宁夏银川唐徕回民中学12-13学年七年级下期中考试-数学.

合集下载

宁夏银川市唐徕回民中学2024年中考联考数学试卷

宁夏银川市唐徕回民中学2024年中考联考数学试卷

宁夏银川市唐徕回民中学2024年中考联考数学试卷一、单选题1.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( ) A .平均数B .中位数C .众数D .方差2.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC //BD //y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .323.一个多边形的内角和比它的外角和的3倍少180︒,则这个多边形的边数是( ) A .七B .八C .九D .十4.下列式子中,与互为有理化因式的是( )A .B .CD 5.下列运算正确的是 ( ) A .22a +a=33a B .()32m =5m C .()222x y x y +=+D .63a a ÷=3a6.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m 2,广告牌所占的面积是 30m 2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m 2,设矩形面积是xm 2,三角形面积是ym 2,则根据题意,可列出二元一次方程组为( )A .430(4)(4)2x y x y +-=⎧⎨---=⎩B .26(4)(4)2x y x y +=⎧⎨---=⎩C .430(4)(4)2x y y x +-=⎧⎨---=⎩D .4302x y x y -+=⎧⎨-=⎩7.下列说法:①平分弦的直径垂直于弦;②在n 次随机实验中,事件A 出现m 次,则事件A 发生的频率mn,就是事件A 的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n 种,则每一种结果发生的可能性是1n .其中正确的个数( )A .1B .2C .3D .48.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,//BC x 轴,∠90OAB =o ,点()3,2C ,连接OC ,以OC 为对称轴将OA 翻折到OA ',反比例函数k y x=的图象恰好经过点A ' ,B ,则k 的值是( )A .9B .133C .16915D .9.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°10.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣ABD .AC =AD ﹣AB11.如图,已知OP 平分∠AOB ,∠AOB =60°,CP OA ∥,PD ⊥OA 于点D ,PE ⊥OB 于点E ,CP =2,如果点M 是OP 的中点,则DM 的长是( )A .2B CD .12.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )A .中位数是5吨B .众数是5吨C .极差是3吨D .平均数是5.3吨二、填空题13.分解因式:a 3-12a 2+36a=.14.观察下列一组数13,25,37,49,511,…探究规律,第n 个数是.15.如图,在Rt ABC ∆中,90C ∠=︒,8cm AC =,AB 的垂直平分线MN 交AC 于D ,连接BD ,若3cos 5BDC ∠=,则BC 的长是cm .16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC 为度.17.18.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为.三、解答题19.某商场将每件进价为80元的商品按每件100元出售,一天售出100件,经调查发现,该种商品单价每降低1元,其日销售量增加10件.(1)求商场出售该种商品,原来一天可获利多少元?(2)设该商品每件降价x元,商场一天可获利y元.①若商场经营该商品一天要获利2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并结合题意直接写出当x取何值时,商场所获利润不少于2160元?20.某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)这次调查中,一共调查了多少名学生?(2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;(3)若该校有2000名学生,请估计选择“A:跑步”的学生约有多少人?21.如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y 轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OP A=2S△OQA,试求出点P的坐标.22.已知ABCV在平面直角坐标系中的位置如图所示.(1)分别写出图中点A 和点C 的坐标;(2)画出ABC V 绕点C 按顺时针方向旋转90︒后的A B C '''V ; (3)求点A 旋转到点A '所经过的路线长(结果保留π).23.如图①,在四边形ABCD 中,AC ⊥BD 于点E ,AB=AC=BD ,点M 为BC 中点,N 为线段AM 上的点,且MB=MN.(1)求证:BN 平分∠ABE ;(2)若BD=1,连结DN ,当四边形DNBC 为平行四边形时,求线段BC 的长; (3)如图②,若点F 为AB 的中点,连结FN 、FM ,求证:△MFN ∽△BDC . 24.如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD 的面积.25.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?26.菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.27.灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图. 请根据图中提供的信息,回答下列问题: (1)a= %,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?。

