第4章连续时间信号的采样

合集下载

4_连续信号的离散化与离散信号的连续化

4_连续信号的离散化与离散信号的连续化
大连理工大学 10

• (3)采样过程的频域分析
– 采样后信号:
x p (t ) x(t ) p(t ), 其中 p(t )
– – 由FT的乘法性质,有
X p j
n
(t nT )

1 X j * P j 2π
2π ( k s ) – 上式中: P j T k
27
• 【拉格朗日线性插值】
x0 , y0 和 x1, y1 ,在上式中取 N 1 – 已知 y f ( x) 的两点,

p1 ( x ) y0 x x1 x x0 y y y1 =y0 1 0 ( x x0 ) x0 x1 x1 x0 x1 x0
cT sin[c (t nT )] xr (t ) x (nT ) c (t nT ) n

2016/6/2
大连理工大学
24
• 理想冲激序列采样的时域分析
– 图中, xr (t ) xp (t )* h(t )
p(t ) x p (t )
n
X j * s X j s

2016/6/2
大连理工大学
11
• 2. 采样过程的频域分析(续)
1 2π 1 X p j X j * P j X j * ( k ) s 2 2 π T k
– 频率混叠一旦出现,信号必然出现失真,无论采用什么 方法再进行后处理,都不能无失真地恢复原始连续时间 信号。 – 常用的方法:预滤波。即利用一个低通滤波器,使滤波 器的截止频率等于想要保留的信号的最高频率分量,而 将高于这个最高频率分量的所有频率成分滤除。 – 这样做看起来会丢失一定的信息,但是实际上对信号采 样的总体结果来说,由于避免了信号的频率混叠,一般 要比丢失一定的频率成分更有利。

连续时间信号的采样培训

连续时间信号的采样培训

连续时间信号的采样培训一、采样的定义和原理采样是指将连续时间信号在时间上进行离散化,即在一定时间间隔内对信号进行采集。

采样的目的是将连续时间信号转化为离散时间信号,使得信号能够通过计算机等数字设备进行处理和传输。

采样的原理是利用采样定理,即尼奎斯特采样定理,它规定了一个信号必须以至少两倍于信号最高频率的样本率进行采样,才能完全恢复原始信号。

具体而言,如果信号的最高频率为fmax,则采样频率fs必须满足fs≥2fmax。

二、常用的采样方法1. 理想采样理想采样是最简单且最理想的一种采样方法,它假设采样过程中不引入任何失真。

理想采样的原理是在采样时将连续时间信号直接抽取出特定时间点的信号值,并保持不变。

然而,在实际应用中,由于采样器的限制,无法完全遵循理想采样,会引入采样误差。

2. 均匀采样均匀采样是常见的一种采样方法,它使用固定的时间间隔对信号进行采样。

均匀采样能够简化处理过程,适用于需要周期性采样的信号。

然而,如果采样频率不符合尼奎斯特采样定理,会出现采样失真和混叠等问题。

3. 非均匀采样非均匀采样是根据信号的特点选择合适的采样点进行采样,不固定时间间隔进行采样。

非均匀采样能够有效提高采样效率和质量,适用于信号变化很快的情况。

但是,非均匀采样需要更复杂的处理过程,并且对系统时钟要求较高。

三、采样频率的选择采样频率的选择是采样过程中非常重要的一步,它直接影响到信号的重建质量。

通常来说,采样频率应大于信号的最高频率,以避免混叠现象发生。

而为了获得更好的重建结果,采样频率的选择应大于2倍信号最高频率,即要满足尼奎斯特采样定理。

当采样频率与信号频率非常接近时,会出现赫讲限制现象,即信号的高频部分出现大量高频噪声。

因此,采样频率的选择应远大于信号频率,以确保采样的准确性和信号的完整性。

四、采样的相关技术在采样过程中,除了以上讨论的采样方法和采样频率的选择外,还需要考虑一些相关技术,以保证采样的准确性和有效性。

6 连续时间信号的采样

6 连续时间信号的采样

NCEPUBD
2.3
理想抽样信号的频谱
2 X a ( j jk ) T k

X a ( j)
^
1 ˆ X a ( j ) T
X a ( j)
F (0)
原频谱周期重复
F (0) / T
2 s 周期为 T
周期延拓
-W s
W s
NCEPUBD
2.4
理想抽样的恢复
0
t
NCEPUBD
抽样方式:实际抽样与理想抽样
理想抽样:
f (t )
D Ts
0
t 两信号相乘
0
t
fT s (t )
t
NCEPUBD
1.3
研究内容
• 信号被采样后的变化
• 如何恢复原来的信号
NCEPUBD
2
理想抽样
• 理想抽样的定义 • 理想抽样信号的频谱 • 理想抽样的恢复 • 奈奎斯特抽样定理
3
实际抽样
取样定理仍有效
ˆa j 的幅度有所改变 x
NCEPUBD
W h
W s
W h
VW= (W s - 2W h)
要不混叠,必须
VW= (W s - 2W h) ? 0
W s 砏2
h
NCEPUBD
2.5
抽 样 定 理
奈奎斯特抽样定理
要保证从信号抽样后的离散时间信号无失真 地恢复原始时间连续信号,必须满足: (1)信号是频带受限的; (2)采样率至少是信号最高频率的两倍。
NCEPUBD
2.1


