电磁环境与传播途径

合集下载

电磁波传播基础

电磁波传播基础

电磁波传播基础
1. 电磁波的本质
电磁波是由电场和磁场组成的能量传播形式,是一种横波,波的振动方向与传播方向垂直。

电磁波的产生源是加速运动的电荷。

2. 电磁波的性质
2.1 电磁波在真空中以光速传播,在介质中传播速率小于光速。

2.2 电磁波是横波,电场和磁场振动方向相互垂直,且与传播方向也相互垂直。

2.3 电磁波具有波长、频率、振幅等波的一般性质。

2.4 不同波长的电磁波具有不同的穿透能力。

3. 电磁波的传播方式
3.1 在真空中直线传播
3.2 在均匀介质中直线传播
3.3 在非均匀介质中会发生折射、反射等现象
3.4 在导体中会被快速衰减
4. 电磁波的应用
电磁波在通信、雷达、遥感、医疗、工业等领域有着广泛的应用。

不同波长的电磁波具有不同的应用,如无线电波用于广播和通信,微波用于雷达和卫星通信,可见光用于照明和显示等。

5. 电磁波的辐射
电磁波的产生源会向周围发射电磁辐射,过量的电磁辐射会对生物体和电子设备产生不利影响。

因此在使用无线电、雷达等设备时,需要注意控制电磁辐射强度在安全范围内。

各波段电波传播方式和特点

各波段电波传播方式和特点

一.电磁场基本性质:1.电场和磁场:静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。

不随时间变化的电场称为静电场。

运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。

不随时间变化的磁场称为恒定磁场。

2. 电磁波及麦克斯韦方程:如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。

时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。

静电场与恒定磁场相互无关、彼此独立,可以分别进行研究。

0c D B B E t D H J t ρ∇=⎧⎪∇=⎪⎪∂⎨∇⨯=-∂⎪⎪∂∇⨯=+⎪∂⎩g g cD E B H J E εμσ=⎧⎪=⎨⎪=⎩ 3. 物质属性 电磁场与电磁波虽然不能亲眼所见,但是客观存在的一种物质,因为它具有物质的 两种重要属性:能量和质量。

但电磁场与电磁波的质量极其微小,因此,通常仅研究电磁场与电磁波的能量特性。

电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。

在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。

因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。

当空间存在媒质时,在电磁场的作用下媒质中会发生极化与磁化现象,结果在媒质中又产生二次电场及磁场,从而改变了媒质中原先的场分布,这就是场与媒质的相互作用现象。

4. 历史的回顾与电磁场与波的应用公元前600年希腊人发现了摩擦后的琥珀能够吸引微小物体;公元前300年我国发现了磁石吸铁的现象;后来人们发现了地球磁场的存在。

1785年法国科学家库仑(1736-1806)通过实验创建了著名的库仑定律。

1820年丹麦人奥斯特(1777-1851)发现了电流产生的磁场。

同年法国科学家安培(1775-1836)计算了两个电流之间的作用力。

1831年英国科学家法拉第(1791-1867)发现电磁感应现象,创建了电磁感应定律,说明时变磁场可以产生时变电场。

电磁环境及电磁污染途径(ppt 68页)

电磁环境及电磁污染途径(ppt 68页)
31
3.5 雷电 雷电的形成
人们通常把发生闪电的云称为雷雨云,其实有几 种云都与闪电有关,如层积云、雨层云、积云和 积雨云,最重要的是积雨云,一般专业书中讲的 雷雨云就是指积雨云。积雨云形成过程中,在大 气电场、温差起电效应和破碎起电效应(大水滴 和冰晶的破碎起电)的同时作用下,正负电荷分 别在云的不同部位积聚。当电荷积聚到一定程度, 就会在云与云之间或云与地之间发生放电,也就 是人们平常所说的雷电。
第三讲 电磁环境及电磁污染途径
电磁波存在的自然环境—电磁环境
电磁骚扰源的分类: 按频谱宽度:窄带骚扰源和宽带骚扰源; 按作用时间:瞬态波骚扰和连续波骚扰; 一般:自然电磁骚扰源和人为电磁骚扰源。
1
3.1 自然电磁环境
根据电磁波产生的机理不同,一般将电磁干扰划 分为自然电磁干扰和人为电磁干扰两种。
相对于自然界的静电来说,电子器件是非常娇贵 的,正是基于这一因素,是否采取了防静电措施 是衡量电子器件质量好坏的一个非常重要的指标。
30
设备漏电,尤其是不会对人造成触电伤害的微弱 漏电虽然不属于静电放电现象,但其性能却与静 电放电类似。所以一般将设备漏电也纳入静电防 护体系中来考虑。
静电放电(ESD)及电气过载(EOS)对电子元器件造 成损害的主要机理有:热二次击穿、金属镀层熔 融、介质击穿、气弧放电、表面击穿和体击穿等。
15
频谱管理
人类目前利用的电磁频谱大约在0Hz--3000GHz,并向更高的频段发展。
应用最多的仍然在中频300-3000kHz、高频 3-30MHz、甚高频30-300MHz、超高频3003000MHz、特高频3-30GHz。
通信、电视、广播、导航、雷达、测控均在 此频段范围内。

