信号波形合成实验报告之欧阳家百创编

合集下载

波形的合成与分析实验报告

波形的合成与分析实验报告

实验一波形的合成与分析
一、实验目的
1、加深了解信号分析的手段之一的傅立叶变换的基本思想和物理意义
2、观察和分析由多个幅值和相位成一定关系的正弦波信号叠加的合成波分析
3、观察和分析频率、幅值相同,相位角不同的正弦波叠加的合成波形
4、通过本实验熟悉信号的合成分析原理,了解信号频谱的含义
二、实验原理
按傅立叶原理分析,任何周期信号都可用一组三角函数{sin(2pi*nft)cos(2pi*nft)}的组合表示,也就是说,可以用一组正弦波和余弦波来合成任意形状的周期信号
周期方波由一系列频率成分成谐波关系,幅值成一定比例,相位角为0的正弦波叠加合成在实验过程中可以通过设计一组奇次正弦波来完成方波信号的合成
三、实验内容
用前六项谐波近似合成一个频率为100Hz、幅值为600的方波
四、实验仪器和设备
1、计算机
2、DRVI快速可重组虚拟仪器平台
五、实验结果信号截图
1、时域信号图
2、频域信号图
频域信号图分析时的实验装配图
三角波
三角波实验装配图
锯齿波
锯齿波实验装配图
实验基本完成,成绩良好。

多媒体技术教程课后习题答案之欧阳家百创编

多媒体技术教程课后习题答案之欧阳家百创编

第1章多媒体技术概要欧阳家百(2021.03.07)1.1 多媒体是什么?多媒体是融合两种或者两种以上媒体的一种人-机交互式信息交流和传播媒体。

使用的媒体包括文字、图形、图像、声音、动画和视像(video)。

1.4 无损压缩是什么?无损压缩是用压缩后的数据进行重构(也称还原或解压缩),重构后的数据与原来的数据完全相同的数据压缩技术。

无损压缩用于要求重构的数据与原始数据完全一致的应用,如磁盘文件压缩就是一个应用实例。

根据当前的技术水平,无损压缩算法可把普通文件的数据压缩到原来的1/2~1/4。

常用的无损压缩算法包括哈夫曼编码和LZW等算法。

1.5 有损压缩是什么?有损压缩是用压缩后的数据进行重构,重构后的数据与原来的数据有所不同,但不影响人对原始资料表达的信息造成误解的数据压缩技术。

有损压缩适用于重构数据不一定非要和原始数据完全相同的应用。

例如,图像、视像和声音数据就可采用有损压缩,因为它们包含的数据往往多于我们的视觉系统和听觉系统所能感受的信息,丢掉一些数据而不至于对图像、视像或声音所表达的意思产生误解。

1.9 H.261~H.264和G.711~G.731是哪个组织制定的标准?国际电信联盟(ITU)。

1.10 MPEG-1,MPEG-2和MPEG-4是哪个组织制定的标准?ISO/IEC,即国际标准化组织(ISO)/ 国际电工技术委员会(IEC)。

第2章无损数据压缩2.1假设{,,}a b c是由3个事件组成的集合,计算该集合的决策量。

(分别用Sh,Nat和Hart作单位)。

H0= (log23) Sh = 1.580 Sh= (log e3) Nat = 1.098 Nat= (log103) Hart = 0.477 Hart2.2 现有一幅用256级灰度表示的图像,如果每级灰度出现的概率均为()1/256i p x =,0,,255i =,计算这幅图像数据的熵。

22111()()log ()256(log )256256n i i i H X p x p x ==-=-⨯⨯∑=8 (位), 也就是每级灰度的代码就要用8比特,不能再少了。

信号波形发生与合成实验报告

信号波形发生与合成实验报告

信号波形发生与合成实验报告电子电路综合实验实验报告题目:信号波形发生与合成班级:20130821学号:2013082117姓名:肖珩成绩:日期:2015年3月17日一、摘要实验采用纯硬件电路设计形式完成实验任务,实现实验功能。

首先用带限幅器滞回比较器和RC充放电回路构成的方波发生电路产生频率为1KHZ的方波信号。

作为一个信号源,需要低阻抗输出,因此在方波发生器之后连接一个射随电路。

信号经两路不同频率有源滤波处理,同时产生频率为1kHz和3kHz的正弦波信号。

其中基波产生采用低通滤波器,三次谐波产生采用带通滤波器。

为了将基波和三次谐波叠加之后最终恢复出近似方波信号,因此需要根据滤波分频电路输出的基波和三次谐波的延时,设计移相电路,其设计采用全通滤波器原理。

最后运用反相加法器将基波和三次谐波信号叠加,从而完成设计要求。

实现功能:设计一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。

方案特点:电路为纯硬件电路,采用运算放大器TL081,原理图简单易懂,硬件调试容易,部分实现功能明确且输出可测,有助于电路问题检测。

二、设计任务2.1 设计选题选题十四:信号波形发生与合成2.2 设计任务要求图1系统框图1)矩形波发生电路产生1kHz的方波(50%占空比),频率误差小于5%,方波波形幅度峰峰值为10V,幅度误差小于5%,且输出阻抗r=50 Ω;o2)基波频率为1kHz,设计的低通滤波器要求-3dB带宽为1kHz,带外衰减≥-40dB/十倍频程下降,产生的信号波形无明显失真,幅度峰峰值为12V,幅度误差小于5%;3)三次谐波频率为3kHz,设计的带通滤波器要求中心频率为3kHz,-3dB带宽小于500Hz,带外衰减≥-40dB/十倍频程下降,产生的信号波形无明显失真,幅度峰峰值为4V,幅度误差小于5%;4)设计移相电路,完成对基波正弦信号的移相,使移相后的基波和三次谐波的波形如图2所示,要求移相电路的增益为1,增益误差≤5%;图2 移相后的基波和三次谐波波形5)设计加法器,将移相器输出的基波与三次谐波相加,合成近似正弦波,波形幅度峰峰值为10V,误差不大于0.5V,合成波形的形状如图3所示。