宁夏银川市唐徕回民中学2014-2015学年高二上学期期末考试数学(文)试题

宁夏银川市唐徕回民中学2014-2015学年高二上学期期末考试数学(文)试题

宁夏银川市唐徕回民中学2014-2015学年高二上学期期末考试数学(文)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有 一项是符合题目要求的.1.抛物线214x y =的焦点坐标是 ( )A.()0,1B.()1,0C. 10,16⎛⎫ ⎪⎝⎭D. 1,016⎛⎫ ⎪⎝⎭2.双曲线14222-=-y x 的渐近线方程为 ( ) A .x y 2±=B .y x 2±=C .x y 21±=D .y x 21±= 3.命题2",210"x R x x ∀∈-+≥的否定是 ( )A. 2",210"x R x x ∃∈-+≤B. 2",210"x R x x ∃∈-+<C. 2",210"x R x x ∃∈-+≥D. 2",210"x R x x ∀∈-+< 4. 抛物线22(0)y px p =->的焦点恰好与椭圆22195x y +=的一个焦点重合,则p =( ) A. 1 B. 2 C. 4 D. 85.ABC ∆的周长是8,B (﹣1,0),C (1,0),则顶点A 的轨迹方程是 ( ) A.221(3)98x y x +=≠± B. 221(0)98x y x +=≠ C.221(0)43x y y +=≠ D. 221(0)34x y y +=≠ 6.曲线3232y x x =++在点(1,6)处的切线方程为( ) A .930x y +-=B. 930x y --=C. 9150x y +-=D. 9150x y --= 7. 双曲线12222=-by a x 的两条渐近线互相垂直,那么它的离心率为 A .2 B.23 C. 2 D. 3 8. 设()f x '是函数()x f 的导函数,()y f x '=的图象如图所示, 则=y ()x f 图象可能为( )9.如下四个命题:其中错误..的命题是 ( ) A.命题“若2320x x -+=,则1x =“的逆否命题为“若21,320x x x ≠-+≠则”B.若命题2:R,10p x x x ∃∈++=,则10p x R x x ⌝∀∈++≠2为:,C.若p q ∧为假命题,则p ,q 均为假命题D.“2x >”是“2320x x -+>”的充分不必要条件10. 椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是12,F F .若 1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为( )B. 14C. 122- 11.如果方程121||22=---m y m x 表示双曲线,那么实数m 的取值范围是 ( ) A.2>m B. 11<<-m 或2>m C. 21<<-m D. 1<m 或2>m12. 已知21()ln (0)2f x a x x a =+>若对任意两个不等的正实数12,x x ,都有 1212()()2f x f x x x ->-恒成立,则a 的取值范围是 ( ) A. (0,1]B. (1,)+∞C. (0,1)D. [1,)+∞ 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若“[1,5]x ∈或{|23}x x x x ∈<->或”是假命题,则x 的取值范围是_________. 14.双曲线22136x y -=的右焦点到渐近线的距离是_________. 15.与圆22(2)1x y -+=外切,且与直线10x +=相切的动圆圆心的轨迹方程是_________.16.若函数32()31f x x x ax =-+++在(,1]-∞上单调递减,则实数a 的取值范围是_________.三、解答题:本大题6小题, 共70分. 解答应写出文字说明,证明过程或演算步骤.17. (本小题满分10分)已知函数321()22f x x x x c =--+ (1)求函数()f x 的极值; (2)求函数()f x 的单调区间。

宁夏银川市唐徕回民中学2014-2015学年高一上学期期中考试数学试题

宁夏银川市唐徕回民中学2014-2015学年高一上学期期中考试数学试题

宁夏银川市唐徕回民中学2014-2015学年高一上学期期中考试数学试题1.已知集合{|2}A x R x =∈≥-,集合{|3}B x R x =∈<,则A B =(A )[)2,3- (B )(]2,3- (C )(](),23,-∞-⋃+∞ (D )(),-∞+∞2.设全集{}10*<∈=x N x U ,已知{}1,2,4,5A =,{}1,3,5,7,9B =,则集合()U C A B ⋃的真子集个数为 (A )2(B )3(C ) 4(D )83.()1f x x x =--,则12f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦(A )1(B )12 (C ) 0(D )12-4.=-⋅63m m(A )m (B )m - (C )m - (D )m -- 5.已知()f x 是定义在R 上的奇函数,且当0x >时,()2log 3f x x =+,则14f ⎛⎫-= ⎪⎝⎭(A )1(B )1-(C ) 0(D )12-6.设{}240M x x x =+≤,则函数()261f x x x =--+的最值情况是(A )最小值是1,最大值是9 (B )最小值是1-,最大值是10 (C )最小值是1,最大值是10(D )最小值是2,最大值是97. 已知幂函数()y f x =图像经过点14,2⎛⎫⎪⎝⎭,则()3f =(A )3 (B )13(C ) (D )38. 函数y =的定义域是(A )[1,)+∞ (B )2(,)3+∞(C )2(,1]3 (D )2[,1]39.已知)(x f 是定义在R 上的偶函数,)(x f 在[)+∞∈,0x 上为增函数,且(3)0,f -=. 则不等式(21)0f x -<的解集为(A )(1,2)- (B ) ()(,1)2,-∞-⋃+∞ (C ) (,2)-∞ (D )(1,)-+∞ 10. 设0.7log 3a =,0.32.3b -=,3.20.7c -=,则,,a b c 的大小关系是 (A )b a c >>(B) c b a >>(C) c a b >>(D) a b c >>二、填空题(每题5分,共计20分)13.设函数()3xf x =,若()g x 为函数()f x 的反函数,则g= .14. ()=⋅+50lg 2lg 5lg 2.15. 已知函数()f x 是定义在R 的奇函数,设()()3F x f x =+,且()F x 的最大值为M ,最小值为m ,则M m += .16. 已知()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若()()220f a f a -+->,则a 的范围是 .三、解答题(本题包括六道小题共计70分)17.(本题10分)(1)设集合{}2230A x x x =--<,{}0B x x a =->,若AB A =,求a 的范围;(2)设集合{}2310M x R ax x =∈--=,若集合M 中至多有一个元素,求a 的范围.18.(本题12分)设函数()21f x x x =++-(1)在如图所示直角坐标系中画出函数()f x 的图像; (2)若方程()240f x a -+=有解,求实数a 的范围.19.(本题12分)设()24x f x x+=,(1)判断函数()f x 的奇偶性;(2)证明函数()f x 在[)2,+∞单调递增;20.(本题12分)设函数()223f x x ax =-+,(1)若函数()f x 在区间[]2,3-是单调函数,求实数a 的范围; (2)求函数()f x 在区间[]2,3-的最小值.21.(本题12分)设()11212xf x x ⎛⎫=+⎪-⎝⎭, (1)求函数()f x 的定义域;(2)证明:对于任意非零实数都有()0f x >.22.(本题12分)已知函数()x f 满足()()121log ---=x x a a x f a ,其中0>a 且1≠a (1)解不等式()()0112<-+-m f m f ;(2)当()2,∞-∈x 时,()4-x f 的值恒为负数,求a 的范围。

