浙江省三门县珠岙中学九年级数学上册第24章教案2423 圆和圆的位置关系
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。
本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。
本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。
但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。
2.难点:正多边形和圆的关系,圆的性质和应用。
五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。
4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。
六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。
2.教学素材:准备相关的实物、图片等教学素材。
3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。
七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。
部编版人教初中数学九年级上册《24.2.3 圆和圆的位置关系 教学设计》最新精品优秀教案
培养学生正确应用所学知识的应用能力,巩固所学的两圆位置关系的性质和判定.
活动5
小结
这节课我们主要研究了圆和圆的位置关系,你有哪些收获?
布置作业
教科书习题14.3第1、4、6题.
(5) 在图中有两圆的多种位置关系,请你找出还没有的位置关系是.
师生共同完成例题的求解.
对于问题(1),教师应重点关注学生能否利用两圆外切或内切时,圆心距与两圆的半径和与差的关系来解题.
对于问题(2)、(3)、(4)、(5),教师应当重点关注学生能否会利用两圆的圆心距与两圆的半径的关系,判断两圆的位置关系.
让学生观察、发现,并动手摆出两圆的不同位置关系图形.
请一名学生展示他发现的两圆ቤተ መጻሕፍቲ ባይዱ同位置关系的图形.
对于问题(1),教师应重点关注:
(1) 学生能否根据操作,观察两圆的位置关系,摆出相应的图形来;
(2) 学生能否全部发现两圆的几种位置关系.
师生共同讨论出两圆的几种位置关系定义.
对于问题(2),教师应重点关注学生能否用规范清晰的数学语言说出两圆的位置关系.
学生自己总结,教师应重点关注:
(1)学生对圆和圆的位置关系的性质和判定总结是否全面;
(2) 是否有学生能从这节课的学习中,体会到分类讨论和数形结合的数学思想在研究问题中的重要性.
学生通过作业,回顾、梳理知识,反思提高.
总结回顾学习内容,帮助学生学会归纳,反思.
通过课后学生独立思考,自我评价,使学习效果达到最佳.
教师总结活动3讨论出的结论,说明此结论既可作为两圆位置关系的判定又可作为两圆位置关系的性质.
九年级数学上册 第二十四章 圆24.3 正多边形和圆教案(新版)新人教版-(新版)新人教版初中九年级
【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE是正五边形. BCE CDA AB3【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°(n-2)n例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB的度数为_______.π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=,连接OM、ON.(1)求图1中的∠MON的度数;(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠O=30°,∠BOC=120°.又∵BM=,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回顾,教师再予以补充和点评.1.布置作业:从教材“”中选取.练习册中本课时练习的“课后作业”部分.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。
九年级数学上册 24.2.3 圆和圆的位置关系教案 新人教版
教学时间
课题
课型
新授
教
学
目
标
知识和
能力
1.探索并了解圆和圆的位置关系.
2.探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系.
3.能够利用圆和圆的位置关系和数量关系解题.
过程和
方法
1.学生经历操作、探究、归纳、总结圆和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力.
教师提出问题,让学生根据自己所画出的两圆的位置关系图形进一步观察、思考、猜想、测量,发表见解.
(2)圆是轴对称图形,两个圆是否也组成轴对称图形呢?如果能组成轴对图形,那么对称轴是什么?
教师利用课件演示两圆位置关系的变化情况,观察随着两圆位置关系的变化,两圆圆心距与两圆半径之和或之差之间的数量关系.
活动4
学生通过作业,回顾、梳理知识,反思提高.
作业
设计
必做
教科书P102:6、7
选做
教科书P103:15-17
教
学
反
思
(2)你能否根据两圆公共点的个数类比直线和圆的位置关系定义,给出两圆位置关系的定义?
利用几何画板画出两个半径不同的圆,固定其中一个而移动另一个.
让学生观察、发现,并动手摆出两圆的不同位置关系图形.
请一名学生展示他发现的两圆不同位置关系的图形.
活动3
探究
(1)请你根据圆和圆的位置关系,猜测出两圆的圆心距与两圆半径之间的数量关系,利用刻度尺进行测量,验证你的猜想.
