第12章-波动光学-习题

合集下载

波动光学习题参考答案

波动光学习题参考答案

=2400(nm) k=2 l2 =800(nm)
红外光
k=3 l3 =480(nm) k=4 l4 =343(nm)
可见光 紫外光
结束 返回
若透射光干涉增强则反射光干涉相消
由干涉相消条件
2ne
+
l
2
=(k+
1 2
)l
取k=2
l2
=
2ne k
=
2×1.5×0.4×103 2
=600
(nm)
取k=3
两式相减Δ得x到´=:DD´dbDb´
+
d D
(x ´
x )=0
(x´ x )<0
即条纹向下移动,而条纹间距不变
结束 返回
7、 用单色光源S照射双缝,在屏上形
成干涉图样,零级明条纹位于O 点,如图所
示。若将缝光源 S 移至位置S ´,零级明条
纹将发生移动。欲使零级明条纹移回 O 点,
必须在哪个缝处覆盖一薄云母片才有可能?
低),作图表示明条纹;
(2)求明条纹距中心线的距离;
(3)共能看到多少条明条纹;
(4)若将玻璃片B向下
平移,条纹如何移动?
A
d
若玻璃片移动了l /4,
问这时还能看到几条明条纹? B
结束 返回
解:对于边缘处e =0由于有半波损失为暗纹
暗纹条件:
2e
+
l
2
=
(2k+1) 2l
k=0,1,2,...
暗纹最高级数
结束 返回
解:由暗纹条件
2ne
=
(2k+1)
l
2
=(k+
1 2

波动光学(二)答案

波动光学(二)答案

(A) a+b=6 a.
注:当此比值为整数时,该整数即为第一个缺级.
[ C ]4. 在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a稍梢
变宽,同时使单缝沿y轴正方向作微小平移(透镜屏幕位置不动),则屏
幕C上的中央衍射条纹将
(A) 变窄,同时向上移;
(B) 变窄,同时向下移;
(C) 变窄,不移动;
(D) 变宽,同时向上移;
750 nm (1 nm=10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有
重叠现象,重叠处l2的谱线的级数将是
(A) 2 ,3 ,4 ,5 ......
(B) 2 ,5 ,8 ,11......
(C) 2 ,4 ,6 ,8 ......
(D) 3 ,6 ,9 ,12......
注:同一角度对应同一种光栅找最小公倍数即可.
(E) 变宽,不移.
注:
[ D ]5. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面
为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波
各自传到P点的
(A) 振动振幅之和.
(B) 光强之和.
(C) 振动振幅之和的平方. 6. 某元素的特征光谱中含有波长分别为l1=450 nm和l2=
4.钠黄光中包含两个相近的波长μ1=589.0 nm和μ2=589.6 nm.用 平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距 f=1.00 m.求在屏幕上形成的第2级光谱中上述两波长μ1和μ2的光谱之 间的间隔Δl.(1 nm =10−9 m)
解:
5.将一束波长μ = 589 nm (1 nm = 10-9 m)的平行钠光垂直入射在1 厘米内有5000条刻痕的平面衍射光栅上,光栅的透光缝宽度a与其间距b 相等,求:

第十二章 波动光学(一)答案

第十二章 波动光学(一)答案

一. 选择题[ C]基础训练2. 如图16-19所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1 λ1) (B )[4πn 1e /(n 2 λ1)] + π(C ) [4πn 2e /(n 1 λ1)]+ π (D ) 4πn 2e /(n 1 λ1)参考解答:真空中波长= n 1λ1。

考虑半波损失后的总光程差=2 n 2e + n 1λ1/2,故相位差=(2 n 2e + n 1λ1/2)*2π/( n 1λ1)=[4πn 2e /(n 1 λ1)]+ π 。

[ B ]基础训练6. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A ) λ / 4 (B ) λ / (4n ) (C ) λ / 2 (D ) λ / (2n ) 参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍,故薄膜的最小厚度h 应满足如下关系式:212nh λλ+=⋅(要考虑半波损失),由此解得/(4)h n λ=。

[ B ]基础训练8. 用单色光垂直照射在观察牛顿环的装置上。

当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 参考解答:根据牛顿环公式,此时固定位置的k 变大。

[ A ]基础训练9. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。

若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 (A ) 间隔变小,并向棱边方向平移(B ) 间隔变大,并向远离棱边方向平移 (C ) 间隔不变,向棱边方向平移 (D ) 间隔变小,并向远离棱边方向平移参考解答:条纹间距=λ/2/ sin θ,逆时针转动,导致变大,进而条纹间距变小,条纹向棱边方向移动。