波形的合成实验报告

波形的合成实验报告

波形的合成实验报告实验目的本次实验的目的是了解和掌握波形的合成方法,以及通过合成波形来模拟真实声音的效果。

实验原理波形的合成是通过将多个基本波形按照一定的比例和相位进行叠加,从而得到更加复杂的波形。

常见的基本波形有正弦波、方波、三角波等。

通过调整每个基本波形的振幅和相位差,可以合成出各种不同特性的波形。

实验仪器和材料- 计算机- DAW(数字音频工作站)软件- MIDI键盘(可选)- 音频接口(可选)实验步骤1. 准备实验材料将计算机连接到音频接口上,打开DAW软件。

2. 创建一个新的工程在DAW软件中创建一个新的工程。

3. 导入基本波形从DAW软件的音频库中导入三种基本波形:正弦波、方波和三角波。

4. 将基本波形编辑为合成波形在DAW软件中使用音频编辑工具将基本波形叠加在一起,并通过调整每个波形的振幅和相位差来调整合成波形的特性。

可以尝试不同的叠加方式和参数,观察合成波形的变化。

5. 添加音效效果可以在合成波形上添加音效效果,例如混响、压缩、失真等,以模拟真实声音的效果。

6. 合成波形的应用将合成波形应用到音乐创作或声音设计中,例如用合成波形模拟乐器的音色、添加合成波形作为背景音效等。

可以通过MIDI键盘或音频接口将合成波形与其他音轨进行配合和演奏。

实验结果与分析通过实验合成出的波形具有丰富的谐波结构和动态特性,能够模拟出各种声音的音色和特效。

合成波形的特性可以通过调整基本波形的振幅和相位差来调整,通过添加音效效果可以进一步丰富合成波形的音色和表现力。

实验总结本次实验通过合成波形的方法,探索了音频合成的基本原理和方法。

合成波形可以用于音乐创作、声音设计等领域,在模拟真实声音和创作出独特音色方面具有重要应用。

通过调整合成波形的参数,可以控制波形的特性,进一步丰富音乐和声音效果。

同时,可以通过添加音效效果,使合成波形更加真实和独特。

参考资料[1] Williams, E. G., & Chapman, B. E. (1997). Synthesizing musical sounds using simple physical models. The Journal of the Acoustical Society of America, 101(6), 3719-3725.[2] Dodge, C., & Jerse, T. A. (1997). Computer music: synthesis, composition, and performance. Schirmer Books.以上是本次波形的合成实验的报告,通过实验我们深入了解了波形的合成原理和方法,并通过实验得出了一些结论与总结。

信号与系统 抽样定理实验之欧阳学创编

信号与系统 抽样定理实验之欧阳学创编

信号与系统实验报告实验六抽样定理实验六抽样定理一、实验内容:(60分)1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。

(1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;程序如下:dt=0.1;f0=0.2;T0=1/f0;fm=5*f0;Tm=1/fm;t=-10:dt:10;f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('Ô-Á¬ÐøÐźźͳéÑùÐźÅ');for i=1:3;fs=i*fm;Ts=1/fs;n=-10:Ts:10;f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end运行结果如下:(2)求解原连续信号和抽样信号的幅度谱;程序: dt=0.1;fm=1;t=-8:dt:8;N=length(t);f=sinc(t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F 1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max( abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-6:Ts:6;N=length(n);f=sinc(n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-1i*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(a bs(F))]);end波形如下:(3)用时域卷积的方法(内插公式)重建信号。

04队——信号波形合成设计报告

04队——信号波形合成设计报告

信号波形合成实验报告摘要:本电路实现了基于多个正弦波合成方波与三角波等非正弦周期信号的电路。

本设计由六个模块构成:方波信号产生模块,正弦信号产生模块(滤波模块),相位调节模块,幅度调节模块,波形叠加模块,以及正弦波幅值测量。

使用555电路构成基准的300KHz 的方波振荡信号,以74LS163、CD4013实现分频形成10KHz、30kHz、50kHz的方波信号,利用有源滤波器获得其正弦分量,以TL082实现各个信号的放大、衰减和加法功能,同时使用有源RC移相电路实现信号的相位调节;使峰值检测电路获得正弦信号的幅度,以MSP430F5xx作为微控制器对正弦信号进行采样,并且采用点阵液晶实时显示测量信号的幅度值。

关键词:方波振荡方波分频及滤波移相信号合成峰值检测MSP430F5xx一、方案设计1、方框图设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和其他信号。

电路示意图如图1所示:图1电路示意图2、整体思路(1)用555定时器构成多谐振荡器产生300kHz的方波;(2)利用4位二进制同步计数器(同步清零)74LS163配合D触发器CD4013实现分频功能,分别产生10kHz,30kHz,50kHz的方波;(3)将产生的单极性方波经过比较器变为双极性,采用二阶有源低通滤波电路,分别获得相应频率的正弦波信号;(4)采用RC移相电路调节输出正弦波信号的相位,采用比例放大电路调节正弦波的幅值,再利用加法器合成近似正弦波和三角波;(5)设计分立二极管电容型峰值检测器,检测各正弦信号的幅度;并用液晶显示屏显示相应的幅值。

二、单元电路方案设计与论证1、方波振荡电路方案一:用555定时器构成多谐振荡器产生300kHz的方波,通过数字分频电路分出10kHz,30kHz和50kHz的方波,再通过滤波提取相应的正弦波,这样提取出来的正弦波相位关系确定,适合于方波、三角波合成。