T (t )
m
t mT

NCEPUBD
2.2

《信号与分析》连续信号的采样与重构实验报告

《信号与分析》连续信号的采样与重构实验报告
ylabel('振幅');
axis([-2.5,1.5,-0.1,1.1]);
t=0:0.01:2*pi;
Y=2*t.*sin(t.^2);
subplot(2,1,1);
plot(t,Y);
title('原信号');
xlabel('时间/s');
ylabel('振幅');
axis([0,2*pi,-12,12]);
grid;
ylabel(‘Cn’);
xlabel(‘角频率/rad*s^(-1)’);
title(‘幅度频谱序列‘);
实验心得:
通过本次实验我学会了利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的认识,学会该软件的操作和使用方法。并且我还熟练掌握了利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
%幅度频谱Cn=2[sin(pi*n*t/T)/(pi*n)
N=10;
n=1:N;
C0=0.1; %计算n=0傅里叶级数C0及直流幅度
%计算n=1到10的傅里叶级数系数
Cn=sin(pi*n/5)/pi./n.*2; %T/t=5
CN=[C0 Cn];
nN=0:N;
subplot(1,2,2);
stem(nN,CN);
《信号与分析》连续信号的采样与重构实验报告
实验目的:1)掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。
(2)掌握利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
(3)学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

《数字信号处理》(2-7章)习题解答

《数字信号处理》(2-7章)习题解答

第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。

(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。

(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。

(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。

(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。

(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。

(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。

(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。

采样信号的概念

采样信号的概念

采样信号的概念采样信号是指连续时间信号在时间轴上以离散形式采样后得到的离散时间信号。

在信号处理中,采样是将连续时间信号转换为离散时间信号的过程。

采样信号常用于数据采集、数字化通信、移动通信、音频处理等领域。

采样信号的概念可以通过以下几个方面进行解释:1. 采样定理:采样定理是离散时间信号处理的基础。

根据采样定理,对于频域限制在一定带宽范围内的连续时间信号,只需以超过其最高频率两倍的采样频率进行采样,就能够完全还原原信号。

2. 采样频率:采样频率是指每秒对连续时间信号进行采样的次数,通常用赫兹(Hz)来表示。

采样频率的选择应满足采样定理的要求,以避免出现混叠现象。

在实际应用中,常用的采样频率为声音的44.1kHz或48kHz。

3. 采样间隔:采样间隔是指连续时间信号在时间轴上两个采样点之间的距离,通常用秒(s)来表示。

采样间隔与采样频率的关系为采样间隔= 1 / 采样频率。

采样间隔越小,对信号的描述就越精确。

4. 量化:量化是将连续时间信号的幅度离散化的过程。

在采样后,信号的幅度需要用有限数量的离散值来表示,这就需要进行量化。

量化过程中,通常将连续幅度值映射到最接近的离散值,常见的量化方式有均匀量化和非均匀量化。

5. 采样误差:采样信号引入了采样误差,即由于采样和量化过程导致的原始信号与重构信号之间的差异。

采样误差可通过增加采样频率和增加量化位数来减小,但不能完全消除。

6. 重构:重构是将采样信号恢复为连续时间信号的过程。

通过采样定理,采样信号可以用原始信号的线性插值方法进行重构。

常用的重构方法有零阶保持插值、一阶保持插值和多项式插值。

采样信号在实际应用中具有重要的意义。

首先,采样信号可以方便进行数据存储和传输。

通过将连续时间信号转换为离散时间信号,可以在数字设备中对信号进行处理、存储和传输,提高信号的处理效率。

其次,采样信号可以方便进行数字信号处理。

采样信号可以利用离散时间信号处理的方法,如滤波、卷积、频域分析等,对信号进行处理和分析。

信号与系统实验四-信号的采样及恢复

信号与系统实验四-信号的采样及恢复

信号与系统实验四-信号的采样及恢复实验四信号的采样及恢复⼀、实验⽬的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进⾏抽样和恢复的基本⽅法;3、通过实验验证抽样定理。

⼆、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进⾏抽样,试画出抽样后序列的波形,并分析产⽣不同波形的原因,提出改进措施。