(完整版)大学物理--波动光学题库及其答案.doc

(完整版)大学物理--波动光学题库及其答案.doc

一、选择题:(每题3 分)1、在真空中波长为的单色光,在折射率为n 的透明介质中从 A 沿某路径传播到B,若A、 B 两点相位差为 3 ,则此路径 AB 的光程为(A) 1.5 .(B) 1.5 n.(C) 1.5 n .(D) 3 .[]2、在相同的时间内,一束波长为的单色光在空气中和在玻璃中(A)传播的路程相等,走过的光程相等.(B)传播的路程相等,走过的光程不相等.(C)传播的路程不相等,走过的光程相等.(D)传播的路程不相等,走过的光程不相等.3、如图, S1、S2是两个相干光源,它们到P 点的距离分别为 r 1 2 1 1 1 和 r .路径 S P 垂直穿过一块厚度为t ,折射率为 n的介质板,路径S2P 垂直穿过厚度为 t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) (r2 n2t 2 ) (r1 n1t1 ) S1S2[]t1 r1t2Pn1 r2n2(B) [ r2 ( n2 1)t2 ] [ r1 (n1 1)t2 ](C) (r2 n2t 2 ) (r1 n1 t1 )(D) n2 t2 n1t1 []4、真空中波长为的单色光,在折射率为n 的均匀透明媒质中,从 A 点沿某一路径传播到 B 点,路径的长度为l. A、 B 两点光振动相位差记为,则(A) l = 3 / 2,=3.(B) l= 3 / (2n),=3n.(C) l = 3 / (2 n),=3.(D) l= 3n / 2,=3n.5、如图所示,波长为的平行单色光垂直入射在折射率为n2 的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为 e,而且 n1> n2> n3,则两束反射光在相遇点的相位差为(A) 4 n e / .(B) 2 n e / .2 2(C) (4 n2 e / .(D) (2 n2 e / .[]6、如图所示,折射率为n 、厚度为 e 的透明介质薄膜2的上方和下方的透明介质的折射率分别为n1和 n3,已知 n1<n2< n3.若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2 n2 e.(B) 2 n2 e-/ 2 .(C) 2 n2 e-.(D) 2 n2 e-/ (2n2).7、如图所示,折射率为n 、厚度为 e 的透明介质薄膜的2上方和下方的透明介质的折射率分别为n1和 n3,已知 n1< n2>n .若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜3上、下两表面反射的光束(用①与②示意 )的光程差是(A) 2 n e.(B) 2 n e- / 2.2 2 []n1n2 e n3① ②n1n2 en3[]① ②n1n2 e[]8 在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为 D (D>>d ) ,单色光波长为,屏幕上相邻明条纹之间的距离为(A) D/d .(B)d/D .(C) D/(2 d).(D) d/(2D ).[]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]10、在双缝干涉实验中,光的波长为600 nm ( 1 nm= 10-9 m) ,双缝间距为 2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm .(B) 0.9 mm .(C) 1.2 mm(D) 3.1 mm .[]11、在双缝干涉实验中, 1 2 距离相等,若单色光源 S 到两缝 S 、S则观察屏上中央明条纹位于图中O 处.现将光源 S 向下移动到示意S1图中的S 位置,则S O(A) 中央明条纹也向下移动,且条纹间距不变.S S2(B) 中央明条纹向上移动,且条纹间距不变.(C) 中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D)向上平移,且间距改变.[]13、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为 D (D >> d).波长为的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2 D / d.(B) d / D.(C) dD /.(D) D /d.[]14 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d,双缝到屏的距离为D (D >> d) ,所用单色光在真空中的波长为,则屏上干涉条纹中相邻的明纹之间的距离是(A) D / (nd)(B) n D /d.(C) d / (nD ).(D) D / (2 nd).[]15、一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A).(B)/ (4 n).(C).(D) / (2n) .[]大学物理波动光学们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =k R .(B) r k =k R / n .(C) r k =kn R .(D) r k =k / nR .[]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为 d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n- 1 ) d.(B) 2 nd.(C) 2 ( n- 1 ) d+ / 2 .(D) nd.(E) ( n- 1 ) d.[]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是(A) / 2.(B)/ (2 n).(C) / n.(D).[]2 n 119、在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a= 4的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6 个.(D) 8个.20、一束波长为的平行单色光垂直入射到一单缝 AB 上,装置如图.在屏幕 D 上形成衍射图样,如果 P 是中央亮纹一侧第一个暗纹所在的位置,则[]L DAPBC 的长度为(A).(B).(C) 3 / 2 .(D) 2.[]BCf屏21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则 S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A)振动振幅之和.(B)光强之和.(C) 振动振幅之和的平方.(D)振动的相干叠加.[]22、波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 =± / 6,则缝宽的大小为(A) .(B) .(C) 2 .(D) 3 .[]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上.所用单色光波长为=500 nm ,则单缝宽度为(A) 2.5 × 10 -m.(B) 1.0 × 10 m.25、一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上, 在缝后放一焦距为 2.0 m 的会聚透镜. 已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约 为 (1nm=10 - 9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm[ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小. (B) 宽度变大.(C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大.[ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ ]28、在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角 为 30°的方向上,若单缝处波面可分成 3 个半波带,则缝宽度 a 等于(A) .(B) 1.5 .(C) 2 .(D) 3 .[ ]29、在如图所示的单缝夫琅禾费衍射装置中,设 LC中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的 3,同时使入射的单色光的波长变为原来的 3 /a24,则屏幕 C 上单缝衍射条纹中央明纹的宽度 x 将变为原来的f(A) 3 / 4 倍.(B) 2 / 3 倍. y(C) 9 / 8 倍. (D) 1 / 2 倍.Ox(E) 2 倍.[]30、测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉.(B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.[] 31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b)为下列哪种情况时(a 代表每条缝的宽度 ), k=3、 6、 9 等级次的主极大均不出现?(A) a + b=2 a .(C) a + b=4 a .(B) a +b=3 a .(A) a + b=6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远 的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]使屏幕上出现更高级次的主极大,应该(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动.[]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0 × 10 - 1 mm.(B) 1.0 × 10 - 1 mm.(C) 1.0 × 10 - 2 mm.(D) 1.0 × 10 -3 mm .[]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度 a 和相邻两缝间不透光部分宽度 b 的关系为1(B) a=b .(A) a= b.2(C) a= 2b.(D) a= 3 b.[]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A)干涉条纹的间距不变,但明纹的亮度加强.(B)干涉条纹的间距不变,但明纹的亮度减弱.(C)干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0 的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I0 / 8.(D) 3 I 0 / 4 .[]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) I0/ 4 2 .(B) I0 / 4.(C) I 0 / 2.(D) 2 I0/ 2.[]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I 0 / 8.(D) 3 I 0 / 4.[]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A)在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]二、填空题:(每题 4 分)41、若一双缝装置的两个缝分别被折射率为n 1和 n2 的两块厚度均为 e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=_____________________________ .42、波长为的单色光垂直照射如图所示的透明薄膜.膜厚度为 e,两束反射光的光程差=n1 = 1.00__________________________ .n2 = 1.30 en3 = 1.5043、用波长为的单色光垂直照射置于空气中的厚度为 e 折射率为 1.5 的透明薄膜,两束反射光的光程差= ________________________ .44、波长为的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为 e,折射率为 n,透明薄膜放在折射率为n1的媒质中, n1< n,则上下两表面反射的两束反射光在相遇处的相位差= __________________ .45、单色平行光垂直入射到双缝上.观察屏上 P 点到两缝的距离分别为 r1和 r 2.设双缝和屏之间充满折射率为n 的媒质,则 P 点处二相干光线的光程差为________________ .n1ne n1S1r1pdr 2S246、在双缝干涉实验中,两缝分别被折射率为 1 2 的透明nn 和 n薄膜遮盖,二者的厚度均为e.波长为的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差= _______________________ .47、如图所示,波长为的平行单色光斜入射到S1距离为 d 的双缝上,入射角为.在图中的屏中央 O 处( S1O S2 O ),两束相干光的相位差为 dO ________________ .S248、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49 、一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________ mm. ( 设水的折射率为4/3 )屏的距离 D =1.2 m ,若测得屏上相邻明条纹间距为 x = 1.5 mm ,则双缝的间距 d = __________________________ .51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ___________ ;若使单色光波长减小,则干涉条纹间距_________________ .52、把双缝干涉实验装置放在折射率为 n 的媒质中,双缝到观察屏的距离为 D ,两缝之间的距离为 d (d<<D ),入射光在真空中的波长为 ,则屏上干涉条纹中相 邻明纹的间距是 _______________________ .53、在双缝干涉实验中,双缝间距为 d ,双缝到屏的距离为 D (D >>d),测得中央零级明纹与第五级明之间的距离为 x ,则入射光的波长为 _________________ . 54 、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为 D ,则屏上相邻明纹的间距为 _______________ .55、用 = 600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个 (不计中央暗斑 )暗环对应的空气膜厚度为_______________________ m . (1 nm=10 - 9 m)56、在空气中有一劈形透明膜,其劈尖角 = 1.0×10 -4nm 的单色 rad ,在波长 = 700 光垂直照射下,测得两相邻干涉明条纹间距 l = 0.25 cm ,由此可知此透明材料的折射率n= ______________________ . (1 nm=10 - 9 m)57、用波长为 的单色光垂直照射折射率为 n 2 的劈形膜 (如图 )图中各部分折射率的关系是n 1< n 2< n 3 .观察反射光的干涉条纹, n 1n 2 从劈形膜顶开始向右数第 5 条暗条纹中心所对n 3应的厚度 e = ____________________ .58、用波长为 的单色光垂直照射如图所示的、折射率为n的n 12劈形膜 (n 1 > n 2 , n 3> n 2 ),观察反射光干涉.从劈形膜顶n 2n 3开始,第 2 条明条纹对应的膜厚度e = ___________________ .59、用波长为 的单色光垂直照射折射率为 n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为 l ,则劈尖角 = _______________ .60、用波长为 的单色光垂直照射如图示的劈形膜(n > n > n ),观n 1123察反射光干涉.从劈形膜尖顶开始算起,第 2 条明条纹中心所对应的膜n 2 厚度 e = ___________________________ .n 361 、已知在迈克耳孙干涉仪中使用波长为 的单色光.在干涉仪的可动反射镜移 动距离 d 的过程中,干涉条纹将移动 ________________ 条.62、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为 d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________ .63 、在迈克耳孙干涉仪的可动反射镜移动了距离 d 的过程中,若观察到干涉条纹移动了 N 条,则所用光波的波长=______________ .64、波长为 600 nm 的单色平行光,垂直入射到缝宽为a= 0.60 mm 的单缝上,缝后有一焦距 f = 60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为 __________ ,两个第三级暗纹之间的距离为____________ . (1 nm= 10﹣9 m)65、 He -Ne 激光器发出=632.8 nm (1nm=10 -9 m)的平行光束,垂直照射到一单缝上,在距单缝 3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是 10 cm,则单缝的宽度 a=________ .66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________ 纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半, P 点处将是 ______________ 级 __________________ 纹.68、波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30 °,单缝处的波面可划分为 ______________ 个半波带.69、惠更斯引入__________________ 的概念提出了惠更斯原理,菲涅耳再用______________ 的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的 _________________ ,决定了 P 点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长500 nm (1 nm = 10 9 m),则单缝宽度为 _____________________m .72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角=______________________ .73、在单缝夫琅禾费衍射实验中波长为的单色光垂直入射在宽度为a=2 的单缝上,对应于衍射角为 30 方向,单缝处的波面可分成的半波带数目为________ 个.74、如图所示在单缝的夫琅禾费衍射中波1.5长为 的单色光垂直入射在单缝上.若对应于 A会聚在 P 点的衍射光线在缝宽 a 处的波阵面恰1C 好分成 3 个半波带,图中 AC CD DB ,a2D 则光线 1 和 2 在 P 点的B3 4P相位差为 ______________ .75、在单缝夫琅禾费衍射实验中, 波长为 的单色光垂直入射在宽度 a=5 的单缝上.对应于衍射角 的方向上若单缝处波面恰好可分成 5 个半波带,则衍射角 =______________________________ .76、在如图所示的单缝夫琅禾费衍射装置示意图LC中,用波长为 的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则 A由单缝边缘的 A 、 B 两点分别到Pa达 P 点的衍射光线光程差是__________ .Bf77、测量未知单缝宽度 a 的一种方法是:用已知波长 的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为 l ( 实验上应保证 D ≈ 103a ,或 D 为几米 ),则由单缝衍射的原理可标出 a 与 ,D ,l 的关系为a =______________________ .78、某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的 衍射角为 30°,则入射光的波长应为 _________________ .79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________ 相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称 为 ______________ 晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是__________ 波.三、计算题: (每题 10 分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为 1.2 mm 双缝与屏相距 500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离 D = 1.2 m ,双缝间距 d = 0.45 mm ,若测 得屏上干涉条纹相邻明条纹间距为 1.5 mm ,求光源发出的单色光的波长 .83、用波长为 500 nm (1 nm=10 - 9 m) 的单色光垂直照射到由两块光学平玻璃构成的空气 劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边 l = 1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角 ;(2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R= 400 cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .A(1) 求入射光的波长.O(2) 设图中 OA= 1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为 0.50 m 的玻璃片.玻璃片的折射率为 1.50.在可见光范围内 (400 nm ~ 760 nm) 哪些波长的反射光有最大限度的增强?(1 nm=10 -9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10 -9 m)87、一平面衍射光栅宽 2 cm,共有8000 条缝,用钠黄光可能出现的各个主极大对应的衍射角.(1nm=10 -9m)88、如图,P1、P2为偏振化方向相互平行的两个偏振片.光强为 I 0的平行自然光垂直入射在P1上.(1) 求通过 P 后的光强 I .2 (589.3 nm) 垂直入射,试求出II0P 1P3P 2(2) 如果在 P1、P2之间插入第三个偏振片P3,(如图中虚线所示)并测得最后光强I= I 0 / 32 ,求: P3的偏振化方向与P1的偏振化方向之间的夹角(设为锐角).89、三个偏振片P 、 P 、 P 顺序叠在一起,P 、 P3 的偏振化方向保持相互垂直,P11 2 3 1与 P2的偏振化方向的夹角为,P2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与角的函数关系式;(2) 试定性画出在P2转动一周的过程中透射光强I 随角变化的函数曲线.90、两个偏振片P1、 P2叠在一起,一束单色线偏振光垂直入射到P1上,其光矢量振动方向与 P1 的偏振化方向之间的夹角固定为30°.当连续穿过 P1、 P2 后的出射光强为最大出射光强的 1 / 4 时, P1 、P2的偏振化方向夹角是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60 o,一束光强为 I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30°角.(1)求透过每个偏振片后的光束强度;(2)若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成 45 和 90 角.(1)强度为 I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2)如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n1= 1.00) ,Ⅱ为玻璃 (n2= 1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以ii角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光,Ⅰ(1) 入射角 i 是多大?r(2) 图中玻璃上表面处折射角是多大?Ⅱ(3) 在图中玻璃板下表面处的反射光是否也是线偏振I光?94、在水 (折射率 n1= 1.33) 和一种玻璃 ( 折射率 n2= 1.56 的交界面上,自然光从水中射向玻璃,求起偏角 i 0.若自然光从玻璃中射向水,再求此时的起偏角i0.95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水 (折射率为 1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角 i0= 48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为 1.56 ,求:(1)该液体的折射率.(2)折射角.97、一束自然光自空气入射到水(折射率为 1.33)表面上,若反射光是线偏振光,(1)此入射光的入射角为多大?(2)折射角为多大?98、一束自然光自水(折射率为 1.33) 中入射到玻璃表面上(如图 ). 水当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.玻璃99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为 1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33 ,求布儒斯特角.大学物理 ------波动光学参考答案一、选择题01-05 ACBCA06-10 ABABB11-15 BBDAB16-20 BADBB21-25 DCBCC26-30 ABD DD31-35 BDBDB36-40 BABAC二、填空题41. ( n 1 n 2 )e or (n 2 n 1 )e ; 42. 2.60e ; 43. 3.0e+λ/2 or 3.0e-λ/2;44. (4ne1) or(4ne 1) ; 45. n( r 2r 1 ) ; 46. 2 (n 2n 1 ) e;47. 2 d sin / ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大;49. 0.75 ; 50. 0.45mm ; 51. 变小, 变小; 52.D ; 53.dx; 54. D ;dn 5D N55. 1.2 m ; 56. 1.40 ; 57.9; 58. 3; 59.rad ; 60. ;4n 24n 22nl2n 261. 2d / ; 62. 2(n 1)d ; 63. 2d / N ; 64. 1.2mm , 3.6mm ;65. 7.60 10 2 mm ;66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4 ;69. 子波, 子波相干叠加; 70. 相干叠加; 71. 10 6 m ; 72.30 0 ; 73.2 ; 74.;75. 300 ; 76. 2 ; 77. 2D / l ; 78. 625nm ;79. 传播速度, 单轴; 80. 波动, 横波。

波动光学案例习题(含答案)

波动光学案例习题(含答案)
d
x (2k 1) d
d2
11/5 条纹间距
x
xk 1
xk
d
d
4
2.薄膜干涉 (分振幅法)
光程差
2d
n22
n12
s in 2
i
2
i

② n1 n2 d
n1 n2 n3 n1 n2 n3 n1 n2 n3
n1 n2 n3
11/5
n3
光程差不附加
2
光程差附加
2
5
光程差
2d
答: (C)
11/5
21
例: 在牛顿环实验装置中,曲率半径为R的平 凸透镜与平玻璃板在中心恰好接触,它们之间 充满折射率为n的透明介质,垂直入射到牛顿 环装置上的平行单色光在真空中的波长为λ, 则反射光形成的干涉条纹中暗环半径的表达式 为:
( A)r kR (C)r knR
(B)r kR / n (D)r k /(nR)
解: 条纹间距 x d D
dd
中央明纹两侧的第10级明纹中心间距
210x 210 D 0.11m
d
11/5
32
(2)将此装置用一厚度为 e 6.6106 m ,折射率
解: 据明环半径公式 rk
( k 1 )R
2
充液前: r120 19R / 2 充液后: r102 19R /( 2n )
n r120 1.36
11/5
r102
20
例,在相同的时间内,一束波长为λ的单色光在 空气中和在玻璃中:
(A)传播的路程相等,走过的光程相等 (B)传播的路程相等,走过的光程不相等 (C)传播的路程不相等,走过的光程相等 (D)传播的路程不相等,走过的光程不相等