宁夏银川市唐徕回民中学2015届高三上学期期中考试数学(文)试题

宁夏银川市唐徕回民中学2015届高三上学期期中考试数学(文)试题

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}2250,M x x x x Z =+<∈,集合{}0,N a =, 若MN ≠Φ,则a 等于( )A. 1-B. 2C. 1-或2D. 1-或2-2.已知命题x x R x p lg 2,:>-∈∃,命题0,:2>∈∀x R x q ,则( ) A. 命题q p ∨是假命题 B. 命题q p ∧是真命题 C. 命题)(q p ⌝∧是真命题D. 命题)(q p ⌝∨是假命题3. 已知α∈(2π,π),sin α=53,则tan (4πα-)等于( )A . -7B . - 71C . 7D .714. 在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A .钝角三角形B. 直角三角形C. 锐角三角形D. 不能确定5.若曲线y=2x ax b ++在点(0.b )处的切线方程式1x y -+=0,则( ) A. 1a =,1b = B. 1a =-,1b = C. 1a =,1b =-D. 1a =-1b =-6.ABC ∆的内角C B A ,,的对边分别为c b a ,,已知,4,6,2ππ===C B b 则ABC ∆的面积为( )A .23+2 B.3+1 C .23-2 D.3-17. 执行如图所示的程序框图,则输出的k 的值是( )A . 3B .4C .5D .68. 若平面四边形ABCD 满足0,()0,AB CD AB AD AC +=-⋅= 则该四边形一定是( )A. 直角梯形B. 矩形C. 菱形D. 正方形 9. 已知函数)(x f 为奇函数,且当0>x 时,,1)(2xx x f +=则)1(-f 等于( )A .2B .1C .0D .2-10.函数13y x x =-的图象大致为11. 已知函数),(,1)(22R b a b b ax x x f ∈+-++-=,对任意实数x 都有)1()1(x f x f +=-成立,若当[]1,1-∈x 时,0)(>x f 恒成立,则b 的取值范围是( )A .01<<-bB .12-<>b b 或C . 2>bD .1-<b12. 若存在正数x 使1)(2<-a x x 成立,则a 的取值范围是( )A .(-∞,+∞)B . (-1,+∞)C .(0,+∞)D . (-2,+∞)二、填空题(本大题共4小题,每小题5分,共20分.)13.已知数列1,,9a 是等比数列,数列121,,,9b b 是等差数列,则12a b b +的值为 .14.已知向量)sin ,(cos a θθ=→,向量)1,3(b -=→则|b a 2|→→-的最大值是 _____ 15.若函数a x x x f +-=23)(在[]1,1-的最小值是1,则实数a 的值是.16. 给出如下五个结论:①存在)2,0(πα∈使31cos sin =+a a ②存在区间(,a b )使x y cos =为减函数而x sin <0 ③x y tan =在其定义域内为增函数④)2sin(2cos x x y -+=π既有最大、最小值,又是偶函数⑤) ⎝⎛+=62sin πx y 最小正周期为π其中正确结论的序号是三、解答题:本大题共6小题,共70分。

宁夏银川市唐徕回民中学2015届高三上学期期中考试数学(理)试题

宁夏银川市唐徕回民中学2015届高三上学期期中考试数学(理)试题

宁夏银川市唐徕回民中学2015届高三上学期期中考试数学(理)试题一、选择题(每小题5分,共60分)1.则集合的真子集的个数为( )A .4B .6C .15D .632.下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )A .ln ||y x = B.cos y x = C..21y x =-+ D. 1y x = 3.把函数()()()sin 0f x x ωω=>向左平移6π个单位后得到一个偶函数的图象,则ω的最小值为( )A .1B .2C .3D .4 4,直线及轴所围成的图形的面积为() AB C .4 D .65.A ,B ,C 为ABC ∆三内角,则“cos sin cos sin A A B B +=+”是“90C ∠=︒”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.执行如图所示的程序框图,则输出的S 的值为( )A. -7B. 8C. -9D. -57.ABC ∆中,点E 为AB 边的中点,点F 为AC 边的中点,BF 交CE 于点G ,若AG xAE yAF =+,则x y +等于 ( )A. 32B. 1C. 43D. 238.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF面MPQ=l ,则下列结论中 2y x =-y P G FE B C不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线9.设0,0.a b >>若3a 与3b 的等比中项,则11a b +的最小值为 ( )A. 8B. 4C. 1D. 1410. 已知,41)4cos()43sin(-=--ππx x 则x 4cos 的值等于( ) A. 14B. 42C. 21D.22 11. 已知三角形ABC 的三边长c b a ,,成等差数列,且84222=++c b a ,则实数b 的取值范围是( ) A. (]72,0B.(]72,62C.()62,0D. []72,62 12、函数(),0,ln 20,322⎪⎩⎪⎨⎧>-≤+--=x x x x x x f 直线m y =与函数()x f 的图像相交于四个不同的点,从小到大,交点横坐标依次记为d c b a ,,,,有以下四个结论 ①⑴.[)4,3∈m②[)4,0e abcd ∈ ③⎪⎭⎫⎢⎣⎡-+-+∈+++21,21265e e e e d c b a④若关于x 的方程()m x x f =+恰有三个不同实根,则m 取值唯一.则其中正确的结论是( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(每小题5分,共20分)13.若(0,)2πα∈,且21sin cos 24αα+=,则tan (+)πα的值等于 . 14.已知→a ={3λ,6, λ+6}, →b ={λ+1,3,2λ},若→a ∥→b ,则λ= . 15. 已知变量y x ,满足约束条件,01033032⎪⎩⎪⎨⎧≤-≥-+≤-+y y x y x 若目标函数y ax z +=仅在点()0,3处取得最大值,则实数a 的取值范围是 .16. 函数()sin()(0,0|)f x A x A ωφω=+>>的图象如下图所示,则()()()()1232014f f f f ++++=.三、解答题(共60分,每小题12分)17.(本大题满分12分)设R a ∈,函数())2(cos )cos sin (cos 2x x x a x x f ++-=π满足()03f f =⎪⎭⎫ ⎝⎛-π. (1) 求()x f 的单调递减区间;(2)设锐角三角形ABC 的内角C B A ,,所对的边分别为,,,c b a 且,2222222c a c cb a bc a -=-+-+ 求()A f 的取值范围.18.(本大题满分12分)已知数列满足,().(1)计算432,,a a a ,推测数列的通项公式;(2)设n S 表示数列{}n a 的前n 项和,求n S .19.(本大题满分12分)如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,2,6AB AC ==, 点D在线段1BB 上,且113BD BB =,11AC AC E =.(1)求证:直线DE 与平面ABC 不平行;(2)设平面1ADC 与平面ABC 所成的锐二面角为θ,若cos θ,求1AA 的长; {}n a 11=a 121+=+n n a a *N n ∈{}n a20.(本大题满分12分)已知椭圆C :22221x y a b+=(0)a b >>,12,F F 分别为C 的左右焦点,12||F F =且离心率为e = (1)求椭圆C 的方程;(2)设过椭圆右焦点2F 的直线l 和椭圆交于两点,A B ,是否存在直线l ,使得△2OAF 与△2OBF 的面积比值为2?若存在,求出直线l 的方程;若不存在,说明理由.21.(本大题满分12分)设函数())1ln(2++=x a x x f .(1)若函数()x f y =在区间[)+∞,1上是单调递增函数,求实数a 的取值范围;(2)若函数()x f y =有两个极值点,,21x x 且21x x <,求证:()2ln 21012+-<<x x f . 四、在第22、23、24三题中选一题作答,如果多选,则按所做的第一题记分。

