(k >0时向上,k <0时向下).举一反三:【变式】将二次函数2y x =的图象向右平移1个单位长度,再向上平移2个单位长度后,所得图象的函数表达式是( )A .2(1)2y x =-+ B .2(1)2y x =++C .2(1)2y x =-- D .2(1)2y x =+-【答案】按照平移规律“上加下减,左加右减”得2(1)2y x =-+.故选A.类型三、求二次函数的解析式3.已知二次函数2y ax bx c =++的图象经过点(1,0),(-5,0),顶点纵坐标为92,求这个二次函数的解析式. 【思路点拨】将点(1,0),(-5,0)代入二次函数y=ax 2+bx+c ,再由4942ac a =2-b ,从而求得a ,b ,c 的值,即得这个二次函数的解析式.【答案与解析】解法一:由题意得0,2550,942,2a b c a b c a b c ⎧⎪++=⎪-+=⎨⎪⎪-+=⎩ 解得1,22,5.2a b c ⎧=-⎪⎪=-⎨⎪⎪=⎩所以二次函数的解析式为215222y x x =--+. 解法二:由题意得 (1)(5)y a x x =-+.把2x =-92y =代入,得9(21)(25)2a --⨯-+=,解得12a =-. 所以二次函数的解析式为1(1)(5)2y x x =--+,即 215222y x x =--+. 解法三:因为二次函数的图象与x 轴的两交点为(1,0),(-5,0),由其对称性知, 对称轴是直线2x =-.所以,抛物线的顶点是92,2⎛⎫- ⎪⎝⎭. 可设函数解析式为29(2)2y a x =++.即215222y x x =--+. 【总结升华】根据题目的条件,有多种方法求二次函数的解析式.举一反三:【高清课程名称:二次函数与中考 高清ID 号:359069 关联的位置名称(播放点名称):经典例题1】 【变式】已知:抛物线2(1)y x b x c =+-+经过点(12)P b --,. (1)求b c +的值;(2)若3b =,求这条抛物线的顶点坐标;(3)若3b >,过点P 作直线PA y ⊥轴,交y 轴于点A ,交抛物线于另一点B ,且2BP PA =,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考) 【答案】解:(1)依题意得:2(1)(1)(1)2b c b -+--+=-,2b c ∴+=-.(2)当3b =时,5c =-,2225(1)6y x x x ∴=+-=+- ∴抛物线的顶点坐标是(16)--,.(3)解法1:当3b >时,抛物线对称轴112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,且2BP PA =.(32)B b ∴--,122b -∴-=-. 5b ∴=.又2b c +=-,7c ∴=-.∴抛物线所对应的二次函数关系式247y x x =+-.解法2:当3b >时,112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,,且2(32)BP PA B b =∴--,, 2(3)3(2)2b c b ∴---+=-.又2b c +=-,解得:57b c ==-,∴这条抛物线对应的二次函数关系式是247y x x =+-.解法3:2b c +=-,2c b ∴=--,2(1)2y x b x b ∴=+---BP x ∥轴,2(1)22x b x b b ∴+---=-即:2(1)20x b x b +-+-=.解得:121(2)x x b =-=--,,即(2)B x b =-- 由2BP PA =,1(2)21b ∴-+-=⨯.57b c ∴==-,∴这条抛物线对应的二次函数关系式247y x x =+-.类型四、二次函数图象的位置与a 、b 、c 的关系4.(2015•包头)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论: ①当x >3时,y <0;②3a+b <0;③﹣1≤a ≤﹣;④4ac ﹣b 2>8a ;其中正确的结论是( )A.①③④B.①②③C.①②④D.①②③④【思路点拨】①先由抛物线的对称性求得抛物线与x轴令一个交点的坐标为(3,0),从而可知当x>3时,y<0;②由抛物线开口向下可知a<0,然后根据x=﹣=1,可知:2a+b=0,从而可知3a+b=0+a=a<0;③设抛物线的解析式为y=a(x+1)(x﹣3),则y=ax2﹣2ax﹣3a,令x=0得:y=﹣3a.由抛物线与y轴的交点B在(0,2)和(0,3)之间,可知2≤﹣3a≤3.④由4ac﹣b2>8a得c﹣2<0与题意不符.【答案】B;【答案与解析】解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,0),当x>3时,y<0,故①正确;②抛物线开口向下,故a<0,∵x=﹣=1,∴2a+b=0.∴3a+b=0+a=a<0,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则y=ax2﹣2ax﹣3a,令x=0得:y=﹣3a.∵抛物线与y轴的交点B在(0,2)和(0,3)之间,∴2≤﹣3a≤3.解得:﹣1≤a≤﹣,故③正确;④∵抛物线y轴的交点B在(0,2)和(0,3)之间,∴2≤c≤3,由4ac﹣b2>8a得:4ac﹣8a>b2,∵a<0,∴c﹣2<∴c﹣2<0∴c<2,与2≤c≤3矛盾,故④错误.故选:B.【总结升华】本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键.举一反三:【变式】如图所示是二次函数2y ax bx c =++图象的一部分,图象经过点A(-3,0),对称轴为1x =-.给出四个结论:①24b ac >;②20a b +=;③0a b c -+=;④5a b <.其中正确结论是( ).A .②④B .①④C .②③D .①③【答案】本例是利用二次函数图象的位置与a 、b 、c 的和、差、积的符号问题,其中利用直线1x =,1x =-交抛物线的位置来判断a b c ++,a b c -+的符号问题应注意理解和掌握.由图象开口向下,可知a <0,图象与x 轴有两个交点,所以240b ac =->△,24b ac >, ① 确.对称轴为12bx a=-=-,所以2b a =,又由a <0,b =2a ,可得5a <b ,④正确. 故选B.类型五、求二次函数的最值5.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为)y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围.(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元? 【思路点拨】(1)每件商品的售价每上涨1元,则每个月少卖10件,当每件商品的售价上涨x 元时,每个月可卖出(210-10x )件,每件商品的利润为x+50-40=10+x ; (2)每个月的利润为卖出的商品数和每件商品的乘积,即(210-10x )(10+x ),当每个月的利润恰为2200元时得到方程(210-10x )(10+x )=2200.求此方程中x 的值. 【答案与解析】(1)y =(210-l0x)(50+x-40)=-10x 2+110x+2100(0<x ≤15且x 为整数).(2)y =-10(x-5.5)2+2402.5.∵ a =-10<0,∴ 当x =5.5时,y 有最大值2402.5. ∵ 0<x ≤15,且x 为整数,∴ 当x =5时,50+x =55,y =2400(元);当x =6时,50+x =56,y =2400(元).∴ 当售价定为每件55元或56元时,每个月的利润最大,最大的月利润是2400元.(3)当y =2200时,-10x 2+110x+2100=2200, 解得x 1=1,x 2=10.∴ 当x =1时,50+x =51;当x =10时,50+x =60.∴ 当售价定为每件51元或60元时,每个月的利润为2200元. 【总结升华】做此类应用题时,要明确题目中所给的信息,并找到其中相等的量可以用不同的表达式表示就可以列出方程. 举一反三:【变式】某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高l 元,平均每天少销售3箱。
中考考点二次函数知识点汇总全
中考考点二次函数知识点汇总全二次函数是高中数学中的重要内容之一,也是中考考试的重点内容。
它是由一次项、常数项和二次项组成的一元二次方程的图像,其函数关系为y=ax²+bx+c,其中a、b、c为常数,且a≠0。
下面将汇总全面介绍中考中二次函数的知识点。
1.二次函数的图像特点:-当a>0时,二次函数的开口向上,图像是一个U型,顶点在下方;-当a<0时,二次函数的开口向下,图像是一个倒U型,顶点在上方;-函数的图像关于顶点对称。
2.顶点坐标与轴对称:-二次函数的顶点坐标是(-b/2a,f(-b/2a)),其中f(x)为二次函数的定义域;-二次函数的轴对称是x=-b/2a。
3.判断二次函数的开口方向及平移:-当a>0时,二次函数的开口向上;-当a<0时,二次函数的开口向下;-平移后的二次函数的顶点坐标为(x-h,f(x-h)),其中h为平移的横坐标单位,f(x)为原二次函数。
4.与坐标轴的交点与函数值:- 与x轴的交点(零点)是二次方程ax²+bx+c=0的解;-与y轴的交点是二次函数的常数项c;-函数值f(x)是二次函数在x处的y值。
5.最值及取值范围:-当a>0时,二次函数的最小值是顶点的纵坐标,没有最大值,取值范围是[最小值,+∞);-当a<0时,二次函数的最大值是顶点的纵坐标,没有最小值,取值范围是(-∞,最大值]。
6.对称轴的方程及关于顶点的对称点:-对称轴的方程是x=-b/2a;-对于点P(x,y),在对称轴上的对称点是P'(-b/a-x,y)。
7.解析式与一般式转换:- 一般式:y=ax²+bx+c,解析式则为y=a(x-h)²+k,其中(h,k)为顶点坐标;- 解析式:y=a(x-p)(x-q),则一般式为y=ax²-(ap+aq)x+apq,其中p、q是解析式的两个根。
8.方程与二次函数的关系:- 二次函数y=ax²+bx+c的解析式的自变量x和函数值y满足方程y=ax²+bx+c;- 方程y=ax²+bx+c=0的解是对应二次函数的图像在x轴上的交点。
中考数学总复习之二次函数专题复习
中考数学总复习之二次函数专题复习一.选择题(共8小题)1.二次函数y=2x2+8x+5的图象的顶点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.把二次函数y=x2+2x﹣6配方成顶点式为()A.y=(x﹣1)2﹣7B.y=(x+1)2﹣7C.y=(x+2)2﹣10D.y=(x﹣3)2+33.已知二次函数y=(a﹣2)x2,当x>0时,y随x的增大而减小,则实数a的取值范围是()A.a>0B.a>2C.a≠2D.a<24.关于抛物线y=(x﹣1)2﹣2,以下说法正确的是()A.抛物线在直线x=﹣1右侧的部分是上升的B.抛物线在直线x=﹣1右侧的部分是下降的C.抛物线在直线x=1右侧的部分是上升的D.抛物线在直线x=1右侧的部分是下降的5.2019年在武汉市举行了军运会,在军运会比赛中,某次羽毛球的运动路线可以看作是抛物线y=x2+x+的一部分(如图),其中出球点B离地面O点的距离是米,球落点的距离是()A.1米B.3米C.5米D.米6.二次函数y=x2﹣3x+1的图象大致是()A.B.C.D.7.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是()A.a>0B.C.或a>0D.8.如图,已知开口向上的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.下列结论:①abc>0;②2a+b=0;③若关于x的方程ax2+bx+c+1=0一定有两个不相等的实数根;④a>.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题(共8小题)9.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m,门宽为2m.这个矩形花圃的最大面积是.10.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点O水平距离为m米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m的取值范围是.11.二次函数y=2x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C 在函数图象上,四边形OBAC为菱形,且∠AOB=30°,则点C的坐标为.12.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2023在y轴的正半轴上,点B1,B2,B3,…,B2023在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2022B2023A2023都为等边三角形,则△A2022B2023A2023的边长为.13.已知二次函数y=(x﹣3)2+3,当x=时,y取得最小值.14.已知抛物线y=x2+bx+c的部分图象如图所示,当y>0时,x的取值范围是.15.如图,二次函数y=﹣x2+mx的图象与x轴交于坐标原点和(6,0),若关于x的方程x2﹣mx+t=0(t为实数)在1≤x<5的范围内有解,则t的取值范围是.16.二次函数y=ax2+bx﹣3(a≠0)的图象经过点(1,4),则代数式a+b的值为.三.解答题(共4小题)17.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A(﹣1,0)和点B,点P是直线BC上方的抛物线上一动点.(1)求二次函数的表达式;(2)求BC所在直线的函数解析式;(3)过点P作PM∥y轴交直线BC于点M,求线段PM长度的最大值.18.如图,直线y=x+2与x轴交于点B,与y轴交于点D.抛物线y=ax2+bx﹣4与x轴交于点A(4,0)和点B,与y轴交于点C.(1)求该抛物线的解析式;(2)如图,点P为抛物线在直线AC下方的一动点,作PH∥y轴,PF⊥AC,分别交AC 于点H、F,求PH+PF的最大值和此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4沿射线AC平移个单位长度,得到新抛物线,点R在新抛物线的对称轴上,点S在抛物线y=ax2+bx﹣4上.当以点D、P、R、S为顶点的四边形是平行四边形时,写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.如图,已知抛物线y=﹣x2+mx+3与x轴交于A、B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)求抛物线与坐标轴的交点所围成的三角形面积;(3)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.。
2020年东营市中考数学压轴题型讲练——二次函数综合
2020年东营市中考数学压轴题型讲练——二次函数综合【题型导引】题型一:二次函数中的最值问题:本类型涉及到函数中动态线段的最值,组成的三角形的周长最值,特殊三角形面积的最值,不规则多边形面积的最值探究。
题型二:二次函数中的存在性问题:本类型涉及到函数中动点过程中组成的特定角的存在性,特殊三角形的存在性,特殊四边形的存在性等。