物理性污染控制填空简答(精简版)

物理性污染控制填空简答(精简版)

1.何谓物理环境?答:自然界中各种物质都在以不同的运动方式进行能量的交换和转化,其过程就构成了物理环境。

2.天然物理环境由哪些要素构成?答:包括自然声环境、振动环境、电磁环境、放射性辐射环境、热环境、光环境。

3.人工物理环境是如何形成?它与天然物理环境有何关系?答:人工物理环境是人类活动的物理因素不同程度地干预天然物理环境所生成的次生物理环境。

各种人工物理环境与天然物理环境在地球表层交叠共存,相互作用。

4.简述各种人工物理环境的特点和影响。

答:语言、音乐构成人类需要的人工声环境;工业生产、交通运输、城市噪声是人类不需要的人工声环境,形成人工噪声环境。

工业振动源、施工振动源人类活动中的振动构成了人工振动环境。

广播电视发射塔、雷达站、高压输电线路、微波炉、手机……过度的人工电磁场给环境带来污染和危害。

放射性核同位素科学研究、核武器试验、核电站等过度的放射剂量会引发辐射环境污染冷暖设备,现代工业生产和人类生活排放废热造成的热环境,达到损害环境质量的程度,成为热污染。

电光源发展普及,光量过度时,则会对人们的生活、工作环境以及人体健康产生不利影响,形成光污染。

5.环境物理学的主要研究内容和研究特点是什么?答:环境物理学研究内容:是物理环境的声、光、热、电等同人类相互作用的科学。

研究特点:是在物理学的基础上发展起来的一门新兴学科,是环境科学的重要组成部分,从物理学角度探讨环境质量变化规律,以及保护和改善环境的措施。

(1)不仅研究污染控制,而且研究适宜人类活动的声、光、热、电等物理条件;(2)物理性污染程度是由声、光、热、电等在环境中的量决定的,因而环境物理学的研究同其他物理学科一样,注重物理现象的定量研究。

6.简述环境物理学的产生和发展。

答:二十世纪初期,人们研究声、振动、电磁辐射、放射性、光、热等对人类生活和工作的影响,在建筑物内部为人类创造适宜物理环境的学科建筑物理学二十世纪中期声学、振动学、电磁学、热学、光学等开展对物理环境的研究,形成一个新兴的边缘学科环境物理学。

电磁波的产生与传播教案

电磁波的产生与传播教案

教学目标:1.学生了解电磁波的概念和特点。

2.学生掌握电磁波产生的方式和原理。

3.学生能够了解电磁波的传播特点和应用。

教学内容:一、电磁波的概念和特点电磁波是由电场和磁场交替变化而产生的一种波动现象。

它既有波动性质,也有粒子性质。

电磁波在真空中速度恒为光速,是一种能量传播方式。

二、电磁波的产生方式和原理1.电磁波的辐射产生当电子从高能态跃迁到低能态时,会释放出能量,这部分能量以电磁波的形式辐射出去。

常见的产生电磁波的装置包括:天线、电视、电台等。

2.电磁波的感应产生当磁感线在导体上运动时,会感应出电动势,从而产生电磁波。

常见的产生电磁波的装置包括:微波炉、电磁炉等。

3.电磁波的共振产生当电磁波在一定介质中传播时,若该介质的属性与电磁波的频率一致,则会产生共振现象,并产生电磁波。

常见的产生电磁波的装置包括:激光器、雷达等。

三、电磁波的传播特点和应用1.电磁波的频率分类电磁波被分类为不同频率的波,常见的分类方式有无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