宁夏银川市唐徕回民中学2013-2014学年高一数学12月月考试题

宁夏银川市唐徕回民中学2013-2014学年高一数学12月月考试题

银川唐徕回民中学2013~2014学年度第一学期12月月考高一年级数学试卷一、选择题 (每小题5分,共60分)1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④2.函数f (x )=e x-1x的零点所在的区间是( )A .(0,12 )B .( 12,1)C .(1,32 )D .( 32,2 )3.函数||2)(x x f -= 的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R4.集合}1,log |{3>==x x y y A ,}0,3|{>==x y y B x,则=⋂B A ( )A .}310|{<<y y B .}0|{>y yC . }131|{<<y yD .}1|{>y yx 5.当10<<a 时,在同一坐标系中,函数x y a y a x l o g ==-与的图象是()6. 图中曲线分别表示l g ay o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a<b<1<d<cB. 0<b<a<1<c<dC. 0<d<c<1<a<bD. 0<c<d<1<a<b7. 如右图所示是某一容器的三视图,现向容器中匀速 注水,容器中水面的高度h 随时间t 变化的可能图象是 ( )A .B .C . D.8.梯形ABCD 中AB//CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( ) A .平行B .平行或异面C .平行或相交D .异面或相交正视图侧视图俯视图9.已知13log 2a =, 121log 3b =, 0.31()2c =, 则( ). A .a b c << B .ac b << C .b ca << D .b ac <<10.函数f (x )=| x 2-6x +8 |-k 只有两个零点,则( )A .k =0B .k >1C .0≤k <1D .k >1,或k =011. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则 这个棱柱的体积为( ). A. 324 B. 336C. 332D. 34812. 已知ABC 三个顶点在同一个球面上,90,2BAC AB AC ∠===,若球心到平面ABC 距离为1,则该球体积为( )A.B.C.D.二、填空题(每小题5分,共20分)13.若函数()y f x =是函数(01)xy a a a =>≠且的反函数,且()y f x =的图象过点 (2,1),则()f x =______________14.已知某个几何体的三视图如图(正视图中的弧线是半圆),图中标出的尺(单位:㎝), 可得这个几何体表面是 cm 2。

宁夏银川市唐徕回民中学七年级地理下学期期中试题 新人教版

宁夏银川市唐徕回民中学七年级地理下学期期中试题 新人教版

宁夏银川市唐徕回民中学2012-2013学年七年级下学期期中考试地理试题新人教版一、细比较,我会选(每小题1分,共20分)请把答案填在题后的表格内1.亚洲与欧洲的分界线是()A.苏伊士运河B.乌拉尔山—乌拉尔河—大高加索山-土耳其海峡C.直布罗陀海峡D.白令海峡2.下列关于亚洲地形的说法正确的是()A.以山地、平原为主,中部高、四周低B.以山地、高原为主,西高东低C.以山地、高原为主,中部高、四周低D.以山地、丘陵为主,中部高、四周低3.世界上各种气候类型中,在亚洲没有分布的是()A.温带大陆性气候B.温带海洋性气候C.热带季风气候D.热带雨林气候4.七大洲中面积最大和面积最小的是()A.亚洲和欧洲B.非洲和南极洲C.北美洲和欧洲D.亚洲和大洋洲5.北京(东八区)时间2012年5月4日9:00小利在银川唐徕回民中学进行文艺演出,她远在日本东京(东九区)的姐姐小荣准时收看小利的现场直播,问小荣收看节目是当地几时()A.10:00 B.8:00 C.20:00 D.21:006.非洲地势的特点是()A.南部高,北部低B.北部高,南部低C.西北高,东南低D.东南高,西北低7.某旅游记者在游记中写道:“烈日下,成群的斑马在草原上散步,不远处有几只幼狮在周围嬉戏……”该旅游记者记述的地区应在()A.欧洲的西欧平原B.非洲的东非高原C.澳大利亚中部盆地D.青藏高原8.同学们在观看体育节目时,经常看到黑人体育明星,如“飞人”乔丹、“拳王”泰森,虽然他们现在是美国人,但是他们的祖先却是()A.南美洲人B.大洋洲人C.欧洲人D.撒哈拉以南的非洲人9.下列有关非洲气候特点的叙述,错误的是()A.气温高B.季风气候显著C.干燥地区广大D.气候带南北对称分布10.东南亚各国将水稻作为主要粮食作物的理由中,错误的是()A.水稻是单位面积产量较高的粮食作物B.水稻生产需要投入大量的劳动力C.水稻生产需要高温多雨的气候D.东南亚人口稀疏,耕地较多,气候干燥11.中南半岛的地形特点是()A.山河相间,纵列分布B.地形崎岖,火山众多C.南高北低,以平原为主D.西高东低,以高原为主寒假里,家住福州的李华一家准备到东南亚旅游。