【典例解析】类型一:最值问题研究例题1:(2019•山东省滨州市•14分)如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠PAD的值.【解答】解:(1)当x=0时,y=4,则点A的坐标为(0,4),当y=0时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°,∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0),设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=﹣x+4;(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),∴PN=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+t,∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°,作PH⊥AD于点H,则∠PHN=90°,∴PH==(﹣t2+t)=t=﹣(t﹣6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是;②当点P到直线AD的距离为时,如右图②所示,则t=,解得,t1=2,t2=10,则P1的坐标为(2,),P2的坐标为(10,﹣),当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;当P2的坐标为(10,﹣),则P2A==,∴sin∠P2AD==;由上可得,sin∠PAD的值是或.技法归纳:(1)解答二次函数中存在性问题的一般思路:先对结论作出肯定的假设,然后由肯定假设出发,结合已知条件进行正确的计算、推理,若推出矛盾,则否定先前假设,若推出合理的结论,则说明假设正确,由此得出问题的结论;(2)对于点的存在性问题,首先要根据条件,运用画图判断存在的可能性,作出合理的猜想.然后再通过方法的选择,在演绎的过程或结论中,作出存在与否的判断;(3)对于单个图形形状的存在性判断,先假设图形形状存在,然后根据图形的特殊性来求出存在的条件(即要求的点的坐标).当图形的形状无法确定唯一时,还要注意分类,如等腰三角形的腰与底,直角三角形中直角顶点的位置等.类型二:存在性问题研究例题2:(2018·齐齐哈尔中考)综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,点M是线段OA上的一个动点,过点M作垂直于x轴的直线与直线AC和抛物线分别交于点P,N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.【解析】(1)将A(-4,0)代入y =x +c 得c =4,将A(-4,0)和c =4代入y =-x 2+bx +c 得b =-3,∴抛物线解析式为y =-x 2-3x +4. (2)如图,作点C 关于抛物线对称轴的对称点C′,连接OC′,交直线l 于点E ,连接CE ,此时CE +OE 的值最小.∵抛物线对称轴直线x =-32,∴CC′=3.由勾股定理可得OC′=5, ∴CE+OE 的最小值为5. (3)①当△CNP∽△AMP 时,∠CNP=90°,则NC 关于抛物线对称轴对称, ∴NC=NP =3,∴△CPN 的面积为92.当△CNP∽△MAP 时,由已知△NCP 为等腰直角三角形,∠NCP=90°.如图,过点C 作CE⊥MN 于点E ,设点M 坐标为(a ,0),∴EP=EC =-a ,则N 为(a ,-a 2-3a +4),MP =-a 2-3a +4-(-2a)=-a 2-a +4,∴P(a,-a 2-a +4), 代入y =x +4,解得a =-2或a =0(舍),则N(-2,6),P(-2,2),故PN =4. 又∵EC=-a =2, ∴△CPN 的面积为4.故答案为92或4.②存在.设点M 坐标为(a ,0),则点N 坐标为(a ,-a 2-3a +4),则P 点坐标为(a ,-a 2-3a +42),把点P 坐标代入y =x +4, 解得a 1=-4(舍去),a 2=-1.当PF =FM 时,点D 在MN 垂直平分线上,则D(12,32);当PM =PF 时,由菱形性质得点D 坐标为(-1+322,322)或(-1-322,-322);当MP =MF 时,M ,D 关于直线y =x +4对称,点D 坐标为(-4,3).技法归纳:以二次函数图象为背景探究动点形式的最值问题,要注意以下几点:1.要确定所求三角形或四边形面积最值,可设动点运动的时间t 或动点的坐标;2.(1)求三角形面积最值时要用含t 的代数式表示出三角形的底和高的代数式或函数表达式;(2)求四边形面积最值时,常用到的方法是利用割补法将四边形分成两个三角形,从而利用三角形的方法求得用含t 的代数式表示的线段,然后用含t 的代数式表示出图形面积;3.用二次函数的性质来求最大值或最小值. 【变式训练】1. (2019•甘肃武威•12分)如图,抛物线y =ax 2+bx+4交x 轴于A (﹣3,0),B (4,0)两点,与y 轴交于点C ,连接AC ,BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m . (1)求此抛物线的表达式; (2)过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;(3)过点P 作PN ⊥BC ,垂足为点N .请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?【解答】解:(1)由二次函数交点式表达式得:y =a (x+3)(x ﹣4)=a (x 2﹣x ﹣12), 即:﹣12a =4,解得:a =﹣, 则抛物线的表达式为y =﹣x 2+x+4;(2)存在,理由:点A.B.C 的坐标分别为(﹣3,0)、(4,0)、(0,4), 则AC =5,AB =7,BC =4,∠OAB =∠OBA =45°,将点B.C 的坐标代入一次函数表达式:y =kx+b 并解得:y =﹣x+4…①, 同理可得直线AC 的表达式为:y =x+4,设直线AC 的中点为M (﹣,4),过点M 与CA 垂直直线的表达式中的k 值为﹣, 同理可得过点M 与直线AC 垂直直线的表达式为:y =﹣x+…②,①当AC=AQ时,如图1,则AC=AQ=5,设:QM=MB=n,则AM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q(1,3);②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4﹣5,则QM=MB=,故点Q(,);③当CQ=AQ时,联立①②并解得:x=(舍去);故点Q的坐标为:Q(1,3)或(,);(3)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQsin∠PQN=(﹣m2+m+4+m﹣4)=﹣m2+m,∵﹣<0,∴PN有最大值,当m=时,PN的最大值为:.2. (2018·菏泽中考)如图,在平面直角坐标系中,抛物线y=ax2+bx-5交y轴于点A,交x轴于点B(-5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的解析式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.【解析】 (1)∵抛物线y =ax 2+bx -5经过点B(-5,0)和点C(1,0), ∴⎩⎪⎨⎪⎧25a -5b -5=0,a +b -5=0,解得⎩⎪⎨⎪⎧a =1,b =4, ∴抛物线的解析式为y =x 2+4x -5.(2)∵抛物线y =x 2+4x -5交y 轴于点A , ∴A 点坐标为(0,-5).又∵点E 关于x 轴的对称点在直线AD 上, ∴点E 的纵坐标为5.如图,过点E 作EF⊥DA,交DA 的延长线于点F , ∴EF=5+|-5|=10.设点D 的坐标为(a ,-5), ∴a 2+4a -5=-5, ∴a 1=0,a 2=-4,∴点D 的坐标为(-4,-5), ∴AD=|-4|=4,∴S △ADE =12AD·EF=12×4×10=20.(3)设直线AB 的解析式为y =kx +b ,且该直线经过点B(-5,0)和点A(0,-5), ∴⎩⎪⎨⎪⎧-5k +b =0,b =-5,解得⎩⎪⎨⎪⎧k =-1,b =-5, ∴直线AB 的解析式为y =-x -5.如图,过点P 作PN⊥x 轴,垂足为点N ,交直线AB 于点M.设P(x ,x 2+4x -5),则M(x ,-x -5), ∴S △ABP =S △PMB +S △PMA =12[(-x -5)-(x 2+4x -5)]×5 =-52(x 2+5x)=-52(x +52)2+1258,∴当x =-52时,S △ABP 最大,最大值为1258.将x =-52代入y =x 2+4x -5得y =-354,∴P 点的坐标为(-52,-354).3. (2018·宜宾中考改编)在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y =14x 与抛物线交于A ,B 两点,直线l 为y =-1.(1)求抛物线的解析式;(2)在y 轴上是否存在一点M ,使点M 到点A ,B 的距离相等?若存在,求出点M 的坐标;若不存在,请说明理由; (3)在l 上是否存在一点P ,使PA +PB 取得最小值?若存在,求出点P 的坐标;若不存在,请说明理由; (4)设点S 是直线l 的一点,是否存在点S ,使的SB -SA 最大,若存在,求出点S 的坐标.【解析】(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y =a(x -2)2. ∵该抛物线经过点(4,1),∴1=4a ,解得a =14,∴抛物线的解析式为y =14(x -2)2=14x 2-x +1.(2)存在.联立⎩⎪⎨⎪⎧y =14x ,y =14x 2-x +1,解得⎩⎪⎨⎪⎧x 1=1,y 1=14或⎩⎪⎨⎪⎧x 2=4,y 2=1, ∴点A 的坐标为(1,14),点B 的坐标为(4,1).设点M 的坐标为(0,m),∴MA 2=(0-1)2+(m -14)2,MB 2=(0-4)2+(m -1)2.∵点M 到A ,B 的距离相等,∴MA 2=MB 2,即(0-1)2+(m -14)2=(0-4)2+(m -1)2,∴m=858,∴点M 的坐标为(0,858).(3)存在.如图,作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA +PB 取得最小值.∵点B(4,1),直线l 为y =-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y =kx +b(k≠0),将A(1,14),B′(4,-3)代入y =kx +b 得⎩⎪⎨⎪⎧k +b =14,4k +b =-3,解得⎩⎪⎨⎪⎧k =-1312,b =43, ∴直线AB′的解析式为y =-1312x +43.当y =-1时,有-1312x +43=-1,解得x =2813,∴点P 的坐标为(2813,-1).(4)存在.点S 和点A ,B 在同一条直线上时,SB -SA 最大. ∵点S 在直线l 上,∴设点S 的坐标为(n ,-1),代入y =14x 得n =-4,∴点S 的坐标为(-4,-1).4. (2018·临沂中考)如图,在平面直角坐标系中,∠ACB=90°,OC =2O B ,t a n ∠ABC=2,点B 的坐标为(1,0),抛物线y =-x 2+bx +c 经过A ,B 两点. (1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点.过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE =12DE.①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【解析】:(1)在Rt △ABC 中,由点B 的坐标可知OB =1. ∵OC=2OB ,∴OC=2,则BC =3. 又∵t a n ∠ABC=2,∴AC=2BC =6,则点A 的坐标为(-2,6).把点A ,B 的坐标代入抛物线y =-x 2+bx +c 中得 ⎩⎪⎨⎪⎧-4-2b +c =6,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-3,c =4,∴该抛物线的解析式为y =-x 2-3x +4.(2)①由点A(-2,6)和点B(1,0)的坐标易得直线AB 的解析式为y =-2x +2.如图,设点P 的坐标为(m ,-m 2-3m +4),则点E 的坐标为(m ,-2m +2),点D 的坐标为(m ,0),则PE =-m 2-m +2,DE =-2m +2,由PE =12DE 得-m 2-m +2=12(-2m +2), 解得m =±1.又∵-2<m <1,∴m=-1,∴点P 的坐标为(-1,6). ②∵M 在直线PD 上,且P(-1,6), 设M(-1,y),∴AM 2=(-1+2)2+(y -6)2=1+(y -6)2,BM 2=(1+1)2+y 2=4+y 2,AB 2=(1+2)2+62=45. 分三种情况:(ⅰ)当∠AMB=90°时,有AM 2+BM 2=AB 2,∴1+(y -6)2+4+y 2=45,解得y =3±11, ∴M(-1,3+11)或(-1,3-11);(ⅱ)当∠ABM=90°时,有AB 2+BM 2=AM 2,∴45+4+y 2=1+(y -6)2,解得y =-1, ∴M(-1,-1).(ⅲ)当∠BAM=90°时,有AM 2+AB 2=BM 2,∴1+(y -6)2+45=4+y 2,解得y =132,∴M(-1,132).综上所述,点M 的坐标为(-1,3+11)或(-1,3-11)或(-1,-1)或(-1,132).5. (2019•湖南衡阳•10分)如图,二次函数y =x 2+bx+c 的图象与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E .(1)求该抛物线的函数关系表达式;(2)当点P 在线段OB (点P 不与O 、B 重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值; (3)在第四象限的抛物线上任取一点M ,连接MN 、MB .请问:△MBN 的面积是否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明理由.【解答】解:(1))∵抛物线y =x 2+bx+c 经过A (﹣1,0),B (3,0), 把A.B 两点坐标代入上式,,解得:,故抛物线函数关系表达式为y =x 2﹣2x ﹣3; (2)∵A (﹣1,0),点B (3,0), ∴AB =OA+OB =1+3=4,∵正方形ABCD 中,∠ABC =90°,PC ⊥BE , ∴∠OPE+∠CPB =90°, ∠CPB+∠PCB =90°, ∴∠OPE =∠PCB ,又∵∠EOP =∠PBC =90°, ∴△POE ∽△CBP , ∴,设OP =x ,则PB =3﹣x ,∴,∴OE= =∵0<x<3,∴时,线段OE长有最大值,最大值为.即OP=时,线段OE有最大值.最大值是.(3)存在.如图,过点M作MH∥y轴交BN于点H,∵抛物线的解析式为y=x2﹣2x﹣3,∴x=0,y=﹣3,∴N点坐标为(0,﹣3),设直线BN的解析式为y=kx+b,∴,∴,∴直线BN的解析式为y=x﹣3,设M(a,a2﹣2a﹣3),则H(a,a﹣3),∴MH=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴S△MNB=S△BMH+S△MNH=,∵,∴a=时,△MBN的面积有最大值,最大值是,此时M点的坐标为 (, ).6. (2018·怀化中考改编)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:①在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;②在数轴上是否存在点M ,使得△ACM 是以AC 为底的等腰三角形?若存在,请求出符合条件的点M 的坐标;若不存在,请说明理由.【解析】(1)设抛物线解析式为y =a(x +1)(x -3),即y =ax 2-2ax -3a ,∴-2a =2,解得a =-1,∴抛物线解析式为y =-x 2+2x +3.当x =0时,y =-x 2+2x +3=3,则C(0,3). 设直线AC 的解析式为y =px +q ,把A(-1,0),C(0,3)代入得⎩⎪⎨⎪⎧-p +q =0,q =3,解得⎩⎪⎨⎪⎧p =3,q =3,∴直线AC 的解析式为y =3x +3.(2)∵y=-x 2+2x +3=-(x -1)2+4, ∴顶点D 的坐标为(1,4).如图,作B 点关于y 轴的对称点B′,则B′(-3,0),连接DB′交y 轴于M.∵MB=MB′,∴MB+MD =MB′+MD =DB′,此时MB +MD 的值最小. ∵BD 的值不变,∴此时△BDM 的周长最小. 易得直线DB′的解析式为y =x +3.当x =0时,y =x +3=3,∴点M 的坐标为(0,3). (3)①存在.如图,过点C 作AC 的垂线交抛物线于另一点P.∵直线AC 的解析式为y =3x +3,∴直线PC 的解析式可设为y =-13x +b ,把C(0,3)代入得b =3,∴直线PC 的解析式为y =-13x +3.解方程组⎩⎪⎨⎪⎧y =-x 2+2x +3,y =-13x +3得⎩⎪⎨⎪⎧x =0,y =3或⎩⎪⎨⎪⎧x =73,y =209, 则此时P 点坐标为(73,209).如图,过点A 作AC 的垂线交抛物线于另一点P′, 直线P′A 的解析式可设为y =-13x +b 1,把A(-1,0)代入得13+b 1=0,解得b 1=-13,∴直线PC 的解析式为y =-13x -13.解方程组⎩⎪⎨⎪⎧y =-x 2+2x +3,y =-13x -13得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎪⎨⎪⎧x =103,y =-139, 则此时P′点坐标为(103,-139).综上所述,符合条件的点P 的坐标为(73,209)或(103,-139).②存在.当点M 在x 轴上时,设点M 的坐标为(n ,0),∵MA 2=MB 2,即[n -(-1)]2=n 2+(0-3)2, ∴n=4,∴此时点M 的坐标为(4,0).当点M 在y 轴上时,设点M 的坐标为(0,a),∵MA 2=MB 2,即[0-(-1)]2+(a -0)2=(3-a)2,∴a=43,∴此时点M 的坐标为(0,43).综上所述,符合条件的点M 的坐标为(4,0)或(0,43).7. (2019•湖北省咸宁市•12分)如图,在平面直角坐标系中,直线y =﹣x+2与x 轴交于点A ,与y 轴交于点B ,抛物线y =﹣x 2+bx+c 经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当∠ABD =2∠BAC 时,求点D 的坐标;(3)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.【解答】解:(1)在中,令y =0,得x =4,令x =0,得y =2∴A (4,0),B (0,2) 把A (4,0),B (0,2),代入,得,解得∴抛物线得解析式为(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F∵BE∥x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE∴∠DBE=∠BAC设D点的坐标为(x,),则BF=x,DF=∵tan∠DBE=,tan∠BAC=∴=,即解得x1=0(舍去),x2=2当x=2时,=3∴点D的坐标为(2,3)(3)当BO为边时,OB∥EF,OB=EF设E(m,),F(m,)EF=|()﹣()|=2解得m 1=2,,当BO 为对角线时,OB 与EF 互相平分过点O 作OF ∥AB ,直线OF 交抛物线于点F ()和()求得直线EF 解析式为或直线EF 与AB 的交点为E ,点E 的横坐标为或∴E 点的坐标为(2,1)或(,)或()或()或()8. (2017·天水中考)如图所示,在平面直角坐标系xOy 中,抛物线y =ax 2-2ax -3a(a <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC. (1)求A ,B 两点的坐标及抛物线的对称轴;(2)求直线l 的函数解析式(其中k ,b 用含a 的式子表示);(3)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值;(4)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.