方案二:使用晶振,晶振产生的方波频率精确,但一般晶振频率较高,而且不能调节,对后级分频电路的要求较高。

微波(雷达)感应模块原理调试之欧阳家百创编

微波(雷达)感应模块原理调试之欧阳家百创编

雷达感应开关原理调试一、欧阳家百(2021.03.07)二、原理简介:1. 主要功能与原理:如上图所示,上图是雷达感应开关模块的感应板的电路原理图,由集电极外PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB三边的天线发射出去。

发射的2.43.2GHz的微波信号如果遇到移动物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移频就会以320MHz左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制灯光。

另外,中间也可以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。

2. 发射频率:RC振荡电路的频率f=1/2πRC,公式中的R是原理图中三极管的输入阻抗,C是PCB上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。

该电容量公式为C=εS/d,式中ε为介质(在这里就是指的PCB板材的介电常数),S 为PCB极板面积,d为极板间距也就是PCB厚度。

3. 接收:通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位移频,则输出低频信号P4。

4. 发射避开公共频段又不能过高:因为3G和4G手机信号和WIFI信号的频率范围在1.82.4GHz,模块的工作频率尽可能避开这个频段,避免相互干扰。

一般的发射频率2.5GHz左右最佳,频率过高,则高频三极管增益降低,感应距离近。

发射频率同天线部分PCB线路板尺寸大小、厚度、布线、三极管输入阻抗与电容等有关。

5. 发射频率与发射信号强度:如果有频谱仪测试发射天线端的发射信号,可以测试到发射频点及其发射信号幅度。

发射信号强度越大,感应距离越远。

但是,高频三极管来说,随着频率的增加,其增益逐渐降低,发射的信号强度也就降低。

另外,同一个频率,三极管的特征频率fT越大,其高频增益就越高,感应距离也就越远,所以,最好设计调整PCB,将频点做到2.4GHz。

信号波形合成实验报告

信号波形合成实验报告

信号波形合成实验电路摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。

题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。

振荡电路采用晶振自振荡并与74LS04 结合,产生6MHz 的方波源。

分频电路采用74HC164 与74HC74分频出固定频率的方波,作为波形合成的基础。

滤波采用TI公司的运放LC084,分别设置各波形的滤波电路。

移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结果造成影响。

关键词:方波振荡电路分频与滤波移相电路加法器Experimental waveform synthesiscircuitAbstract:The design consists of a square wave oscillator circuit,divider circuit, filter circuit, phase shift circuits, addition circuits, measurement display circuit. Subject of the request of the point frequency of the various parameters of processing, production of a phase shifter circuit consisting of adders, will have the 10KHz and 30KHz sinusoidal signal as the fundamental and third harmonic, synthesis of a wave amplitude 5V, similar to square wave waveform. Since the oscillating crystal oscillation circuit combined with the 74LS04 to produce a square wave source 6MHz. Frequency circuit 74HC164 and the 74HC74 divider out of a fixed frequency square wave, as a basis for waveform synthesis. Filtering using TI's op LC084, respectively, set the waveform of the filter circuit. Phase-shifting circuit in the main processing phase in the filtering process deviations, to avoid prejudicing the outcome of the waveform synthesis.Keywords:Square-wave oscillator circuit Frequency and filter Phase-shifting circuit1.课题技术指标基本要求对一个特定频率的方波进行变换并产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波。

信号波形合成实验报告

信号波形合成实验报告

信号波形合成实验电路指导老师:***刘光涛成员:汤勇黄山军杨成信号波形合成实验电路摘要:本作品主要用于非正弦信号的分解与合成实验验证,包括电源电路模块,方波信号产生模块,放大、移相、波形合成模块、测量显示模块等。

通过12MHz晶振电路产生用单片机分别产生10kHz、30kHz、50kHz方波信号,利用有源低通滤波器分离出10kHz、30kHz、50kHz正弦波信号,然后对三个正弦波信号进行放大、移相加到加法器中合成方波信号。

把10kHz和30kHz正弦波信号送到减法器中合成三角波信号。

三个正弦波信号的幅度通过单片机采样,由液晶屏显示出来。

关键词:方波信号,滤波器,正弦波信号,移相,合成Signal waveform synthesis experiment circuit Abstract:This work is mainly used in the sine signal decomposition and synthetic experiment, including power circuit module, pulse signal generated module, amplification, phase and waveform synthesis module, measuring display module, etc. Through 1MHz crystals 1MHz circuit, signal by counting, pulse frequency, pulse signal 10kHz get by LC parallel resonant filter (10kHz isolated, 30kHz, 50kHz sine signals, then the three sine signals, adding to amplify the adder synthetic square-wave signal. The 10kHz and 30kHz sine signals to reduce time-multiplier synthetic triangular signal. Three sine signals by MCU, the amplitude of LCD display samples.Key words:Pulse signal,Filter,Sine signals,dephasing,Synthesis1 作品简介1.1设计目标设计制作一个电路,能够产生多个不同频率的正弦信号,利用傅里叶原理产生以10KHz为基波,以奇次谐波为辅助谐波的信号,并将这些信号再合成为近似方波和其他信号。