2.学生经历探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系的过程,培养学生运用数学语言表述问题的能力.
情感态度
价值观
学生经过操作、实验、发现、确认等数学活动,从探索两圆位置关系的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感.
最新人教版九年级数学上册第二十四章《点和圆、直线和圆的位置关系》教案2
【活动一】
1.创设情境,发现问题
活动一:情景创设:我们生活在丰富多彩的图形世界里,圆与圆组成的图形是我们生活中最常见的画面。比如:自行车的两个轮子、奥运会的会标、皮带轮、日环食照片(大屏幕演示),你还能举出两个圆组成的图形吗?(学生举例)。
活动二:问题探究
问题1,圆和圆有哪些位置关系?(分组讨论)
教学方式
自主探究——合作交流——问题驱动式教学。
教学手段
多媒体(实物投影仪、计算机、直尺、三角板、圆规)
教学过程
教学流程安排
活动流程图
活动内容和目的
活动1创设情境,引入新课;
以实际问题引入,设计悬念,揭示新问题,激发学生的求知欲,感受到学习数学的必要性。
活动2问题探究,获得结论;
以学生动手操作引导发现问题,得到初步猜想。
教材分析
圆和圆的位置关系是和圆有关的位置关系中的一个重要内容,也是学生学习了点和圆、直线和圆之后一个比较难掌握的内容。教材首先从一些生活中的常见的实例,包括两圆外离、内含、相交、内切、外切、同心圆等不同情况,让学生对两圆的位置关系有直观感受。教材设置了一个“探究”,通过移动两圆去发现两圆存在的不同位置关系,在这里总结抽象出各种位置关系的定义。然后学生讨论、测量得出各种位置关系的圆心距和两圆的半径的数量关系,两圆的位置与两圆的圆心距、半径的数量之间的关系,既是两圆不同位置的判定,又是它们的性质。最后,让学生能够运用进行解决问题。在这里学生学习了点和圆、直线和圆、圆和圆之间的位置关系,应当让学生总结不同的位置关系时不同的数量关系,从数和形的两方面去加以认识,在对比和类比中加深对这三不同位置关系的理解。
教师课前布置好:每人都在纸上画一个半径为2cm的圆,每个人都准备一个钥匙环当作另一个圆,在纸上移动钥匙环,让学生观察两圆的位置关系和公共点的个数。
人教版九年级上册《24.2圆和圆的位置关系》教案及反思
圆与圆的位置关系【教学目标:】1、 知道圆与圆之间的五种位置关系.2、 经历探索两圆的位置关系与两圆半径、圆心距的数量关系间的内在联系的过程,并能运用相关结论解决有关问题.3、 在动手实践的过程中体会分类的思想,增强探究的意识和能力. 【教学重点、难点:】知道圆与圆之间的五种位置关系及两圆半径、圆心距的数量关系间的内在联系 【教学过程:】一、创设情境 导入新课1、导入:我们已研究过点与圆、直线与圆的位置关系。
直线与圆的有几种位置关系?有几种判定方法?(板书:公共点个数、d 与r 的数量关系)过渡:那么圆与圆又有怎样的位置关系呢?(板书课题)2、操作与思考:(1)画⊙O 1(2)拿出透明纸上的⊙O 2,放在同一平面内,让 ⊙O 2 从⊙O 1的外部逐渐向⊙O 1移动.(3)在移动过程中,⊙O 1与⊙O 2的位置关系发生了怎样的变化?你能描述这种变化吗?3、多媒体展示5种位置关系的图片【设计意图:通过情境,唤醒旧知,为用类比迁移的办法研究圆与圆的位置关系作铺垫】 二、探索新知:1、问题:你能把上述位置归类吗?你为什么这样归类?2、归纳:1)两圆位置关系的五种情况归纳为三类: 相离 、 相切 、 相交 . (1)两圆相离包括外离和内含 (2)两圆相切包括外切和内切; 2)给出五种情况具体的描述性定义(1)外离: (2)外切: (3)相交: (4)内切:(5)内含: (同心圆是特例) 【设计意图:通过公共点的个数说明两圆的位置关系,形象直观】3、介绍连心线(过两圆圆心的直线).问:上述图形有何特征?(轴对称图形)4、观察并思考:两圆的切点与连心线有什么关系?(如果两圆相切,那么切点一定在连心线上)【反证法】假设切点不在连心线上,根据对称性,有一个点与切点对称,那么两圆有两个交点,则两圆相交,与已知相切矛盾,假设不成立.【设计意图:介绍切点一定在连心线上,为下面研究用数量关系描述位置关系作铺垫】 5、 介绍圆心距(两圆心之间的距离)d.通过观察可以发现,圆心距的变化决定着圆与圆的位置关系.