(1))102cos()(1t t x ?=π(2))502cos()(2t t x ?=π(3))1002cos()(3t t x ?=π2、产⽣幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。

3、对连续信号)4cos()(t t x π=进⾏抽样以得到离散序列,并进⾏重建。

(1)⽣成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。

(2)以10=sam f Hz 对信号进⾏抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利⽤抽样内插函数)/1()(sam r f T T t Sa t h =??=π恢复连续信号,画出重建信号)(t x r 的波形。

)(t x 与)(t x r 是否相同,为什么?(3)将抽样频率改为3=sam f Hz ,重做(2)。

4、利⽤MATLAB 编程实现采样函数Sa 的采样与重构。

三、实验仪器及环境计算机1台,MATLAB7.0软件。

四、实验原理对连续时间信号进⾏抽样可获得离散时间信号,其原理如图8-1。

采样信号)()()(t s t f t f s ?=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。

其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f π⼤于等于2倍的原信号频率m f 时,即m s f f 2≥(抽样时间间隔满⾜ms f T 21≤),抽样信号的频谱才不会发⽣混叠,可⽤理想低通滤波器将原信号从采样信号中⽆失真地恢复。

自动控制原理--信号的采样与复现

自动控制原理--信号的采样与复现

例1 设 e(t) 1(t) ,试求 e* (t) 的拉氏变换。
解:显然,对于给定的 e(t),其拉式变换
为 E(s) 1 ,根据式(8-6)定义,可得
s
E* (s) e(kT ) ekTs 1 eTs e2Ts k 0
这是一个无穷等比级数,公比为eTs,求
级数和可得闭合形式
E*(s)
例3 xt Asin 0t ,求x t 和 X s 。
解:由拉式变换的一般公式,可得
L[x(t)] xs A0
s 2 02
所以 ,x(s)有两个极点 。t 0时 ,xt 0 ,
由式(8-7)得
X s
A0 T
s
1
jks 2
02
A0 T
s2
1 02
s
1
js 2
02
s
1
js 2
jT
e2
sin T
T
sin(T
/
2)
e
jT
2
T 2 2
T / 2
• 零阶保持器的频率特性如图所示
Gh j
Gh j
T
0
s
2s
3s
2
Gh j
3
• 零阶除了允许主频谱分量通过之外,还 允许一部分附加高频分量通过。因此复 现出的信号与原信号是有差别的。
4、小结
• 采样控制系统的结构; • 计算机控制的采样系统的优点; • 采样过程和采样定理; • 零阶保持器的传函和特性。
(4)随机采样:采样是随机进行的,没有固定的规律
1、信号的采样过程
et
e* t
e* t
et T e*t
0
0
t

信号处理中的采样

信号处理中的采样

采样,其他名称:取样,指把时间域或空间域的连续量转化成离散量的过程。

1采样简介解释1所谓采样(sampling)就是采集模拟信号的样本。

采样是将时间上、幅值上都连续的模拟信号,在采样脉冲的作用,转换成时间上离散(时间上有固定间隔)、但幅值上仍连续的离散模拟信号。

所以采样又称为波形的离散化过程。

解释2把模拟音频转成数字音频的过程,就称作采样,所用到的主要设备便是模拟/数字转换器(Analog to Digital Converter,即ADC,与之对应的是数/模转换器,即DAC)。

采样的过程实际上是将通常的模拟音频信号的电信号转换成二进制码0和1,这些0和1便构成了数字音频文件。

采样的频率越大则音质越有保证。

由于采样频率一定要高于录制的最高频率的两倍才不会产生失真,而人类的听力范围是20Hz~20KHz,所以采样频率至少得是20k×2=40KHz,才能保证不产生低频失真,这也是CD音质采用44.1KHz(稍高于40kHz是为了留有余地)的原因。

通过周期性地以某一规定间隔截取音频信号,从而将模拟音频信号变换为数字信号的过程。

每次采样时均指定一个表示在采样瞬间的音频信号的幅度的数字。

2采样频率每秒钟的采样样本数叫做采样频率。

采样频率越高,数字化后声波就越接近于原来的波形,即声音的保真度越高,但量化后声音信息量的存储量也越大。

采样频率与声音频率之间的关系:根据采样定理,只有当采样频率高于声音信号最高频率的两倍时,才能把离散模拟信号表示的声音信号唯一地还原成原来的声音。

目前在多媒体系统中捕获声音的标准采样频率定为44.1kHz、22.05kHz和11.025kHz三种。

而人耳所能接收声音频率范围大约为20Hz--20KHz,但在不同的实际应用中,音频的频率范围是不同的。

例如根据CCITT公布的声音编码标准,把声音根据使用范围分为以下三级:·电话语音级:300Hz-3.4kHz·调幅广播级:50Hz-7kHz·高保真立体声级:20Hz-20kHz因而采样频率11.025kHz、22.05kHz、44.1kHz正好与电话语音、调幅广播和高保真立体声(CD音质)三级使用相对应。