2024年宁夏银川市中考模拟数学试卷(四)

2024年宁夏银川市中考模拟数学试卷(四)

2024年宁夏银川市中考模拟数学试卷(四)一、单选题1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.下列各图都是用四个全等的直角三角形拼成的图形,其中是中心对称图形但不是轴对称图形的是( )A .B .C .D . 3.下列计算结果正确的是( )A .824a a a ÷=B .523-=ab abC .222()a b a b -=-D .3226()ab a b -= 4.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,温度最高的天数是( )A .10B .6C .2D .45.下列二次根式中,是最简二次根式的是( )AB C D 6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A .13∠=∠B .如果230∠=︒,则有//AC DE C .如果245∠=︒,则有4=∠∠D D .如果250∠=︒,则有//BC AD7.二次函数20(0)ax bx c a ++=≠的图象如图所示,下列结论中错误的是( )A . 0a >B .20a b +<C . 0a b c ++<D . 240b ac -> 8.如图,将含30︒角的直角三角尺ABC 绕点B 顺时针旋转150︒后得到EBD △,连接CD .若4c m AB =.则BCD △的面积为( )A .B .C .3D .2二、填空题9.约分:3242ab a b=.10.若菱形的对角线长分别为2与211.用与教材中相同型号的计算器,依次按键 ,显示结果为.借助显示结果,可以将一元二次方程210x x +-=的正数解近似表示为.(精确到0.001)12.从﹣1,2,3这三个数中任取一个数,分别记作m ,那么点(m ,﹣2)在第三象限的概率是.13.如图,四边形ABCD 的对角线AC 是O e 的直径,AB AD =,110AOD ∠=︒,则B C D ∠=︒.14.在一条可以折叠的数轴上,A ,B 表示的数分别是﹣9,4,如图,以点C 为折点,将此数轴向右对折,若点A 在点B 的右边,且AB =1,则C 点表示的数是.15.如图是某种杆秤.在秤杆的点A 处固定提纽,点B 处挂秤盘,点C 为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点C ,秤杆处于平衡.秤盘放入x 克物品后移动秤砣,当秤砣所挂位置与提扭的距离为y 毫米时秤杆处于平衡.测得x 与y 的几组对应数据如下表:由表中数据的规律可知,当20x =克时,y =毫米.16.如图的正方形网格中,点A ,B ,C ,D ,E 均为格点,ABC CDE V V ≌,点B ,C ,D 在同一直线上,则下列结论中正确的是(选填序号).①BAC ECD ∠=∠;②90BAC CED ∠+∠=︒;③AC EC ⊥;④AC CD =.三、解答题17.计算:2122tan 602-⎛⎫-︒ ⎪⎝⎭. 18.以下是圆圆解方程13123x x +--=的解答过程. 解:去分母,得3(1)2(3)1x x +--=去括号,得31231x x +-+=移项,合并同类项,得3x =-.(1)圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程;(2)请尝试解方程1310.20.3x x +--=. 19.已知某品牌电动车电池的电压为定值,某校物理小组的同学发现使用该电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求该品牌电动车电池的电压;(2)该物理小组通过询问经销商得知该电动车以最高速度行驶时,工作电压为电池的电压,工作电流在7.2 A 8 A :的范围,请帮该小组确定这时电阻值的范围.20.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?21.如图,在ABCD Y 中,对角线AC BC ⊥,过点D 作DE BC ⊥于E ,求证:四边形ACED 是矩形.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.为庆祝中国共产主义青年团成立101周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分,竞赛成绩如图所示:根据以上信息,回答下列问题.a______,b=______;(1)填空=(2)现要给成绩突出的年级颁奖,请你从某个角度分析,应该给哪个年级颁奖?(3)若规定成绩8分及以上同学获奖,则哪个年级的获奖率高?24.如图,在ABC V 中,AB AC =,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DH AC ⊥于点H .(1)求证:H 为CE 的中点;(2)若10BC =,cos 5C =,求AE 的长. 25.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.26.(1)【问题背景】如图①,ABD △,AEC △都是等边三角形,ACD V 可以由AEB △通过旋转变换得到,请写出旋转中心、旋转角(写锐角)的大小、旋转方向;(2)【尝试应用】如图②,在Rt ABC △中,90ACB ∠=︒,分别以AC ,AB 为边,作等边ACDV 和等边ABE V ,连接ED ,并延长交BC 于点F ,连接BD .若BD BC ⊥,求:DF DE 的值; (3)【拓展创新】如图③,在四边形ABCD 中,4345AD CD ABC ACB ADC ==∠=∠=∠=︒,,,求BD 的长.。

唐徕回中七年级数学下册第七单元《平面直角坐标系》经典测试题(专题培优)