【解析】:(1)当y =0时,ax 2-2ax -3a =0, 解得x 1=-1,x 2=3,∴A(-1,0),B(3,0),对称轴为直线x =-1+32=1.(2)∵直线l 为y =kx +b 且过A(-1,0), ∴0=-k +b ,即k =b ,∴直线l 为y =kx +k. ∵抛物线与直线l 交于点A ,D ,∴ax 2-2ax -3a =kx +k ,即ax 2-(2a +k)x -3a -k =0.∵CD=4AC ,∴点D 的横坐标为4,∴-3-ka=-1×4,∴k=a ,∴直线l 的函数解析式为y =ax +a. (3)图1如图1,过点E 作EF∥y 轴交直线l 于点F.设E(x ,ax 2-2ax -3a),则F(x ,ax +a),EF =ax 2-2ax -3a -ax -a =ax 2-3ax -4a ,∴S △ACE =S △AFE -S △CEF =12(ax 2-3ax -4a)(x +1)-12(ax 2-3ax -4a)x =12(ax 2-3ax -4a)=12a(x -32)2-258a ,∴△ACE 的面积的最大值为-258a.∵△ACE 的面积的最大值为54,∴-258a =54,解得a =-25.(4)以点A ,D ,P ,Q 为顶点的四边形能成为矩形.令ax 2-2ax -3a =ax +a ,即ax 2-3ax -4a =0, 解得x 1=-1,x 2=4,∴D(4,5a). ∵抛物线的对称轴为直线x =1, 设P(1,m),如图2,①若AD 是矩形ADPQ 的一条边,图2则易得Q(-4,21a),m =21a +5a =26a ,则P(1,26a). ∵四边形ADPQ 是矩形, ∴∠ADP=90°,∴AD 2+PD 2=AP 2, ∴52+(5a)2+32+(26a -5a)2=22+(26a)2,即a 2=17.∵a<0,∴a=-77, ∴P(1,-2677).②如图3,若AD 是矩形APDQ 的对角线,图3则易得Q(2,-3a), m =5a -(-3a)=8a , 则P(1,8a).∵四边形APDQ 是矩形, ∴∠APD=90°,∴AP 2+PD 2=AD 2,∴(-1-1)2+(8a)2+(1-4)2+(8a -5a)2=52+(5a)2,即a 2=14.∵a<0,∴a=-12,∴P(1,-4).综上所述,以点A ,D ,P ,Q 为顶点的四边形能成为矩形,点P 坐标为(1,-2677)或(1,-4).。
(完整版)中考数学复习——二次函数知识点总结,推荐文档
⑴ 将抛物线解析式转化成顶点式 y ax h2 k ,确定其顶点坐标 h, k ;
⑵ 保持抛物线 y ax2 的形状不变,将其顶点平移到 h, k 处,具体平移方法如下:
y=ax2
【 【 (k>0)【 【 【 【 (k<0)【 【 【 |k|【 【 【
y=ax 2+k
【 【 (h>0)【 【 【 (h<0)【 【 【 |k|【 【 【
x 0 时, y 随 x 的增大而减小; x 0 时,
a0
向下
0, 0 y 轴
y 随 x 的增大而增大; x 0 时, y 有最大
值0.
2.
y ax2 c 的性质:
1
结论:上加下减。 总结:
a 的符号 开口方向 顶点坐标 对称轴
性质
x 0 时, y 随 x 的增大而增大; x 0 时,
总结:
3
从解析式上看, y ax h2 k 与 y ax2 bx c 是两种不同的表达形式,后者通过配方可以得到前
者,即
y
a
x
b 2a
2
4ac 4a
b2
,其中 h b , 2a
k 4ac b2 4a
.
四、二次函数 y ax2 bx c 图象的画法
五点绘图法:利用配方法将二次函数 y ax2 bx c 化为顶点式 y a(x h)2 k ,确定其开口方向、
3. 两根式: y a(x x1)(x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,
只有抛物线与 x 轴有交点,即 b2 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析 式的这三种形式可以互化.
中考数学总复习考点知识专题练习13 二次函数 (解析版)
中考数学总复习考点知识专题练习专题13 二次函数一、单选题(共10小题,每小题3分,共计30分)1.(2021·山东菏泽市·中考真题)一次函数y ax b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是()A .B .C .D .【答案】B【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y 轴的关系即可得出a 、b 的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】解:A 、∵二次函数图象开口向上,对称轴在y 轴右侧,∴a>0,b <0,∴一次函数图象应该过第一、三、四象限,A 错误;B 、∵二次函数图象开口向上,对称轴在y 轴左侧,∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B 正确;C 、∵二次函数图象开口向下,对称轴在y 轴右侧,∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C 错误;D 、∵二次函数图象开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,D 错误.故选:B .2.(2021·四川达州市·中考真题)如图,直线1y kx =与抛物线22y ax bx c =++交于A 、B 两点,则2()y ax b k x c =+-+的图象可能是( )A .B .C .D .【答案】B 【分析】根据题目所给的图像,首先判断1y kx =中k >0,其次判断22y ax bx c =++中a <0,b <0,c <0,再根据k 、b 、的符号判断2()y ax b k x c =+-+中b-k <0,又a <0,c <0可判断出图像. 【详解】解:由题图像得1y kx =中k >0,22y ax bx c =++中a <0,b <0,c <0, ∴b-k <0,∴函数2()y ax b k x c =+-+对称轴x=2b ka--<0,交x 轴于负半轴, ∴当12y y =时,即2kx ax bx c =++, 移项得方程2()0ax b k x c +-+=,∵直线1y kx =与抛物线22y ax bx c =++有两个交点,∴方程2()0ax b k x c +-+=有两个不等的解,即2()y ax b k x c =+-+与x 轴有两个交点, 根据函数2()y ax b k x c =+-+对称轴交x 轴负半轴且函数图像与x 轴有两个交点, ∴可判断B 正确. 故选:B3.(2021·陕西中考真题)在平面直角坐标系中,将抛物线y =x 2﹣(m ﹣1)x +m (m >1)沿y 轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m 的取值范围判断新抛物线的顶点所在的象限即可. 【详解】 解:2221(1)(1)()24m m y x m x m x m --=--+=-+-,∴该抛物线顶点坐标是1(2m -,2(1))4m m --, ∴将其沿y 轴向下平移3个单位后得到的抛物线的顶点坐标是1(2m -,2(1)3)4m m ---, 1m >,10m ∴->,∴102m ->, 2222(1)4(21)12(3)4(3)3104444m m m m m m m ---+-------===--<,∴点1(2m -,2(1)3)4m m ---在第四象限; 故选:D .4.(2021·新疆中考真题)二次函数2y ax bx c =++的图像如图所示,则一次函数y ax b =+和反比例函数y cx=在同一平面直角坐标系中的图像可能是()A .B .C .D .【答案】D 【分析】根据二次函数图象开口向上得到a >0,再根据对称轴确定出b ,根据与y 轴的交点确定出c >0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】解:∵二次函数图象开口方向向上,∴a >0,∵对称轴为直线2bx a=->0,∴b <0,∵与y 轴的正半轴相交,∴c >0,∴y=ax+b 的图象经过第一、三象限,且与y 轴的负半轴相交,反比例函数y cx=图象在第一、三象限, ∴只有D 选项的图像符合题意; 故选:D .5.(2021·湖北黄石市·中考真题)若二次函数22y a x bx c =--的图象,过不同的六点()1,A n -、()5,1B n -、()6,1C n +、)12,Dy 、()22,E y 、()34,F y ,则1y 、2y 、3y 的大小关系是()A .123y y y <<B .132y y y <<C .231y y y <<D .213y y y << 【答案】D 【分析】根据题意,把A 、B 、C 三点代入解析式,求出213425942a b ⎧=⎪⎪⎨⎪=⎪⎩,再求出抛物线的对称轴,利用二次根式的对称性,即可得到答案. 【详解】解:根据题意,把点()1,A n -、()5,1B n -、()6,1C n +代入22y a x bx c =--,则22225513661a b c na b c n a b c n ⎧+-=⎪--=-⎨⎪--=+⎩, 消去c ,则得到2224613571a b a b ⎧-=-⎨-=⎩, 解得:213425942a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的对称轴为:25959422622642b x a-=-==,∵2x =与对称轴的距离最近;4x =与对称轴的距离最远;抛物线开口向上, ∴213y y y <<; 故选:D .6.(2021·天津中考真题)已知抛物线2y ax bx c =++(,,a b c 是常数,0,1a c ≠>)经过点()2,0,其对称轴是直线12x =.有下列结论: ①0abc >;②关于x 的方程2ax bx c a ++=有两个不等的实数根;③12a <-.其中,正确结论的个数是() A .0B .1C .2D .3 【答案】C 【分析】根据对称轴和抛物线与x 轴的一个交点,得到另一个交点,然后根据图象确定答案即可判断①根据根的判别式240b ac ->,即可判断②;根据1c >以及c=-2a ,即可判断③. 【详解】∵抛物线2y ax bx c =++经过点()2,0,对称轴是直线12x =, ∴抛物线经过点(1,0)-,b=-a当x= -1时,0=a-b+c ,∴c=-2a;当x=2时,0=4a+2b+c , ∴a+b=0,∴ab<0,∵c >1, ∴abc <0,由此①是错误的,∵222224=4(2)890b ac a a a a a a ---=+=>,而0a ≠∴关于x 的方程2ax bx c a ++=有两个不等的实数根,②正确;∵1c >,c=-2a>1, ∴12a <-,③正确故选:C.7.(2021·山西中考真题)竖直上抛物体离地面的高度()h m 与运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时离地面的高度,()0/v m s是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20/m s 的速度竖直向上抛出,小球达到的离地面的最大高度为() A .23.5m B .22.5m C .21.5m D .20.5m 【答案】C【分析】将0h =1.5,0v =20代入2005h t v t h =-++,利用二次函数的性质求出最大值,即可得出答案. 【详解】解:依题意得:0h =1.5,0v =20,把0h =1.5,0v =20代入2005h t v t h =-++得2520 1.5=-++h t t当()20t 225=-=⨯-时,54202 1.5=21.5=-⨯+⨯+h故小球达到的离地面的最大高度为:21.5m 故选:C8.(2021·辽宁葫芦岛市·中考真题)如图,二次函数2(0)y ax bx c a =++≠的图象的对称轴是直线1x =,则以下四个结论中:①0abc >,②20a b +=,③244+<a b ac ,④30a c +<.正确的个数是()A .1B .2C .3D .4 【答案】B 【分析】由开口方向,对称轴方程,与y 轴的交点坐标判断,,a b c 的符号,从而可判断①②,利用与y 轴的交点位置得到c >1,结合a <0,可判断③,利用当1,,x y a b c =-=-+结合图像与对称轴可判断④. 【详解】解:由函数图像的开口向下得a <0, 由对称轴为12bx a=-=>0,所以b >0, 由函数与y 轴交于正半轴,所以c >0,abc ∴<0,故①错误;12bx a=-=, 2,b a ∴-=20,a b ∴+=故②正确; 由交点位置可得:c >1,a <0, c ∴>1a +,4ac ∴<244,a a +222,4,b a b a =-∴=4ac ∴<24,a b +故③错误; 由图像知:当1,,x y a b c =-=-+ 此时点()1,a b c --+在第三象限,a b c ∴-+<0,2,b a =-3a c ∴+<0,故④正确;综上:正确的有:②④, 故选B .9.(2021·浙江杭州市·中考真题)设函数y =a (x ﹣h )2+k (a ,h ,k 是实数,a ≠0),当x =1时,y =1;当x =8时,y =8,( ) A .若h =4,则a <0B .若h =5,则a >0 C .若h =6,则a <0D .若h =7,则a >0 【答案】C 【分析】当x =1时,y =1;当x =8时,y =8;代入函数式整理得a (9﹣2h )=1,将h 的值分别代入即可得出结果. 【详解】解:当x =1时,y =1;当x =8时,y =8;代入函数式得:221(1)8(8)a h k a h k ⎧=-+⎨=-+⎩, ∴a (8﹣h )2﹣a (1﹣h )2=7, 整理得:a (9﹣2h )=1, 若h =4,则a =1,故A 错误; 若h =5,则a =﹣1,故B 错误;若h =6,则a =﹣13,故C 正确;若h =7,则a =﹣15,故D 错误;故选:C .10.(2021·湖北襄阳市·中考真题)二次函数2y ax bx c =++的图象如图所示,下列结论:①0ac <;②30a c +=;③240ac b -<;④当1x >-时,y 随x 的增大而减小,其中正确的有()A .4个B .3个C .2个D .1个 【答案】B 【分析】根据抛物线的开口向上,得到a >0,由于抛物线与y 轴交于负半轴,得到c <0,于是得到ac <0,故①正确;根据抛物线的对称轴为直线x =−12ba=,于是得到2a +b =0,当x=-1时,得到30a c +=故②正确;把x =2代入函数解析式得到4a +2b +c <0,故③错误;抛物线与x 轴有两个交点,也就是它所对应的方程有两个不相等的实数根,即可得出③正确根据二次函数的性质当x >1时,y 随着x 的增大而增大,故④错误. 【详解】解:①∵抛物线开口向上与y 轴交于负半轴, ∴a >0,c <0 ∴ac <0 故①正确;②∵抛物线的对称轴是x=1, ∴12ba-= ∴b=-2a∵当x=-1时,y=0 ∴0=a-b+c故②正确;③∵抛物线与x轴有两个交点,即一元二次方程2=++有两个不相等的实数解0ax bx c∴240->b ac∴2-<40ac b故③正确;④当-1<x<1时,y随x的增大而减小,当x>1时y随x的增大而增大.故④错误所以正确的答案有①、②、③共3个故选:B二、填空题(共5小题,每小题4分,共计20分)11.(2021·贵州黔东南苗族侗族自治州·中考真题)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x 的取值范围是_____.【答案】﹣3<x<1【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.解:∵抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点为(﹣3,0),对称轴为x =﹣1, ∴抛物线与x 轴的另一个交点为(1,0),由图象可知,当y <0时,x 的取值范围是﹣3<x <1.故答案为:﹣3<x <1.12.(2021·江苏淮安市·中考真题)二次函数223y x x =--+的图像的顶点坐标是_________.【答案】(-1,4)【分析】把二次函数解析式配方转化为顶点式解析式,即可得到顶点坐标.【详解】解:∵223y x x =--+=-(x+1)2+4,∴顶点坐标为(-1,4).故答案为(-1,4).13.(2021·辽宁朝阳市·中考真题)抛物线2(1)1y k x x =--+与x 轴有交点,则k 的取值范围是___________________. 【答案】54k且1k ≠ 【分析】直接利用根的判别式进行计算,再结合10k -≠,即可得到答案.【详解】解:∵抛物线2(1)1y k x x =--+与x 轴有交点,∴2(1)4(1)10k ∆=--⨯-⨯≥,∴54k ≤, 又∵10k -≠,∴k 的取值范围是54k且1k ≠; 故答案为:54k 且1k ≠. 