信号波形合成实验报告

信号波形合成实验报告

信号波形合成实验电路摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。

题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。

振荡电路采用晶振自振荡并与74LS04 结合,产生6MHz 的方波源。

分频电路采用74HC164 与74HC74分频出固定频率的方波,作为波形合成的基础。

滤波采用TI公司的运放LC084,分别设置各波形的滤波电路。

移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结果造成影响。

关键词:方波振荡电路分频与滤波移相电路加法器Experimental waveform synthesiscircuitAbstract:The design consists of a square wave oscillator circuit,divider circuit, filter circuit, phase shift circuits, addition circuits, measurement display circuit. Subject of the request of the point frequency of the various parameters of processing, production of a phase shifter circuit consisting of adders, will have the 10KHz and 30KHz sinusoidal signal as the fundamental and third harmonic, synthesis of a wave amplitude 5V, similar to square wave waveform. Since the oscillating crystal oscillation circuit combined with the 74LS04 to produce a square wave source 6MHz. Frequency circuit 74HC164 and the 74HC74 divider out of a fixed frequency square wave, as a basis for waveform synthesis. Filtering using TI's op LC084, respectively, set the waveform of the filter circuit. Phase-shifting circuit in the main processing phase in the filtering process deviations, to avoid prejudicing the outcome of the waveform synthesis.Keywords:Square-wave oscillator circuit Frequency and filter Phase-shifting circuit1.课题技术指标1.1 基本要求对一个特定频率的方波进行变换并产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波。

信号波形的合成与分解报告

信号波形的合成与分解报告

信号波形的分解与合成摘要本设计要求制作一个电路,使由信号发生电路产生的方波,分解为三个不同频率的正弦波,再将这些信号通过一个电路,合成为近似方波和近似三角波。

设计共分为七个模块:方波信号发生器,分频电路,乘法器与滤波电路,调幅电路,移相电路,加法器以及幅度测量与数字显示电路。

本设计采用6M晶振产生频率为6M的方波,分频部分采用CD4017和CD4013芯片。

在滤波部分,我们采用的是三阶Butterworth低通滤波器,滤除防波的基波分量得到正弦波。

幅度、相位调节后用运算法放大器构成加法电路实现正弦信号和三角波信号的合成。

采用C8051F020单片机来实现电压幅度测量的功能。

关键词:分频滤波CD4017 CD4013 LM358 波形合成与分解幅度测量1方案的比较与选择1.1 方波发生器方案设计方案一:NE555定时器产生方波555定时器可直接产生方波,且成本低廉,电路结构简单,输出波形的占空比调节比较方便,缺点是输出波形不稳定,毛疵较多,不利于分频,故不采用此种方案。

方案二:使用无源晶体振荡器产生方波设计采用6MMHz晶振来产生方波,振荡器输出波形为正弦波,通过比较器电路得到稳定输出的方波,且频率为6MHz,再经过20分频得到所要的300kHz 的方波,该方法实现简单,且效果理想,故本设计采用此方案。

方案三:运算放大器非线性产生方波采用运算放大电路产生方波,方案看似简单,操作可行,但输出波形不稳定,占空比不可调,且毛疵较多,不采用该方案。

1.2 分频电路方案设计题目要求分频后得到10kHz、30kHz和50kHz的三种方波,可用软件和硬件实现,即用FPGA实现分频和用数字—模拟电路来实现,但考虑到实验器材的限制,本设计采用纯硬件来实现分频模块。

可供选择的硬件电路:①74LS161结合74LS160;②CD4017结合CD4013。

两种方案效果都很好,都能得到稳定的波形,考虑电路的简洁性,本设计采用后一种方案。

波形产生电路实验报告之欧阳索引创编

波形产生电路实验报告之欧阳索引创编

波形产生电路实验报告欧阳家百(2021.03.07)一、实验目的1. 通过实验掌握由集成运放构成的正弦波振荡电路的原理与设计方法;2. 通过实验掌握由集成运放构成的方波(矩形波)和三角波(锯齿波)振荡电路的原理与设计方法。

二、实验内容1. 正弦振荡电路实验电路图如下图所示,电源电压为。

(1)缓慢调节电位器,观察电路输出波形的变化,解释所观察到的现象。

(2)仔细调节电位器,使电路输出较好的正弦波形,测出振荡频率和幅度以及相对应的之值,分析电路的振荡条件。

(3)将两个二极管断开,观察输出波形有什么变化。

2. 多谐振荡电路(1)按图2 安装实验电路(电源电压为±12V)。

观测、波形的幅度、周期(频率)以及的上升时间和下降时间等参数。

(2)对电路略加修改,使之变成矩形波和锯齿波振荡电路,即为矩形波,为锯齿波。

要求锯齿波的逆程(电压下降段)时间大约是正程(电压上升段)时间的 20% 左右。

观测、的波形,记录它们的幅度、周期(频率)等参数。

3. 设计电路测量滞回比较器的电压传输特性。

三、预习计算与仿真 1. 预习计算(1)正弦振荡电路由正反馈的反馈系数为:由此可得RC 串并联选频网络的幅频特性与相频特性分别为易知当RC10==ωω时,•fV 和•o V 同相,满足自激振荡的相位条件。

若此时f 3v A >,则可以满足f 1v A F >,电路起振,振荡频率为000111994.7Hz 1.005ms 2216k 10nF f T RC f ππ=====⨯Ω⨯,。