类比直线与圆的位置关系,我们研究d 与R 、r 之间的数量关系描述两圆的位置关系.(设⊙O 1、⊙O 2的半径为R 、r ,圆心O 1 、O 2之间的距离O 1O 2为d ) 过渡:你认为哪几种比较好描述?【设计意图:找到用数量关系区分五种位置关系的关键点:R+r ,R-r 】 6、 多媒体演示后归纳:【设计意图:本环节启发学生运用数形结合、类比的思想来思考问题,解决问题.并且利用数轴表示法来帮助学生记忆 R 、r 、d 这三者之间的关系,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化】7、试一试:(1)已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是( )(a)两圆外切:d=R+r ;(b)两圆内切:d=R-r(R>r);两圆内含: d<R-r(R>r)(a)(b)(c)O 1 O 2 R r d A • •O 1 O 2 R r d ••A .外离B .相交C .外切D .内切(2)如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有( )A.内切、相交B.外离、相交C.外切、外离D.外离、内切 【设计意图:通过简单的试一试,会用公共点的个数或数量关系判别圆与圆的位置关系】三、例题精讲:例1 已知⊙O 1、⊙O 2的半径为r 1、r 2,圆心距d=5,r 1=2. (1) 若⊙O 1与⊙O 2外切,求r 2(2) 若r 2=7,⊙O 1与⊙O 2有怎样的位置关系? (3) 若r 2=4,⊙O 1与⊙O 2有怎样的位置关系?变式:若⊙O 1与⊙O 2相切,求r 2【设计意图:本环节教师通过引导学生感受圆与圆的位置关系与数量关系的相互转化,体验转化的思想】【练一练:】如图,⊙O 的半径为5cm ,点P 是⊙O 外一点, OP=8cm.以P 为圆心作⊙P 与⊙O 相切,则⊙P 的半径是 cm.例2 已知定圆O 的半径为2cm ,动圆P 的半径为1cm..若⊙P 与⊙O 相外切,那么点P 与点O 之间的距离是多少?点P 应在怎样的图形上运动?变式:若⊙P 与⊙O 相切,情况怎样?【设计意图:通过变式训练,进一步体会相切分两种情况,继续渗透分类讨论的思想】四、课堂小结:1、本节课你学到的知识是:2、本节课你用到的数学思想、方法是: 【设计意图:利用图表的形式,形象的展示本节课的知识脉络,在学生脑海里形成知识体系,并且体会数学数形结合、分类讨论、转化等思想方法】五、拓展延伸:如图,王大伯家房屋后有一块长12m,宽8m 的矩形空地,他在以长边BC为直径的半圆内种菜.他家养的一只羊平时拴在A处的一棵树上,拴羊的绳长为3m.问羊是否能吃到菜?为什么?【设计意图:备用.数学来源于生活,又服务于生活】【设计说明:这节课的内容与“直线和圆的位置关系”有密切的联系,但这节课的两圆位置关系远比直线与圆的位置关系复杂.因此,准备通过复习引入和让学生动手操作,猜测两圆可能存在的位置关系,然后经过讨论,归纳确定两圆位置关系的各种情况.在与两圆位置关系相应的数量关系的研究中,鉴于学生已有直线与圆的位置关系中两量(半径、圆心到直线的距离)的数量关系的认知基础,就只运用了类比迁移的方法.这些方法的运用,都是为了充分发挥学生在探求新知过程中的主体作用.其次,在五种位置关系相应的数量关系的研究中,我采用“先易后难,突破关键”的教学策略.先让学生解决易于解决的“外切”、“内切”、“外离”时的三量的数量关系,再解决“内含”时的三量的数量关系,最后突破相交时三量的数量关系:R -r<d< R+r.因此到这时,学生从两圆圆心距d的连续变化中,感悟出非负实数d的连续性.此外,我用数轴表示法来帮助学生记忆R、r、d这三者之间的关系,突破难点.最后,通过例题和变式训练加以巩固,总结本节内容,形成知识脉络,从始至终渗透数学的分类讨论、数形结合、转化等思想方法,提高学生的思维能力.】【教学反思】本课时教学内容主要探究圆与圆的位置关系和判别方法,学生通过类比、分类、数形结合,体会从不同的角度考虑事物的特点。
九年级数学上册 24.2.3 圆和圆的位置关系教案 新人教版
(2)学生能否用点和圆心的距离与半径的数量关系判别点和圆的位置关系,能否用圆心到直线的距离与半径的数量关系判别直线和圆的位置关系.