唐徕回中七年级数学下册第七单元《平面直角坐标系》经典测试题(专题培优)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0-B .()2,2-C .()2,0D .()5,1 2.如果点A (a ,b )在第二象限,那么a 、b 的符号是( ) A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 3.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 4.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 5.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 6.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 7.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 8.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 9.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-10.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,5 11.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .125012.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-13.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2) C .(-2,4) D .(2,-4)14.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0)15.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( )A .x 轴上B .第三象限C .y 轴上D .第四象限二、填空题16.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.17.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.18.写一个第三象限的点坐标,这个点坐标是_______________.19.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 20.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.21.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.22.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .23.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________24.点A (m ,﹣3),点B (2,n ),AB //x 轴,则n=_____.25.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是_____. 26.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.三、解答题27.如图①,A 、B 、C 三地依次在一条直线上,两辆汽车甲、乙分别从A 、B 两地同时出发驶向C 地.如图②,是两辆汽车行驶过程中到B 地的距离(km)s 与行驶时间(h)t 的关系图象,其中折线EF-FG 是甲车的图象,线段OM 是乙车的图象.(1)请求出图②中a 的值和点M 的坐标;(2)在行驶过程中,甲车有可能在乙车与B 地中点的位置吗?如有,请求出行驶时间t 的值;若没有,请说明理由.28.在直角坐标系中,已知点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.29.三角形ABC (记作△ABC )在8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A 1B 1C 1,若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P 1的坐标是 .(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.30.如图,在平面直角坐标系中,四边形ABCD的顶点都在格点上,其中A点坐标为(﹣2,﹣1),C点坐标为(3,3).(1)填空:点B到y轴的距离为,点B到直线AD的距离为;(2)求四边形ABCD的面积;(3)点M在y轴上,当△ADM的面积为12时,请直接写出点M的坐标.。

宁夏银川市唐徕回民中学2013-2014学年高一6月月考数学试题

宁夏银川市唐徕回民中学2013-2014学年高一6月月考数学试题

宁夏银川市唐徕回民中学2013-2014学年高一6月月考数学试题(满分:150分,时间:120分钟)一、选择题(共60分)1.已知sin α=-22,π2<α<3π2,则角α等于( ) A. π3 B. 2π3 C. 4π3D. 5π42. 已知两个非零向量a 、b 满足||||b a b a -=+,则( ) A.b a //B.b a ⊥C.b a =D.b a b a -=+3. 设025(sin =a ,025cos ),025(cos =b ,)025sin ,则a 与b 的夹角是( ) A.500 B.400C.900D.004.已知扇形的周长为6cm ,面积是2cm 2,则扇形的圆心角的弧度数是( ) A .1B .4C .2或4D .1或45.函数y =)42tan(π-x 的单调增区间是( )A.)(832,82ππππ+-k k ,k ∈ZB.)(852,82ππππ++k k ,k ∈Z C.)(83,8ππππ+-k k ,k ∈Z D.)(85,8ππππ++k k ,k ∈Z 6.函数y =)32cos()62sin(ππ+++x x 的最小正周期和最大值分别为( )A .π,1B .π, 2C .2π, 1D .2π, 27.在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .正三角形8.,,ABCD E CD AB a AD b BE ===在正方形中,是的中点,且则 ( ) A.12b a +B.12b a -C.12a b +D.12a b -9.已知向量b a 、满足a b ⊥,|a |=1,|b |=,则|2b a -|=( )A .2B .C .4D .1610.要得到函数y =cos x 的图象,只需将函数y =sin x 的图象沿x 轴( ) A .向左平移 2π个长度单位 B .向左平移 π个长度单位 C .向右平移2π个长度单位D .向右平移 π个长度单位11. 函数f(x)=Asin(ωx +φ)+b 的图像如图所示,则f(x)的解析式为( )A .f(x)=12sin x +1B .f(x)=sin x +21C .f(x)=21sin 2xπ+1D .f(x)=sin 2x π+2112.|a |=1,|b |=2, b a c +=,且a c ⊥,则向量a 与b 的夹角为( )A .30°B .60°C .120°D .150°二、填空题(共20分)13. 已知2||=a ,3||=b , a 与b 的夹角为300,则=-+||||b a b a ________.14. ==+=+αβαβαtan ,1)tan(,3)2tan(则已知 。

2025届宁夏回族自治区银川市唐徕回民中学普通高中毕业班质量检查数学试题文试题

2025届宁夏回族自治区银川市唐徕回民中学普通高中毕业班质量检查数学试题文试题

2025届宁夏回族自治区银川市唐徕回民中学普通高中毕业班质量检查数学试题文试题 注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.△ABC 中,AB =3,BC 13=,AC =4,则△ABC 的面积是( )A .33B .332C .3D .322.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a ab ⊥+,则b =( )A .3B .10C .23D .5 3.如图,平面四边形ACBD 中,AB BC ⊥,AB DA ⊥,1AB AD ==,2BC =,现将ABD △沿AB 翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .8234.已知集合{}{}3,*,2,*n M x x n N N x x n n N ==∈==∈,将集合M N ⋃的所有元素从小到大一次排列构成一个新数列{}n c ,则12335...c c c c ++++=( )A .1194B .1695C .311D .1095 5.函数2|sin |2()61x f x x =+ )A .B .C .D .6.已知双曲线22221x y C a b-=:的一条渐近线与直线350x y -+=垂直,则双曲线C 的离心率等于( ) A .2? B .10 3 C .10? D .227.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数N 除以正整数m 所得的余数是n ”记为“(mod )N n m ≡”,例如71(mod 2)≡.执行该程序框图,则输出的n 等于( )A .16B .17C .18D .19 8.已知抛物线C :()220y px p =>,直线()02p y k x k ⎛⎫=-> ⎪⎝⎭与C 分别相交于点A ,M 与C 的准线相交于点N ,若AM MN =,则k =( ) A .3 B .23 C .2D .139.若0.60.5a =,0.50.6b =,0.52c =,则下列结论正确的是( )A .b c a >>B .c a b >>C .a b c >>D .c b a >>10.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( )A .156B .124C .136D .18011.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( ) A .[2,4] B .[4,6] C .[5,8] D .[6,7]12.设复数z 满足31i i z =+,则z =( ) A .1122i + B .1122-+i C .1122i - D .1122i -- 二、填空题:本题共4小题,每小题5分,共20分。