14.(2021·江苏连云港市·中考真题)加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =-+-,则最佳加工时间为________min .【答案】3.75 【分析】根据二次函数的对称轴公式2b x a =-直接计算即可. 【详解】解:∵20.2 1.52y x x =-+-的对称轴为()1.5 3.75220.2b x a =-=-=⨯-(min ), 故:最佳加工时间为3.75min ,故答案为:3.75.15.(2021·山东青岛市·中考真题)抛物线()2221y x k x k =+--(k 为常数)与x 轴交点的个数是__________.【答案】2【分析】求出∆的值,根据∆的值判断即可.【详解】解:∵∆=4(k -1)2+8k=4k 2+4>0,∴抛物线与x 轴有2个交点.故答案为:2.三、解答题(共5小题,每小题10分,共计50分)16.(2021·甘肃兰州市·中考真题)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天≤≤且x为整数)的销售量为y件.(1x30()1直接写出y与x的函数关系式;()2设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?=+;()2第20天的利润最大,最大利润是3200元.【答案】()1?y2x40【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.【详解】()1由题意可知y2x40=+;()2根据题意可得:()()=---+,w145x8052x4022x80x2400=-++,2=--+,2(x20)3200a20=-<,∴函数有最大值,∴当x 20=时,w 有最大值为3200元,∴第20天的利润最大,最大利润是3200元.17.(2021·山东临沂市·中考真题)已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围.【答案】(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∵22232y ax ax a =--+,∴22(1)32y a x a a =---+,∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∵抛物线顶点在x 轴上,∴2230a a --=,解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-,综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =,∴()23,Q y 关于1x =的对称点为2(1,)y -,当a >0时,若12y y <,则-1<m <3;当a <0时,若12y y <,则m <-1或m >3.18.(2021·甘肃金昌市·中考真题)如图,在平面直角坐标系中,抛物线22y ax bx =+-交x 轴于A ,B 两点,交y 轴于点C ,且28OA OC OB ==,点P 是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若//PC AB ,求点P 的坐标;(3)连接AC ,求PAC ∆面积的最大值及此时点P 的坐标.【答案】(1)2722y x x =+-;(2)(72-,2-);(3)PAC ∆面积的最大值是8;点P 的坐标为(2-,5-).【分析】(1)由二次函数的性质,求出点C 的坐标,然后得到点A 、点B 的坐标,再求出解析式即可;(2)由//PC AB ,则点P 的纵坐标为2-,代入解析式,即可求出点P 的坐标;(3)先求出直线AC 的解析式,过点P 作PD ∥y 轴,交AC 于点D ,则12PAC S PD OA ∆=•,设点P 为(x ,2722x x +-),则点D 为(x ,122x --),求出PD 的长度,利用二次函数的性质,即可得到面积的最大值,再求出点P 的坐标即可.【详解】解:(1)在抛物线22y ax bx =+-中,令0x =,则2y =-,∴点C 的坐标为(0,2-),∴OC=2,∵28OA OC OB ==,∴4OA =,12OB =, ∴点A 为(4-,0),点B 为(12,0), 则把点A 、B 代入解析式,得16420112042a b a b --=⎧⎪⎨+-=⎪⎩,解得:172a b =⎧⎪⎨=⎪⎩, ∴2722y x x =+-; (2)由题意,∵//PC AB ,点C 为(0,2-),∴点P 的纵坐标为2-,令2y =-,则27222x x +-=-, 解得:172x ,20x =, ∴点P 的坐标为(72-,2-); (3)设直线AC 的解析式为y mx n =+,则把点A 、C 代入,得402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩, ∴直线AC 的解析式为122y x =--; 过点P 作PD ∥y 轴,交AC 于点D ,如图:设点P 为(x ,2722x x +-),则点D 为(x ,122x --), ∴22172(2)422PD x x x x x =---+-=--, ∵OA=4,∴2211(4)42822APC S PD OA x x x x ∆=•=⨯--⨯=--, ∴22(2)8APC S x ∆=-++,∴当2x =-时,APC S ∆取最大值8;∴22772(2)(2)2522x x +-=-+⨯--=-, ∴点P 的坐标为(2-,5-).19.(2021·安徽中考真题)在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54 【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可; (2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1y x 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值.【详解】(1)点B 在直线y x m =+上,理由如下:将A (1,2)代入y x m =+得21m =+,解得m=1,∴直线解析式为1y x ,将B (2,3)代入1y x ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩, 解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,∵顶点在直线1y x 上, ∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 20.(2021·江苏宿迁市·中考真题)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21 / 21 【答案】(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.。
东营市初中数学二次函数真题汇编含解析
东营市初中数学二次函数真题汇编含解析一、选择题1.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t ;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误,∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确,∵t =1.5时,y =11.25,故④错误,∴正确的有②③,故选B .2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m ,设新数与原数的差为y 则2211100100y m mm m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.3.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时,(4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.4.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度5=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.5.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x -<<时,()210.ax b x c +-+>【答案】C【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x -<<,故本选项正确;故选:C .【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.6.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】 根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果. 【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.7.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③﹣43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个【答案】B【解析】 解:∵抛物线开口向下,∴a <0,∵顶点坐标(1,n ),∴对称轴为直线x =1,∴2b a - =1,∴b =﹣2a >0,∵与y 轴的交点在(0,3),(0,4)之间(包含端点),∴3≤c ≤4,∴abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故②正确;∵与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴3≤﹣3a ≤4,∴﹣43≤a ≤﹣1,故③正确; ∵顶点坐标为(1,n ),∴当x =1时,函数有最大值n ,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确;一元二次方程2ax bx c n ++=有两个相等的实数根x 1=x 2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B .点睛:本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a 、b 的关系.8.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .12C .43D .45【答案】D【解析】【分析】 求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可.【详解】解:∵y =﹣x 2+4x ﹣k =﹣(x ﹣2)2+4﹣k ,∴顶点D(2,4﹣k),C(0,﹣k),∴OC =k ,∵△ABC 的面积=12AB•OC =12AB•k ,△ABD 的面积=12AB(4﹣k),△ABC 与△ABD 的面积比为1:4,∴k =14(4﹣k), 解得:k =45. 故选:D .【点睛】 本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.9.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C【解析】【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.【详解】由图象可得,a >0,b >0,c <0,∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确,当x =﹣1时,y =a ﹣b +c <0,由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确, ∵12b a ->-,a >0,得122b a >>,故③正确, 故选C .【点睛】 本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.10.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于()A .5B .453C .3D .4【答案】A【解析】【分析】【详解】 过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM . ∵OD=AD=3,DE ⊥OA ,∴OE=EA=12OA=2. 由勾股定理得:5设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE . ∴BF OF CM AM DE OE DE AE ==,x 2x 2255-,,解得:)52x 5BF x CM 2-==,. ∴5.故选A .11.已知二次函数223(0)y ax ax a a =--≠,关于此函数的图象及性质,下列结论中不一定成立的是( )A .该图象的顶点坐标为()1,4a -B .该图象与x 轴的交点为()()1,0,3,0-C .若该图象经过点()2,5-,则一定经过点()4,5D .当1x >时,y 随x 的增大而增大【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:y=a (x 2-2x-3)=a (x-3)(x+1)令y=0,∴x=3或x=-1,∴抛物线与x 轴的交点坐标为(3,0)与(-1,0),故B 成立;∴抛物线的对称轴为:x=1,令x=1代入y=ax 2-2ax-3a ,∴y=a-2a-3a=-4a ,∴顶点坐标为(1,-4a ),故A 成立;由于点(-2,5)与(4,5)关于直线x=1对称,∴若该图象经过点(-2,5),则一定经过点(4,5),故C 成立;当x >1,a >0时,y 随着x 的增大而增大,当x >1,a <0时,y 随着x 的增大而减少,故D 不一定成立;故选:D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.12.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个 【答案】B根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a =2,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】 解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.14.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A .B .C .D .【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF 可得S=﹣t 2+4t ,配成顶点式得S=﹣(t ﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t )2=(t ﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断. 解:当0≤t≤4时,S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF=4•4﹣•4•(4﹣t )﹣•4•(4﹣t )﹣•t•t=﹣t 2+4t=﹣(t ﹣4)2+8;当4<t≤8时,S=•(8﹣t )2=(t ﹣8)2.故选D .考点:动点问题的函数图象.15.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.16.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.17.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于(-1,0),(3,0)两点,则下列说法:①abc <0;②a -b +c =0;③2a +b =0;④2a +c >0;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,其中正确的结论是( )A .①⑤B .②④C .②③④D .②③⑤【答案】D【解析】【分析】①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确.【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确; ④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确;故选D .【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y 的值.20.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确; ③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+> 所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .。
山东东营市九年级数学上册第二十二章《二次函数》知识点复习(含解析)