活动2
观察两个半径不同的⊙O1、⊙O2,固定其中一个而移动另一个的过程中,会出现的几种不同位置关系.
(1) 根据观察,请你摆出⊙O1和⊙O2的几种不同的位置关系;
教师提出问题,让学生根据自己所画出的两圆的位置关系图形进一步观察、思考、猜想、测量,发表见解.
(2) 圆是轴对称图形,两个圆是否也组成轴对称图形呢?如果能组成轴对图形,那么对称轴是什么?
教师利用课件演示两圆位置关系的变化情况,观察随着两圆位置关系的变化,两圆圆心距与两圆半径之和或之差之间的数量关系.
2.学生经历探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系的过程,培养学生运用数学语言表述问题的能力.
情感态度
价值观
学生经过操作、实验、发现、确认等数学活动,从探索两圆位置关系的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感.
教学重点
探索并了解圆和圆的位置关系.
教学难点
活动4
问题1
(1)教科书24.2-
(2) 在图中有两圆的多种位置关系,请你找出还没有的位置关系是
师生共同完成例题的求解.
对于问题(1),教师应重点关注学生能否利用两圆外切或内切时,圆心距与两圆的半径和与差的关系来解题.
活动5
小结
这节课我们主要研究了圆和圆的位置关系4、6题.
24.2.3圆和圆的位置关系
教学时间
课题
课型
新授
教
学
目
标
知识和
能力
人教版九年级数学上册第二十四章圆《24.2点和圆直线和圆的位置关系》第2课时说课稿
人教版九年级数学上册第二十四章圆《24.2点和圆直线和圆的位置关系》第2课时说课稿一. 教材分析人教版九年级数学上册第二十四章圆《24.2点和圆、直线和圆的位置关系》第2课时,主要学习了点和圆的位置关系,直线和圆的位置关系。
这部分内容是圆的基础知识,对于学生理解圆的性质,以及解决与圆有关的问题具有重要意义。
二. 学情分析九年级的学生已经掌握了基本的代数知识和几何知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于圆的相关概念和性质,部分学生可能还不太熟悉,需要通过本节课的学习来进一步掌握。
同时,学生需要通过实例来加深对点和圆、直线和圆位置关系的理解。
三. 说教学目标1.知识与技能目标:学生能理解点和圆、直线和圆的位置关系,并能运用这些知识解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,学生能自主探索点和圆、直线和圆的位置关系,培养解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的意志。
四. 说教学重难点1.教学重点:点和圆、直线和圆的位置关系的判定。
2.教学难点:直线和圆的位置关系的应用,以及如何解决相关问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过回顾上一节课的内容,引出本节课的主题——点和圆、直线和圆的位置关系。
2.自主学习:学生自主阅读教材,了解点和圆、直线和圆的位置关系的判定方法。
3.合作探究:学生分组讨论,通过实例探究点和圆、直线和圆的位置关系,并总结规律。
4.教师讲解:教师根据学生的探究结果,进行讲解和归纳,强调重点和难点。
5.应用练习:学生进行课堂练习,巩固所学知识。
6.课堂小结:教师引导学生总结本节课的主要内容和收获。
7.课后作业:布置相关作业,巩固所学知识。
七. 说板书设计板书设计如下:人和圆的位置关系:•点在圆内:……•点在圆上:……•点在圆外:……直线和圆的位置关系:•直线与圆相交:……•直线与圆相切:……•直线与圆相离:……八. 说教学评价本节课的教学评价主要通过以下几个方面进行:1.学生课堂参与程度:观察学生在课堂上的发言和表现,了解学生的学习状态。
九年级数学上册 第二十四章 圆的精品教案 人教新课标版 教案
7.圆的切线垂直于过切点的半径及其运用. 8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题. 9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及 其运用.