第三、四章连续时间信号与系统的频域分析内容总结

第三、四章连续时间信号与系统的频域分析内容总结
X

连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X

连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X

连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X

连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X

连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)

连续时间信号的抽样

连续时间信号的抽样
由于这一正弦信号频谱为在 处0 的函数,因而对它
的抽样,就会遇到一些特殊问题。
cos
0t
1 2
e e j0t
j0t
( 0 ) ( 0 )
sin
0t
1 2j
e e j0t
j0t
j ( 0 ) ( 0 )
( )
( )
0
0
余弦
( j )
0
正弦
0
( j )
奈奎斯特定理应用于正弦信号
采样周期T
理想重构系统
xa (t)
3 实际抽样
• 用宽度为 的矩形周期脉冲 p(t代) 替冲激串
p(t)
C e jkst k
k
Ck
1 T
0
e jkst dt
T
sin( ks
2
ks
)
j ks
e 2
2
p(t)
A 1
T
T
t
xT (t) X (n1) xT (t t0 ) X (n1)e jn1t0
抽样定理应用于正弦信号时要求: 抽样频率大于信号最高频率的两倍,而不
是大于或等于两倍。
例子
• 对于两不同频率的正弦信号x1(t),x2(t),如果用同 一抽样频率对其抽样,抽样出的序列可能是一 样的,则我们无法判断它是来源于x1(t)还是x2(t)。
• 例:
x1 (t) cos(2 40t), f1 40Hz x2 (t) cos(2 140t), f2 140Hz
A 1
T
T
t
实际抽样
xa (t)
p(t)
xs (t)
冲激串到序列的转 换
x(n) xa (nT )