2.电磁波的特点(1)速度恒定,远远高于声速。

(2)电磁波在真空中能够传播,不需要媒质进行传递。

(3)电磁波携带能量,能够产生光感。

(4)电磁波的波长和频率决定了它的特性,如能够辐射能量大小,穿透物质的能力等。

3.电磁波的应用(1)无线通讯:通过无线电波传播信息。

(2)雷达:通过微波信号测量目标的位置和速度。

(3)医疗:通过X射线和γ射线来进行透视和治疗。

(4)能源:通过太阳能和风能等电磁波能源来供给电力。

(5)导航:通过GPS定位设备来进行地理位置的定位。

教学方法:讲授 + 实验教学步骤:一、引入问题老师问学生:“你们在通讯中用过哪些设备?这些设备利用了什么原理进行通讯?”二、讲解电磁波的概念和特点通过讲解电磁波的概念和特点,让学生了解电磁波的基本概念。

三、展示电磁波的产生方式和原理通过展示生动的实验视频和示范,让学生了解电磁波的产生方式和产生原理。

各波段电波传播方式和特点

各波段电波传播方式和特点

一.电磁场基本性质:1.电场和磁场:静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。

不随时间变化的电场称为静电场。

运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。

不随时间变化的磁场称为恒定磁场。

2. 电磁波及麦克斯韦方程:如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。

时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。

静电场与恒定磁场相互无关、彼此独立,可以分别进行研究。

0c D B B E t D H J t ρ∇=⎧⎪∇=⎪⎪∂⎨∇⨯=-∂⎪⎪∂∇⨯=+⎪∂⎩cD E B H J E εμσ=⎧⎪=⎨⎪=⎩ 3. 物质属性 电磁场与电磁波虽然不能亲眼所见,但是客观存在的一种物质,因为它具有物质的 两种重要属性:能量和质量。

但电磁场与电磁波的质量极其微小,因此,通常仅研究电磁场与电磁波的能量特性。

电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。

在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。

因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。

当空间存在媒质时,在电磁场的作用下媒质中会发生极化与磁化现象,结果在媒质中又产生二次电场及磁场,从而改变了媒质中原先的场分布,这就是场与媒质的相互作用现象。

4. 历史的回顾与电磁场与波的应用公元前600年希腊人发现了摩擦后的琥珀能够吸引微小物体;公元前300年我国发现了磁石吸铁的现象;后来人们发现了地球磁场的存在。

1785年法国科学家库仑(1736-1806)通过实验创建了著名的库仑定律。

1820年丹麦人奥斯特(1777-1851)发现了电流产生的磁场。

同年法国科学家安培(1775-1836)计算了两个电流之间的作用力。

1831年英国科学家法拉第(1791-1867)发现电磁感应现象,创建了电磁感应定律,说明时变磁场可以产生时变电场。

(8)电磁环境与传播途径.pptx

(8)电磁环境与传播途径.pptx
19
当两个不同的物体相互接触时,就会使得一个物 体失去一些电子(如电子转移到另一个物体)而带 正电,另一个得到一些剩余电子的物体则带负电。 若在分离的过程中电荷难以中和,电荷就会积累 使物体带上静电。
20
人体是良好的静电载体,能够通过摩擦起电充电 到几千伏。通过人的活动,这些不受欢迎的静电 荷就会被带到一些敏感区域晃来晃去。这些大量 的静电一旦找到合适的放电路径,就会产生放电 现象。
第三讲 电磁环境及电磁污染途径
电磁波存在的自然环境—电磁环境
电磁骚扰源的分类: 按频谱宽度:窄带骚扰源和宽带骚扰源; 按作用时间:瞬态波骚扰和连续波骚扰; 一般:自然电磁骚扰源和人为电磁骚扰源。
1
3.1 自然电磁环境
根据电磁波产生的机理不同,一般将电磁干扰划 分为自然电磁干扰和人为电磁干扰两种。
14
频谱管理
全世界分为三个区域:一区包括欧洲、非洲和原 苏联的亚洲部分、小亚细亚和阿拉伯半岛;二区 包括北美洲和南美洲含夏威夷;三区包括澳大利 亚和亚洲(俄罗斯的亚洲部分除外)。
国际电信联盟(ITU)规定了各个频段的用途。 各个国家根据国际电信公约和国际无线电规则设 立国家级的频谱管理机构,为本国分配和管理电 磁频谱。在我国则由全国无线电管理委员会负责 频谱的分配、协调和管理。
4
自然辐射
自然辐射干扰源的种类非常多,主要有电子噪声、大地 表面磁场、大地磁层、大地表面的电场、大地内部的电 场、大气中的电流电场、闪电和雷暴的电场、太阳无线 电辐射和银河系无线电辐射等。
电子噪声主要来自设备内部的元器件,是决定接收机噪 声系数的重要因素。常见的电子噪声源包括热噪声、散 粒噪声、l/f噪声和天线噪声等。热噪声具有极宽的频谱, 能量随温度而变化,温度越低,噪声越小。