12.n°的圆心角所对的弧长为 L= n R ,n°的圆心角的扇形面积是 S 扇形= n R2 及其运用这两个公式进
180
360
行计算.
13.圆锥的侧面积和全面积的计算.
教学难点
1.垂径定理的探索与推导及利用它解决一些实际问题. 2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题. 3.有关圆周角的定理的探索及推导及其它的运用. 4.点与圆的位置关系的应用. 5.三点确定一个圆的探索及应用. 6.直线和圆的位置关系的判定及其应用. 7.切线的判定定理与性质定理的运用. 8.切线长定理的探索与运用. 9.圆和圆的位置关系的判定及其运用. 10.正多边形和圆中的半径 R、边心距 r、中心角θ的关系的应用.
AC”.大于半圆的弧(如图所示 ABC 叫做优弧,•小于半圆的弧(如图所示) AC 或 BC 叫做劣弧.
B O
A
C
④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. (学生活动)请同学们回答下面两个问题. 1.圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流. (老师点评)1.圆是轴对称图形,它的对称轴是直径,•我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的. 因此,我们可以得到: 圆是轴对称图形,其对称轴是任意一条过圆心的直线. (学生活动)请同学按下面要求完成下题: 如图,AB 是⊙O 的一条弦,作直径 CD,使 CD⊥AB,垂足为 M.
人教版九年级数学上册第二十四章圆《24.2点和圆直线和圆的位置关系》第4课时教案
人教版九年级数学上册第二十四章圆《24.2点和圆直线和圆的位置关系》第4课时教案一. 教材分析本节课主要讲述的是点和圆、直线和圆的位置关系。
通过学习,让学生了解点和圆、直线和圆之间的相互关系,掌握判断点和圆、直线和圆位置关系的方法,为后续解决相关问题打下基础。
二. 学情分析学生在之前的学习中已经掌握了点、直线、圆的基本概念,对本节课的内容有一定的认知基础。
但学生对于点和圆、直线和圆的位置关系的判断方法还需要进一步引导和讲解。
三. 教学目标1.让学生掌握点和圆、直线和圆的位置关系及其判断方法。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:掌握点和圆、直线和圆的位置关系及其判断方法。
2.难点:如何判断直线和圆的位置关系,以及如何运用这些知识解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等多种教学方法,引导学生主动探究、合作交流,从而达到对本节课内容的理解和掌握。
六. 教学准备1.准备相关课件、教学素材。
2.布置预习任务,让学生提前了解本节课的内容。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前所学的基本概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了点、直线、圆的基本概念,那么点和圆、直线和圆之间有什么关系呢?”2.呈现(10分钟)展示PPT,介绍点和圆、直线和圆的位置关系。
通过具体案例分析,让学生了解点和圆、直线和圆之间的相互关系,以及如何判断它们的位置关系。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,判断实例中点和圆、直线和圆的位置关系,并说明判断方法。
教师巡回指导,纠正错误,解答疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验对点和圆、直线和圆位置关系的掌握程度。
教师选取部分学生的作业进行点评,指出优点和不足。
5.拓展(10分钟)引导学生运用所学知识解决实际问题。
人教版九年级上册24.2.3圆和圆的位置关系教案
圆和圆的位置关系一、教学目标1、知识与能力:了解圆和圆的位置关系,掌握圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系,并能利用圆和圆的位置关系和数量关系解题。
2、过程与方法:学生经历操作、探究、归纳、总结圆与圆的位置关系与数量关系的过程,培养学生观察、比较、概括的逻辑思维能力;学会运用数形结合的思想解决问题,发展学生数学应用意识。
3、情感、态度与价值观:在动手实践的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感。
二、教学重点、难点教学重点:教学重点:探索并了解圆和圆的位置关系。
教学难点:探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系。
三、教法学法教师引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略;学生小组合作、动手操作、自主探究成为学生主要的学习方式。