信号与系统中抽样的概念

信号与系统中抽样的概念

信号与系统中抽样的概念抽样是信号与系统中一个重要的概念。

在信号处理中,抽样是指对连续时间信号进行离散化处理,将连续时间信号转换为离散时间信号的过程。

抽样的目的是为了将连续时间信号转换为数字信号,使得信号可以通过数字方式进行存储、传输和处理。

抽样过程可以看作是在连续时间域上对信号进行定时取样。

抽样过程中,我们使用采样定理(奈奎斯特定理)来保证抽样后的信号不失真。

采样定理指出,为了避免信号采样引起的混叠现象,抽样频率必须大于等于原始信号中最高频率的两倍,也就是满足奈奎斯特频率。

在实际应用中,我们通常采用理想脉冲序列作为采样信号。

理想脉冲序列是一个周期为T的序列,每个周期内有一个脉冲,其他时间点上为零。

理想脉冲序列的傅里叶变换是一个周期序列(频率为1/T)的线性组合。

对连续时间信号x(t)进行抽样,可以通过将x(t)与理想脉冲序列进行卷积来实现。

即将x(t)乘以理想脉冲序列,然后对乘积信号进行积分。

抽样后得到的信号为离散时间信号x[n],其中n为整数,表示采样时刻。

离散时间信号x[n]可以看作是连续时间信号x(t)在采样时刻的取样值。

为了重构x(t),可以通过将x[n]与插值函数进行卷积来实现。

插值函数可以看作是理想脉冲序列的反变换,即将理想脉冲序列的傅里叶变换除以周期序列的傅里叶变换。

抽样引入了两个重要的参数,即采样间隔和采样频率。

采样间隔为采样时刻之间的时间间隔,采样频率为采样时刻之间的倒数,即采样频率等于1/采样间隔。

采样频率越高,采样精度越高,重构信号的失真越小。

但是,采样频率过高也会导致计算和存储的需求增加。

抽样过程中,还存在一个概念叫做抽样定理。

抽样定理指出,在有限频带B内的连续时间信号,可以通过以准确率误差小于ε的方式进行采样和重构,只需要满足采样频率f_s大于等于2B。

这是由带限信号在频域中没有重叠而导致的。

如果信号的频域存在重叠,则需要进一步提高采样频率以避免混叠现象。

在实际应用中,我们使用的信号不一定是有限频带的信号,因此在抽样过程中,可能会引入混叠现象。

连续时间信号的采样与重构及其实现

连续时间信号的采样与重构及其实现

连续时间信号的采样与重构及其实现
信号处理是现代通信系统中至关重要的一环,其中采样与重构是
一种基本的信号处理技术。

在连续时间信号处理中,采样的作用是将
信号从连续时间域转换为离散时间域。

而重构的作用则是将离散时间
域信号重新转换为连续时间信号,以便于信号的处理和传输。

在采样的过程中,需要将连续时间信号按照一定的时间间隔进行
取样,得到一个离散时间序列。

采样过程中最关键的参数是采样频率,也就是每秒采用的样本数,通常用赫兹(Hz)表示。

采样频率越高,
离散时间序列的准确性就越高,但同时也会增加采样处理的复杂度。

重构的过程则是将离散时间信号恢复成连续时间信号。

由于采样
本身会将连续时间信号进行离散化处理,因此需要进行一定的插值和
滤波处理才能够准确地重构信号。

常见的重构算法包括插值算法、直
接复制算法和最小均方误差算法等。

在实现上,采样和重构的算法都需要借助于一定的数学模型和计
算机技术。

在现代通信系统中,基于数字信号处理技术的采样和重构
算法广泛应用于音频信号、视频信号、图像信号等多种信号处理领域。

数学模型包括傅里叶变换、拉普拉斯变换、小波变换等等。

总之,采样和重构是现代通信系统中非常重要的信号处理技术,
对于准确传输和处理信号具有至关重要的作用。

采用数字信号处理技
术可以实现高效的采样和重构,为现代通信系统的发展提供重要的支撑。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。

它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。

抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。

一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。

抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。

抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。

具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。

这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。

抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。

它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。

这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。

如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。

抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。

当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。

三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。

采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。

例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。

连续时间信号的采样

连续时间信号的采样

由于 Y ( j) X s ( j) H ( j) X a ( j) ,根据时域
卷积定理y(t) xs (t) h(t) xa (t) 因为
所以
H
(
j)

T 0
s 2 s 2
h(t) F 1 H j 1 H ( j)e jtd
xs (t) xa (t) T (t) xa (t)
(t nT )
n

n
xa
(t
)


(t

nT
)

n
xa
(nT
)


(t

nT
)
T (t)
xs (t)
0
t
0
t
注意区分 xs (t)和x(n) ,它们都是连续信号采样后的离散序列表 示,不同点是:xs (t)实质是连续时间信号,该信号仅在采样周 期的整数倍上取非零值,而 x(n) 为离散时间信号,它只依赖 于变量n,不包含任何有关采样周期或采样频率的信息,也就 是说相当于引入了时间归一化。
n
为脉宽为 ,周期为T的矩形脉冲周期信号, 为开关闭合时间
,T为采样周期。
s(t)
xa (t)
xs (t)
0
t
0
t
0
t
实际
S(t)
采样:

0
xs (t)
S(t)为脉冲序列

t T
1 fs T
t
理想采样
1、 开关闭合时间τ→0时,为理想采样。
2、 特点:采样序列表示为冲激函数的序列,这些冲 激函数准确地出现在采样瞬间,其积分幅度准确地 等于输入信号在采样瞬间的幅度。 即:理想采样可看作是对冲激脉冲载波的调幅过程。

信号的采样与恢复

信号的采样与恢复
grid
当输入n=10时,所得结果如下:
图3 当n=10时采样后的信号和频谱
当输入n=50时,所得结果如下:
图4 当n=50时采样后的信号和频谱
由抽样定理可知,抽样后的信号频谱是原信号频谱以抽样频率为周期进行周期延拓形成的,周期性在上面两个图中都有很好的体现。但是从10点和50点采样后的结果以及与员连续信号频谱对比可以看出,10点对应的频谱出现了频谱混叠而并非原信号频谱的周期延拓。这是因为N取值过小导致采样角频率 ,因此经周期延拓出现了频谱混叠。而N取50时,其采样角频率 ,从而可以实现原信号频谱以抽样频率为周期进行周期延拓,并不产生混叠,从而为下一步通过低通滤波器滤出其中的一个周期(即不失真的原连续信号)打下了基础。
若设 是带限信号,带宽为 , 经过采样后的频谱 就是将 在频率轴上搬移至 处(幅度为原频谱的 倍)。因此,当 时,频谱不发生混叠;而当 时,频谱发生混叠。
一个理想采样器可以看成是一个载波为理想单位脉冲序列 的幅值调制器,即理想采样器的输出信号 ,是连续输入信号 调制在载波 上的结果,如图2所示。
图2 信号的采样
对连续信号y=sin(t)进行抽样并产生其频谱,采样后的信号和频谱如图3、图4所示
MATLAB部分程序为:
n1=input('请输入采样点数n:');
n=0:n1;
zb=size(n);
figure
sinf=sin(8*pi*n/zb(2));
subplot(211);
stem(n,sinf,'.');
[5]方建邦锁相环原理及应用1988
[6]刘彩霞、刘波粒 高频电子线路 科学出版社 2008.7
[7]罗兰锁相环的设计,模拟与应用2003