一、选择题1.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1 B.﹣3 C.﹣5 D.﹣7C解析:C【分析】当图象顶点在点B时,点N的横坐标的最大值为4,求出a=13;当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,求出x值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,则x=﹣5或1,即点M的横坐标的最小值为﹣5,故选:C.【点睛】本题考查的是二次函数与x轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.2.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示:)A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩A解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.3.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( )A .12B .15C .17D .20B解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数, ∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1, 同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15, 故选:B . 【点睛】本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D .D解析:D 【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项. 【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确 故选:D . 【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.5.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x;⑤当0x >时,y 随着x的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥B解析:B 【分析】根据二次函数图像可知1x =为抛物线的对称轴,可以求出与x 轴正半轴交点坐标,可解④⑤,开口朝下,与y 轴交于正半轴,可知:0a <,23c ≤≤,根据对称轴公式可得:0b >,可解①②③,根据图像可解⑥. 【详解】∵抛物线开口朝下, ∴0a <,∵与y 轴的交点在(0,2)、(0,3) 之间(包含端点), ∴23c ≤≤, ∴4ac <0, ∴24ac b <, ∴①正确;∵1x =为抛物线的对称轴, ∴12ba-=, ∴0b >,12a b =-, ∴313202a b b b b +=-+=-<,∴②不正确;∵1x =-时,0a b c -+=, ∴32c b =, ∴1424202a b c b b c c ⎛⎫++=⨯-++= ⎪⎝⎭> ∴③正确;∵1x =为抛物线的对称轴,(1,0)A -, ∴B 点坐标为(3,0),∴当0y >时,x 的取值范围为13x∴④正确;∵1x =为抛物线的对称轴, ∴1x >时,y 随着x 的增大而减小,∴⑤不正确;由图像可知:213000y y y =<,>,, ∴132y y y <<, ∴⑥不正确; 故选:B . 【点睛】本题主要考查的是二次函数图像的性质以及二次函数对称轴,数量掌握二次函数图像的性质是解决本题的关键.6.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .4C解析:C 【分析】根据抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上即可求出a 、b 、c 的正负,即可判断①;根据抛物线与x 轴的交点坐标即可判断②;把x=1代入抛物线即可判断③;求出抛物线的对称轴,根据图象即可判断④. 【详解】解:∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-2ba>0,c <0, 即b <0, ∴abc >0, ∴①正确;由抛物线与x 轴有两个交点, ∴△=b 2-4ac >0,故②正确; 由图象可知:x=1时,y=a+b+c <0, 故③正确;由图象可得,当0<x<-2ba时,y 随着x 的增大而减小,故④错误; ∴正确的个数有3个.故选:C . 【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力.7.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1 B .14或1 C .34或12D .14或12A 解析:A 【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可. 【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-,∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<, ∴2a b +=,且0,2a a b >-<, ∴02,02a b <<<<, ∴22a b -<-<, ∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =;若0a b -=时,则有1,1a b ==,从而1ab =;若1a b -=-时,则有13,22a b ==,从而34ab =;故选A . 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 8.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)1y x =++ C .21y x =+ D .2(1)1y x =-+B解析:B 【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可. 【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1. 故选:B . 【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.9.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间满足函数解析式y 112=-x 223+x 53+,由此可知该生此次实心球训练的成绩为( ) A .6米 B .8米C .10米D .12米C解析:C 【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可. 【详解】解:当y =0时,即y 112=-x 223+x 53+=0, 解得:x =﹣2(舍去),x =10.∴该生此次实心球训练的成绩为10米. 故选:C . 【点睛】本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.10.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小C解析:C 【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案. 【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大, ∴A 、B 、D 都不正确,C 正确, 故选:C . 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题11.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).【分析】由抛物线的对称性可知对称轴为可得即是方程的两个根再根据题目当中给出的条件代入解析式判断求解即可;【详解】当和时∴对称轴为∴当时y 的值相等∴∴是方程的两个根故②正确;∵当时且c >0∴>0∴>0 解析:①②④【分析】由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =, ∴对称轴为0212x +==, ∴当1x =-,3x =时,y 的值相等, ∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确; ∵当0x =时,y t =,且c >0, ∴t c =>0, ∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =, ∴在对称轴的右边,y 随x 的增大而减小, ∴a <0,∵12bx a=-=, ∴2b a =->0,故①正确; ∵当3x =时,0y =,∴930a b c ++=, ∴30a c +=, ∴3c a =-,∴443a c a a a --=-+=-, ∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+, ∴2am bm a +≤-,∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④; 故答案是:①②④. 【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键. 12.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC 解析:26-【分析】连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=22,根据三角函数和勾股定理可得点B 的坐标为(6-2-),代入抛物线()20y ax a =<即可求解. 【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D , ∵四边形OABC 是边长为2的正方形, ∴∠BOA=45°,OB=22 ∵AC 与x 轴负半轴的夹角为15°, ∴∠AOD=45°﹣15°=30°, ∴BD=122,22OB BD -82-6, ∴点B 的坐标为(6-2-), ∵点B 在抛物线()20y ax a =<的图象上,则:(262a -=解得:26a =-, 故答案为26a =- 故答案为:26-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.13.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】根据二次函数图象的对称性可知,332(),C y 中,|323||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.14.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 15.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:则在实数范围内能使得成立的取值范围是.的数据和二次函数的性质可以得到对称轴函数图象的开口方向再根据表格中的数据即可得到y-3>0成立的x 取值范围【详解】解:由表格可知该二次函数的对称轴是直线函数图象开口向上故y-3>解析:1x <-或3x >【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x 取值范围.【详解】解:由表格可知,该二次函数的对称轴是直线1312x -+==,函数图象开口向上, 故y-3>0成立的x 的取值范围是x <-1或x >3,故答案为:x <-1或x >3.【点睛】 本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.16.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m .18【分析】先建立平面直角坐标系以直线DE 为x 轴y 轴为经过点C 且垂直于AB 的直线设AB 与y 轴交于H 求出OC 的长然后设该抛物线的解析式为:根据条件求出解析式再令y=0求出x 的值即可得到DE 的长度【详解解析:18【分析】先建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于H ,求出OC 的长,然后设该抛物线的解析式为:2y ax k =+,根据条件求出解析式,再令y =0,求出x 的值,即可得到DE 的长度.【详解】解:如图所示,建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于点H ,∵AB=12,∴AH=BH=6,由题可知:OH=5,CH=4,∴OC=5+4=9,∴B (6,5),C (0,9)设该抛物线的解析式为:2y ax k =+,∵顶点C (0,9),∴抛物线29y ax =+,代入B (6,5)得5=36a +9,解得19a =-, ∴抛物线解析式为2199y x =-+, 当y=0时,21099x =-+, 解得x =±9,∴E (9,0),D (-9,0),∴OE=OD=9,∴DE=OD+OE=9+9=18,故答案为:18.【点睛】本题主要考查二次函数的综合应用问题,解答本题的关键是正确地建立平面直角坐标系,是一道非常典型的试题.17.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______.1<a≤2【分析】画出图象找到该抛物线在MN 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界利用与y 交点位置可得a 的取值范围【详解】解:抛物线y =ax2+2ax +a−2(a >0)化为顶点解析:1<a≤2【分析】画出图象,找到该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界,利用与y 交点位置可得a 的取值范围.【详解】解:抛物线y =ax 2+2ax +a−2(a >0)化为顶点式为y =a (x +1)2−2,∴函数的对称轴:x =−1,顶点坐标为(−1,−2),∴M 和N 两点关于x =−1对称,根据题意,抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(−1,0),(−1,−1),(−1,−2),(−2,0), 如图所示:∵当x =0时,y =a−2,∴−1<a−2≤0,当x =1时,y =4a−2>0,即:120420a a --≤-⎧⎨⎩<>, 解得1<a≤2,故答案为:1<a≤2.【点睛】本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y 轴交点位置是本题的关键.18.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c 2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83=42a b c ⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a <0,则该函数图像开口向下. 故答案为:下.【点睛】 本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键. 19.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.①③⑤【分析】根据二次函数的图象及性质即可判断【详解】解:由图象可知:该抛物线的对称轴为x=1∴抛物线与x 轴的另外一个交点为:(30)∵对称轴为x=−=1从而可知:2a+b=0故①正确;∵抛物线与x解析:①③⑤【分析】根据二次函数的图象及性质即可判断.【详解】解:由图象可知:该抛物线的对称轴为x=1,∴抛物线与x 轴的另外一个交点为:(3,0)∵对称轴为x=−2b a=1, 从而可知:2a+b=0,故①正确;∵抛物线与x 轴有两个交点(-1,0),(3,0)∴△=b 2-4ac >0,而②b 2-4ac <0,故②错误;由图象可知:当y >0时,x 的取值范围是-1<x <3,故③正确;由图象可知:当x <1时,y 随x 增大而增大,故④错误;若t 为任意实数,x=1时,函数取得最大值,故a+b+c≥at 2+bt+c ,∴a+b≥at 2+bt ,故⑤正确,所以,结论正确的是①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.20.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.三、解答题21.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2y x 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C -都是正方形. (1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.解析:(1)1A (1,1),1B (0,2),1C (-1,1)(2)223⨯ ,22n ⨯.