四、教学过程关系有( ).A.内切、相交B.外离、相交C.外切、外离D.外离、内切 3、两个半径相等的圆的位置关系有几种? 2. 探索数量关系(1)上面我们通过圆与圆的交点个数来认识了圆与圆的位置关系,那么还能通过其他的方法来判断吗? 请同学们根据两圆的位置关系图形,观察并思考如果两圆的半径分别为R 和r (R > r ),圆心距为d,当两圆外切时,d 与R 和r 有怎样的关系?反过来,当d 与R 和r 满足这样的关系时,两圆一定外切吗? 进一步,请同学们分小组利用d 与R 和r 的关系讨论两圆的位置关系,并完成下表。
①两圆外离⇔d>R+r ②圆外切⇔ ③两圆相交⇔ ④两圆内切⇔ ⑤两圆内含⇔(2)巩固训练二⊙O 1和⊙O 2的半径分别为3cm 和4cm , 则⊙O 1和⊙O 2的位置关系为:(1) O 1O 2=8cm ______ (2) O 1O 2=7cm ________ (3) O 1O 2=5cm _______ (4) O 1O 2=1cm _________ (5) O 1O 2=0.5cm ___ (6) O 1和O 2重合___活动3:拓展应用,解决问题1、例题 如图,⊙O 的半径为5cm ,点P 是⊙O 外一点,OP =8cm ,以P 为圆心做一个圆与⊙O 外切,这个圆的半径应为多少?以P 点为圆心做一个圆与⊙O 内切呢?变式训练定圆O 的半径是4cm,动圆P 的半径是1cm.(1)设⊙O 和⊙P 相切,点P 与点O 的距离是多少? (2)点P 可以在什么样的线上移动?定义的理解。
人教版九年级数学上册第二十四章圆《24.2点和圆直线和圆的位置关系》第4课时教学设计
人教版九年级数学上册第二十四章圆《24.2点和圆直线和圆的位置关系》第4课时教学设计一. 教材分析人教版九年级数学上册第二十四章圆《24.2点和圆直线和圆的位置关系》第4课时,主要讲述了点和圆、直线和圆的位置关系。
通过本节课的学习,学生能够掌握点和圆、直线和圆的位置关系,并能够运用这些知识解决实际问题。
教材通过丰富的实例和图示,引导学生探索和发现规律,培养学生的观察能力、思考能力和解决问题的能力。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对点和直线的位置关系有了初步的了解。
但是,对于点和圆、直线和圆的位置关系的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,教师需要根据学生的实际情况,采取合适的教学方法,引导学生主动探索和发现规律,提高学生解决问题的能力。
三. 教学目标1.知识与技能:学生能够理解和掌握点和圆、直线和圆的位置关系,并能够运用这些知识解决实际问题。
2.过程与方法:学生通过观察、思考和探索,培养观察能力、思考能力和解决问题的能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验数学学习的乐趣,增强对数学学习的信心。
四. 教学重难点1.重点:点和圆、直线和圆的位置关系。
2.难点:点的圆、直线和圆的位置关系的运用。
五. 教学方法1.情境教学法:通过丰富的实例和图示,引导学生观察和思考,激发学生的学习兴趣。
2.问题驱动法:教师提出问题,引导学生主动探索和发现规律,培养学生的问题解决能力。
3.合作学习法:学生分组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学素材:准备相关的实例和图示,用于引导学生观察和思考。
2.教学工具:准备黑板、粉笔等教学工具,用于板书和讲解。
3.学习任务单:准备学习任务单,用于引导学生主动探索和发现规律。
七. 教学过程1.导入(5分钟)教师通过一个实例,引导学生观察和思考,提出问题和引导学生思考问题。
例如,教师可以提出一个问题:“在平面上有三个点,它们与一个圆的位置关系是什么?”让学生观察和思考。
人教版九年级数学上册第二十四章24.3正多边形和圆教案
在实践活动方面,我发现学生们在分组讨论和实验操作中表现出了很高的积极性。但也有一些小组在讨论过程中出现了一些方向性的错误,这提醒我在今后的教学中,要加强对学生的引导,确保他们能够在正确的方向上进行探索。
3.正多边形与圆的关系:探讨正多边形与圆之间的联系,如正多边形的中心角、半径、边长等之间的关系。
4.正多边形的面积计算:引导学生运用所学的几何知识,求解正多边形的面积。
5.实际应用:通过实际生活中的例子,让学生了解正多边形和圆在实际应用中的价值,提高学生的几何素养。
本节课将以上述内容为核心,结合教材实例,帮助学生深入理解和掌握正多边形和圆的相关知识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正多边形和圆的基本概念。正多边形是指所有边长和角度都相等的多边形,它在几何图形中有着特殊的地位。圆则是我们熟悉的曲线图形,与正多边形结合可以产生许多有趣的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。以正六边形为例,探讨它如何与圆完美结合,以及这种结合在实际中的应用,如蜂巢的结构。
五、教学反思
在本次教学过程中,我发现学生们对正多边形和圆的概念掌握得还算不错,但在具体的性质推导和应用上,部分学生还存在一定的困难。这让我意识到,在今后的教学中,需要更加注重培养学生的逻辑思维能力和实际问题解决能力。
首先,关于正多边形的性质推导,我觉得可以尝试用更直观的方式展示,比如利用实物模型或动态图示,让学生更直观地感受正多边形的性质。此外,通过引导学生主动参与推导过程,让他们在实践中掌握几何证明的方法。