2.6 连续时间信号的采样

2.6 连续时间信号的采样


1 π n = ∑ sin( π n + )δ (t − ) n =−∞ 2 8 200
(3) x(n) = xa (t )
t = nT
1 π = sin( π n + ) 2 8 2π 2π N Q = =4= ω0 1/ 2 π k N = 4为最小正整数 ∴ x ( n )的周期为N = 4


T t < 2
T ∞ 2 T − 2 n =−∞
δ (t − nT )e − jk Ω t dt ∑
s
,所以只有一个冲激 δ (t ) ,于是
1 Ak = T

又因为有: f (0) = ∫−∞ δ (t ) f (t )dt 则 于是 因此
Ak = 1 − jk Ωst 1 e = T T t =0 1 ∞ jk Ωs t δ T (t ) = ∑ e T k =−∞
称为内插函数。 称为内插函数。
π sin[ (t − kT )] T ϕ k (t ) = π (t − kT ) T
函数值为 1,在其余采样点上,函数值为0。 1,在其余采样点上,函数值为0。 x ϕ k (t ) 说明: a (t ) 等于各 xs (kT )乘上对应的内 说明: 插函数的总和。 插函数的总和。 等于原采样值, 在 t = kT 时,恢复的 xa (t ) 等于原采样值, 而在采样点之间, 而在采样点之间,则是各采样值乘以 ϕk (t ) 的波形伸展叠加而成。 的波形伸展叠加而成。
H ( jΩ ) =
T 0 |Ω|< Ωs
/2
|Ω|≥ Ωs / 2
的频谱。 就得到原信号 X a ( jΩ ) 的频谱。
根据模拟系统的频域描述理论, 根据模拟系统的频域描述理论,有

大专模拟电子技术第六版课后答案胡宴如第四章 (2)

大专模拟电子技术第六版课后答案胡宴如第四章 (2)

大专模拟电子技术第六版课后答案胡宴如第四章第一题答案:可以通过对信号进行采样和保持(Sample and Hold)操作,将连续时间信号转换为离散时间信号。

采样和保持电路由采样开关和保持电容组成,采样开关将输入信号接通到保持电容上,然后关闭,使得信号被保持在保持电容上,以供后续处理。

采样和保持电路的工作原理如下:1. 当采样开关接通时,输入信号通过采样开关进入到保持电容上;2. 采样开关断开后,保持电容上的电荷保持不变,相当于将采样时刻的输入信号“冻结”在保持电容上;3. 后续的电路可以基于保持电容上的电荷值进行信号处理。