若要满足自激振荡,需要满足f v A F 在起振前略大于1,而max 13F =,令f 3v A =,即满足条件的Rw 应略大于10kΩ。

(2)多谐振荡电路 对电路的滞回部分,输出电压,当时,可以得到。

由,所以得到:。

2. 仿真分析(1)正弦振荡电路仿真电路图:仿真得到的测量数据总结如下(具体见仿真报告):(1)为0时,无波形产生(2)调节恰好起振时频率峰值/V 仿真值10.15 987.17 1.555 (3)调节使输出电压幅值最大频率峰值/V 仿真值17.81 987.17 10.388 (2)多谐振荡电路仿真电路图:得到的数据整理如下:幅度/V 周期/us上升时间/us下降时间/us幅度/V 周期/us仿真值 6.535 409.09 208.33 204.55 2.907 420.46 (3)矩形波和锯齿波发生电路仿真电路图:仿真结果整理如下:幅度/V 周期/ms上升时间/ms下降时间/ms幅度/V 周期/ms仿真值 6.539 1.600 1.335 0.265 2.804 1.600 (4)滞回比较器电压传输特性的测量仿真电路图:仿真结果整理如下:仿真值-2.197 2.197 -6.540 6.540四、实验数据记录与处理1. 正弦振荡电路(1)为0时,无波形产生(2)调节恰好起振时频率峰值/V 理论值10.0 994.7 ———仿真值10.15 987.17 1.555实验值10.33 1024.1 0.905 相对误差/% 3.3 2.96 -41.8此时的波形:(3)调节使输出电压幅值最大频率峰值/V 理论值———994.7 ———仿真值17.81 987.17 10.388实验值18.52 932.63 10.250 相对误差/% 3.99 -6.24 -1.33此时的波形:(4)将两个二极管断开观察从小打大变化时的波形是如何变化的调节电阻使得恰好起振时的波形和继续调大电阻后的输出电压波形依次为:由波形变化可以看出,当调节电阻使得电路刚好出现振荡时输出电压幅值就已经到达最大值,并且有一点的失真现象,当继续调大电阻时,输出电压波形失真更加严重。

信号波形发生与合成实验之欧阳引擎创编

信号波形发生与合成实验之欧阳引擎创编

摘要欧阳引擎(2021.01.01)本系统主要以TL081A运放为核心,由方波发生器、滤波分频电路、移相电路、加法器电路模块组成。

实现了产生多个不同频率的正弦信号与基于多个正弦波合成方波信号的电路功能。

系统基本工作过程为:1kHz方波信号通过低通滤波器和带通滤波器得到按傅里叶级数展开的1kHz基波正弦波信号和3kHz三次谐波正弦波信号。

而后将基波信号通过移相电路使其相位调整到与三次谐波相同,然后通过加法电路将信号合成近似的方波信号。

输出波形结果表明,系统合成波形符合理论傅里叶分析结果,比较准确。

正弦波及合成波的幅值测试误差小于5%,符合题目要求。

关键词:方波发生器;傅里叶级数;分频;滤波;移相一.总体方案设计及论证1.1题目设计任务设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。

系统框图如下图所示:具体要求:1.2 方案论证比较1.2.1 系统总体方案方波发生电路产生1kHz方波,对其中的基波和三次谐波分量进行提取,1kHz 基波可用截止频率为1kHz的巴特沃斯低通滤波器滤波得到,3kHz谐波可用中心频率设为3kHz的高Q值带通滤波器滤波得到。

最后再经相位调整重新合成近似方波。

1.2.2方波振荡电路的选择本系统中的方波发生电路是实现后续各级电路功能的基础,对频率准确度和稳定度的要求较高。

方案一:555定时器组成的多谐振荡器,直接调节至1KHz左右的对称方波。

此方案成本低廉,实现方便,但其稳定性容易受到外部元件的影响,在振荡频率较高时频率稳定度不够。

方案二:使用石英晶振组成高稳定度的频率参考源,并使用计数器和集成锁相环芯片构成分频/倍频环,以产生1KHz的方波。

该方法产生的信号稳定度高,但需要搭建石英晶体振荡电路,并进行锁相环分频、倍频,电路较复杂。

方案三:采用基于反相输入的滞回比较器和RC电路的方波产生电路。

该电路结构简单,性能稳定,主要的限制因素在于比较器的速度。

《常用电子仪器的使用》的实验报告之欧阳家百创编

《常用电子仪器的使用》的实验报告之欧阳家百创编

实验一、常用电子仪器的使用欧阳家百(2021.03.07)一、实验目的1、学习电子技术实验中常用电子仪器的主要技术指标、性能和正确使用方法。

2、初步掌握用示波器观察正弦信号波形和读取波形参数的方法。

电路实验箱的结构、基本功能和使用方法。

二、实验原理在模拟电子电路实验中,要对各种电子仪器进行综合使用,可按照信号流向,以接线简捷,调节顺手,观察与读数方便等原则进行合理布局。

接线时应注意,为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。

1.信号发生器信号发生器可以根据需要输出正弦波、方波、三角波三种信号波形。

输出信号电压频率可以通过频率分挡开关、频率粗调和细调旋钮进行调节。

输出信号电压幅度可由输出幅度调节旋钮进行连续调节。

操作要领:1)按下电源开关。

2)根据需要选定一个波形输出开关按下。

3)根据所需频率,选择频率范围(选定一个频率分挡开关按下)、分别调节频率粗调和细调旋钮,在频率显示屏上显示所需频率即可。

4)调节幅度调节旋钮,用交流毫伏表测出所需信号电压值。

注意:信号发生器的输出端不允许短路。

2.交流毫伏表交流毫伏表只能在其工作频率范围内,用来测量300伏以下正弦交流电压的有效值。

操作要领:1)为了防止过载损坏仪表,在开机前和测量前(即在输入端开路情况下)应先将量程开关置于较大量程处,待输入端接入电路开始测量时,再逐档减小量程到适当位置。

2)读数:当量程开关旋到左边首位数为“1”的任一挡位时,应读取0~10标度尺上的示数。

当量程开关旋到左边首位数为“3”的任一挡位时,应读取0~3标度尺上的示数。

3)仪表使用完后,先将量程开关置于较大量程位置后,才能拆线或关机。

3.双踪示波器示波器是用来观察和测量信号的波形及参数的设备。

双踪示波器可以同时对两个输入信号进行观测和比较。

操作要领:1)时基线位置的调节开机数秒钟后,适当调节垂直(↑↓)和水平(←→)位移旋钮,将时基线移至适当的位置。

2)清晰度的调节适当调节亮度和聚焦旋钮,使时基线越细越好(亮度不能太亮,一般能看清楚即可)。

波形发生电路 实验报告之欧阳家百创编

波形发生电路 实验报告之欧阳家百创编

欧阳家百创编实验报告课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:实验名称:波形发生器电路分析与设计实验类型:电路实验同组学生姓名:一、 实验目的和要求:A.RC 桥式正弦振荡电路设计1.正弦波振荡电路的起振条件。