电磁场干扰对电子设备的影响研究

电磁场干扰对电子设备的影响研究

电磁场干扰对电子设备的影响研究在当今这个高度依赖电子设备的时代,电磁场干扰已经成为一个不容忽视的问题。

从我们日常使用的手机、电脑,到工业生产中的精密仪器、控制系统,电磁场干扰都可能对其正常运行产生影响。

了解电磁场干扰对电子设备的影响,对于保障设备的性能、提高工作效率以及确保信息安全都具有重要意义。

一、电磁场干扰的来源电磁场干扰的来源多种多样,大致可以分为自然来源和人为来源。

自然来源主要包括雷电、太阳活动以及地球磁场的变化等。

雷电在放电过程中会产生强大的电磁场,可能对附近的电子设备造成瞬间的干扰甚至损坏。

太阳活动,如太阳黑子爆发和耀斑,会释放出大量的高能粒子和电磁辐射,这些辐射到达地球后,也可能影响到电子设备的运行。

地球磁场的变化虽然相对较为缓慢和微弱,但在某些特殊情况下,如地磁暴,也可能对依赖磁场定位的设备产生干扰。

人为来源则更加广泛和复杂。

常见的有电力系统中的谐波、开关操作产生的瞬态脉冲,以及各种无线电通信设备发射的电磁波。

在工业环境中,大型电机、变压器等设备运行时产生的磁场,以及电焊机、切割机等设备产生的电弧,都可能成为电磁场干扰的源头。

此外,随着无线通信技术的飞速发展,手机、无线网络、蓝牙设备等的广泛应用,也使得电磁环境日益复杂,增加了电磁场干扰的风险。

二、电磁场干扰的传播途径电磁场干扰可以通过多种途径传播,从而影响到电子设备。

常见的传播途径包括传导、辐射和感应。

传导干扰是指干扰信号通过电源线、信号线、地线等导体直接进入电子设备。

例如,当电力系统中的谐波通过电源线进入电子设备时,可能会导致设备电源模块工作异常,影响整个设备的性能。

辐射干扰则是指干扰源以电磁波的形式向空间传播,并被电子设备接收。

比如,附近的无线电发射塔发射的电磁波,如果其频率与电子设备的工作频率相近,就可能对电子设备造成干扰。

感应干扰是指干扰源产生的电磁场在电子设备的导体中感应出电动势,从而影响设备的正常工作。

例如,当一个变化的磁场穿过一个闭合的导线回路时,会在回路中产生感应电流,这个感应电流可能会干扰电子设备的正常信号传输。

如何在工厂现场有效防范电磁干扰

如何在工厂现场有效防范电磁干扰

如何在工厂现场有效防范电磁干扰在当今的工业生产环境中,电磁干扰(Electromagnetic Interference,简称 EMI)已经成为一个不容忽视的问题。