浙江省三门县珠岙中学九年级数学上册第24章教案:圆
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我发现学生们对圆的概念和性质有了基本的掌握,但在一些具体的知识点上,如弧和弦的关系、直线与圆的位置关系等方面,还存在一些理解上的困难。这让我意识到,在接下来的教学中,我需要更加注重对这些难点内容的讲解和引导。
在讲解圆的基本性质时,我尽量用生活中的实例来说明,这样能够让学生们更好地理解抽象的几何概念。例如,通过比较车轮的滚动,学生们更容易理解圆周长的计算公式。但在讲解过程中,我发现有些学生对圆心角、弧和弦的关系还是感到困惑。今后,我可以尝试设计一些动态的演示,让学生直观地感受到这些几何元素之间的变化关系。
在新课讲授环节,我采用了案例分析的方法,让学生们通过解决实际问题来掌握圆的相关知识。从学生的反馈来看,这种方法效果不错,他们能够积极参与到课堂讨论中。但在小组讨论环节,我发现个别小组的讨论氛围不够热烈,部分学生参与度不高。为了提高学生的参与度,我可以在下一次课堂中尝试设置更具挑战性的问题,激发学生的探究兴趣。
4.培养学生的数学应用意识,将圆的知识与生活实际相结合,激发学生探索数学在现实世界中的广泛应用;
5.培养学生的团队合作与交流能力,通过小组讨论和合作学习,让学生在分享和交流中加深对圆的知识理解。
三、教学难点与重点
九年级数学上册第二十四章24.2点和圆、直线和圆的位置关系24.2.3圆的切线的性质和判定备课资料
九年级数学上册第二十四章24.2 点和圆、直线和圆的位置关系24.2.3 圆的切线的性质和判定备课资料教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章24.2 点和圆、直线和圆的位置关系24.2.3 圆的切线的性质和判定备课资料教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章24.2 点和圆、直线和圆的位置关系24.2.3 圆的切线的性质和判定备课资料教案(新版)新人教版的全部内容。
第二十四章 24。
2。
3圆的切线的性质和判定知识点1:圆的切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.关键提醒:(1)在应用圆切线的判定定理时,必须先弄清“题设”中的两个事项:一是经过半径外端点,二是垂直于这条半径,这两者缺一不可,千万不要只凭一个条件就判定一条直线为圆的切线.如图,其中的直线l都不是☉O的切线.(2)根据要点5,6可知,切线的判定方法有三种:①定义法:和圆只有一个公共点的直线是圆的切线;②数量法:到圆心的距离等于半径的直线是圆的切线;③判定定理。
知识点2:圆的切线的性质定理圆的切线垂直于经过切点的半径.关键提醒:(1)切线的判定定理和性质定理易混淆,要注意区别。
判定定理是不知道直线是否是切线,而让你来证明它,是从数量关系(①与圆只有“1”个公共点;②d=r;③垂直即90°)到位置关系。
而性质定理则是已知是切线,它具有哪些性质。
(2)由圆的切线的性质定理不难得出:经过圆心且垂直于切线的直线必过切点;经过切点且垂直于切线的直线必过圆心.由此我们可以总结如下:切线的性质和判定主要涉及四个因素:①切线;②切点(半径外端点);③圆心;④垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
(一)教学知识点
1.了解圆与圆之间的几种位置关系.
2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.
(二)能力训练要求
1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.
2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.
(三)情感与价值观要求
1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.
教学重点
探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.
教学难点
探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r 的数量关系的过程.
教学方法
教师讲解与学生合作交流探索法
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.Ⅱ.新课讲解
一、想一想
[师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?
[生]如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.
[师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨论这些位置关系分别是什么.
二、探索圆和圆的位置关系
在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?
[师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.