【分析】(1)直接根据图象以及二次函数的解析式求出点的坐标即可;(2)表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律即可;【详解】解:(1)∵四边形111A OC B 是正方形且关于y 轴对称,∴ ∠11AOB =45°,又∵点1A 在二次函数图象上, 设1A (x ,x),∴2x x = 且x >0,∴x=1即点1A (1,1),∴1OA ,12OB = ,∴1A (1,1),1B (0,2),1C (-1,1);(2)根据正方形的性质,1OA 与y 轴的夹角为45°,故直线1OA 解析式为y x =,∵1B (0,2),求得直线11C B 的解析式为2y x =+,进而求得2A (2,4),2C (-2,4),2B (0,6),同时求得3B (0,12) ,于是12OB =,124B B =,236B B =,正方形111OA B C 面积=12222⨯⨯=, 正方形1222B A B C 面积=21448=222⨯⨯=⨯, 正方形2333B A B C 面积=216618=232⨯⨯=⨯, 正方形1n n n n B A B C -的面积=212222n n n ⨯⨯=⨯; 【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律是解题的关键;22.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由. (3)几秒时PCQ △的面积最大,最大面积是多少?解析:(1)2s 或4s ;(2)不存在,证明见解析;(3)3秒,92【分析】(1)根据题意,利用t 表示个线段长度,根据面积为4可列出方程求解.(2)利用第一问中PCQ △的面积的表示方法,使其等于5,根据判别式判断方程是否有解.(3)利用求得的PCQ △的面积的表示的二次函数解析式,求出二次函数的最大值,符合题意即为所求最大面积.【详解】解:(1)由题意得:AP CQ t ==,6PC AC AP t ∴=-=-, 11(6)422PCQ S PC CQ t t ∴=⋅=-⋅=, 2680t t ∴-+=,(2)(4)0t t --=,12t =,24t =,∴2s 或4s 后PCQ △的面积为4.(2)1(6)52PCQ S t t =-=,26100t t -+=, 2(6)41040∆=--⨯=-<,方程无解,故PCQ △的面积不能为5.(3)1(6)2PCQ St t =-()216992t t =--+-219(3)22t =--+,, ∴当3t =时,max 92PCQ S =. 【点睛】 本题考查的是一元二次方程以及二次函数的应用,三角形的面积公式的求法和一元二次方程的解的情况.23.如图1,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若OC =2OA .(1)求抛物线的解析式;(2)抛物线对称轴l 上有一动点P ,当PC +PA 最小时,求出点P 的坐标;(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l'∥l,交抛物线于点N,连接CN,BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?解析:(1)y=x2-3x+2;(2)点P的坐标为(32,12);(3)当t=1时,S△BCN的最大值为1.【分析】(1)先确定c,然后再根据OC=2OA确定A点的坐标,再将A点的坐标代入解析式求得b 即可解答;(2)如图:作点A关于直线l对称的对称点,即点B,连接BC,与直线l交于点P',此时PA+PB最小;然后求得直线BC的解析式,最后确定P'的坐标即可;(3)先求出M点坐标,然后再根据S△BCN=S△MNC+S△MNB确定二次函数关系式,最后运用二次函数求最值即可.【详解】解:(1)∵抛物线y=x2+bx+c过点C(0,2),∴c=2又∵OC=2OA,∴OA=1,即A(1,0);又∵点A在抛物线y=x2+bx+2上,∴0=12+b×1+2,b=-3;∴抛物线对应的二次函数的解析式为y=x2-3x+2;(2)如图:作点A关于直线l对称的对称点,即点B,连接BC,与直线l交于点P',则PA+PC的最小值为P'B+P'C=BC,设BC的解析式为y=mx+n,令x2-3x+2=0,解得:x=1或2,∴B(2,0),又∵C(0,2),∴202m nn+=⎧⎨=⎩,解得:12mn=-⎧⎨=⎩,∴直线BC的解析式为:y=-x+2,令x=32,代入,得:y=12,∴当PC +PA 最小时,点P 的坐标为(32,12); (3)如图:∵点M 是直线l '和线段BC 的交点,∴M 点的坐标为(t ,-t +2)(0<t <2),∴MN =-t +2-(t 2-3t +2)=-t 2+2t ,,∴S △BCN =S △MNC +S △MNB =12MN ▪t +12MN ▪(2-t )=12MN ▪(t +2-t )=MN =-t 2+2t (0<t <2), ∴S △BCN =-t 2+2t =-(t -1)2+1,∴当t =1时,S △BCN 的最大值为1.【点睛】本题考查了二次函数的综合应用,正确求出函数解析式并掌握数形结合思想是解答本题的关键.24.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式及自变量x 的取值范围;(2)若墙的最大可用长度为9米,求此时当AB 为多少米时长方形花圃的面积最大,最大面积是多少?解析:(1)()232408y x x x =-+<<;(2)当5x = 时,45max y =平方米.【分析】(1)花圃的面积=AB×(篱笆长-3AB ),根据边长为正数可得自变量的取值范围;(2)先结合(1)及AD 不大于9可得自变量的取值范围,再根据二次函数图像性质,在自变量范围内变化取最值.【详解】解:(1)∵(2)·43S BC AB x x ==-,∴2324y x x =-+,由题意00AB BC >>,,即02430x x >>,-,解得08x << ;(2)∵墙的最大可用长度为9米,即02439x <≤- ,解得,58x ≤<,∴()232458y x x x -+=≤<, 二次函数图像开口向下,对称轴为()24423x =-=⨯-, 58x ≤<在对称轴右侧,y 随着x 的增大而减小,∴当5x =时,长方形花圃的面积最大,235448=45y =+⨯-(-),∴当AB 为5米时,长方形花圃的面积最大,最大面积是45平方米.【点睛】本题主要考查实际问题与二次函数图形问题、二次函数的最值、一元一次不等式等.得到BC 边长的关系式和熟练掌握二次函数图像的性质是解答本题关键;得到自变量的取值是解本题的易错点.25.情境阅读:小敏同学期中复习时,再读九年级上册一本辅导书“一元二次方程”的“数学活动”时,重新思考了“活动围长方形”.下面呈现的是“活动内容”及“小敏反思”的部分:问题解决:请根据“小敏发现”,应用二次函数解决“能围出面积大于900cm 2的长方形吗?” 解析:不能围出,理由见解析.【分析】设长方形的长为xcm ,围成的面积为2ycm ,再根据长方形的面积公式可得y 与x 之间的函数关系式,然后利用二次函数的性质即可得.【详解】不能围出,理由如下:设长方形的长为xcm ,围成的面积为2ycm , 则12022x y x ,即()60y x x =-, 将其化成顶点式为()230900y x =--+,由二次函数的性质可知,当30x =时,y 取得最大值,最大值为900,即用长度为120cm 长的细绳围成的长方形的面积最大为2900cm ,故不能围出面积大于2900cm 的长方形.【点睛】本题考查了二次函数的几何应用,熟练掌握二次函数的性质是解题关键.26.某超市经销一种商品,每千克成本为40元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(2)为了尽可能提高销量且保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少? 解析:(1)2160y x =-+;(2)50元;(3)定价60元,最大利润800元.【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组,得出解后根据x 求出对应的y ,即可求解;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(45,70)、(50,60)代入得:45705060k b k b +=⎧⎨+=⎩, 解得:2160k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2160y x =-+;(2)由题意得:()()402160600x x --+=,整理得212035000x x -+=,解得125070x x ==,,∵要求尽可能提高销量,当150x =时,销量为70千克,当270x =时,销量为20千克 ∴270x =不合题意,舍去答:为保证某天获得600元的销售利润,则该天的销售单价应定为50元/千克; (3)设当天的销售利润为w 元,则:()()402160w x x =--+22(60)800x =--+,∵﹣2<0∴当60x =时,w 最大值=800.答:当销售单价定为60元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.27.阅读下列材料:春节回家是中国人的一大情结,春运车票难买早已是不争的事实.春节回家一般都要给父母、亲戚带点年货,坐车回去不好携带,加上普通小客车中签率低以及重大节假日高速公路小客车免费通行等因素,所以选择春节租车回家的人越来越多.这都对汽车租赁市场起到明显的拉动作用,出现了很多的租赁公司.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元.当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出). (1)公司每日租出x 辆车时,每辆车的日租金收入为______元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益才能盈利?解析:(1)150050x -(020x ≤≤,x 为整数);(2)当日租出15辆时,租赁公司的日收益最大,最大值为5000元;(3)当每日租出520x <≤(x 为整数)辆时,租赁公司的日收益才能盈利.【分析】(1)根据题意可直接进行求解;(2)由题意得日租金收入=每辆车的日租金×日租出车辆的数量,日收益=日租金收入-平均每日各项支出,据此可求函数关系式,然后根据二次函数的性质进行求解即可; (3)当租赁公司的日收益不盈也不亏时,即0y =,求解,进而可根据题意求解.【详解】解:(1)每辆车的日租金是()5005020150050x x +-=-(元)(020x ≤≤,x 为整数);故答案为()150050x -;。
东营市中考数学期末二次函数和几何综合汇编
东营市中考数学期末二次函数和几何综合汇编一、二次函数压轴题1.如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y=﹣83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB 上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m 的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.2.如图,在平面直角坐标系中,抛物线y=﹣ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC及抛物线的解析式,并求出D点的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(3)若点P是x轴上一个动点,过P作直线1∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.3.如图,抛物线213222y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 的坐标为()0m ,,过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、点B 、点C 的坐标;(2)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究当m 为何值时,四边形CQMD 是平行四边形;(3)在点P 的运动过程中,是否存在点Q ,使BDQ △是以BD 为直角边的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.4.基本模型如图1,点A ,F ,B 在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE ∽△BCF . (1)模型拓展:如图2,点A ,F ,B 在同一直线上,若∠A=∠B=∠EFC ,求证:△AFE ∽△BCF ;(2)拓展应用:如图3,AB 是半圆⊙O 的直径,弦长AC=BC=4,E ,F 分别是AC ,AB 上的一点,若∠CFE=45°.若设AE=y ,BF=x ,求出y 与x 的函数关系式及y 的最大值;(3)拓展提升:如图4,在平面直角坐标系柳中,抛物线y=﹣(x+4)(x ﹣6)与x 轴交于点A ,C ,与y 轴交于点B ,抛物线的对称轴交线段BC 于点E ,探求线段AB 上是否存在点F ,使得∠EFO=∠BAO ?若存在,求出BF 的长;若不存在,请说明理由.5.已知抛物线2:23G y mx mx =--有最低点为F .(1)当抛物线经过点E (-1,3)时,①求抛物线的解析式;②点M 是直线EF 下方抛物线上的一动点,过点M 作平行于y 轴的直线,与直线EF 交于点N ,求线段MN 长度的最大值;(2)将抛物线G 向右平移m 个单位得到抛物线1G .经过探究发现,随着m 的变化,抛物线1G 顶点的纵坐标y 和横坐标x 之间存在一个函数,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H ,抛物线G 与函数H 的交点为P ,请结合图象求出点P 的纵坐标的取值范围.6.综合与探究如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧).(1)求抛物线的解析式及点B 坐标;(2)设该抛物线的顶点为点H ,则BCH S =△______;(3)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E .求ME 长的最大值及点M 的坐标;(4)在(3)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.7.综合与探究如图1,抛物线2y x bx c =-++与x 轴交于,A B 两点(点A 在点B 的左侧),其中(1,0),(3,0)A B -,与y 轴相交于点C ,抛物线的对称轴与x 轴交于点E .点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)如图1,P 是第一象限内抛物线上的一个动点,连接CE ,过点P 作PF ⊥直线CE 于点F ,求PF 的最大值;(3)如图2,连接,,AC BC PB ,抛物线上是否存在点P ,使CBP ACO ABC ∠+∠=∠?若存在,请直接写出点P 的坐标;若不存在,请说明理由.8.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (﹣12,0),B (2,0)两点,与y 轴交于点C (0,1).(1)求抛物线的函数表达式;(2)如图1,点D 为第一象限内抛物线上一点,连接AD ,BC 交于点E ,求DE AE的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第四象限内是否存在这样的点P ,使△BPQ ∽△CAB .若存在,请直接写出所有符合条件的点P 的坐标,若不存在,请说明理由.9.已知抛物线y =x 2+bx +c 的顶点为P ,与y 轴交于点A ,与直线OP 交于点B .(1)如图1,若点P 的横坐标为1,点B 的坐标为(3,6),①试确定抛物线的解析式;②若当m ≤x ≤3时,y =x 2+bx +c 的最小值为2,最大值为6,求m 的取值范围; (2)在(1)的条件下,若M 点是直线AB 下方抛物线上的一点,且S △ABM ≥3,求M 点横坐标的取值范围;(3)如图2,若点P 在第一象限,且PA =PO ,过点P 作PD ⊥x 轴于点D ,将抛物线y =x 2+bx +c 平移,平移后的抛物线经过点 A 、D ,与x 轴的另一个交点为C ,试探究四边形OABC 的形状,并说明理由.10.某校九年级数学兴趣社团的同学们学习二次函数后,有兴趣的在一起探究“函数2||y x x =-的有关图象和性质”.探究过程如下: (1)列表:问m =______.x … 3- 2- 1- 0 1 2 122... y (6)2 0 0 0 2 m … (2)请在平面直角坐标系中画出图象.(3)若方程2||x x p -=(p 为常数)有三个实数根,则p =______.(4)试写出方程2||x x p -=(p 为常数)有两个实数根时,p 的取值范围是______.二、中考几何压轴题11.(1)尝试探究:如图①,在ABC ∆中,90ACB ∠=︒,30A ∠=︒,点E 、F 分别是边BC 、AC 上的点,且EF ∥AB .①AFBE 的值为_________;②直线AF 与直线BE 的位置关系为__________;(2)类比延伸:如图②,若将图①中的CEF ∆绕点C 顺时针旋转,连接AF ,BE ,则在旋转的过程中,请判断AF BE 的值及直线AF 与直线BE 的位置关系,并说明理由;(3)拓展运用:若3BC =,2CE =,在旋转过程中,当,,B E F 三点在同一直线上时,请直接写出此时线段AF 的长.12.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.13.如图(1),在矩形ABCD 中,8,6AB AD ==,点,E F 分别是边,DC DA 的中点,四边形DFGE 为矩形,连接BG .