采样和保持电路常用于模数转换器输入端的采样操作,以及模拟信号在数字信号处理中的处理过程中。

采样和保持电路要求采样开关具有高速开关功能,以保证采样过程的准确性和稳定性。

答案:在模拟电子技术中,电压跟随器是一种常见的放大电路,用于将输入电压的大小和变化准确地复制到输出电压上。

电压跟随器可以通过一个差分放大器和一个输出放大器组成。

差分放大器用于将输入电压进行放大并进行差分运算,输出放大器将差分放大器的输出作为输入,并放大到输出端。

电压跟随器的工作原理如下:1. 输入电压通过差分放大器进行放大和差分运算,产生差分信号;2. 差分信号通过输出放大器进行放大,得到输出电压。

电压跟随器具有高输入阻抗和低输出阻抗的特点,即输入电阻大,输出电阻小。

这使得电压跟随器能够有效地隔离输入和输出电路,防止相互影响,并保持输入电路的准确性和稳定性。

电压跟随器常用于信号放大和信号跟踪等应用中,特别适用于需要在输入和输出之间保持高阻抗的情况。

例如,电压跟随器可以用于传感器的信号放大和模拟信号的跟踪和复制等应用。

答案:欢迎指导编辑。

信号采样公式

信号采样公式

信号采样公式信号采样是数字信号处理中的一个重要概念,它指的是将连续时间信号转换为离散时间信号的过程。

在实际应用中,我们需要将模拟信号转换为数字信号进行处理,而采样是这个过程中的第一步。

本文将介绍信号采样的基本概念、采样定理以及采样公式等内容。

一、信号采样的基本概念信号采样是指在时间轴上对连续时间信号进行离散化处理,将连续时间信号转换为离散时间信号。

在采样过程中,我们需要按照一定的时间间隔对连续时间信号进行取样,得到一系列离散时间信号点。

这些离散时间信号点可以用来表示原始连续时间信号的近似值。

二、采样定理在进行信号采样时,我们需要遵循一定的采样定理,以保证采样后的数字信号能够准确地表示原始模拟信号。

著名的采样定理是奈奎斯特采样定理,它指出:如果一个连续时间信号的带宽为B,则在进行采样时,采样率应当不小于2B。

也就是说,采样频率应当大于等于信号最高频率的两倍。

三、采样公式在进行信号采样时,我们需要按照一定的时间间隔对连续时间信号进行取样。

这个时间间隔称为采样周期,用Ts表示。

采样周期与采样频率之间有如下关系:Fs = 1/Ts其中Fs表示采样频率。

在进行离散化处理时,我们需要对连续时间信号在每个采样周期内进行取样,并将取样结果转换为数字信号。

这个过程可以用如下公式表示:x(n) = x(nTs)其中x(n)表示第n个采样周期内得到的数字信号值,x(t)表示原始连续时间信号在时刻t的取值。

四、总结信号采样是数字信号处理中的一个重要概念,它将连续时间信号转换为离散时间信号,为后续数字信号处理提供了基础。

在进行信号采样时,我们需要遵循一定的采样定理以及采样公式,以保证采样后的数字信号能够准确地表示原始模拟信号。

连续信号的采样与重构实验报告

连续信号的采样与重构实验报告

信号与系统上机实验报告学院:电子信息学院班级:08011202姓名:王喜成学号:2012301794上机实验 5 连续信号的采样与重构一、实验目的(1)验证采样定理;(2)熟悉信号的抽样与恢复过程;(3)通过实验观察欠采样时信号频域的混迭现象;(4)掌握采样前后信号频域的变化,加深对采样定理的理解;(5)掌握采样频域的确定方法。

二、实验内容和原理信号的采样与恢复示意图如图2.5-1所示图2.5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。

一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率。

当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。

f (t )的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF 。

观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图2.5-2所示。

图2.5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A转换环节实现数/模转换,得到连续时间信号;低通滤波器的作f。

用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t三、涉及的MATLAB函数subplot(2,1,1)xlabel('时间, msec');ylabel('幅值');title('连续时间信号x_{a}(t)');axis([0 1 -1.2 1.2])stem(k,xs);grid;linspace(-0.5,1.5,500)';ones(size(n)freqs(2,[1 2 1],wa);plot(wa/(2*pi),abs(ha)buttord(Wp, Ws, 0.5, 30,'s');[Yz, w] = freqz(y, 1, 512);M= input('欠采样因子= ');length(nn1)y = interp(x,L)[b,a] = butter(N, Wn, 's');get(gfp,'units');set(gfp,'position',[100 100 400 300]);fx1=fft(xs1)abs(fx2(n2+1))如有帮助,欢迎下载支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
为脉宽为 ,周期为T的矩形脉冲周期信号, 为开关闭合时间
,T为采样周期。
s(t)
xa (t)
xs (t)
0
t
0
t
0
t
实际
S(t)
采样:

0
xs (t)
S(t)为脉冲序列

t T
1 fs T
t
理想采样
1、 开关闭合时间τ→0时,为理想采样。
2、 特点:采样序列表示为冲激函数的序列,这些冲 激函数准确地出现在采样瞬间,其积分幅度准确地 等于输入信号在采样瞬间的幅度。 即:理想采样可看作是对冲激脉冲载波的调幅过程。
Ak

1 T
T T
2 2
T
(t
)e
jk s t
dt
1 T 2
T T 2
n

(t

nT
)e
jk s t
dt
1
T
T T
2 2

(t
)e

jk

s
t
d
t
1 T
T
(t
)

1 T
e
jkst
k
xs
(t)

xa
(t)
T
(t)

xa
由于 Y ( j) X s ( j) H ( j) X a ( j) ,根据时域
卷积定理y(t) xs (t) h(t) xa (t) 因为
所以
H
(
j)

T 0
s 2 s 2
h(t) F 1 H j 1 H ( j)e jtd
2、若xa (t) 为带限信号,最高频率分量为 Qh ,即
X
a
(
j)

X 0
a
(
j)
h h
则当采样频率 Qs 2Qh 时的 xs ( jQ) 频谱无混叠失真, 可以由 xs (t) 无失真的恢复 xa (t) 。
3、反之当采样频率 Qs 2Qh 时的 xs ( jQ) 频谱有混叠失真 ,无法由xs (t) 无失真的恢复xa (t) 。
采样器一般由电子开关组成,开关每隔T秒短暂地 闭合一次,将连续信号接通,实现一次采样。
一、信号采样
xa (t)
采样
xs (t)