2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出 波形的影响。

3.选频电路参数变化对输出波形频率的影响。

4.学习正弦振荡电路的仿真分析与调试方法。

B.用集成运放构成的方波、三角波发生电路设计 1.掌握方波和三角波发生电路的设计方法。

2.主要性能指标的测试。

3.学习方波和三角波的仿真与调试方法。

二、 实验设备:示波器、万用表模电实验箱 三、 实验须知:1. RC 桥式正弦波振荡电路,起振时应满足的条件是:闭环放大倍数大于3,即Rf>2R1,引入正反馈 RC 桥式正弦波振荡电路,稳定振荡时应满足的条件是:电路中有非线性元件起自动稳幅的作用 3.RC 桥式正弦波振荡电路的振荡频率:=0f 1/(2πRC)4.RC 桥式正弦波振荡电路里C 的大小:=C 0.01uF5.RC 桥式正弦波振荡电路R1的大小: R1=15kΩ 6.RC 桥式正弦波振荡电路R2的大小: R2=21.5kΩ 7.RC 桥式正弦波振荡电路是通过哪几个元器件来实现稳幅作用的?答:配对选用硅二极管,使两只二极管的特性相同,上下对称,根据振荡幅度的变化,采用非线性元件来自动改变放大电路中负反馈的强弱,以实现稳幅目的8.波形发生器电路里A1的输出会不会随电源电压的变化而变化?答:A1输出不会改变,电源电压的变化通过选频网络调节,不影响放大和稳幅环节欧阳家百(2021.03.07)专业:8.波形发生器电路里01v的输出主要由谁决定,当电源电压发生变化时,它会发生变化吗?答:由两只二极管决定,电源电压变化时,Vo1不会变化9.波形发生器电路里,R和C的参数大小会不会影响v的输出波形?答:会影响,而且vo的频率和幅值都由RC决定,因为R和C的回路构成选频网络四、实验步骤:A.RC桥式正弦波振荡电路:原理图:1.PSpice仿真波形:示波器测量的波形:T=616us,=ppv 1.88V,=RMSv667mV根据实际波形,比较实际数据和理论数据之间的差异:理论周期为650us,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求v从无到有,从正弦波直2.改变R2的参数(减小或增大R2),使输出至削顶,分析出现这三种情况的原因和条件。

实验一、数字信号处理在双音多频拨号系统中的应用之欧阳学创编

实验一、数字信号处理在双音多频拨号系统中的应用之欧阳学创编

实验一、数字信号处理在双音多频拨号系统中的应用一、实验目的1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT时的参数选择等。

2.初步了解数字信号处理在是集中的使用方法和重要性。

3.掌握matlab的开发环境。

二、实验原理双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。

这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。

这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。

这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。

DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A 变换器;在接收端用A/D 变换器将其转换成数字信号,并进行数字信号处理与识别。

为了系统的检测速度并降低成本,还开发一种特殊的DFT 算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。

下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。

下面先介绍电话中的DTMF 信号的组成。

在电话中,数字0-9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz 和941Hz ;高频带也有四个频率:1209Hz,1336Hz,1477Hz 和1633Hz.。

每一个数字均由高、低频带中各一个频率构成,例如1用697Hz 和1209Hz 两个频率,信号用)2sin()2sin(21t f t f ππ+表示,其中Hz f 6791=,Hz f 12092=。

这样8个频率形成16种不同的双频信号。

具体号码以及符号对应的频率如表 4.1所示。

信号时域频域和转换之欧阳学创编

信号时域频域和转换之欧阳学创编

信号分析方法概述:通用的基础理论是信号分析的两种方法:1 是将信号描述成时间的函数 2 是将信号描述成频率的函数。

也有用时域和频率联合起来表示信号的方法。

时域、频域两种分析方法提供了不同的角度,它们提供的信息都是一样,只是在不同的时候分析起来哪个方便就用哪个。

思考:原则上时域中只有一个信号波(时域的频率实际上是开关器件转动速度或时钟循环次数,时域中只有周期的概念),而对应频域(纯数学概念)则有多个频率分量。

人们很容易认识到自己生活在时域与空间域之中(加起来构成了三维空间),所以比较好理解时域的波形(其参数有:符号周期、时钟频率、幅值、相位)、空间域的多径信号也比较好理解。

但数学告诉我们,自己生活在N维空间之中,频域就是其中一维。

时域的信号在频域中会被对应到多个频率中,频域的每个信号有自己的频率、幅值、相位、周期(它们取值不同,可以表示不同的符号,所以频域中每个信号的频率范围就构成了一个传输信道。

时域中波形变换速度越快(上升时间越短),对应频域的频率点越丰富。

所以:OFDM中,IFFT把频域转时域的原因是:IFFT的输入是多个频率抽样点(即各子信道的符号),而IFFT之后只有一个波形,其中即OFDM符号,只有一个周期。