(1)问题发现在图(1)中,CE BG=_________; (2)拓展探究 将图(1)中的矩形DFGE 绕点D 旋转一周,在旋转过程中,CE BG 的大小有无变化?请仅就图(2)的情形给出证明;(3)问题解决当矩形DFGE 旋转至,,B G E 三点共线时,请直接写出线段CE 的长.14.石家庄某学校数学兴趣小组利用机器人开展数学活动,在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B之间,机器人乙同时从端点B 出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计,兴趣小组成员探究这两个机器人迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.(观察)①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度.②若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为35个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度.(发现)设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度,兴趣小组成员发现了y与x的函数关系,并画出了部分函数图象(线段OP,不包括点O,如图2所示)①a=;②分别求出各部分图象对应的函数解析式,并在图2中补全函数图象.(拓展)设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇时,相遇地点与点A之间的距离为y个单位长度,若这两个机器人在第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,则他们第一次迎面相遇时,相遇地点与点A之间的距离x的取值范围是.(直接写出结果)15.几何探究:(问题发现)(1)如图1所示,△ABC和△ADE是有公共顶点的等边三角形,BD、CE的关系是_______(选填“相等”或“不相等”);(请直接写出答案)(类比探究)(2)如图2所示,△ABC和△ADE是有公共顶点的含有30角的直角三角形,(1)中的结论还成立吗?请说明理由;(拓展延伸)(3)如图3所示,△ADE和△ABC是有公共顶点且相似比为1 : 2的两个等腰直角三角形,将△ADE绕点A自由旋转,若22BC ,当B、D、E三点共线时,直接写出BD的长.16.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(问题理解)(1)如图1,点A、B、C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD、CD.求证:四边形ABCD是等补四边形;(拓展探究)(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;(升华运用)(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F.若CD=6,DF=2,求AF的长.17.(1)问题发现如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC 上一动点,连接DE.填空:①则ADEC的值为______;②∠EAD的度数为_______.(2)类比探究如图2,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E 是线段AC 上一动点,连接DE .请求出AD EC的值及∠EAD 的度数; (3)拓展延伸如图3,在(2)的条件下,取线段DE 的中点M ,连接AM 、BM ,若BC=4,则当△ABM 是直角三角形时,求线段AD 的长.18.(阅读理解)定义:如果四边形的某条对角线平分一组对角,那么把这条对角线叫“协和线”,该四边形叫做“协和四边形”.(深入探究)(1)如图1,在四边形ABCD 中,AB BC =,AD CD =,请说明:四边形ABCD 是“协和四边形”.(尝试应用)(2)如图2,四边形ABCD 是“协和四边形”,BD 为“协和线”,AB AD ⊥,60ADC ∠=︒,若点E 、F 分别为边AD 、DC 的中点,连接BE ,BF ,EF .求:①DEF 与BEF 的面积的比;②EBF ∠的正弦值.(拓展应用)(3)如图3,在菱形ABCD 中,8AB =,120BAD ∠=︒,点E 、F 分别在边AD 和BC 上,点G 、K 分别在边AB 和CD 上,点N 为BE 与GF 的交点,点M 在EF 上,连接MN ,若四边形BGEF ,DHMK 都是“协和四边形”,“协和线”分别是GF 、HK ,求MN 的最小值.19.(问题情境)(1)如图1,在矩形ABCD 中,将矩形沿AC 折叠,点B 落在点E 处,设AD 与CE 相交于点F ,那么AC 与DE 的位置关系为 .(类比探究)(2)如图2,若四边形ABCD 为平行四边形,上述“问题情境”中的条件不变,①猜想AC 与DE 的位置关系,并证明你的结论;②当∠B 与∠ACB 满足什么数量关系时,△ABC ∽△FEA ?请说明理由;(拓展应用)(3)如图3,▱ABCD 中,∠B =60°,AB =6,上述“问题情境”中的条件不变,当△AEC 是直角三角形时,请直接写出DE 的长为 .20.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法. 如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B '落在MN 上,折痕为EC ,连接DB ',如图2.①点B '在以点E 为圆心,_________的长为半径的圆上;②B M '=_________;③DB C '为_______三角形,请证明你的结论.拓展延伸(2)当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点B )折叠后,点B 的对应点B '落在正方形ABCD 内部或边上.①ABB '面积的最大值为____________;②连接AB ',点P 为AE 的中点,点Q 在AB '上,连接,PQ AQP AB E '∠=∠,则2B C PQ '+的最小值为____________.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.F解析:(1)连线见解析,二次函数;(2)22;(3)m=0或m=4 3【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK (AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【详解】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG =DH ,∵直线AC 的解析式为y =﹣83x +4, ∴x =0时,y =4,∴A (0,4),又∵B (﹣2,0),设直线AB 的解析式为y =kx +b ,∴204k b b ⎧-+=⎨=⎩, 解得24k b , ∴直线AB 的解析式为y =2x +4,过点F 作FR ⊥x 轴于点R ,∵D 点的横坐标为m ,∴F (﹣m ,﹣2m +4),∴ER =2m ,FR =﹣2m +4,∵EF 2=FR 2+ER 2,∴l =EF 2=8m 2﹣16m +16=8(m ﹣1)2+8,令﹣83x +4=0,得x =32, ∴0≤m ≤32. ∴当m =1时,l 的最小值为8,∴EF 的最小值为22.(3)①∠FBE 为定角,不可能为直角.②∠BEF =90°时,E 点与O 点重合,D 点与A 点,F 点重合,此时m =0.③如图3,∠BFE =90°时,有BF 2+EF 2=BE 2.由(2)得EF 2=8m 2﹣16m +16,又∵BR =﹣m +2,FR =﹣2m +4,∴BF 2=BR 2+FR 2=(﹣m +2)2+(﹣2m +4)2=5m 2﹣20m +20,又∵BE 2=(m +2)2,∴(5m 2﹣20m +8)+(8m 2﹣16m +16)2=(m +2)2,化简得,3m 2﹣10m +8=0,解得m 1=43,m 2=2(不合题意,舍去), ∴m =43. 综合以上可得,当△BEF 为直角三角形时,m =0或m =43. 【点睛】本题考查了二次函数的综合应用,考查了描点法画函数图象,待定系数法,全等三角形的判定与性质,坐标与图形的性质,二次函数的性质,勾股定理,中心对称的性质,直角三角形的性质等知识.准确分析给出的条件,结合一次函数的图象进行求解,熟练掌握方程思想及分类讨论思想是解题的关键..2.D解析:(1)y =3x +3,y =﹣x 2+2x +3,顶点D 的坐标为(1,4);(2)四边形PMAC 的面积的最大值为10516,此时点P 的坐标为(94,32);(3)点Q 的坐标为(2,3)或(13)或(13).【分析】(1)先求出点C 坐标,然后利用待定系数法即可求出直线AC 及抛物线的解析式,把抛物线的一般式转化为顶点式即可求出D 点的坐标;(2)先根据待定系数法求出直线BD 的解析式,设点P 的横坐标为p ,然后根据S 四边形PMAC =S △OAC +S 梯形OMPC 即可得出S 四边形PMAC 与p 的关系式,再根据二次函数的性质解答即可; (3)由题意得PQ ∥AC 且PQ =AC ,设点P 的坐标为(x ,0),当点Q 在x 轴上方时,则点Q 的坐标为(x +1,3),把点Q 的坐标代入抛物线的解析式即可求出x ,进而可得点Q 坐标;当点Q 在x 轴下方时,则点Q 的坐标为(x ﹣1,﹣3),同样的方法求解即可.【详解】(1)∵抛物线y =﹣ax 2+bx +3与y 轴交于点C ,∴点C (0,3),设直线AC 的解析式为y =k 1x +b 1(k 1≠0).∵点A (﹣1,0),点C (0,3),∴11103k b b -+=⎧⎨=⎩,解得:1133k b =⎧⎨=⎩, ∴直线AC 的解析式为y =3x +3.∵抛物线y =﹣ax 2+bx +3与x 轴交于A (﹣1,0),B (3,0)两点,∴309330a b a b --+=⎧⎨-++=⎩,解得:12a b =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x +3.∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4);(2)设直线BD 的解析式为y =kx +b .∵点B (3,0),点D (1,4),∴304k b k b +=⎧⎨+=⎩,得26k b =-⎧⎨=⎩, ∴直线BD 的解析式为y =﹣2x +6.∵P 为线段BD 上的一个动点,∴设点P 的坐标为(p ,﹣2p +6).∵OA =1,OC =3,OM =p ,PM =﹣2p +6,∴S 四边形PMAC =S △OAC +S 梯形OMPC 111326322p p =⨯⨯+-++⨯()=﹣p 292+p 32+=﹣(p 94-)210516+, ∵1<p <3,∴当p 94=时,四边形PMAC 的面积取得最大值为10516,此时点P 的坐标为(94,32); (3)∵直线l ∥AC ,以点A 、P 、Q 、C 为顶点的四边形是平行四边形,∴PQ ∥AC 且PQ =AC .设点P 的坐标为(x ,0),由A (﹣1,0),C (0,3),当点Q 在x 轴上方时,则点Q 的坐标为(x +1,3),此时,﹣(x +1)2+2(x +1)+3=3,解得:x 1=﹣1(舍去),x 2=1,∴点Q 的坐标为(2,3);当点Q 在x 轴下方时,则点Q 的坐标为(x ﹣1,﹣3),此时,﹣(x ﹣1)2+2(x ﹣1)+3=﹣3,整理得:x 2﹣4x ﹣3=0,解得:x 1=27x 2=27-∴点Q 的坐标为(173)或(17,﹣3),综上所述:点Q 的坐标为(2,3)或(17+3)或(17,﹣3).【点睛】本题是二次函数综合题,主要考查了待定系数法求函数的解析式、二次函数的性质、平行四边形的性质和一元二次方程的解法等知识,综合性强、具有一定的难度,属于中考压轴题,熟练掌握二次函数的图象与性质、灵活应用相关知识是解题的关键.3.C解析:(1)1,04,00,2B C A -(),(),()(2)当2m =,四边形CQMD 是平行四边形(3)存在,点Q 的坐标为3,2(),()8,18- ,()1,0-【分析】(1)根据函数解析式列方程即可;(2)根据平行四边形的判定,用含未知数的值表示QM 的长度,从而可求解;(3)设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ,分两种情况讨论:①当∠QBD=90时,由勾股定理可得:222BQ BD DQ +=,②当∠QDB=90时,由勾股定理可得:222BQ BD DQ =+,可解出m 的值.【详解】(1)令0x =,则2y =,C 点的坐标为(0,2);令0y =,则2130222x x =-++ 解得121,4x x =-=,点A 为(-1,0);点B 为(4,0) ∴1,04,00,2B C A -(),(),()(2)如图1所示:点C 与点D 关于x 轴对称,点()0,2D -,设直线BD 的解析式为2y kx =-,将()4,0B 代入得:420k -= 解得12k = ∴直线BD 的解析式为:122y x =- ∵//QM DC∴当=QM DC 时,四边形CQMD 是平行四边形设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ,则1,22M m m ⎛⎫- ⎪⎝⎭ ∴2131224222m m m ⎛⎫-++--= ⎪⎝⎭解得12m = 20m =(不合题意,舍去)∴当2m =,四边形CQMD 是平行四边形(3)存在,设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ∵BDQ △是以BD 为直角边的直角三角形∴①当∠QBD=90时,由勾股定理可得:222BQ BD DQ +=即()22222213134220222222m m m m m m ⎛⎫⎛⎫-+-+++=+-+++ ⎪ ⎪⎝⎭⎝⎭ 解得13m = 24m =(不合题意,舍去)∴Q 点的坐标为3,2()②当∠QDB=90时,由勾股定理可得:222BQ BD DQ =+即()22222213134220222222m m m m m m ⎛⎫⎛⎫-+-++=++-+++ ⎪ ⎪⎝⎭⎝⎭ 解得18m = 21m =-Q 点的坐标为()8,18- ()1,0-综上所述:点Q 的坐标为3,2(),()8,18- ,()1,0-.【点睛】本题考查了一次函数和抛物线的综合问题,解题的关键在于拿出函数解析式,会用含未知数的代数式表示出关键的点的坐标和线段的长度.4.F解析:(1)证明详见解析;(2)y=﹣x 2+x (0≤x≤8),当x=4时,y 最大=2;(3)存在一点F ,使得∠EFO=∠BAO ;或. 【解析】试题分析:(1)利用已知得出∠E=∠CFB ,进而利用相似三角形的判定方法得出即可;(2)利用(1)得出△AFE ∽△BCF ,则,进而求出y 与x 的函数关系式及y 的最大值;(3)首选求出A,C点坐标,再得到△CEH∽△CBO,求出BE的长,再利用△AFO∽△BEF,求出BF的长.试题解析:(1)证明:如图2,∵∠A=∠EFC,∴∠E+∠EFA=∠EFA+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:如图3,∵AB是⊙O的直径,∴∠ACB=90°,∴AB==8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴,即,∴y=﹣x2+x(0≤x≤8),当x=4时,y最大=2;(3)解:如图4,存在一点F,使得∠EFO=∠BAO,理由:连接EF,FO,抛物线y=﹣(x+4)(x﹣6),对称轴为x==1,把x=0代入y=﹣(x+4)(x﹣6),得y=8,∴B(0,8),即OB=8把y=0代入y=﹣(x+4)(x﹣6)得x1=﹣4,x2=6,∴A(﹣4,0),C(6,0),∴OC=6,OA=4,AC=10,∴BC===10,∴AB===4,∵EH∥BO,∴△CEH∽△CBO,∴,即,解得:BE=,∵BC=AC=10,∴∠CAB=∠CBA∴∠CAB=∠CBA=∠EFO ,由(1)可得△AFO ∽△BEF , ∴,设BF=x ,则, 化简得:x 2﹣4x+=0, 解得:x 1=,x 2=, ∴当BF=或时,∠EFO=∠BAO .考点:二次函数综合题.5.E解析:(1)①2243y x x =--;②2;(2)2(1)y x x =-->;(3)43P y -<<-【分析】(1)①把点E (-1,3)代入223y mx mx =--求出m 的值即可;②先求出直线EF 的解析式,设出点M 的坐标,得到MN 的二次函数关系式,根据二次函数的性质求解即可; (2)写出抛物线G 的顶点式,根据平移规律即可得到1G 的顶点式,进而得到1G 的顶点坐标(1,3)m m +--,即1,3x m y m =+=--,消去m ,得到y 与x 的函数关系式,再由0m >即可求得x 的取值范围;(3)求出抛物线怛过点A (2,-3),函数H 的图象恒过点B (2,-4),从图象可知两函数图象的交点P 应在A ,B 之间,即点P 的纵坐标在A ,B 点的纵坐标之间,从而可得结论.