[生]我总结出共有五种位置关系,如下图:
[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑.[生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;
(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;
(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;
(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;
(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.
[师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?
[生]外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.
[师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.
经过大家的讨论我们可知:
投影片(§3.6A)
(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.
(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离
⎧⎨⎩外离
内含,相切
⎧
⎨
⎩
外切
内切.
三、例题讲解
投影片(§3.6B)
两个同样大小的肥皂泡黏在一起,其剖面如图所示(点O,O'是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.
分析:因为两个圆大小相同,所以半径OP=O'P=OO',又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O'P,即∠OPT=∠O'PN=90°,所以∠TPN 等于360°减去∠OPT+∠O'PN+∠OPO'即可.
解:∵OP=OO'=PO',
∴△PO'O是一个等边三角形.
∴∠OPO'=60°.
又∵TP与NP分别为两圆的切线,
∴∠TPO=∠NPO'=90°.
∴∠TPN=360°-2×90°-60°=120°.
四、想一想
如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2)〕
[师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.
证明:假设切点T不在O1O2上.
因为圆是轴对称图形,所以T关于O1O2的对称点T'也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假设不成立.
则T在O1O2上.
由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.
在图(2)中应有同样的结论.
通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线.
五、议一议
投影片(§3.6C)
设两圆的半径分别为R和r.
(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?
(2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d 与R和r满足这一关系时,这两个圆一定内切吗?
[师]如图,请大家互相交流.
[生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.
在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2上,所以O1O2=O1B-O2B,即d=R-r;反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.
[师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切⇔d=R+r.
当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切⇔d=R-r.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
Ⅴ.课后作业
习题3.9
Ⅵ.活动与探究(培优生作业)
已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.
分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3⊥O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.
解:连接O2O3、OO3,
∴∠O2OO3=90°,OO3=2R-r,
O 2O
3
=R+r,OO2=R.
∴(R+r)2=(2R-r)2+R2.
∴r=2
3 R.
板书设计
§圆和圆的位置关系一、1.想一想 2.探索圆和圆的位置关系
3.例题讲解 4.想一想 5.议一议
二、课堂练习
三、课时小结
四、课后作业。