xa (t)
xs (t) s (t )
采样过程 xs (t) xa (t) s(t) ,其中s(t)
[u(t nT ) u(t nT )]
第4章 连续时间信号的采样
对信号进行时间上的离散化,这是对信号作 数字化处理的第一个环节。
研究内容: • 信号经采样后发生的变化(如频谱的变化) • 信号内容是否丢失(采样序列能否代表原始信号、
如何不失真地还原信号) • 由离散信号恢复连续信号的条件
采样的这些性质对离散信号和系统的分析十 分重要,要了解这些性质,首先分析采样过程。
采样定理解决了在什么条件下,采样信号能够保留原信号全 部信息的问题
如何从采样信号中恢复原来的连续信号?
1、从工程实现的角度,可以利用理想低通滤波器提取原 信 号的频谱。 2、从数学的角度就是函数的插值。
三.信号的恢复与采样内插公式
1.频域分析
xs (t) xa (t) 无失真恢复的条件:满足时域采样定理,
T
(t nT )
为内插函数,则xa (t)
n
xa
(nT
)

n
(t
)
T
*输出=原信号抽样点的值与内插函数乘积和。
si
T
(t nT )
T
的特性:
在抽样点mT上,其值为1;其余抽样点上,
其值为0。

S
1
a
T
(t

mT )


2
h 0 h hT
2

(2).Qs 2Qh
X a ( j) 1
h
0
h
X s ( j)
1T
s h s 2
0
s 2 h s


结论:
1、xs ( jQ)是xa ( jQ) 的周期延拓,周期为 Qs 2 / T ,且幅度上 要乘以主要因子1/ T 。
(m-1)T (m+1)T
(m-2)T
mT
(m+2)T
4.xa t
m
xa mT
Sa

T
t

mT
的说明
:
(1)在抽样点上,信号值不变;
(2)抽样点之间的信号则由各抽样函数波形的 延伸叠加而成。
(3)只要满足采样频率高于两倍信号最高频谱, 整个连续信号就可以用它的采样值完全代表, 而不损失任何信息 ——奈奎斯特定律
xa (t)
Sa

T
(t
T )
Sa

T
(t

3T )
T
2T
3T
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
知识回顾 Knowledge Review
(t)

1 T
e
jkst
k
X s ( j)

xs
(t
)e

jt
dt


xa
(t
)


1 T
k
e
jk s t

e
jt
dt
1 T
k

xa
(t
)e
j
(ks
)t
dt
1 T
k
xs (t) xa (t) T (t) xa (t)
(t nT )
n

n
xa
(t
)


(t

nT
)

n
xa
(nT
)


(t

nT
)
T (t)
xs (t)
0
t
0
t
注意区分 xs (t)和x(n) ,它们都是连续信号采样后的离散序列表 示,不同点是:xs (t)实质是连续时间信号,该信号仅在采样周 期的整数倍上取非零值,而 x(n) 为离散时间信号,它只依赖 于变量n,不包含任何有关采样周期或采样频率的信息,也就 是说相当于引入了时间归一化。
2
1
2
sin s t sin t
s
/2
T

e
jt d

s / 2
2 s t

T
t
2
T
因此低通滤波器的输出可表示为:

y(t) xa (t) xs (t) h(t) xs ( )h(t )dt


n
xa
(

s 2h
实现
xs (t)
H ( j)
xa (t)
s 2
H ( j)
T
0
s 2
H j

T
,
s 2
0
, s 2
由于 Y ( j) X s ( j) H ( j) X a ( j) ,故 我们可以在滤波器输出端无失真的恢复信号
2、时域分析
二.采样信号的频谱和采样定理
由上可知 xs (t) xa (t) s(t) ,且 s(t) T (t)
(t nT )
n
为周期信号,故可以将 T (t)展开成傅立叶级数,即
T (t)
A e
jkst
k k
,Qs 2 / T
其中 所以
X
a
(
j(

ks
))
xs (t) 的频谱为
X
s
(
j)

1 T
k
X
a
(
j(

ks
))
假设 xa (t)为带限信号,最高频率分量为 Qh ,则有
(1).Qs 2Qh
X a ( j) 1
h 0
h

X s ( j) 1T
s 2
s 2
s
h 0
h
s

X (e j ) 1T
3、实际情况下,τ=0达不到,但τ<<T时,实际采 样接近理想采样,理想采样可看作是实际采样物理 过程的抽象,便于数学描述,可集中反映采样过程 的所有本质特性,理想采样对Z变换分析相当重要。
理想采样:当 0 ,s(t) T (t)
(t nT )
n
从而有:
)

(

nT
)h(t

)dt

n

xa ( ) ( nT )h(t )dt

n
xa
(nT
)

h(t

nT
)
sin (t nT )

n
xa
(nT
)

T
(t nT )
sin (t nT )
T
若记 n (t)
•奈奎斯特采样定理:要使实信号采样后能够不失真
还原,采样频率必须大于信号最高频率的两倍,
Ωs≥2Ωh
s 2
常称作折叠频率.2Qh称为奈奎斯特速率
•实际工作中,考虑到有噪声,为避免频谱混淆,采 样频率总是选得比两倍信号最高频率h更大些, 如Ωs >(3--5)h。
相关文档
最新文档