时域时域是真实世界,是惟一实际存在的域。

因为我们的经历都是在时域中发展和验证的,已经习惯于事件按时间的先后顺序地发生。

而评估数字产品的性能时,通常在时域中进行分析,因为产品的性能最终就是在时域中测量的。

时钟波形的两个重要参数是时钟周期和上升时间。

时钟周期就是时钟循环重复一次的时间间隔,通产用ns度量。

时钟频率Fclock,即1秒钟内时钟循环的次数,是时钟周期Tclock的倒数。

Fclock=1/Tclock上升时间与信号从低电平跳变到高电平所经历的时间有关,通常有两种定义。

一种是10-90上升时间,指信号从终值的10%跳变到90%所经历的时间。

这通常是一种默认的表达方式,可以从波形的时域图上直接读出。

TPA3116D2中文数据表之欧阳与创编

TPA3116D2中文数据表之欧阳与创编

TPA3116D2 具有AM 干扰抑制功能的15W、30W、50W无滤波器D类立体声放大器系列特性支持多种输出配置21V 电压、4Ω桥接负载 (BTL) 负载条件下的功率为 2 × 50W (TPA3116D2)24V 电压、8Ω BTL 负载条件下的功率为 2 × 30W (TPA3118D2)15V 电压、8Ω BTL 负载条件下的功率为 2 × 15W (TPA3130D2)宽电压范围:4.5V 至 26V高效 D 类运行兼具 > 90% 的功率效率与低空闲损耗特性,大幅减小了散热器尺寸高级调制系统配置,多重开关频率,AM 干扰防止,主从模式同步高达 1.2MHz 的切换频率采用具有高 PSRR 的反馈功率级架构,降低了 PSU需求可编程功率限制,差分和单端输入立体声模式和单声道模式(采用单滤波器单声道配置)由单电源供电运行,减少了元件数量集成了具有错误报告功能的自保护电路,其中包括过压、欠压、过热、直流检测和短路等保护,耐热增强型封装DAD(32 位引脚散热薄型小外形尺寸 (HTSSOP) 封装,焊盘朝上)DAP(32 位 HTSSOP 封装,焊盘朝下)-40°C 至 85°C 环境温度范围应用小型-微型组件、扬声器、扩展坞底座汽车售后阴极射线管 (CRT) TV消费类音频应用说明TPA31xxD2 系列器件是用于驱动扬声器的高效立体声数字放大器功率级,单声道模式下的驱动功率高达 100W/2Ω。

TPA3130D2 的效率非常高,无需外部散热器即可在单层 PCB 板上提供 2 × 15W 的功率。

TPA3118D2 甚至可以在不使用外部散热器的情况下在双层 PCB 上提供 2 × 30W/8Ω的功率。

如果需要更高的功率,可以选用 TPA3116D2,这款器件在其顶层 PowerPAD 上连接一个小型散热器后可提供 2 × 50W/4Ω的功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号波形合成实验电路欧阳家百(2021.03.07)摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。

题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。

振荡电路采用晶振自振荡并与74LS04 结合,产生6MHz 的方波源。

分频电路采用74HC164与74HC74分频出固定频率的方波,作为波形合成的基础。

滤波采用TI公司的运放LC084,分别设置各波形的滤波电路。

移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结果造成影响。

关键词:方波振荡电路分频与滤波移相电路加法器Experimental waveform synthesis circuit Abstract:The design consists of a square wave oscillator circuit, divider circuit, filtercircuit, phase shift circuits, addition circuits, measurement display circuit. Subject ofthe request of the point frequency of the various parameters of processing, productionof a phase shifter circuit consisting of adders, will have the 10KHzand 30KHzsinusoidal signal as the fundamental and third harmonic, synthesis of a waveamplitude 5V, similar to square wave waveform. Since the oscillating crystaloscillation circuit combined with the 74LS04 to produce a square wave source 6MHz.Frequency circuit74HC164 and the 74HC74 divider out of a fixed frequency squarewave, as a basis for waveform synthesis. Filtering using TI's op LC084, respectively,set the waveform of the filter circuit. Phase-shifting circuit in the main processingphase in the filtering process deviations, to avoid prejudicing the outcome of thewaveform synthesis. Keywords:Square-wave oscillator circuit Frequency and filter Phase-shiftingcircuit1.课题技术指标1.1 基本要求对一个特定频率的方波进行变换并产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波。

设计制作一个特定频率的方波发生器,并在这个方波上进行必要的信号转换,分别产生10KHz、30KHz和50KHz的正弦波,然后对这三个正弦波进行频率合成,合成后产生目标信号为10KHz近似方波(如下图)。

1.2 附加要求利用方波发生器进行信号转换后的10KHz、30KHz和50KHz的正弦波进行频率合成,合成后产生目标信号为10KHz近似三角波。

1.3设计条件2.系统设计2.1 设计任务设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和其他信号。

电路示意图如图1 所示:2.2 系统框图3.方法论证3.1 信号发生器电路方案一:数控振荡器(NCO)产生时间离散和幅度离散的正弦信号和余弦信号,在模拟调制中,利用NCO 可以直接产生调频信号(FM),虽然结合FPGA 可以完成调频信号的输出,但是数控振荡器(NCO)的平台搭建需要时间。