大学物理第十二节波动光学

大学物理第十二节波动光学

第12章 波动光学一、选择题1. 如T12-1-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:[ ] (A) e n 22 (B) λ2122-e n(C) λ-22n (D) 2222n e n λ-2. 如T12-1-2图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径P S 1垂直穿过一块厚度为1t ,折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 的另一介质;其余部分可看作真空.这两条光路的光程差等于: [ ] (A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -3. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[ ] (A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等4. 频率为f 的单色光在折射率为n 的媒质中的波速为v , 则在此媒质中传播距离为l 后, 其光振动的相位改变了 [ ] (A)vlfπ2 (B)lvfπ2 (C)vnlfπ2 (D)π2v l f5. 波长为λ的单色光在折射率为n 的媒质中由a 点传到b 点相位改变了π, 则光从a 点到b 点的几何路程为: [ ] (A)n2λ(B)2nλ (C)2λ(D) λn6. 真空中波长为λ的单色光, 在折射率为n 的均匀透明媒质中从a 点沿某一路径传到b 点.若将此路径的长度记为l , a 、b 两点的相位差记为∆ϕ , 则1S S PT12-1-2图[ ] (A) π3,23=∆=ϕλl (B) π3,23n n l =∆=ϕλ(C) π3,23=∆=ϕλn l (D) π3,23n n l =∆=ϕλ7. 两束平面平行相干光, 每一束都以强度I 照射某一表面, 彼此同相地并合在一起, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D)I 28. 相干光是指[ ] (A) 振动方向相同、频率相同、相位差恒定的两束光(B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9. 两个独立的白炽光源发出的两条光线, 各以强度I 照射某一表面.如果这两条光线同时照射此表面, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D) 8I10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [ ] (A) 传播方向相同 (B) 振幅相同(C) 振动方向相同 (D) 位置相同11. 用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为λ, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该媒质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ12. 一束波长为 λ 的光线垂直投射到一双缝上, 在屏上形成明、暗相间的干涉条纹, 则下列光程差中对应于最低级次暗纹的是 [ ] (A) λ2(B)λ23 (C)λ(D)2λ13. 在杨氏双缝实验中, 若用白光作光源, 干涉条纹的情况为 [ ] (A) 中央明纹是白色的(B) 红光条纹较密 (C) 紫光条纹间距较大(D) 干涉条纹为白色T12-1-11图14. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝2S 盖住,并在21S S 连线的垂直平面出放一反射镜M ,如图所示,则此时 [ ] (A) P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹15. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处 [ ] (A) 仍为明条纹(B) 变为暗条纹(C) 既非明条纹也非暗条纹(D) 无法确定是明纹还是暗纹16. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d , 双缝到屏的距离为D (d D >>),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是: [ ] (A)ndDλ (B)dDn λ (C)nDd λ (D)ndD 2λ17. 如T12-1-17图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[ ] (A) 条纹间距减小(B) 条纹间距增大 (C) 整个条纹向上移动(D) 整个条纹向下移动18. 在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [ ] (A) 条纹间距增大(B) 整个干涉条纹将向上移动 (C) 条纹间距减小(D) 整个干涉条纹将向下移动19. 当单色光垂直照射杨氏双缝时, 屏上可观察到明暗交替的干涉条纹.若减小 [ ] (A) 缝屏间距离, 则条纹间距不变 (B) 双缝间距离, 则条纹间距变小 (C) 入射光强度, 则条纹间距不变 (D) 入射光波长, 则条纹间距不变20. 在保持入射光波长和缝屏距离不变的情况下, 将杨氏双缝的缝距减小, 则 [ ] (A) 干涉条纹宽度将变大 (B) 干涉条纹宽度将变小(C) 干涉条纹宽度将保持不变 (D) 给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是T12-1-14图T12-1-17图T12-1-18图T12-1-21图[ ] (A) 玻璃劈形膜(B) 空气劈形膜(C) 两劈形膜干涉条纹间距相同(D) 已知条件不够, 难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[ ] (A) 明纹间距逐渐减小, 并背离劈棱移动(B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中, 若慢慢地减小劈形膜夹角, 则从入射光方向可以察到干涉条纹的变化情况为 [ ] (A) 条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [ ] (A) 间隔变小,并向棱边方向平移(B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移(D) 间隔变小,并向远离棱边方向平移25. 检验滚珠大小的干涉试装置示意如T12-1-25(a)图.S 为光源,L 为汇聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为0d .用波长为λ的单色光垂直照射平晶,在M 上方观察时观察到等厚条纹如T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径1d 、C 珠的直径2d 与0d 的关系分别为:[ ] (A) ,01λ+=d d λ302+=d d (B) ,01λ-=d d λ302-=d d(C) ,201λ+=d d 2302λ+=d d (D) ,201λ-=d d 2302λ-=d dS12TT12-1-25(a)图 T12-1-25(b)图T12-1-23图26. 如T12-1-26(a)图所示,一光学平板玻璃A长λ=500nm(1nm = 10-9m)的单色光垂直照射.示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是[ ] (A) 不平处为凸起纹,最大高度为500nm(B) 不平处为凸起纹,最大高度为250nm (C) 不平处为凹槽,最大深度为500nm (D) 不平处为凹槽,最大深度为250nm27. 设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动, 当透镜向上平移(即离开玻璃板)时, 从入射光方向可观察到干涉条纹的变化情况是 [ ] (A) 环纹向边缘扩散, 环纹数目不变(B) 环纹向边缘扩散, 环纹数目增加 (C) 环纹向中心靠拢, 环纹数目不变(D) 环纹向中心靠拢, 环纹数目减少28. 牛顿环实验中, 透射光的干涉情况是 [ ] (A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环29. 在牛顿环装置中, 若对平凸透镜的平面垂直向下施加压力(平凸透镜的平面始终保持与玻璃片平行), 则牛顿环[ ] (A) 向中心收缩, 中心时为暗斑, 时为明斑, 明暗交替变化(B) 向中心收缩, 中心处始终为暗斑 (C) 向外扩张, 中心处始终为暗斑 (D) 向中心收缩, 中心处始终为明斑30. 关于光的干涉,下面说法中唯一正确的是[ ] (A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ (B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ (C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ (D) 牛顿干涉圆环属于分波振面法干涉31. 根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面T12-1-26(b)图T12-1-29图半径R 的关系式Rr d k k 22=可知,离开环心越远的条纹[ ] (A) 对应的光程差越大,故环越密(B) 对应的光程差越小,故环越密(C) 对应的光程差增加越快,故环越密(D) 对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜, 放在平玻璃上, 则干涉条纹的形状 [ ] (A) 为内疏外密的圆环(B) 为等间距圆环形条纹 (C) 为等间距平行直条纹(D)为以接触线为中心,两侧对称分布,明暗相间, 内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的.这是因为: [ ] (A) 牛顿环的条纹是环形的(B) 劈尖条纹是直线形的 (C) 平凸透镜曲面上各点的斜率不等(D) 各级条纹对应膜的厚度不等34. 如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的光束发生干涉.若薄膜的厚度为e ,且n 1 < n 2 > n 3,λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为: [ ] (A)e n n 12π2⋅λ(B)ππ421+⋅e n n λ (C)ππ412+⋅e n n λ (D)e n n 12π4⋅λ35. 用白光垂直照射厚度e = 350nm折射率为n 1,薄膜下面的媒质折射率为n 3,且n 1 < n 2 < n 3.则反射光中可看到的加强光的波长为: [ ] (A) 450nm(B) 490nm (C) 690nm(D) 553.3nm36. 不可行的是[ ] (A) 将透镜磨成半圆柱形 (B) 将透镜磨成圆锥形(C) 将透镜磨成三棱柱形 (D) 将透镜磨成棱柱形37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: [ ] (A) 增大劈形膜夹角 (B) 增大棱边长度(C) 换用波长较短的入射光 (D) 换用折射率较小的液体38. 若用波长为λ的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放T12-1-32图入厚度为l 、折射率为n 的透明薄片.放入后,干涉仪两条光路之间的光程差改变量为 [ ] (A) (n -1)l (B) nl(C) 2nl (D) 2(n -1)l39. 若用波长为λ的单色光照射迈克尔逊干涉仪, 并在迈克尔逊干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为 [ ] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-40. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹 [ ] (A) 间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动 (D) 间隔不变,向上移动41. 根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和 (B) 振动振幅之和的平方(C) 光强之和 (D) 振动的相干叠加42. 无线电波能绕过建筑物, 而可见光波不能绕过建筑物.这是因为[ ] (A) 无线电波是电磁波 (B) 光是直线传播的 (C) 无线电波是球面波 (D) 光波的波长比无线电波的波长小得多43. 光波的衍射现象没有显著, 这是由于 [ ] (A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多44. 波长为λ的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜,屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中, 则在屏上出现的中央明纹宽度为 [ ] (A)na f λ (B)na f λ (C) naf λ2(D) anf λ245. 在单缝衍射中, 若屏上的P 点满足a sin ϕ = 5/2则该点为 [ ] (A) 第二级暗纹 (B) 第五级暗纹(C) 第二级明纹 (D) 第五级明纹46. 在夫琅和费单缝衍射实验中, 欲使中央亮纹宽度增加, 可采取的方法是[ ] (A) 换用长焦距的透镜 (B) 换用波长较短的入射光SλT12-1-40图T12-1-44图如有帮助欢迎下载支持(C) 增大单缝宽度(D) 将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ] (A) 各级亮条纹亮度相同(B) 各级暗条纹间距不等(C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时, 中央亮纹两侧为由红到紫的彩色条纹48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中心位置不变,各衍射条纹[ ] (A) 对应的衍射角变小 (B) 对应的衍射角变大(C) 对应的衍射角不变 (D) 光强也不变49. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如T12-1-49图所示,在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [ ] (A) λ (B) 2λ(C) 23λ(D) λ250. 在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹[ ] (A) 宽度变小 (B) 宽度变大(C) 宽度不变,且中心强度也不变(D) 宽度不变,但中心强度增大51. 在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小.若单缝a 变为原来的23,同时使入射的单色光的波长变为原来的43,则屏幕E 上的单缝衍射条纹中央明纹的宽度△x 将变为原来的 [ ] (A)43倍 (B)32倍 (C)89倍 (D)21倍52. 一单缝夫琅和费衍射实验装置如T12-1-52图所示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时,衍射图样将[ ] (A) 向上平移 (B) 向下平移(C) 不动 (D) 消失PT12-1-49图T12-1-51图λT12-1-52图λ如有帮助欢迎下载支持53. 在T12-1-53图所示的单缝夫琅和费衍射实验中,)方向稍微平移,则 [ ] (A) 衍射条纹移动,条纹宽度不变(B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽 (D) 衍射条纹不动,条纹宽度不变54. 在T12-1-54图所示的单缝夫琅和费衍射实验中,将单缝宽度 a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将[ ] (A) 变窄,同时上移 (B) 变窄,同时下移(C) 变窄,不移动 (D) 变宽,同时上移55. 在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[ ] (A) 变宽,同时上移 (B) 变宽,同时下移(C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为:[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ = 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 458. 波长为λ的单色光垂直入射于光栅常数为d 、缝宽a 、 总缝数为N 的光栅上.取0=k ,1±,2±,……,则决定出现主级大的衍射角θ的公式可写成 [ ] (A) λθk Na =sin (B) λθk a =sin(C) λθk Nd =sin (D) λθk d =sin59. 一衍射光栅对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕出现更高级次的主极大,应该[ ] (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大光栅(C) 将光轴向靠近屏幕的方向移动 (D) 将光轴向远离屏幕的方向移动60. 为测量一单色光的波长,下列方法中最准确的是( )实验.T12-1-53图T12-1-54图T12-1-55图如有帮助欢迎下载支持[ ] (A) 双缝干涉(B) 牛顿环干涉(C) 单缝衍射 (D) 光栅衍射61. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是[ ] (A) 紫光 (B) 绿光 (C) 黄光 (D) 红光62. 在光栅光谱中,假设所有的偶数极次的主级大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系 [ ] (A) a = b (B) a =2b (C) a = 3b (D) b = 2a63. 若用衍射光栅准确测量一单色可见光的波长,在下列各种光栅常数的光栅中选那一种最好?[ ] (A) 1100.1-⨯mm(B) 1100.5-⨯mm (C) 2100.1-⨯mm(D) 3100.1-⨯mm64. 在一光栅衍射实验中,如果光栅、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k [ ] (A) 变小 (B) 变大 (C) 不变 (D) 改变无法确定65. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[ ] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小66. 以平行可见光(400nm ~700nm)照射光栅, 光栅的第一级光谱与第二级光谱将会出现什么现象?[ ] (A) 在光栅常数取一定值时, 第一级与第二级光谱会重叠起来(B) 不论光栅常数如何, 第一级与第二级光谱都会重合 (C) 不论光栅常数如何, 第一级与第二级光谱都不会重合(D) 对于不同光栅常数的光栅, 第一级与第二级光谱的重叠范围相同67. 用单色光照射光栅,屏幕上能出现的衍射条纹最高级次是有限的.为了得到更高衍射级次的条纹,应采用的方法是: [ ] (A) 改用波长更长的单色光 (B) 将单色光斜入射(C) 将单色光垂直入射 (D) 将实验从光密媒质改为光疏媒质68. 已知一衍射光栅上每一透光狭缝的宽度都为a , 缝间不透明的那一部分宽度为b ;若b = 2a , 当单色光垂直照射该光栅时, 光栅明纹的情况如何(设明纹级数为k )? [ ] (A) 满足k = 2 n 的明条纹消失( n =1、2、...)(B) 满足k = 3 n 的明条纹消失( n =1、2、...) (C) 满足k = 4 n 的明条纹消失( n =1、2、...) (D) 没有明条纹消失69. 用波长为λ的光垂直入射在一光栅上, 发现在衍射角为ϕ 处出现缺级, 则此光栅上缝宽的最小值为[ ] (A) ϕλsin 2 (B) ϕλsin (C) ϕλsin 2 (D) λϕsin 270. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3、6、9⋯等级次的主极大均不出现.[ ] (A) a b a 2=+(B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+71. 在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略为加宽,则[ ] (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多(C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变(D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少72. 一束光垂直入射到一偏振片上, 当偏振片以入射光方向为轴转动时, 发现透射光的光强有变化, 但无全暗情形, 由此可知, 其入射光是[ ] (A) 自然光 (B) 部分偏振光(C) 全偏振光 (D) 不能确定其偏振状态的光 73. 把两块偏振片紧叠在一起放置在一盏灯前, 并使其出射光强变为零.当把其中一块偏振片旋转 180°时, 出射光强的变化情况是[ ] (A) 光强由零逐渐变为最大(B) 光强由零逐渐增为最大, 然后由最大逐渐变为零(C) 光强始终为零(D) 光强始终为最大值74. 自然光通过两个主截面正交的尼科尔棱镜后, 透射光的强度为[ ] (A) I = 0 (B) 与入射光的强度相同(C) I ≠ 0 (D) 与入射光强度不相同75. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面放一块偏振片, 则[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹76. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面分别放置一块偏振片, 且两偏振片的偏振化方向相互垂直,则T12-1-72图[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹77. 有两种不同的媒质, 第一媒质的折射率为n 1 , 第二媒质的折射率为n 2 ; 当一束自然光从第一媒质入射到第二媒质时, 起偏振角为i 0 ; 当自然光从第二媒质入射到第一媒质时, 起偏振角为i .如果i 0>i , 则光密媒质是[ ] (A) 第一媒质 (B) 第二媒质(C) 不能确定 (D) 两种媒质的折射率相同78. 设一纸面为入射面.当自然光在各向同性媒质的界面上发生反射和折射时, 若入射角不等于布儒斯特角, 反射光光矢量的振动情况是[ ] (A) 平行于纸面的振动少于垂直于纸面的振动(B) 平行于纸面的振动多于垂直于纸面的振动(C) 只有垂直于纸面的振动(D) 只有平行于纸面的振动79. 自然光以 60 的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为(B) 折射光为部分线偏振光,折射角为(C) 折射光为线偏振光,折射角不能确定(D) 折射光为部分线偏振光,折射角不能确定80. 自然光以布儒斯特角由空气入射到一玻璃表面上,则反射光是[ ] (A) 在入射面内振动的完全线偏振光(B) 平行于入射面的振动占优势的部分偏振光(C) 垂直于入射面的振动的完全偏振光(D) 垂直于入射面的振动占优势的部分偏振光81. 一束自然光由空气射向一块玻璃,[ ] (A) 自然光 (B) 完全偏振光且光矢量的振动方向垂直于入射面 (C) 完全偏振光且光矢量的振动方向平行于入射面 (D) 部分偏振光 82. 强度为I 0的自然光经两个平行放置的偏振片后, 透射光的强度变为I 0/4, 由此可知, 这两块偏振片的偏振化方向夹角是[ ] (A) 30° (B) 45°(C) 60° (D) 90° 0I T12-1-82图4/0I83. 起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为[ ] (A) 0 (B) I /2(C) I /8 (D) 以上答案都不对84. 一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为I = I 0/8.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90°85. 光强为I 0的自然光垂直通过两个偏振片,他们的偏振化方向之间的夹角 60=α.设偏振片没有吸收,则出射光强I 与入射光强0I 之比为[ ] (A) 1/4 (B) 3/4 (C) 1/8 (D) 3/886. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为:[ ] (A) 光强单调增加(B) 光强先增加,后又减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 87. 如T12-1-87图所示,ABCD 一块方解石的一个截面,AB 垂直于纸面的晶体平面与纸面的交线.光轴的方向在纸面内与AB 成一锐角θ.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分为O 光和e 光,O 光和e 光的 [ ] (A) 传播方向相同,电场强度的振动方向相互垂直 (B) 传播方向相同,电场强度的振动方向不相互垂直(C) 传播方向不同,电场强度的振动方向相互垂直(D) 传播方向不同,电场强度的振动方向不相互垂直88. 一束自然光通过一偏振片后,射到一块方解石晶体上,入射角为i 0.关于折射光,下列的说法正确的是[ ] (A) 是是e 光,偏振化方向垂直于入射面(B) 是e 光,偏振化方向平行于入射面(C) 是O 光,偏振化方向平行于入射面(D) 是O 光,偏振化方向垂直于入射面 89. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则I T12-1-83图A B C I T12-1-84图1P 3P 2P T12-1-87图 DT12-1-88图[ ] (A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变(D) 不产生干涉条纹90. 在扬氏双缝实验中,屏幕中央明纹处的最大光强是I 1.当其中一条缝被盖住时,该位置处的光强变为I 2.则I 1 : I 2为[ ] (A) 1 (B) 2 (C) 3 (D) 4二、填空题1. 如T12-2-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是 .2. 真空中波长 λ = 400 nm 的紫光在折射率为 n =1.5 的媒质中从A 点传到B 点时, 光振动的相位改变了5π, 该光从A 到B 所走的光程为 .3. 如T12-2-3图所示,两缝S 1和S 2之间的距离为d ,介质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为 ________________.4. 如T12-2-4图所示,在双缝干涉实验中SS 1=SS 2用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 _________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n= ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm?6. 将一块很薄的云母片(n = 1.58)覆盖在扬氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ = 550nm, 则该云母片的厚度为___________.T12-2-3图T12-2-4图。