电磁干扰可能会导致设备故障、生产中断、产品质量下降,甚至危及工人的安全。

因此,如何在工厂现场有效地防范电磁干扰,是每一个工厂管理者和技术人员都需要关注和解决的重要课题。

一、电磁干扰的来源要有效地防范电磁干扰,首先需要了解其来源。

在工厂现场,电磁干扰的来源主要有以下几个方面:1、电力系统工厂中的电力设备,如变压器、开关柜、电动机等,在运行过程中会产生电磁场。

这些电磁场可能会对附近的电子设备造成干扰。

2、电子设备工厂中的各种电子设备,如计算机、控制器、通信设备等,本身会发射电磁波。

同时,它们也容易受到外部电磁波的影响。

3、无线通信设备随着无线通信技术的广泛应用,工厂中的手机、对讲机、无线网络设备等也成为了电磁干扰的来源之一。

4、静电放电在一些生产过程中,如塑料加工、纺织等,容易产生静电。

静电放电时会产生瞬间的高电压和强电磁场,对电子设备造成干扰。

5、雷电在雷雨天气,雷电产生的电磁场可能会通过电力线路、通信线路等传入工厂内部,对设备造成损坏。

二、电磁干扰的传播途径电磁干扰的传播途径主要有以下几种:1、传导电磁干扰通过电源线、信号线、地线等导体传播。

例如,电源线上的干扰信号可以传入电子设备,影响其正常工作。

2、辐射电磁干扰以电磁波的形式向空间辐射,被其他电子设备接收。

例如,无线通信设备发射的电磁波可以对附近的敏感设备造成干扰。

3、感应当一个导体处于变化的电磁场中时,会在导体中产生感应电动势和感应电流。

这种感应现象也会导致电磁干扰的传播。

三、电磁干扰的影响电磁干扰对工厂现场的设备和生产过程可能会产生以下影响:1、设备故障电磁干扰可能会导致电子设备的误动作、死机、数据丢失等故障,影响设备的正常运行。

2、生产中断关键设备受到电磁干扰出现故障,可能会导致整个生产线的中断,造成生产延误和经济损失。

电磁兼容原理及应用第1章 电磁环境与电磁兼容

电磁兼容原理及应用第1章 电磁环境与电磁兼容
各种不同的用电装置、电力电子装置、电机传动系统、照明装置、高压电力 线、科学和医用设备,静电放电,核爆炸电磁脉冲,等。
(4)电磁环境基本概念
• 电子设备发射出来的电磁干扰具有一定的危害性
——降低电子元件的工作寿命,强度较大的电磁干扰可以击穿电子设备, 导致元件及整个系统的损坏;静电导致计算机及其元器件的损坏造 成的经济损失每年就高达数亿美元,还可以损坏医院里病人的导管 泵而导致病人生命危险。
上世纪50年代开始,随着自动化技术和电力电子器件的快速发展,电力电子技术 的兴起和微电子技术发展迅速向电气设备领域渗透,形成电气设备和电子设备 结合、强电和弱电结合、机械和电气结合、仪表和装置结合、硬件和软件结合 的各种复杂控制系统,而且在结构上也往往融为一体,同一电网中的用电设备 越来越多,产生日趋复杂和严重的电磁环境和电磁干扰问题。
频域:工频(较低频率)噪声和瞬变噪声的频率范围直接关系到所采取的抗干 扰措施:工频噪声的频率较低,对数字电路无严重影响,但对低电平模拟 电路的危害却很大;瞬变噪声的频率范围超过0.5MHz时,将引起一系列问 题。
电磁干扰产生的原因很多,噪声互相交织,传递途径多样,电磁环境错综复杂, 很多情况下是在系统出现异常后人们才意识到所处电磁环境的严峻程度。仅 对电磁环境有定性认识是不够的,应通过测量对电磁环境做出定量描述,如: 用电场强度和磁场强度表示稳定电场和磁场;用电压和电流表示局部电路与 整体的关系;用统计量和振幅概率分布函数表示随机变化的干扰特性;用脉 冲峰值分布、能量分布、发生频度分布等参数表示脉冲噪声等。
(4)电磁环境基本概念
• 随着自动化程度越来越高,人们越来越依赖电气电子设备,科学家和 工程师们一直朝一个共同的目标而努力奋斗者——研究、探索直至打 造新一代经济而卓越的电气与电子产品。然而,然而由电子和电气产 品带来的电磁干扰问题,使得人类和设备本身依赖的这个电磁环境越 来越恶劣,不论怎么精心策划,设计中的缺陷始终象噩梦般挥之不去。 补救的药方就是电磁兼容技术——确保设备或系统不产生电磁干扰的 技术。着力解决电磁干扰问题已成为电气和信息化建设中的重要内容 之一。

电磁兼容(EMC)基础知识全面详解

电磁兼容(EMC)基础知识全面详解

电磁兼容(EMC)基础知识全⾯详解⼀、电磁兼容概念电磁兼容EMC(Electromagnetic compatibility) 对于设备或系统的性能指标来说,直译为“电磁兼容性” ;但作为⼀门学科来说,应该译为“电磁兼容”。

国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常⼯作且不对该环境中任何事物构成不能承受的电磁骚扰的能⼒。

” 简单的说,就是抗⼲扰的能⼒和对外骚扰的程度。

电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种⽤电设备(分系统、系统;⼴义的还包括⽣物体)可以共存并不致引起降级的⼀门科学。