【详解】解:(1)①∵抛物线2:23G y mx mx =--经过点E (-1,3)∴233m+m =-∴2m =∴抛物线的解析式为:2243y x x =--②如图,∵点F 为抛物线的最低点,∴22243=2(1)5y x x x =----∴(1,5)F -设直线EF 的解析式为:y kx b =+把E (-1,3),F (1,-5)代入得,35k b k b -+=⎧⎨+=-⎩解得,41k b =-⎧⎨=-⎩∴直线EF 的解析式为:41y x =--设2(,243)M a a a --,则(,41)N a a --∴22(41)243)=(22M a N a a a ------+=∵20-<∴当0a =时,MN 有最大值,最大值为2;(2)∵抛物线2:(1)3G y m x m =---∴平移后的抛物线21:(1)3G y m x m m =----∴抛物线1G 的顶点坐标为(1,3)m m +--∴1,3x m y m =+=--∴132x y m +=+-=-∴2y x =--∵0,1m m x >=-∴10x ->∴1x >∴y 与x 的函数关系式为:2(1)y x x =-->(3)如图,函数:2(1)H y x x =-->的图象为射线,1x =时,123y =--=-;2x =时,224y =--=-∴函数H 的图象恒过点(2,-4)∵抛物线2:(1)3G y m x m =---,当1x =时,3y m =--;当2x =时,33y m m =--=-;∴抛物线G 恒过点A (2,-3)由图象可知,若抛物线G 与函数H 的图象有交点P ,则有B P A y y y <<∴点P 纵坐标的取值范围为:43P y -<<-【点睛】本题考查了二次函数综合题,涉及到待定系数法求解析式、二次函数的性质和数形结合思想等知识,熟练运用二次函数的性质解决问题是本题的关键.6.A解析:(1)223y x x =--,()3,0B ;(2)3;(3)ME 的最大值为94,点M 的坐标为33,22M ⎛⎫- ⎪⎝⎭;(4)存在,()10,0P ;2332,02P ⎛⎫ ⎪⎝⎭;3332,02P ⎛⎫ ⎪⎝⎭;43,02P ⎛⎫ ⎪⎝⎭【分析】(1)由直线y =-3x -3与x 轴交于点A ,与y 轴交于点C ,得A (-1,0)、C (0,-3),将A (-1,0)、C (0,-3)代入y =x 2+bx +c ,列方程组求b 、c 的值及点B 的坐标;(2)设抛物线的对称轴交BC 于点F ,求直线BC 的解析式及抛物线的顶点坐标,再求出点F 的坐标,推导出S △BCH =12FH •OB ,可求出△BCH 的面积;(3)设点E 的横坐标为x ,用含x 的代数式表示点E 、点M 的坐标及线段ME 的长,再根据二次函数的性质求出线段ME 的最大值及点M 的坐标;(4)在x 轴上存在点P ,使以点M 、B 、P 为顶点的三角形是等腰三角形.由(3)得D(32,0),M (32,-32),由勾股定理求出OM =BM ,由等腰三角形PBM 的腰长为32或2求出OP 的长即可得到点P 的坐标. 【详解】解:(1)∵直线y =-3x -3与x 轴、y 轴分别交于点A 、C ,当0y =时,330x --= 1x =-∴()1,0A -当0x =时,3y =-∴()03C -,∵抛物线y =x 2+bx +c 经过点A 、C ,∴103b c c -+=⎧⎨=-⎩ ∴23b c =-⎧⎨=-⎩∴抛物线的解析式是:223y x x =--当0y =时,2230x x --=解得:11x =- 23x =∴()3,0B(2)设抛物线的对称轴交BC 于点F ,交x 轴于点G .设直线BC 的解析式为y =kx -3,则3k -3=0,解得k =1,∴y =x -3;∵y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点H (1,-4),当x =1时,y =1-3=-2,∴F (1,-2),∴FH =-2-(-4)=2, ∴11112332222BCH S FH OG FH BG FH OB ∆=⋅+⋅=⋅=⨯⨯=. 故答案为:3.(3)由(1)知()3,0B ,()03C -,直线BC 的解析式是:3y x =- 设()()M ,303t t t -≤≤,则()2,23E t t t -- ∴()22239(3)23324ME t t t t t t ⎛⎫=----=-+=--+ ⎪⎝⎭ 当32t =时,ME 的最大值94= ∴点M 的坐标为33,22M ⎛⎫- ⎪⎝⎭ (4)存在,如图3,由(2)得,当ME 最大时,则D (32,0),M (32,−32), ∴DO =DB =DM =32; ∵∠BDM =90°,∴OM =BM 223332()()22+=.点P 1、P 2、P 3、P 4在x 轴上,当点P 1与原点O 重合时,则P 1M =BM P 1(0,0);当BP 2=BM 时,则OP 2=3=∴P 20); 当点P 3与点D 重合时,则P 3M =P 3B =32, ∴P 3(32,0);当BP 4=BM 时,则OP 4=3=∴P 4.综上所述,12343(0,0),(,0),2P P P P . 【点睛】 此题重点考查二次函数的图象与性质、等腰三角形的判定、用待定系数法求函数解析式、求抛物线的顶点坐标以及勾股定理、二次根式的化简等知识和方法,解最后一题时要注意分类讨论,求出所有符合条件的点P 的坐标.7.F解析:(1)抛物线的表达式为2y x 2x 3=-++;(2) PF =最大;(3)存在,点P 的坐标为:(2,3)或211,39⎛⎫- ⎪⎝⎭ 【分析】(1)把点的坐标分别代入解析式,转化为方程组求解即可;(2)设点P 的横坐标为m ,用含有m 的代数式表示PF ,转化为二次函数最值问题求解即可;(3)利用构造平行线法,三角形全等法,构造出符合题意的角,后利用交点思想求解即可.【详解】解:(1)抛物线2y x bx c =-++与x 轴交于(1,0),(3,0)A B -两点,10,930.b c b c --+=⎧∴⎨-++=⎩ 解得2,3.b c =⎧⎨=⎩∴抛物线的表达式为2y x 2x 3=-++.(2)∵抛物线的表达式为2y x 2x 3=-++.∴对称轴为直线12b x a ==-, ∴点E 的坐标为(1,0),1OE =.令0x =,代入抛物线的表达式2y x 2x 3=-++,得3y =,∴点C 的坐标为(0,3),3OC =. 在Rt OCE 中,3,1OC OE ==,223110CE ∴=+=.110sin 1010OCE ∴∠==. 设直线CE 的表达式为y kx n =+,由经过(0,3),(1,0)C E ,3,0.n k n =⎧∴⎨+=⎩解得3,3.k n =-⎧⎨=⎩ ∴直线CE 的表达式为33y x =-+.如答图,过点P 作//PG y 轴,交CE 于点G .设点P 的横坐标为m ,则()2,23,(,33)P m m m G m m -++-+2223(33)5PG m m m m m ∴=-++--+=-+.//PG y 轴,PGC OCE ∴∠=∠,10sin sin 10PGC OCE ∴∠=∠=.10PF PG ∴=. ()22101010551052PF m m m ⎛⎫∴=-+=- ⎪⎝⎭. 10010a =-<. ∴当52m =时,510PF =最大(3)存在,理由如下:①在x轴的正半轴上取一点E,使得OA=OE=1,则点E(1,0),∵OA=OE,∠AOC=∠EOC=90°,CO=CO,∴△AOC≌△EOC,∴∠ACO=∠ECO,过点B作BP∥CE,交抛物线y=223-++于点P,x x∴∠PBC=∠ECB,∵C(0,3),B(3,0),∴OB=OC,∴∠OCB=∠ABC,∵∠OCB=∠ECB+∠ECO=∠PBC+∠ACO,∴∠ABC=∠PBC+∠ACO,设直线CE的解析式为y=kx+3,把点E(1,0)代入解析式,得k+3=0,解得k=-3,∴直线CE的解析式为y=-3x+3,∵BP∥CE,∴设直线BP的解析式为y=-3x+b,把点B(3,0)代入解析式,得-9+b=0,解得b=9,∴直线BP的解析式为y=-3x+9,∴-3x+9=223-++,x x解得x=2,或x=3(与B重合,舍去)当x=2时,y=-3x+9=3,∴点P的坐标为(2,3);②在y轴的正半轴上取一点Q,使得OA=OQ=1,则点Q(0,1),∵OA=OQ,∠AOC=∠QOB=90°,CO=BO,∴△AOC≌△QOB,∴∠ACO=∠QBO,延长BQ 交抛物线y =223x x -++于点P ,∵∠ABC =∠PBC +∠QBO ,∴∠ABC =∠PBC +∠ACO ,设直线BQ 的解析式为y =mx +1,把点B (3,0)代入解析式,得3m +1=0,解得m =-13, ∴直线BQ 的解析式为y =-13x +1, ∴-13x +1=223x x -++, 解得x =23-,或x =3(与B 重合,舍去) 当x =23-时,y =-13x +1=119, ∴点P 的坐标为211,39⎛⎫- ⎪⎝⎭; 综上所述,存在这样的点P ,且点P 的坐标为:(2,3)或211,39⎛⎫- ⎪⎝⎭. 【点睛】本题考查了待定系数法确定二次函数,一次函数的解析式,二次函数的最值,平行线的性质,全等三角形的判定与性质,准确表示PF ,利用构造平行线,三角形全等,确定满足条件的P 点位置是解题的关键.8.A解析:(1)2312y x x =-++;(2)DE AE 的最大值为45;(3)914511924145(P -+-+或9177317()P --+ 【分析】(1)用待定系数法求出函数解析式即可;(2)构造出△AGE ∽△DEH ,可得DE DH AE AG=,而DE 和AG 都可以用含自变量的式子表示,最后用二次函数最大值的方法求值.(3)先发现△ABC 是两直角边比为2:1的直角三角形,由△BPQ ∽△CAB ,构造出△BPQ ,表示出Q 点的坐标,代入解析式求解即可.【详解】解:(1)分别将C (0,1)、A (﹣12,0)、B (2,0)代入y =ax 2+bx +c 中得110424201a b c a b c c ⎧++=⎪⎪++=⎨⎪=⎪⎩, 解得:1321a b c =-⎧⎪⎪=⎨⎪=⎪⎩, ∴抛物线的函数表达式为2312y x x =-++. (2)过A 作AG ∥y 轴交BC 的延长线于点G ,过点D 作DH ∥y 轴交BC 于点H ,∵B (2,0)C (0,1),∴直线BC :y =12x +1,∵A (-12,0),∴G (-12,54), 设D (23,12m m m -++),则H (1,12m m -+), ∴DH =(2312m m -++)﹣(112m -+), =﹣m 2+2m ,∴AG=54, ∵AG ∥DH ,∴()2224415554DE DH m m m AE AG -+===--+,∴当m =1时,DE AE 的最大值为45. (3)符合条件的点P 坐标为(914511924145,416-+-+)或(9177317,44--+). ∵l ∥BC , ∴直线l 的解析式为:y =-12x ,设P (n ,-12n ),∵A (-12,0),B (2,0),C (0,1),∴AC 2=54,BC 2=5,AB 2=254. ∵AC 2+BC 2=AB 2,∴∠ACB =90°.∵△BPQ ∽△CAB ,∴12BP AC BQ BC ==, 分两种情况说明:①如图3,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵∠PNB =∠BMQ =90°,∠NBP +∠MBQ =90°,∠MQB +∠MBQ =90°,∴∠NBP =∠MQB .∴△NBP ∽△MQB ,∴12PN NB BM MQ ==,∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴1,2PN n ON n ==, ∴BN =2﹣n ,∴BM =2PN =n ,QM =2BN =4﹣2n ,∴OM =OB +BM =2+n ,∴Q (2+n ,2n ﹣4),将Q 的坐标代入抛物线的解析式得:()()23221242n n n -++++=-, 2n 2+9n ﹣8=0, 解得:()1291459145,44n n -+--==舍 ∴P (914511924145,416-+-+). ②如图4,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵△PNB ∽△BMQ ,又∵△BPQ ∽△CAB ,∴2BC QM AC BN==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴Q (2﹣n ,4﹣2n ),将Q 的坐标代入抛物线的解析式得:()()23221422n n n --+-+=-, 化简得:2n 2﹣9n +8=0, 解得:)12917917n n -+==舍,∴P . 【点睛】本题考查待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程,掌握待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程的关系是解题关键.9.A解析:(1)①223y x x =-+,②11m -≤≤;(2)12x ≤≤;(3)四边形OABC 是矩形,证明见详解.【分析】(1)利用顶点P 的横坐标求出b =-2,然后把b =-2和B 点的坐标代入求出抛物线的解析式; (2)先求出A 点坐标,然后得出直线AB 的解析式,设M 点坐标为(x ,x 2-2x +3),根据S △ABM =3列出方程,并解方程,从而得出M 点坐标,再根据S △ABM ≥3求出M 横坐标的范围即可;(3)根据抛物线的图象可求出A 、P 、D 的坐标,利用抛物线与直线相交求出B 点坐标,然后求出平移后抛物线的解析式,然后求出C 点坐标,然后求出BC 的长度,从而得出四边形OABC 是平行四边形,再根据∠AOC =90︒得出四边形OABC 是矩形.【详解】解:(1)①依题意, 121b -=⨯, 解得b =-2, 将b =-2及点B (3, 6)的坐标代入抛物线解析式2y x bxc =++,得 26323c =-⨯+,解c =3,所以抛物线的解析式为223y x x =-+,②当2236y x x =-+=,解得1,3x x =-=,当m ≤x ≤3时,y =x 2+bx +c 的最小值为2,最大值为6,∴11m -≤≤;(2)∵抛物线 223y x x =-+与y 轴交于点A ,∴ A (0, 3),∵ B (3, 6),可得直线AB 的解析式为3y x ,设直线AB 下方抛物线上的点M 坐标为(x ,223x x -+),过M 点作y 轴的平行线交直线AB 于点N , 则N (x , x +3). (如图),∴ 132ABM AMN BMN B A S S S MN x x ∆∆∆=+=⋅-=, ∴()21323332x x x ⎡⎤+--+⨯=⎣⎦, 解得 121,2x x ==,∴点M 的坐标为(1, 2) 或 (2, 3),∵S △ABM ≥3,12x ≤≤;(3)结论是:四边形OABC 是矩形,理由如下:如图,由 PA =PO , OA =c , 可得2c PD =,∵抛物线2y x bx c =++的顶点坐标为 24,24b c b P ⎛⎫-- ⎪⎝⎭, ∴ 2442c b c -=, ∴22b c =,∴ 抛物线2212y x bx b =++, A (0,212b ),P (12b -,214b ), D (12b -,0), ∴直线OP 的解析式为12y bx =-, ∵ 点B 是抛物线2212y x bx b =++与直线12y bx =-的图象的交点,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年山东省东营市中考数学总复习:二次函数解析版
一.选择题(共50小题)
1.抛物线y =3x 2可由下列哪一条抛物线向左平移1个单位,再向上平移2个单位所得( )
A .y =3(x ﹣1)2﹣2
B .y =3(x +1)2﹣2
C .y =3(x +1)2+2
D .y =3(x ﹣1)2+2
【解答】解:抛物线y =3x 2向右平移1个单位,再向下平移2个单位y =3(x ﹣1)2﹣2. 故选:A .
2.如图,函数y =ax 2+bx +c 的图象过点(﹣1,0)和(m ,0),请思考下列判断,正确的个
数是( )
①abc <0;②4a +c <b ;③b c =1−1m ;④am 2+(2a +b )m +a +b +c <0;⑤|am +a |=√b 2−4ac
A .2个
B .3个
C .4个
D .5个
【解答】解:∵抛物线开口向下,
∴a <0,
∵抛物线交y 轴于正半轴,
∴c >0,
∵−b 2a >0,
∴b >0,
∴abc <0,故①正确,
∵a <0,
∴2a +c <a +c ,
x =﹣1时,y =a ﹣b +c =0,则b =a +c ,
∴2a +c <b ,
∴4a +c <b ,故②正确,
∵y =ax 2+bx +c 的图象过点(﹣1,0)和(m ,0),
∴﹣1×m =c a ,am 2+bm +c =0,
∴am c
+b c +1m =0, ∴b c =1−1m ,故③正确,
∵﹣1+m =−b a ,
∴﹣a +am =﹣b ,
∴am =a ﹣b ,
∵am 2+(2a +b )m +a +b +c
=am 2+bm +c +2am +a +b
=2a ﹣2b +a +b
=3a ﹣b <0,故④正确,
∵m +1=|
−b+√b 2−4ac 2a −−b−√b 2−4ac 2a |, ∴m +1=|√b 2−4ac a |,
∴|am +a |=√b 2−4ac ,故⑤正确,
故选:D .
3.二次函数y =2x 2﹣3的二次项系数、一次项系数和常数项分別是( )
A .2、0、﹣3
B .2、﹣3、0
C .2、3、0
D .2、0、3
【解答】解:二次函数y =2x 2﹣3的二次项系数是2,一次项系数是0,常数项是﹣3, 故选:A .
4.下列函数中,二次函数是( )
A .y =﹣4x +5
B .y =x (2x ﹣3)
C .y =ax 2+bx +c
D .y =1x 2
【解答】解:y =﹣4x +5是一次函数,故选项A 不合题意;
y =x (2x ﹣3)是二次函数,故选项B 符合题意;
当a =0时,y =ax 2+bx +c 不是二次函数,故选项C 不合题意;
y =1x 2
不是二次函数,故选项D 不合题意. 故选:B .
5.如图,二次函数y =ax 2+bx +c (a >0)图象的顶点为点D ,其图象与x 轴的交点A ,B 的。