2022年宁夏银川唐徕回民中学南校区中考一模考试 数学 试题(含答案)

2022年宁夏银川唐徕回民中学南校区中考一模考试 数学 试题(含答案)

A
A
Q
Q
25.遮阳伞可以遮住灼灼骄阳,站在伞下会凉爽很多,如图①,把遮阳伞(伞体的截面示意图为△ ABC)
用立柱 OP 固定在地面上的点 O 处,此时 OP 垂直于地面 OQ,遮阳伞顶点 A 与 P 重合.需要遮阳时,
C
P
B
C
P
BLeabharlann 向上调节遮阳伞立柱 OP 上的滑动调节点 B,打开支架 PD,伞面撑开如图②,其中,AB'= AC =2m,
银川唐徕回中南校区 2021~2022 学年度第二学期一模考试
初三数学试卷
姓名:
班级:
得分:
一、选择题(本题共 8 小题,每小题 3 分,共 24 分.在每小题给出的四个选项中只有一个是符合题目 要求的)
1.截至北京时间 3 月 8 日,全球新冠肺炎确诊病例达 60840000 例,其中 60840000 用科学记数法表示
20.李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分 为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图 解答下列问题: (1)李老师一共调查了多少名同学? (2)C 类女生有多少名,D 类男生有多少 名,将下面条形统计图补充完整; (3)为了共同进步,李老师想从被调查的 A 类和 D 类学生中各随机选取一位同学进行 “一帮一”互助学习,请用列表法或画树形图 的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
19.如图,在平面直角坐标系中,已知△ ABC 的三个顶点 坐标分别是 A(2,1) ,B(1,-2) ,C(3,-3) (1)以 O 为位似中心,将△ ABC 在第二象限内放大 2 倍得 到△ A1B1C1 ; (2)将△ ABC 绕点 O 顺时针旋转 90°得到△ A2B2C2,请画 出△ A2B2C2,并求出点 C 经过的路径长.

整式(规律问题)备战2023年中考数学考点微专题

整式(规律问题)备战2023年中考数学考点微专题

考向1.2 整 式(规律问题)例 1、(2020·云南·中考真题)按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( ) A .()12n a --B .()2na -C .12n a -D .2n a【答案】A【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.解: a ,2a -,4a ,8a -,16a ,32a -,…,可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a --故选A .【点拨】本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.例 2、(2021·湖北荆门·中考真题)如图,将正整数按此规律排列成数表,则2021是表中第____行第________列.【答案】64 5【分析】找到第n 行第n 列的数字,找到规律,代入2021即可求解 解:通过观察发现: 1=1 3=1+2 6=1+2+3 10=1+2+3+4 ……故第n 行第n 列数字为:1(1)2n n +,则第n 行第1列数字为:1(1)(1)2n n n +--,即1(1)2n n -+1设2021是第n 行第m 列的数字,则:1(1)2021()2m m n n n +=<-即24421)0(n n m +=-,可以看作两个连续的整数的乘积, 2263=396964=4096,,m n ,为正整数,64n ∴=当64n =时,=5m 故答案为:64,5【点拨】本题考查了规律探索,通过观察发现特殊位置的数字之间的关系,找到规律,通过计算确定行数,再根据方程求得列数,能正确发现规律是解题的关键.例 3、(2021·湖南常德·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n .【点拨】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.具体方法和步骤:(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题具体解题方法:首先要按照题目中的排列顺序给已知量编上序号;然后找出已知量中变化和不变的部分,分析序号和变化部分之间的数量关系,猜想和归纳出第n个量的含有n的表达式,得出般规律;最后将序号代回表达式算出结果,比较所得结果与对应数值是否一致,验证猜想的正确性,得出最终结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁夏银川市唐徕回民中学2012-2013学年七年级下学期期中考试数学试

一、选择题(每小题3分,共24分) 1、下列运算,正确的是
( )
A.3a •2a=6a
B.a 8
÷a 2
=a 4
C.7a 3
-4a 2
=3a
D .()
32x =x
6
2、(-2x )4的计算结果是
( )
A.-2x 4
B.8x 4
C.16x 4
D.16x
3、若一个三角形的两边长分别是3和4,则下列长度的线段不能作为第三边的是( ) A.1
B.2
C.3
D.4 4、下列算式能用平方差公式计算的是
( )
A.(2a+b )(2b-a)
B. (2
1x+1) (-2
1x-1)
C.(3x-y )(-3x+y)
D. (-m-n) (-m+n)
5、已知AB=A ′B ′,∠A=∠A ′,∠B=∠B ′,则△ABC ≌△A ′B ′C ′的依据是( ) A.SAS
B.SSA
C.ASA
D.AAS
6、如图1:AB//CD ,∠FED =100°,∠B =35°,则∠D 的度数是
( )
A.40°
B.45°
C.50°
D.65°
7、如图2:有两艘军舰,分别为A 和B 的,由A 测得B 的方位为
( )
A.南偏东60°
B.南偏东30°
C.北偏西30°
D.北偏西60°
8、在△ABC 中,∠ABC, ∠ACB 的平分线交于点O, ∠BOC=140°,则∠A= ( ) A.70°
B.80°
C.90°
D.100°
二、填空题(每题3分,共24分)
9、为了使一扇旧门不变形,木工师傅在木门的背面加定了一根木条,这样做的道理是: 10、科学记数法表示:0.0000035米= 米 11、∠1与∠2互余,∠2与∠3互补,∠1=63°,那么∠3=
图3
12、a m=3,a n=4,则 a2m-3n=
13、等腰三角形的一边为5cm,另一边为6cm,那么这个三角形的周长为
14、如图3:已知AD=BC,请你添加一个条件,使△ABC≌△BAD,你添加的条件是
15、知a+b=3,ab=2,则2
2b
a+=
16、若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=
三、解答题(共28分)
17、题、计算(每小题5分,共20分)
(1)()2
1)-2 + ()32-
xy- (2) (-2)0+(-
.
3x
2
2
(3)20132-2014×2012(用公式计算)(4)())1
+x
x
)(
-
x
1
-
(
32+
18、先化简,再求值(共8分)。