波动光学练习题

波动光学练习题

波动光学练习题1. 介绍波动光学是物理学中的一个重要分支,研究光在传播过程中的波动性质。

它深入研究了光的传播和干涉、衍射、偏振、散射等现象,对于理解光的本质和应用具有重要意义。

本文将为大家介绍一些波动光学的练习题,以帮助读者更好地理解相关概念和原理。

2. 题目一:干涉现象一束波长为550nm的单色光以垂直入射的方式照射到一块玻璃薄膜上,该薄膜的折射率为1.5,厚度为500nm,折射率与入射角度无关。

求在此条件下,该薄膜表面反射光的相位差和干涉条纹的间距。

解析:根据菲涅尔公式,入射角为垂直入射的情况下,反射光的相位差为2δ,其中δ为反射光的相位改变:δ = 2πnt/λ其中n为玻璃的折射率,t为薄膜的厚度,λ为入射光的波长。

代入具体数值,可得:δ = 2π * 1.5 * 500 * 10^(-9) / 550 * 10^(-9) ≈ 5.455rad干涉条纹的间距d可以由以下公式计算得到:d = λ / (2sinθ)其中θ为反射光的角度。

由于入射角为垂直入射,故θ = 0,因此d无穷大,即干涉条纹间距无限宽。

3. 题目二:衍射光斑有一束波长为600nm的单色光通过一条宽度为0.1mm的狭缝照射到屏幕上,屏幕距离狭缝的距离为1m。

求衍射光斑的宽度和位置。

解析:根据夫琅禾费衍射公式,衍射光斑的宽度可以由以下公式计算得到:δy = (λL) / (2d)其中δy为衍射光斑的宽度,λ为入射光的波长,L为狭缝到屏幕的距离,d为狭缝的宽度。

代入具体数值,可得:δy = (600 * 10^(-9) * 1) / (2 * 0.1 * 10^(-3)) ≈ 3mm衍射光斑的位置可以由以下公式计算得到:y = (λL) / d其中y为光斑离中心的偏移距离。

代入具体数值,可得:y = (600 * 10^(-9) * 1) / (0.1 * 10^(-3)) ≈ 6mm所以,衍射光斑的宽度为3mm,位置偏移约为6mm。

(完整word版)波动光学(一)答案

(完整word版)波动光学(一)答案

一. 选择题[B ]1.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D)改用波长较小的单色光源.参考解答:根据条纹间距公式D x ndλ∆=,即可判断。

[B (A)故变[A (A)4?[B (A)??(C)??2[C ]5.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A)中心暗斑变成亮斑.(B)变疏.(C)变密.(D)间距不变.参考解答:条纹间距2h n λ∆=,此题中n 变大,故条纹变密。

[D ]6.在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为(A) 全明.(B) 全暗.(C) 右半部明,左半部暗.(D)右半部暗,左半部明.参考解答:接触点P 的左边两反射光的光程差为2left nh δ=,接触点P 的右边两反射光的光程差为22right nh λδ=+。

在P 点处,有0h =,所以0left δ=,2right λδ=。

故P 点的左半部为明,右半部为暗。

[A ]7.在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了4rad ,在波n =。

l l ∆∆2sin 5l θ∆4.如图所示,平凸透镜的顶端与平板玻璃接触,用单色光垂直入射,定性地画出透射光干涉所形成的牛顿环(标明明环和暗环).参考解答:画图注意两要点:①中心为暗斑;②越外,环越密。

5.图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为?的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为e =3?/2. 参考解答:相邻暗条纹对应的高度差为:22n λλ=(空气劈尖的折射率为“1”)。

劈尖的顶角对应暗条纹(劈尖高度为“0”,其光程差为?/2),A 点对应第3条暗纹(从顶角开始数,不计顶角的暗条纹),故A 点对应的空气膜厚度为:33/22e λλ=⨯=。

2020年高中物理竞赛习题专题十二:《波动光学》(Word版含解析)

2020年高中物理竞赛习题专题十二:《波动光学》(Word版含解析)