⼆、基本概念Electromagnetic compatibility(EMC)电磁相容—电⼦产品能够在⼀电磁环境中⼯作⽽不会降低功能或损害之能⼒;Electromagnetic interference(EMI)电磁⼲扰—电⼦产品之电磁能量经由传导或辐射之⽅式传播出去的过程;由⼲扰源、耦合通道及被⼲扰接收机三要素组成。

Radio frequency(RF)⽆线电频率,射頻—通訊所⽤的频率范围,⼤约是10kHz 到100GHz。

这些能量可以是有意产⽣的,如⽆限电传发射器,或者是被电⼦产品⽆意产⽣的;RF能量经由两种模式传播: Radiated emissions(RE)—此种RF 能量的电磁场经由媒介⽽传输;RF 能量⼀般在⾃由空间(free space)內传播,然⽽,其他种类也有可能发⽣。

Conducted emissions(CE)—此种RF 能量的电磁场经由道题媒介⽽传播,⼀般是经由电线或内部连接电缆;Line Conducted interference(LCI)指的是在电源线上的RF 能量。

Susceptibility 容忍度,耐受性—相对的测量产品暴露在EMI环境中混乱或损害的程度。

Immunity 免疫⼒—⼀相对的测量产品承受EMI的能⼒;Electrical overstress(EOS)电⼦过度⾼压—当遇到⾼压突波产品承受到的损坏或只是功能丧失;EOS包括雷击以及静电放电的事件。

电缆工程中的电磁干扰问题及解决方法

电缆工程中的电磁干扰问题及解决方法

电缆工程中的电磁干扰问题及解决方法在当今的科技时代,电缆工程在电力传输、通信、自动化控制等众多领域中发挥着至关重要的作用。

然而,随着电子设备的广泛应用和电磁环境的日益复杂,电磁干扰问题逐渐成为电缆工程中不可忽视的挑战。

电磁干扰不仅可能影响电缆系统的正常运行,还可能导致信号失真、数据错误甚至设备故障,给生产和生活带来诸多不便和安全隐患。

一、电磁干扰的来源电磁干扰的来源多种多样,了解这些来源是解决电磁干扰问题的关键。

1、自然干扰源自然界中的雷电、太阳黑子活动以及宇宙射线等都属于自然干扰源。

雷电放电时会产生强大的电磁场,可能直接耦合到电缆中,造成瞬间的高电压和大电流冲击。

太阳黑子活动和宇宙射线则可能对卫星通信等长距离电缆传输造成影响。

2、人为干扰源(1)电力设备如变压器、发电机、电动机等在运行过程中会产生电磁场。

特别是在开关操作时,会引起瞬间的电磁脉冲。

(2)电子设备各种电子设备如计算机、手机、电视等在工作时会向外辐射电磁波。

这些电磁波可能通过空间耦合或电源线传导进入电缆系统。

(3)电力传输系统高压输电线路中的电流会产生磁场,当与电缆线路接近时,可能会通过互感和电容耦合产生干扰。

二、电磁干扰的传播途径电磁干扰主要通过以下几种途径传播:1、传导干扰电磁干扰通过电源线、信号线等导体直接传播。

例如,一台设备产生的干扰电流可以通过电源线传导到电网中,进而影响连接在同一电网中的其他设备。

2、辐射干扰干扰源以电磁波的形式向空间辐射能量,被电缆接收从而产生干扰。

常见的辐射干扰源有广播电台、雷达等。

3、感应耦合包括电感耦合和电容耦合。

电感耦合是指当干扰源的电流变化时,通过互感在被干扰线路中产生感应电动势;电容耦合则是通过干扰源与被干扰线路之间的分布电容形成电流通路。

三、电磁干扰对电缆工程的影响电磁干扰对电缆工程的影响主要体现在以下几个方面:1、信号失真干扰信号可能叠加在有用信号上,导致信号波形发生畸变,从而影响信号的准确性和可靠性。

电磁场的远场和近场划分

电磁场的远场和近场划分

近场与远场的划分电磁辐射的测量方法通常与测量点位置和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。

由于在远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。

1、电磁场的远场和近场划分电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。

一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(感应场)和近区场(辐射场)。

由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。

近区场通常具有如下特点:近区场内,电场强度与磁场强度的大小没有确定的比例关系。

即: E 377H。

一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。

近区场的电磁场强度比远区场大得多。

从这个角度上说,电磁防护的重点应该在近区场。

近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。

远区场的主要特点如下:在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。

在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。

远区场为弱场,其电磁场强度均较小近区场与远区场划分的意义:通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。