〔(x+2y)2-(y-x)(x+4y) 〕÷2x,其中x=-2,y=
2
7
四解答题(共24分)
19、题(6分)根据图形填空。

如图4,已知C是AB的中点,AD//CE,AD=CE,
试说明∠D=∠E
∵AD//CE ( ) ∴∠A=∠ECB
( )
∵C 是AB 的中点 ( ) ∴AC=BC ( ) 在△ADC 和△CEB 中,
∵ AD=CE ∠A=∠ECB
AC=BC
∴△ADC ≌△CEB ( ) ∴∠D=∠E
( )
20、题(6分)尺规作图:已知∠a ,求做∠ABC,使∠ABC=2∠a (保留作图痕迹,不写做法)
21题、(6分)如图,DE ∥BC ,∠1=65°, ∠3=115° ,问DF 与AB 平行吗?说说你的理由。

22题、(6分)、如图,AB=AD,AC=AE ,∠BAE=∠DAC,△ABC 与△ADE 全等吗?
五、拓展题(共20分)
23、题、(10分)、乘法公式的探究及应用
(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);
13
2
E
C
B
A F
D
(2)如右图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,
长是,面积是(写成多项式乘法的形式)
(3)比较左、右两图阴影部分面积,可以得到乘法公式(用式子表达) (4)运用你所得到的公式,计算;( 2m+n-p)(2m-n+p)
24、题(10分)如图:OE⊥OF;点A、B分别在直线OE,OF上,∠ABF的平分线所在的直线与∠BAO的平分线相交于P。

(1)若∠BAO=40°时,则∠P等于多少度?
(2)若∠BAO=a时,用含a的表达式表示∠P 。

(3)若点A、B分别在OE,OF上移动,问∠P的大小是否随A、B的位置的变化而变化,若变化,说明理由,若不变化,求∠P的度数。

银川唐徕回中2012---2013学年初一数学期中测试卷(答案)
18题、先化简,再求值。

(8分)
解:原式=〔x 2
+4xy+4y 2
-(xy+4y 2
-x 2
-4xy)〕÷2x ……2 把x=2,y=2
7代入①式: (5)
=( x 2+4xy+4y 2-xy-4y 2+x 2+4xy) ÷2x
=( 2x 2+7xy) ÷2x ………3 x+2
7y=-2+2

7
2 ………6 =x+2
7y ① ………4 =-2+1
=1 ……8 19题(8分,每空1分)。

已知 两直线平行,同位角相等 已知 中点定义 SAS 全等三角形的性质 20题(6分):做图正确得5分,下结论得1分。

21题(6分): 22题(6分): 解 全等 ………1 解 平行 ………1 ∵ ∠BAE=∠CAD
∵ DE//BC ∴∠BAE+∠EAC=∠CAD+∠EAC
∴ ∠1=∠2=65° ………3 ∴∠BAC=∠EAD ………3 ∵∠3=115° 在△CBA, △EDA 中
∴∠3+∠2=115°+65°=180° ...4 ∵AB=DA, ∠BAC=∠EAD,AC=AE ……5 ∴DF//AB ……6 ∴△CBA ≌△EDA(SAS) ……6 23题(10分)((1),(2)每空1分,(3)每空2分,(4)4分)
(1)(a 2-b 2);(2)(a-b) ,(a+b) , (a-b)(a+b), (3)a 2-b 2=(a-b)(a+b) (4)解:原式=〔2m+(n-p)〕〔2m-(n-p)〕 .........1 =(4m)2-(n-p)2 (2)
H
=16m-(n 2+2np+p 2) (3)
=16m-n 2-2np-p 2. (4)
24题(10分,(1)4分,(2)4分 ,(3)2分) (1)解:∵AP 平分∠OAB, ∴∠BAP=∠PAB=20°, ∵∠OMA+∠PAO= 90°∴∠OMA =90°-20°=70°, ∠BMP=∠OMA=70°, ∵∠BAO+∠OBA=
90°, ∴∠OBA=90°-40°=50°, ∵∠FBA+∠OBA=180°, ∴∠FBA=180°-50°=130° ∵PB 平分∠FBA, ∴∠FBH=21∠FBA=2
1×130°=65°, ∠PBM=∠FBH=65°,在△PBM 中,
∠PBM+∠P+∠PMB=180°, ∴∠P=180°-65°-70°=45°
(2)用同样的方法表示:∠P=45° (3)由第二问可知,∠P 的大小不随点A ,点B 的位置变化,∠P 的大小都是45°。

相关文档
最新文档