【预赛 三一 自招】高中物理竞赛模拟试题之《波 动 光学》1在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B ).题14-1 图2 如图所示,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ).3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题14-3图分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为( )(A ) 3 个 (B ) 4 个 (C ) 5 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹 因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B ).5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为()82.1/2dsin max =≤λπk即只能看到第1 级明纹,正确答案为(D ).6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为( )(A ) 3I 0/16 (B ) 3I 0/8 (C ) 3I 0/32 (D ) 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为(C ).7 自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为( )(A ) 完全线偏振光,且折射角是30°(B ) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°(C ) 部分偏振光,但须知两种介质的折射率才能确定折射角(D ) 部分偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为部分偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.故选(D ).8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光?分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ. 此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第 5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么?),故mm 97822.=∆x . 解1 屏上暗纹的位置()212λ+'=k d d x ,把m 102782243-⨯==.,x k 以及d 、d ′值代入,可得λ=632.8 nm ,为红光.解2 屏上相邻暗纹(或明纹)间距'd x d λ∆=,把322.7810m 9x -∆=⨯,以及d 、d ′值代入,可得λ=632.8 nm .9 在双缝干涉实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =1.22×10-3 m双缝间距: d =d ′λ/Δx =1.34 ×10-4 m10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高?分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd ()d k D D D h 412sin tan -=≈≈λθθ 取k =1 时,得d D h 4min λ=. 11 如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色?分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.13 利用空气劈尖测细丝直径.如图所示,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n210λ=1.4 ×10-6m . 15 折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600 nm 的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n =1.40 的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小Δl =0.5 mm ,那么劈尖角θ 应是多少?分析 劈尖干涉中相邻条纹的间距l ≈θλn 2,其中θ 为劈尖角,n 是劈尖内介质折射率.由于前后两次劈形膜内介质不同,因而l 不同.则利用l ≈θλn 2和题给条件可求出θ.解 劈形膜内为空气时,θλ2=空l劈形膜内为液体时,θλn l 2=液则由θλθλn l l l 22-=-=∆液空,得 ()rad 107112114-⨯=∆-=./l n λθ16 如图(a)所示的干涉膨胀仪,已知样品的平均高度为3.0 ×10-2m ,用λ=589.3 nm 的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析 温度升高ΔT =T 2 -T 1 后,样品因受热膨胀,其高度l 的增加量Δl =lαΔT .由于样品表面上移,使在倾角θ 不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k 级条纹从a 移至a′处,如图(b )所示,移过某一固定观察点的条纹数目N 与Δl 的关系为2λNl =∆,由上述关系可得出热膨胀系数α.解 由题意知,移动的条纹数N =20,从分析可得 T l N ∆=αλ2则热膨胀系数 5105112-⨯=∆=.Tl Nλα K 1- 17 在利用牛顿环测未知单色光波长的实验中,当用已知波长为589.3 nm 的钠黄光垂直照射时,测得第一和第四暗环的距离为Δr =4.00 ×10-3 m ;当用波长未知的单色光垂直照射时,测得第一和第四暗环的距离为Δr ′=3.85 ×10-3 m ,求该单色光的波长.分析 牛顿环装置产生的干涉暗环半径λkR r =,其中k =0,1,2…,k =0,对应牛顿环中心的暗斑,k =1 和k =4 则对应第一和第四暗环,由它们之间的间距λR r r r =-=∆14,可知λ∝∆r ,据此可按题中的测量方法求出未知波长λ′.解 根据分析有λλ'=∆'∆r r 故未知光波长 λ′=546 nm18 如图所示,折射率n 2 =1.2 的油滴落在n 3 =1.50 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m =1.1 μm ,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环? (2) 整个油膜可看到几个完整的暗环?题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =3.9,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.19 把折射率n =1.40 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了7.0 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.解 插入厚度为d 的介质片后,两相干光光程差的改变量为2(n -1)d ,从而引起N 条条纹的移动,根据劈尖干涉加强的条件,有2(n -1)d =Nλ,得 ()m 101545126-⨯=-=.n N d λ 20 如图所示,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有一与狭缝平行的屏放置在透镜焦平面处.若以波长为600 nm 的单色平行光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言,狭缝的波阵面可作半波带的数目.分析 单缝衍射中的明纹条件为()212sin λϕ+±=k b ,在观察点P 位置确定(即衍射角φ确定)以及波长λ确定后,条纹的级数k 也就确定了.而狭缝处的波阵面对明条纹可以划分的半波带数目为(2k +1)条.解 (1) 设透镜到屏的距离为d ,由于d >>b ,对点P 而言,有dx =≈ϕϕtan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx 将b 、d (d ≈f )、x , λ的值代入,可得k =3(2) 由分析可知,半波带数目为7.题14-20 图21 一单色平行光垂直照射于一单缝,若其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比较法来确定波长.对应于同一观察点,两次衍射的光程差相同,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长已知的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得()nm 642812121221.=++=k k λλ22 已知单缝宽度b =1.0 ×10-4 m ,透镜焦距f =0.50 m ,用λ1 =400 nm 和λ2 =760 nm 的单色平行光分别垂直照射,求这两种光的第一级明纹离屏中心的距离,以及这两条明纹之间的距离.若用每厘米刻有1000条刻线的光栅代替这个单缝,则这两种单色光的第一级明纹分别距屏中心多远? 这两条明纹之间的距离又是多少?分析 用含有两种不同波长的混合光照射单缝或光栅,每种波长可在屏上独立地产生自己的一组衍射条纹,屏上最终显示出两组衍射条纹的混合图样.因而本题可根据单缝(或光栅)衍射公式分别计算两种波长的k 级条纹的位置x 1和x 2 ,并算出其条纹间距Δx =x 2 -x 1 .通过计算可以发现,使用光栅后,条纹将远离屏中心,条纹间距也变大,这是光栅的特点之一.解 (1) 当光垂直照射单缝时,屏上第k 级明纹的位置()f b k x 212λ+=当λ1 =400 nm 和k =1 时, x 1 =3.0 ×10-3 m当λ2 =760 nm 和k =1 时, x 2 =5.7 ×10-3 m其条纹间距 Δx =x 2 -x 1 =2.7 ×10-3 m(2) 当光垂直照射光栅时,屏上第k 级明纹的位置为f dk x λ=' 而光栅常数 m 10m 1010532--==d 当λ1 =400 nm 和k =1 时, x 1 =2.0 ×10-2 m当λ2 =760 nm 和k =1 时, x 2 =3.8 ×10-2 m其条纹间距 m 1081212-⨯='-'='∆.x x x23 老鹰眼睛的瞳孔直径约为6 mm ,问其最多飞翔多高时可看清地面上身长为5cm 的小鼠? 设光在空气中的波长为600 nm .分析 两物体能否被分辨,取决于两物对光学仪器通光孔(包括鹰眼)的张角θ 和光学仪器的最小分辨角θ0 的关系.当θ≥θ0 时能分辨,其中θ=θ0 为恰能分辨.在本题中D λθ2210.=为一定值,这里D 是鹰的瞳孔直径.而h L /=θ,其中L 为小鼠的身长,h 为老鹰飞翔的高度.恰好看清时θ=θ0.解 由分析可知 L /h =1.22λ/D ,得飞翔高度h =LD /(1.22λ) =409.8 m .24 一束平行光垂直入射到某个光栅上,该光束中包含有两种波长的光:λ1 =440 nm 和λ2 =660 nm .实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数.分析 根据光栅衍射方程λϕk d ±=sin ,两种不同波长的谱线,除k =0 中央明纹外,同级明纹在屏上位置是不同的,如果重合,应是它们对应不同级次的明纹在相同衍射角方向上重合.故由d sin φ=k λ1 =k ′λ2 可求解本题.解 由分析可知21sin λλϕk k d '==, 得得 2312///=='λλk k上式表明第一次重合是λ1 的第3 级明纹与λ2 的第2级明纹重合,第二次重合是λ1 的第6 级明纹与λ2 的第4级明纹重合.此时,k =6,k ′=4,φ=60°,则光栅常数μm 05.3m 1005.3/sin 61=⨯==-ϕλk d25 波长为600 nm 的单色光垂直入射在一光栅上,其透光和不透光部分的宽度比为1:3,第二级主极大出现在200sin .=ϕ处.试问(1) 光栅上相邻两缝的间距是多少?(2) 光栅上狭缝的宽度有多大? (3) 在-90°<φ<90°范围内,呈现全部明条纹的级数为哪些.分析 (1) 利用光栅方程()λϕϕk b b d ±='+=sin sin ,即可由题给条件求出光栅常数b b d '+=(即两相邻缝的间距).这里b 和b '是光栅上相邻两缝透光(狭缝)和不透光部分的宽度,在已知两者之比时可求得狭缝的宽度(2) 要求屏上呈现的全部级数,除了要求最大级次k 以外,还必须知道光栅缺级情况.光栅衍射是多缝干涉的结果,也同时可看成是光透过许多平行的单缝衍射的结果.缺级就是按光栅方程计算屏上某些应出现明纹的位置,按各个单缝衍射计算恰是出现暗纹的位置.因此可以利用光栅方程()λϕϕk b b d ='+=sin sin 和单缝衍射暗纹公式'sin b k ϕλ=可以计算屏上缺级的情况,从而求出屏上条纹总数.解 (1)光栅常数 μm 6m 106sin 6=⨯==-ϕk λd (2) 由 ⎪⎩⎪⎨⎧='='+=31μm 6b b b b d 得狭缝的宽度b =1.5 μm .(3) 利用缺级条件()()()⎩⎨⎧±=''=±=='+,...1,0sin ,...1,0sin k k b k k b b λϕλϕ 则(b +b ′)/b =k /k ′=4,则在k =4k ′,即±4, ±8, ±12,…级缺级.又由光栅方程()λϕk b b ±='+sin ,可知屏上呈现条纹最高级次应满足()10='+<λ/b b k ,即k =9,考虑到缺级,实际屏上呈现的级数为:0, ±1, ±2, ±3,±5, ±6, ±7, ±9,共15 条.26 以波长为0.11 nm 的X 射线照射岩盐晶体,实验测得X 射线与晶面夹角为11.5°时获得第一级反射极大.(1) 岩盐晶体原子平面之间的间距d 为多大? (2) 如以另一束待测X 射线照射,测得X 射线与晶面夹角为17.5°时获得第一级反射光极大,求该X 射线的波长.分析 X 射线入射到晶体上时,干涉加强条件为2d sin θ =k λ(k =0,1,2,…)式中d 为晶格常数,即晶体内原子平面之间的间距(如图).解 (1) 由布拉格公式(),...,,210sin 2==k k d λθ第一级反射极大,即k =1.因此,得 nm 276.0sin 211==θλd(2) 同理,由2d sin θ2 =kλ2 ,取k =1,得nm 166.0sin 222==θλd题14-26图27 测得一池静水的表面反射出来的太阳光是线偏振光,求此时太阳处在地平线的多大仰角处? (水的折射率为1.33)题14-27 图分析 设太阳光(自然光)以入射角i 入射到水面,则所求仰角i θ-=2π.当反射光起偏时,根据布儒斯特定律,有120arctann n i i ==(其中n 1 为空气的折射率,n 2 为水的折射率).解 根据以上分析,有 120arctan 2πn n θi i =-== 则 o 129.36arctan 2π=-=n n θ 28 一束光是自然光和线偏振光的混合,当它通过一偏振片时,发现透射光的强度取决于偏振片的取向,其强度可以变化5 倍,求入射光中两种光的强度各占总入射光强度的几分之几.分析 偏振片的旋转,仅对入射的混合光中的线偏振光部分有影响,在偏振片旋转一周的过程中,当偏振光的振动方向平行于偏振片的偏振化方向时,透射光强最大;而相互垂直时,透射光强最小.分别计算最大透射光强I max 和最小透射光强I min ,按题意用相比的方法即能求解.解 设入射混合光强为I ,其中线偏振光强为xI ,自然光强为(1-x )I .按题意旋转偏振片,则有最大透射光强 ()I x x I ⎥⎦⎤⎢⎣⎡+-=121max 最小透射光强 ()I x I ⎥⎦⎤⎢⎣⎡-=121min 按题意5min max =I I /,则有()()x x x -⨯=+-1215121 解得 x =2/3即线偏振光占总入射光强的2/3,自然光占1/3.。