对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。

电磁波的产生和传播规律

电磁波的产生和传播规律

电磁波的产生和传播规律电磁波是由电场和磁场交替变化而产生的一种能量传播现象。

它们以光速在真空或介质中传播,对人类的通信、生活和科学研究有着重要的意义。

本文将探讨电磁波的产生和传播规律,以便更好地理解这一现象。

一、产生环境与机制电磁波可以在多种环境中产生,最常见的就是电磁场中的运动电荷。

当电荷受到外界扰动或变化时,就会产生电场和磁场的变化,进而形成电磁波。

例如,当我们使用手机进行通话时,手机中的天线将电场和磁场变化转化为电磁波,从而传播到接收端。

在电磁波的产生机制中,振荡和加速运动是两个重要的因素。

当电荷进行周期性的振动运动时,会引起电场和磁场的周期性变化,从而产生一种频率和波长确定的电磁波。

而当电荷加速运动时,由于电流的存在,同样会产生电磁波。

这就是为什么无线电台产生电磁波的原因,电子在天线上进行快速加速运动,从而激发电磁波的辐射。

二、电磁波的传播规律电磁波的传播主要遵循麦克斯韦方程组和光学定律。

根据麦克斯韦方程组,电磁波遵循安培定律和法拉第电磁感应定律。

电场和磁场的变化源自于彼此之间的相互作用,它们的变化通过电磁波的形式传播。

电磁波在真空中传播的速度是恒定不变的,即光速。

根据光学定律,光速在各种介质中传播时会相应降低,这称为光的折射现象。

当电磁波从一种介质传播到另一种介质时,会发生折射和反射,这就产生了光的看到和色散现象。

电磁波除了在真空和介质中传播外,还可以发生衍射和干涉现象。

衍射是指电磁波在遇到障碍物或缝隙时发生弯曲和扩散。

干涉是指电磁波在遇到两个或多个波源时发生加强或抵消的现象。

这两种现象是由电磁波的波动性质所决定的,它们在光的传播和成像中具有重要作用。

三、应用领域与前景电磁波的产生和传播规律不仅仅是一种理论知识,也是人类社会中的关键技术基础。

通过对电磁波的深入研究,我们可以更好地应用于通信、雷达、医学成像和遥感等领域。

在通信领域,电磁波是无线信号传输的基础。

通过对电磁波的调制、解调和编码,我们可以实现无线电话、移动互联网和卫星通信等应用。

电磁干扰原理

电磁干扰原理

电磁干扰原理电磁干扰(Electromagnetic Interference, EMI)是指在电磁环境中,不同电子设备之间发生的相互干扰现象。

在现代社会中,电子设备已经广泛应用于各个领域,如通信、医疗、交通等。

然而,由于电子设备之间的复杂交互,电磁干扰成为了一个不可忽视的问题。

本文将深入探讨电磁干扰的原理与影响。

一、电磁辐射与传导电磁干扰主要通过电磁辐射和电磁传导两种途径产生。

电磁辐射是指电子设备中的电流或电压由导线或天线辐射出去,形成电磁场,从而对周围的设备产生影响。

电磁传导则是指电磁场通过导线或其他介质传导到其他设备,从而引起干扰。

二、电磁干扰的主要原因1. 高频信号的传播:随着通信技术的发展,无线电频率的使用越来越广泛,高频信号的传播成为电磁干扰的主要原因之一。

无线电、电视等设备所产生的高频信号往往在一定范围内传播,当这些信号干扰到其他设备时,就会造成电磁干扰。

2. 电源线的电磁波辐射:电源线电磁波辐射是另一个常见的电磁干扰来源。

当电子设备工作时,电源线中的电流会产生电磁场,如果电源线设计不合理或者电磁屏蔽不良,这些电磁场就会干扰到其他设备。

3. 地线干扰:地线是电子设备的重要部分,但当地线接触不良或者存在不合理的电磁屏蔽时,地线可能会成为电磁干扰的渠道。

地线上的电流会产生电磁场,进而对其他设备产生干扰。

4. 设备的故障或缺陷:一些设备自身存在故障或缺陷也可能引起电磁干扰。

例如,设备内部的零部件松动、断开或短路,都会导致电磁辐射或传导的干扰现象。

三、电磁干扰的影响1. 通信干扰:电磁干扰对通信设备特别敏感,当电磁噪声与通信信号重叠时,通信设备可能会受到干扰,导致数据传输错误或通信中断。