方案二:采用非门与晶振组合成形成正反馈电路产生正反振荡,其中采用的6MHZ 的晶振是起滤波作用。

只有6MHZ 频率的脉冲信号容易通过该正反馈电路,其它频率的信号被抑制。

故电路表现为只有6MHZ 的方波信号。

该电路输出稳定,容易搭建。

方案三:锁相环CD4046。

CD4046是通用的CMOS锁相环集成电路,具有电源电压范围宽(为3V-18V),输入阻抗高(约100MΩ),动态功耗小的特点。

产生的方波信号频率满足设计需要,并且波形理想。

故本设计采用该方法实现方波振荡电路。

综上,选取方案二。

3.2分频电路方案一:采用单片机与FPGA 结合,省去许多分立的逻辑集成电路,使电路的集成性和可靠性大大提高。

另编程简单容易实现,且容易实现并可以产生固定频率的波形,并省去分频电路,是电路简化。

但是FPGA 平台的搭建占用时间太长,不利于实现。

方案二:分频电路采用逻辑元件74164、7474、7404搭建而成。

电路如下图所示:振荡电路所产生的频率为6MHz 的方波送到74164构成10分频电路,输出频率为600KHz 的方波。

频率为600KHz 的方波再经74164构成10 分频,输出频率为60KHz、占空比50%的方波。

频率为600KHz 的方波再经7416412分频,得到频率为50KHz、占空比50%的方波。

同时60KHz 的方波经过7474二分频输出30kHz、占空比50%的方波。

60KHz再经74164六分频得到10KHz 的信号分频电路如下图所示。

采用方案二。

3.3滤波电路方案一:采用LC 或RC 无源滤波,电路图如图6 所示,电路简单,参数易于计算。

但滤波效果差,而本题目只要给指定频率的波形滤波,并且达不到题设要求。

可以根据中心频率公式:来匹配R、C 的参数。

图6 无源RC 低通滤波器方案二:采用TI 公司提供的TLC084运算放大器,搭建一个带通有源滤波器电路图如图7 所示采用方案二。

3.4调幅电路信号经滤波后得到完整的正弦波。

调幅电路采用运放组成的反相输入比例放大器.电路如下图11 所示。

比例放大器的主要作用是调节基波、3 次波和5 次波的峰峰值。

相关环节电路原理相同。

3.5加法电路为了产生包含10kHz 为基波、30kHz 为3 次波和50kHz 为5 次波合成一个近似方波,采用运放组成的信号调幅、叠加电路。

波形幅度为5V,调幅、加法电路如下图所示。

调幅、加法电路当R = 2 R = 3 R = F R 时,就是三个信号的叠加。

对与合成方波,加法起的运算为对与合成三角波,加法起的运算为3.6反相器电路为了得到三角波,需要把30kHz 的3 次波和50kHz 的5 次波进行反相。

反相器用运放组成的反相端输入的1:1 比例放大器来实现。

采用TL084运算放大器搭建一个反相电路如下图4.整体设计经过方案比较与论证,最终确定的系统组成框图如图16 所示。

其中利用晶振、74LS04 产生振荡方波,74LS390 和CD4566 进行分频,获得题目中所要求的各频率信号。

滤波器电路分别对10K、30K、50K 设计相应的参数电路,利用TL084搭建有源滤波器。

整体电路见附录1.5. 系统测试结果5.1、测试仪器与设备表4.1.1 测试用仪器与设备仪器名称型号数量双通道数字示波器DS1022C1欧阳家百创编合成信号发生器NDY-EE14101数字万用表TY3601直流稳压电源DF1731SC2A1计算机联想PC 机15.2、系统试验结果5.2.2 基波10KHz、测量峰峰值6±0.01V 实测波形图19 基波10KHz、测量峰峰值6±0.01V 实测波形195.2.3 三次波30KHz、测量峰峰值2±0.01V 实测波形如图20图20 三次波30KHz、测量峰峰值2±0.01V 实测波形5.2.4 五次波50KHz、测量峰峰值1.2±0.03V 实测波形如图21图21 五次波50KHz、测量峰峰值1.2±0.03V 实测波形5.2.5 基波10KHz、测量峰峰值6V 与三次波30KHz、测量峰峰值2V 叠加后实测波形如图22图22 基波10KHz、测量峰峰值6V 与三次波30KHz、测量峰峰值2V 叠加后实测波形5.2.5 基波10KHz、测量峰峰值6V 与三次波30KHz、测量峰峰值2V 及五次波50KHz、测量峰峰值1.2V 叠加后实测波形图23 基波10KHz、测量峰峰值6V 与三次波30KHz、测量峰峰值2V 及五次波50KHz、测量峰峰值1.2V 叠加后实测波形5.2.6 基波10KHz、测量峰峰值6V 与三次波30KHz、测量峰峰值0.667V相减及五次波50KHz、测量峰峰值0.24V 叠加后实测波形。

图24 基波10KHz、测量峰峰值6V 与三次波30KHz、测量峰峰值0.667V相减及五次波50KHz、测量峰峰值0.24V 叠加后实测波形。

经过测试分析测试基本都达到了要求,10K与30K的分频滤波比较理想但也存在一些误差如频率不是很稳定振幅不够精确等尤其是在多阶滤波部分存在许多干扰在硬件搭接时要尽量减少信号成分电路导线的介入这样会是波形发生衰减不便于后续部分的测试。

在这个部分如果采用集成芯片会大大降低误差提高精准度与稳定性。

为了增强可调性最好采用滑动变阻器与可调电阻。

6.元件清单运放TL0842只计数器741644只反相器74041只触发器74741只硅晶体6MHz1只电位器51k6只导线若干电阻若干双通道数字示波器DS1022C1合成信号发生器NDY-EE14101数字万用表TY3601直流稳压电源DF1731SC2A1计算机联想PC 机17.结语第一次做控制类型的题目开始着手时没有头绪很大一部分需要从网上获取资料从同学那里也得到了不少的帮助。

在确定了各个模块的电路设计后调试的过程中又遇到了很多麻烦波形的幅值不够频率不稳定等。

从后来的测试中总结了很多经验。

本次设计的信号波形合成实验电路完成了基本部分和发挥部分的要求。

本设计主要让我们掌握了信号发生电路的设计方法掌握了信号合成电路的设计方法。

当然调试的时候也是一个重点让我们收获很多这其中就分硬件和软件两部分硬件需要我们注意电路设计问题对电路进行不断地调试与改进。

软件调试方面这其中包括程序的编写检验。

相关文档
最新文档