波动光学练习题及答案

波动光学练习题及答案

波动光学练习题及答案一、选择题1、对于普通光源,下列说法正确的是:[ C ](A)普通光源同一点发出的光是相干光(B)两个独立的普通光源发出的光是相干光(C)利用普通光源可以获得相干光(D)普通光源发出的光频率相等2、杨氏双缝干涉实验是:[ A ](A) 分波阵面法双光束干涉(B) 分振幅法双光束干涉(C) 分波阵面法多光束干涉(D) 分振幅法多光束干涉3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ C ](A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等4、光在真空中和介质中传播时,正确的描述是: [ C ](A)波长不变,介质中的波速减小(B) 介质中的波长变短,波速不变(C) 频率不变,介质中的波速减小(D) 介质中的频率减小,波速不变5、用单色光做双缝干涉实验,下述说法中正确的是[ A C ](A)相邻干涉条纹之间的距离相等(B)中央明条纹最宽,两边明条纹宽度变窄(C)屏与缝之间的距离减小,则屏上条纹宽度变窄(D)在实验装置不变的情况下,红光的条纹间距小于蓝光的条纹间距6、用单色光垂直照射杨氏双缝时,下列说法正确的是:[ C ](A) 减小缝屏距离,干涉条纹间距不变(B) 减小双缝间距,干涉条纹间距变小(C) 减小入射光强度, 则条纹间距不变(D) 减小入射波长, 则条纹间距不变7、如图所示, 薄膜的折射率为n 2,入射介质的折射率为n 1,透射介质为n 3,且n 1<n 2<n 3,入射光线在两介质交界面的反射光线分别为(1)和(2),则产生半波损失的情况是:(A) (1)光产生半波损失, (2)光不产生半波损失 [ B ] (B) (1)光 (2)光都产生半波损失 (C) (1)光 (2)光都不产生半波损失(D) (1)光不产生半波损失,(2)光产生半波损失8、在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。

波动光学测试题

波动光学测试题

波动光学测试题一、选择题1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ ]2、单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为(A) 2n 2e . (B) 2n 2 e - λ1 / (2n 1).(C) 2n 2 e - n 1 λ1 / 2. (D) 2n 2 e -n 2 λ1 / 2.[ ]3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]4、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2mm (D)3.1mm[ ]5、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变. (B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ] 6、若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变. [ ]7、用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲n 3SS '处对应的部分(A) 凸起,且高度为λ / 4. (B) 凸起,且高度为λ / 2.(C) 凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.[ ]8、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ ]9、一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ .[ ] 10、在如图所示的单缝夫琅禾费衍射实验装置中,S 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝S 垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样(A)向上平移. (B)向下平移.(C)不动. (D)消失. [ ]11、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 . (C) 单缝衍射. (D) 光栅衍射. [ ]12、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ ]13、波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角θ 的公式可写成(A) N a sin θ=k λ. (B) a sin θ=k λ.(C) N d sin θ=k λ. (D) d sin θ=k λ. [ ]14、一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3.(C) 1 / 4. (D) 1 / 5. [ ]15、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ]二、填空题1、如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.2、在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.3、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A点处所对应的空气薄膜厚度为e =________.4、用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.5、若在迈克耳孙干涉仪的可动反射镜M 移动0.620 mm 过程中,观察到干涉条 纹移动了2300条,则所用光波的波长为_____________nm .(1 nm=10-9 m)6、波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm =10﹣9m)7、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为 ________个半波带,若将缝宽缩小一半,原来第三级暗纹处将是_________纹.8、某单色光垂直入射到一个每毫米有800 条刻线的光栅上,如果第一级谱线的衍射角为30°,则入射光的波长应为_________________.9、波长为500 nm(1nm=10−9m)的单色光垂直入射到光栅常数为1.0×10-4 cm 的平面衍射光栅上,第一级衍射主极大所对应的衍射角ϕ =____________.10、用波长为546.1 nm(1 nm =10-9 m)的平行单色光垂直照射在一透射光栅上,在分光计上测得第一级光谱线的衍射角为θ =30°.则该光栅每一毫米上有_____条刻痕.S 图b 图a11、两个偏振片堆叠在一起,其偏振化方向相互垂直.若一束强度为I 0的线偏振光入射,其光矢量振动方向与第一偏振片偏振化方向夹角为π / 4,则穿过第一偏振片后的光强为__________________,穿过两个偏振片后的光强为___________.12、马吕斯定律的数学表达式为I = I 0 cos 2 α.式中I 为通过检偏器的透射光的强度;I 0为入射__________的强度;α为入射光__________方向和检偏器_________方向之间的夹角.13、光强为I 0的自然光垂直通过两个偏振片后,出射光强I=I 0/8,则两个偏振片的偏振化方向之间的夹角为__________.14、一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃板的折射率等于____________.15、假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒 斯特角是_______________________.参考答案:一、选择题1、(A );2、(C );3、(C );4、(B );5、(B );6、(C );7、(C );8、(A );9、(B );10、(C );11、(D );12、(D );13、(D );14、(A );15、(C )。

大学物理第十二章 波动光学

大学物理第十二章 波动光学

第12章 波动光学一、选择题1. 如T12-1-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:[ ] (A) e n 22 (B) λ2122-e n(C) λ-22n (D) 2222n e n λ-2. 如T12-1-2图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径P S 1垂直穿过一块厚度为1t ,折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 的另一介质;其余部分可看作真空.这两条光路的光程差等于: [ ] (A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -3. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[ ] (A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等4. 频率为f 的单色光在折射率为n 的媒质中的波速为v , 则在此媒质中传播距离为l 后, 其光振动的相位改变了 [ ] (A)vlfπ2 (B)lvfπ2 (C)vnlfπ2 (D)π2vlf5. 波长为λ的单色光在折射率为n 的媒质中由a 点传到b 点相位改变了π, 则光从a 点到b 点的几何路程为: [ ] (A)n2λ(B)2nλ (C)2λ(D) λn6. 真空中波长为λ的单色光, 在折射率为n 的均匀透明媒质中从a 点沿某一路径传到b 点.若将此路径的长度记为l , a 、b 两点的相位差记为∆ϕ , 则1SS PT12-1-2图[ ] (A) π3,23=∆=ϕλl (B) π3,23n n l =∆=ϕλ(C) π3,23=∆=ϕλn l (D) π3,23n n l =∆=ϕλ7. 两束平面平行相干光, 每一束都以强度I 照射某一表面, 彼此同相地并合在一起, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D)I 28. 相干光是指[ ] (A) 振动方向相同、频率相同、相位差恒定的两束光(B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9. 两个独立的白炽光源发出的两条光线, 各以强度I 照射某一表面.如果这两条光线同时照射此表面, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D) 8I10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [ ] (A) 传播方向相同 (B) 振幅相同(C) 振动方向相同 (D) 位置相同11. 用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为λ, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该媒质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ12. 一束波长为 λ 的光线垂直投射到一双缝上, 在屏上形成明、暗相间的干涉条纹, 则下列光程差中对应于最低级次暗纹的是 [ ] (A) λ2(B)λ23 (C)λ(D)2λ13. 在杨氏双缝实验中, 若用白光作光源, 干涉条纹的情况为 [ ] (A) 中央明纹是白色的(B) 红光条纹较密 (C) 紫光条纹间距较大(D) 干涉条纹为白色T12-1-11图14. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝2S 盖住,并在21S S 连线的垂直平面出放一反射镜M ,如图所示,则此时 [ ] (A) P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹15. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处 [ ] (A) 仍为明条纹(B) 变为暗条纹(C) 既非明条纹也非暗条纹(D) 无法确定是明纹还是暗纹16. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d , 双缝到屏的距离为D (d D >>),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是: [ ] (A)ndDλ (B)dDn λ (C)nDd λ (D)ndD 2λ17. 如T12-1-17图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[ ] (A) 条纹间距减小(B) 条纹间距增大 (C) 整个条纹向上移动(D) 整个条纹向下移动18. 在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [ ] (A) 条纹间距增大(B) 整个干涉条纹将向上移动 (C) 条纹间距减小(D) 整个干涉条纹将向下移动19. 当单色光垂直照射杨氏双缝时, 屏上可观察到明暗交替的干涉条纹.若减小 [ ] (A) 缝屏间距离, 则条纹间距不变 (B) 双缝间距离, 则条纹间距变小 (C) 入射光强度, 则条纹间距不变 (D) 入射光波长, 则条纹间距不变20. 在保持入射光波长和缝屏距离不变的情况下, 将杨氏双缝的缝距减小, 则 [ ] (A) 干涉条纹宽度将变大 (B) 干涉条纹宽度将变小(C) 干涉条纹宽度将保持不变 (D) 给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是T12-1-14图T12-1-17图T12-1-18图T12-1-21图[ ] (A) 玻璃劈形膜(B) 空气劈形膜(C) 两劈形膜干涉条纹间距相同(D) 已知条件不够, 难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[ ] (A) 明纹间距逐渐减小, 并背离劈棱移动(B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中, 若慢慢地减小劈形膜夹角, 则从入射光方向可以察到干涉条纹的变化情况为 [ ] (A) 条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [ ] (A) 间隔变小,并向棱边方向平移(B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移(D) 间隔变小,并向远离棱边方向平移25. 检验滚珠大小的干涉试装置示意如T12-1-25(a)图.S 为光源,L 为汇聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为0d .用波长为λ的单色光垂直照射平晶,在M 上方观察时观察到等厚条纹如T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径1d 、C 珠的直径2d 与0d 的关系分别为:[ ] (A) ,01λ+=d d λ302+=d d (B) ,01λ-=d d λ302-=d d(C) ,201λ+=d d 2302λ+=d d (D) ,201λ-=d d 2302λ-=d dS12TT12-1-25(a)图 T12-1-25(b)图T12-1-23图26. 如T12-1-26(a)图所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500nm(1nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是[ ] (A) 不平处为凸起纹,最大高度为500nm(B) 不平处为凸起纹,最大高度为250nm (C) 不平处为凹槽,最大深度为500nm (D) 不平处为凹槽,最大深度为250nm27. 设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动, 当透镜向上平移(即离开玻璃板)时, 从入射光方向可观察到干涉条纹的变化情况是 [ ] (A) 环纹向边缘扩散, 环纹数目不变(B) 环纹向边缘扩散, 环纹数目增加 (C) 环纹向中心靠拢, 环纹数目不变(D) 环纹向中心靠拢, 环纹数目减少28. 牛顿环实验中, 透射光的干涉情况是 [ ] (A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环29. 在牛顿环装置中, 若对平凸透镜的平面垂直向下施加压力(平凸透镜的平面始终保持与玻璃片平行), 则牛顿环[ ] (A) 向中心收缩, 中心时为暗斑, 时为明斑, 明暗交替变化(B) 向中心收缩, 中心处始终为暗斑 (C) 向外扩张, 中心处始终为暗斑 (D) 向中心收缩, 中心处始终为明斑30. 关于光的干涉,下面说法中唯一正确的是[ ] (A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ (B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ (C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ (D) 牛顿干涉圆环属于分波振面法干涉31. 根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面T12-1-26(a)图T12-1-26(b)图T12-1-29图半径R 的关系式Rr d k k 22=可知,离开环心越远的条纹[ ] (A) 对应的光程差越大,故环越密(B) 对应的光程差越小,故环越密(C) 对应的光程差增加越快,故环越密(D) 对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜, 放在平玻璃上, 则干涉条纹的形状 [ ] (A) 为内疏外密的圆环(B) 为等间距圆环形条纹 (C) 为等间距平行直条纹(D)为以接触线为中心,两侧对称分布,明暗相间, 内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的.这是因为: [ ] (A) 牛顿环的条纹是环形的(B) 劈尖条纹是直线形的 (C) 平凸透镜曲面上各点的斜率不等(D) 各级条纹对应膜的厚度不等34. 如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的光束发生干涉.若薄膜的厚度为e ,且n 1 < n 2 > n 3,λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为: [ ] (A)e n n 12π2⋅λ(B)ππ421+⋅e n n λ (C)ππ412+⋅e n n λ (D)e n n 12π4⋅λ35. 用白光垂直照射厚度e = 350nm 的薄膜,若膜的折射率n 2 = 1.4 ,薄膜上面的媒质折射率为n 1,薄膜下面的媒质折射率为n 3,且n 1 < n 2 < n 3.则反射光中可看到的加强光的波长为: [ ] (A) 450nm(B) 490nm (C) 690nm(D) 553.3nm36. 已知牛顿环两两相邻条纹间的距离不等.如果要使其相等, 以下所采取的措施中不可行的是[ ] (A) 将透镜磨成半圆柱形 (B) 将透镜磨成圆锥形(C) 将透镜磨成三棱柱形 (D) 将透镜磨成棱柱形37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: [ ] (A) 增大劈形膜夹角 (B) 增大棱边长度(C) 换用波长较短的入射光 (D) 换用折射率较小的液体38. 若用波长为λ的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放T12-1-32图T12-1-34图T12-2-35图入厚度为l 、折射率为n 的透明薄片.放入后,干涉仪两条光路之间的光程差改变量为 [ ] (A) (n -1)l (B) nl(C) 2nl (D) 2(n -1)l39. 若用波长为λ的单色光照射迈克尔逊干涉仪, 并在迈克尔逊干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为 [ ] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-40. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹 [ ] (A) 间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动 (D) 间隔不变,向上移动41. 根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和 (B) 振动振幅之和的平方(C) 光强之和 (D) 振动的相干叠加42. 无线电波能绕过建筑物, 而可见光波不能绕过建筑物.这是因为[ ] (A) 无线电波是电磁波 (B) 光是直线传播的 (C) 无线电波是球面波 (D) 光波的波长比无线电波的波长小得多43. 光波的衍射现象没有显著, 这是由于 [ ] (A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多44. 波长为λ的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜,屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中, 则在屏上出现的中央明纹宽度为 [ ] (A)na f λ (B)na f λ (C) naf λ2(D) anf λ245. 在单缝衍射中, 若屏上的P 点满足a sin ϕ = 5/2则该点为 [ ] (A) 第二级暗纹 (B) 第五级暗纹(C) 第二级明纹 (D) 第五级明纹46. 在夫琅和费单缝衍射实验中, 欲使中央亮纹宽度增加, 可采取的方法是[ ] (A) 换用长焦距的透镜 (B) 换用波长较短的入射光S1S 2S O Cb 12λT12-1-40图T12-1-44图(C) 增大单缝宽度(D) 将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ] (A) 各级亮条纹亮度相同(B) 各级暗条纹间距不等(C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时, 中央亮纹两侧为由红到紫的彩色条纹48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中心位置不变,各衍射条纹[ ] (A) 对应的衍射角变小 (B) 对应的衍射角变大(C) 对应的衍射角不变 (D) 光强也不变49. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如T12-1-49图所示,在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [ ] (A) λ (B) 2λ(C) 23λ(D) λ250. 在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹[ ] (A) 宽度变小 (B) 宽度变大(C) 宽度不变,且中心强度也不变(D) 宽度不变,但中心强度增大51. 在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小.若单缝a 变为原来的23,同时使入射的单色光的波长变为原来的43,则屏幕E 上的单缝衍射条纹中央明纹的宽度△x 将变为原来的 [ ] (A)43倍 (B)32倍 (C)89倍 (D)21倍52. 一单缝夫琅和费衍射实验装置如T12-1-52图所示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时,衍射图样将[ ] (A) 向上平移 (B) 向下平移(C) 不动 (D) 消失PT12-1-49图T12-1-51图λT12-1-52图λ53. 在T12-1-53图所示的单缝夫琅和费衍射实验中,)方向稍微平移,则 [ ] (A) 衍射条纹移动,条纹宽度不变(B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽 (D) 衍射条纹不动,条纹宽度不变54. 在T12-1-54图所示的单缝夫琅和费衍射实验中,将单缝宽度 a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将[ ] (A) 变窄,同时上移 (B) 变窄,同时下移(C) 变窄,不移动 (D) 变宽,同时上移55. 在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[ ] (A) 变宽,同时上移 (B) 变宽,同时下移(C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为:[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ = 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 458. 波长为λ的单色光垂直入射于光栅常数为d 、缝宽a 、 总缝数为N 的光栅上.取0=k ,1±,2±,……,则决定出现主级大的衍射角θ的公式可写成 [ ] (A) λθk Na =sin (B) λθk a =sin(C) λθk Nd =sin (D) λθk d =sin59. 一衍射光栅对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕出现更高级次的主极大,应该[ ] (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大光栅(C) 将光轴向靠近屏幕的方向移动 (D) 将光轴向远离屏幕的方向移动60. 为测量一单色光的波长,下列方法中最准确的是( )实验.T12-1-53图T12-1-54图T12-1-55图[ ] (A) 双缝干涉(B) 牛顿环干涉 (C) 单缝衍射 (D) 光栅衍射61. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是[ ] (A) 紫光 (B) 绿光 (C) 黄光 (D) 红光62. 在光栅光谱中,假设所有的偶数极次的主级大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系 [ ] (A) a = b (B) a =2b (C) a = 3b (D) b = 2a63. 若用衍射光栅准确测量一单色可见光的波长,在下列各种光栅常数的光栅中选那一种最好?[ ] (A) 1100.1-⨯mm(B) 1100.5-⨯mm (C) 2100.1-⨯mm(D) 3100.1-⨯mm64. 在一光栅衍射实验中,如果光栅、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k [ ] (A) 变小 (B) 变大 (C) 不变 (D) 改变无法确定65. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[ ] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小66. 以平行可见光(400nm ~700nm)照射光栅, 光栅的第一级光谱与第二级光谱将会出现什么现象?[ ] (A) 在光栅常数取一定值时, 第一级与第二级光谱会重叠起来(B) 不论光栅常数如何, 第一级与第二级光谱都会重合 (C) 不论光栅常数如何, 第一级与第二级光谱都不会重合(D) 对于不同光栅常数的光栅, 第一级与第二级光谱的重叠范围相同67. 用单色光照射光栅,屏幕上能出现的衍射条纹最高级次是有限的.为了得到更高衍射级次的条纹,应采用的方法是: [ ] (A) 改用波长更长的单色光 (B) 将单色光斜入射(C) 将单色光垂直入射 (D) 将实验从光密媒质改为光疏媒质68. 已知一衍射光栅上每一透光狭缝的宽度都为a , 缝间不透明的那一部分宽度为b ;若b = 2a , 当单色光垂直照射该光栅时, 光栅明纹的情况如何(设明纹级数为k )? [ ] (A) 满足k = 2 n 的明条纹消失( n =1、2、...)(B) 满足k = 3 n 的明条纹消失( n =1、2、...) (C) 满足k = 4 n 的明条纹消失( n =1、2、...) (D) 没有明条纹消失69. 用波长为λ的光垂直入射在一光栅上, 发现在衍射角为ϕ 处出现缺级, 则此光栅上缝宽的最小值为[ ] (A) ϕλsin 2 (B) ϕλsin (C) ϕλsin 2 (D) λϕsin 270. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3、6、9⋯等级次的主极大均不出现.[ ] (A) a b a 2=+(B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+71. 在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略为加宽,则[ ] (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多(C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变(D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少72. 一束光垂直入射到一偏振片上, 当偏振片以入射光方向为轴转动时, 发现透射光的光强有变化, 但无全暗情形, 由此可知, 其入射光是[ ] (A) 自然光 (B) 部分偏振光(C) 全偏振光 (D) 不能确定其偏振状态的光 73. 把两块偏振片紧叠在一起放置在一盏灯前, 并使其出射光强变为零.当把其中一块偏振片旋转 180°时, 出射光强的变化情况是[ ] (A) 光强由零逐渐变为最大(B) 光强由零逐渐增为最大, 然后由最大逐渐变为零(C) 光强始终为零(D) 光强始终为最大值74. 自然光通过两个主截面正交的尼科尔棱镜后, 透射光的强度为[ ] (A) I = 0 (B) 与入射光的强度相同(C) I ≠ 0 (D) 与入射光强度不相同75. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面放一块偏振片, 则[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹76. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面分别放置一块偏振片, 且两偏振片的偏振化方向相互垂直,则T12-1-72图[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹77. 有两种不同的媒质, 第一媒质的折射率为n 1 , 第二媒质的折射率为n 2 ; 当一束自然光从第一媒质入射到第二媒质时, 起偏振角为i 0 ; 当自然光从第二媒质入射到第一媒质时, 起偏振角为i .如果i 0>i , 则光密媒质是[ ] (A) 第一媒质 (B) 第二媒质(C) 不能确定 (D) 两种媒质的折射率相同78. 设一纸面为入射面.当自然光在各向同性媒质的界面上发生反射和折射时, 若入射角不等于布儒斯特角, 反射光光矢量的振动情况是[ ] (A) 平行于纸面的振动少于垂直于纸面的振动(B) 平行于纸面的振动多于垂直于纸面的振动(C) 只有垂直于纸面的振动(D) 只有平行于纸面的振动79. 自然光以 60 的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为(B) 折射光为部分线偏振光,折射角为(C) 折射光为线偏振光,折射角不能确定(D) 折射光为部分线偏振光,折射角不能确定80. 自然光以布儒斯特角由空气入射到一玻璃表面上,则反射光是[ ] (A) 在入射面内振动的完全线偏振光(B) 平行于入射面的振动占优势的部分偏振光(C) 垂直于入射面的振动的完全偏振光(D) 垂直于入射面的振动占优势的部分偏振光81. 一束自然光由空气射向一块玻璃,[ ] (A) 自然光 (B) 完全偏振光且光矢量的振动方向垂直于入射面 (C) 完全偏振光且光矢量的振动方向平行于入射面 (D) 部分偏振光 82. 强度为I 0的自然光经两个平行放置的偏振片后, 透射光的强度变为I 0/4, 由此可知, 这两块偏振片的偏振化方向夹角是[ ] (A) 30° (B) 45°(C) 60° (D) 90° 0I T12-1-82图 4/0I83. 起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为[ ] (A) 0 (B) I /2(C) I /8 (D) 以上答案都不对84. 一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为I = I 0/8.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90°85. 光强为I 0的自然光垂直通过两个偏振片,他们的偏振化方向之间的夹角 60=α.设偏振片没有吸收,则出射光强I 与入射光强0I 之比为[ ] (A) 1/4 (B) 3/4 (C) 1/8 (D) 3/886. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为:[ ] (A) 光强单调增加(B) 光强先增加,后又减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 87. 如T12-1-87图所示,ABCD 一块方解石的一个截面,AB 垂直于纸面的晶体平面与纸面的交线.光轴的方向在纸面内与AB 成一锐角θ.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分为O 光和e 光,O 光和e 光的 [ ] (A) 传播方向相同,电场强度的振动方向相互垂直 (B) 传播方向相同,电场强度的振动方向不相互垂直(C) 传播方向不同,电场强度的振动方向相互垂直(D) 传播方向不同,电场强度的振动方向不相互垂直88. 一束自然光通过一偏振片后,射到一块方解石晶体上,入射角为i 0.关于折射光,下列的说法正确的是[ ] (A) 是是e 光,偏振化方向垂直于入射面(B) 是e 光,偏振化方向平行于入射面(C) 是O 光,偏振化方向平行于入射面(D) 是O 光,偏振化方向垂直于入射面 89. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则I T12-1-83图A B C I T12-1-84图1P 3P 2P T12-1-87图 DT12-1-88图[ ] (A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变(D) 不产生干涉条纹90. 在扬氏双缝实验中,屏幕中央明纹处的最大光强是I 1.当其中一条缝被盖住时,该位置处的光强变为I 2.则I 1 : I 2为[ ] (A) 1 (B) 2 (C) 3 (D) 4二、填空题1. 如T12-2-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是 .2. 真空中波长 λ = 400 nm 的紫光在折射率为 n =1.5 的媒质中从A 点传到B 点时, 光振动的相位改变了5π, 该光从A 到B 所走的光程为 .3. 如T12-2-3图所示,两缝S 1和S 2之间的距离为d ,介质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为 ________________.4. 如T12-2-4图所示,在双缝干涉实验中SS 1=SS 2用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 _________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n= ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm?6. 将一块很薄的云母片(n = 1.58)覆盖在扬氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ = 550nm, 则该云母片的厚度为___________.T12-2-3图T12-2-4图。

大学物理学练习题-波动光学(干涉、衍射与偏振)

大学物理学练习题-波动光学(干涉、衍射与偏振)

专业班级____________ 学号 ____________姓名__________ 序号大学物理练习题波动光学一、选择题1. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹[ ]。

(A)向棱边方向平移,条纹间隔发生变化;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔发生变化;(D)向远离棱的方向平移,条纹间隔不变。

2. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃以棱边为轴缓慢向上旋转,则干涉条纹[ ] 。

(A)向棱边方向平移,条纹间隔变小;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔变大;(D)向远离棱的方向平移,条纹间隔不变。

3. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ ]。

(A) 干涉条纹的宽度将发生改变;(B) 产生红光和蓝光的两套彩色干涉条纹;(C) 干涉条纹的亮度将发生改变;(D) 不产生干涉条。

4. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则[ ]。

(A) 干涉条纹的间距变宽;(B) 干涉条纹的间距变窄;(C) 干涉条纹的间距不变,但原极小处的强度不再为零;(D) 不再发生干涉现象。

5. 把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D >>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是[ ](A) λD / (nd);(B) nλD/d;(C) λd / (nD);(D) λD / (2nd)。

6. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]。

(A) 中心暗斑变成亮斑;(B) 变疏;(C) 变密;(D) 间距不变。

波动光学课后习题

波动光学课后习题

波动光学篇习题十二·光的干涉12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动;(5)用一块透明的薄云母片盖住下面的一条缝.12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2=中,光波的波长要用真空中波长,为什么?12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.题12-5图题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中心收缩,问透镜是向上还是向下移动?12-7 在杨氏双缝实验中,双缝间距d=0.20mm,缝屏间距D=1.0m,试求:(1)若第二级明条纹离屏中心的距离为6.0mm,计算此单色光的波长;(2)相邻两明条纹间的距离.12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA,求此云母片的厚度.12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm,狭缝光源S在离镜左边20cm的平面内,与镜面的垂直距离为2.0mm,光源波长=λ7.2×10-7m,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 o A 与7000 oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色?12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求: (1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图12-14 用=λ5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k 个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长.12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ=5000oA ,求此玻璃片的厚度.习题十三·光的衍射13-1 衍射的本质是什么?衍射和干涉有什么联系和区别?13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小?13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样 说明?13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关?13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长.13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少?13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?13-15 波长为5000o A 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm .求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成 30°斜入射时,中央明条纹的位移为多少?13-16 波长6000=λo A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径.13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射?习题十四·光的偏振14-1 自然光是否一定不是单色光?线偏振光是否一定是单色光?14-2 用哪些方法可以获得线偏振光?怎样用实验来检验线偏振光、部分偏振光和自然光?14-3 一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光,试说明这束光是怎样入射的?其偏振状态如何?14-4 什么是光轴、主截面和主平面?什么是寻常光线和非常光线?它们的振动方向和各自的主平面有何关系?14-5 在单轴晶体中,e 光是否总是以e n c /的速率传播?哪个方向以0/n c 的速率传播?14-6是否只有自然光入射晶体时才能产生O 光和e 光?14-7投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过130°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍?14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少?14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少?14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少?14-11 利用布儒斯特定律怎样测定不透明介质的折射率?若测得釉质在空气中的起偏振角为58°,求釉质的折射率.14-12 光由空气射入折射率为n 的玻璃.在题14-12图所示的各种情况中,用黑点和短线把反射光和折射光的振动方向表示出来,并标明是线偏振光还是部分偏振光.图中.arctan ,00n i i i =≠题图14-12*14-13如果一个二分之一波片或四分之一波片的光轴与起偏器的偏振化方向成30°角,试问从二分之一波片还是从四分之一波片透射出来的光将是:(1)线偏振光?(2)圆偏振光?(3)椭圆偏振光?为什么?题14-13图*14-14 将厚度为1mm且垂直于光轴切出的石英晶片,放在两平行的偏振片之间,对某一波长的光波,经过晶片后振动面旋转了20°.问石英晶片的厚度变为多少时,该波长的光将完全不能通过?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s 1
d
P
s 2
r 2
0
例4. 用波长为550nm的黄绿光照射到一肥皂膜上, 沿与膜面成60°角的方向观察到膜面最亮。已知肥 皂膜折射率为1.33,求此膜至少是多厚?若改为垂 直观察,求能够使此膜最亮的光波长。 解 空气折射率n1 ≈ 1,肥皂膜 折射率n2 = 1.33。i = 30°
60
反射光加强条件:
设通过偏振片后的光强分别为:I , I1 , I2
1 I1 I10 2
I 2 I 20 co s
2
1 I I1 I 2 I10 I 20 co s 2 2 1 0 时 I I ma x I 1 0 I 2 0 2 1 9 0 时 I I mi n I 1 0 2
4 1 .30 673 .08 nm
2 3 1 500
例6. 有一玻璃劈尖,夹角 = 8 10-5 rad,放在空气 中。波长 = 0.589 m 的单色光垂直入射时,测得相 邻干涉条纹的宽度为 l = 2.4 mm,求玻璃的折射率。 解:
d 2n
sin 1
ba
sin 2
ba
f
x1 f tg 1
x2 f tg 2
s in t g
3 2 3 1 x f ( tg 2 tg 1 ) f ( ) 0 .0 0 6 m ba ba
例9、用每毫米500条栅纹的光栅,观察钠光谱线 (=5900A)问:(1)光线垂直入射;(2)光线 以入射角30°入射时,最多能看到几级条纹?
垂直入射:
2 n2d k 2
λ1 = 649.0 nm (k = 1) 红
2 n2 d 1 k 2
λ2 = 216.3 nm (k = 2) 不可见光
例5. 平面单色光垂直照射在厚度均匀的油膜上,油膜 覆盖在玻璃板上。所用光源波长可以连续变化,观察 到500 nm与700 nm 两波长的光在反射中消失。油膜的 折射率为1.30,玻璃折射率为1.50,求油膜的厚度。
解:
rk k R / n
k 4
R 6 .7 9 m
rk 5 ( k 5 ) R / n
联立求解:
例7. 当把折射率n = 1.40的薄膜放入迈克耳孙干 涉仪的一臂时,如果产生了7.0条条纹的移动,求 薄膜的厚度。(已知钠光的波长为 = 5893A) 解:
2 (n 1)d k
例1. 杨氏双缝的间距为0.2 mm,距离屏幕为1m。
1. 若第一到第四明纹距离为7.5mm,求入射光波长。
2. 若入射光的波长为600 nm,求相邻两明纹的间距。 解
D x k d
k
0 ,1 , 2 ,
x 1, 4
D x 4 x 1 k 4 k 1 d
d l 2 nl
l
d
n
5 .8 9 1 0 n 1 .5 3 5 3 2 l 2 8 1 0 2 . 4 1 0
7
例题、用钠灯( = 5893A)mm,第k+5条暗环半径r = 6mm, 求所用平凸透镜的曲率半径R。
解: 2 n 1 d ( 2 k 1 ) 1 2
2 2 n1 d [ 2 ( k 1) 1] 2 1 2 ( 2 k 1) ( 2 k 1) 2 2
n1 n2
k 3
d = 673nm
1 解二: 2 n 1 d [ 2 k 1 1 ] 2 2 2 n1 d [ 2 k 2 1] 2 1 2 ( 2 k 1 1) ( 2 k 2 1) 2 2
解: (1)
( a b ) s in k
s in 1
3
ab k sin
( 9 0 )
6
k最大
1 10 ab 500
2 10 m
取 k =3
ab 2 10 k 3 . 39 1 0 5900 10
6
( 2)
I max 5 I min
1 1 I10 I 20 5 I10 2 2
I 20 2 I10
I10 I10 1 I o I10 I 20 3
I 20 2 Io 3
c 3 1 0 8 m s 1 200 m 6 1 1 .5 1 0 s
S1
400 m
x k k 200 k sin tg D d 400 2
取 k = 0,1,2 得
S2
30 30
0 , 30, 90
7 d n 1
s 2
r 2
0
7 7 5 5 0 0 1 0 10 d 6 .6 1 0 6 m n 1 1 .5 8 1
解二:
d n 1 7
7 d n 1 10 7 5500 10 1.58 1 6.6 10 6 m


1 .6 9
取 k =-1
例10. 一束光由自然光和线偏振光混合组成,当它通 过一偏振片时,发现透射光的强度随偏振片的转动可 以变化到五倍。求入射光中自然光和线偏振光的强度 各占入射光强度的几分之几? 解: 设入射光强度:I0 ; 自然光强度:I10 ; 偏振光强度 : I20
I o I10 I 20
2 d n n sin i k 2
2 2 2 1 2
d
解得
k 2 d 2 2 n2 n12 sin 2 i
肥皂膜的最小厚度(k = 1)
d


4 n 22 n12 sin 2 i
5 5 0 1 0 9 m 4 1 . 3 3 2 1 2 sin 2 3 0 1 .2 2 1 0 7 m
求整数解:
n1 n2
( 2 k1 1) 5 0 0 / 2 ( 2 k 2 1) 7 0 0 / 2
( 2 k1 1) 5 ( 2 k 2 1) 7 5 k1 7 k 2 1 k2 2 k1 3
k1 3
1 2 n1d ( 2 k1 1) 2 ( 2 k1 1)1 d 4 n1
( a b ) ( s in s in ) k
( a b )(sin sin ) k


s in 1
6
( 9 0 )
k最大
2 10 (sin 30 1) k 5 1 0 5900 10 ( a b )(sin sin ) k
d x1, 4 0 .2 1 0 3 7 .5 1 0 3 5 1 0 7 m 5 0 0 nm D k 4 k1 1 4 1
D 1 6 10 3 x 3 1 0 m 3 mm 3 d 0 .2 1 0
7
例2. 无线电发射台的工作频率为1500kHz,两根相 同的垂直偶极天线相距400m,并以相同的相位作电 振动。试问:在距离远大于400m的地方,什么方向 可以接受到比较强的无线电信号? 解
例3. 用薄云母片(n = 1.58)覆盖在杨氏双缝的其 中一条缝上,这时屏上的零级明纹移到原来的第七 级明纹处。如果入射光波长为550 nm,问云母片 的厚度为多少? 解: P 点为七级明纹位置
r 2 r1 7
插入云母后,P点为零级明纹
s 1
d
P
r 2 r1 d n d 0
k d 2 ( n 1)
7 5893 10 2 (1 . 4 1)
10
d
5 .1 5 6 1 0 m
6
例8. 波长为500nm和520nm的两种单色光同时垂直入 射在光栅常数为0.002cm的光栅上,紧靠光栅后用焦距 为2米的透镜把光线聚焦在屏幕上。求这两束光的第三 级谱线之间的距离。 x2 解: ( b a ) s in k x1 3 2 3 1 1
相关文档
最新文档