2. 电子设备故障:电磁干扰对电子设备的正常工作有很大的影响,长期或大强度的干扰可能导致设备损坏甚至烧毁。

3. 安全隐患:在一些特殊场景中,电磁干扰可能会引发安全隐患。

例如,在医疗设备附近发生的电磁干扰可能影响到医疗设备的正常运行,给患者带来潜在风险。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22
设备漏电,尤其是不会对人造成触电伤害的微弱 漏电虽然不属于静电放电现象,但其性能却与静 电放电类似。所以一般将设备漏电也纳入静电防 护体系中来考虑。 静电放电(ESD)及电气过载(EOS)对电子元器件造 成损害的主要机理有:热二次击穿、金属镀层熔 融、介质击穿、气弧放电、表面击穿和体击穿等。
6
频谱管理
人类目前利用的电磁频谱大约在0Hz--3000GHz,并向更高的频段发展。
应用最多的仍然在中频300-3000kHz、高频 3-30MHz、甚高频30-300MHz、超高频3003000MHz、特高频3-30GHz。 通信、电视、广播、导航、雷达、测控均在 此频段范围内。
7
频谱分配
3
4
频谱的使用与管理
频谱是一个有限的自然资源。
频谱分配必须以频谱利用的有效性和合理性为 基础,既要充分有效地利用频谱资源,又要保 证相互之间不存在电磁干扰,即满足电磁兼容 性。
频谱管理就是为了实现电磁频谱的有效管理、 保护和合理利用等,确保各类无线电业务的有 效进行,包括了无线电频谱资源的频率划分、 指配和控制。
2
自然电磁骚扰源:来源于大气层的噪声和地球外层空间的 宇宙噪声,包括宇宙干扰、大气干扰、热噪声和沉积静电 干扰等。
宇宙干扰来自太阳系、银河系的电磁骚扰,包括太阳、月 亮、恒星、行星和星系发出的太空背景噪声、无线电磁噪 声等,一般在2—50MHz的频率范围内干扰明显。受干扰 对象主要是卫星通信和广播信号以及航接触时,就会使得一个物 体失去一些电子(如电子转移到另一个物体)而带 正电,另一个得到一些剩余电子的物体则带负电。 若在分离的过程中电荷难以中和,电荷就会积累 使物体带上静电。
12
潮湿的空气也是正负电荷中和的路径。人体是良
好的静电载体,能够通过摩擦起电充电到几千伏。
通过人的活动,这些不受欢迎的静电荷就会被带
到一些敏感区域晃来晃去。这些大量的静电一旦
找到合适的放电路径,就会产生放电现象。
13
14
静电的放电与人体放电模型
当人体接近导电物体时(最坏的情况是接触到一个 金属物体,例如仪器外壳、集成电路的管脚等), 如果空气气隙上的电位梯度足够高,电荷会以火 花的形式转移到那个物体上。 下图给出了人体静电放电的等效电路。
21
器件受到静电放电的影响后,也可能不立即出现 功能性的损坏。这些受到潜在损坏的元件通常被 称为“跛脚”,一旦加以使用,将会对以后发生 的静电放电或传导性瞬态表现出更大的敏感性。 整体的性能表现为电子设备的性能越来越差,直 至完全损坏。
相对于自然界的静电来说,电子器件是非常娇贵 的,正是基于这一因素,是否采取了防静电措施 是衡量电子器件质量好坏的一个非常重要的指标。
17
人体静电放电的过程受很多因素影响,具体的放 电过程也因各种分布参数的不同而不同。典型的 人体静电放电电流波形如下图所示。
18
在这个波形中,低频成分转移的电荷比高频成分 多,但是高频成分会产生更强的场,对电路的危 害也最为明显。由实验得出的各个参数的范围如 下: Tr(上升时间)=200ps~100ns Ts(尖峰宽度)=0.5ns~10μs Tt(持续长度)=100ns~2ms
大气干扰主要是雷电,频谱在30MHz以内,对无线电通信 的干扰较大。此外,沙暴、雨雾等自然想象也可以产生电 磁噪声。 热噪声是由于热力状态变化引起导体无规则的电起伏。
沉积静电噪声指飞行器高速接触大气中的尘埃、雨点、雪 花、冰雹时产生的电荷积累。引起火花放电、电晕放电等。 影响通信和导航。
5
频谱管理
全世界分为三个区域:一区包括欧洲、非洲和 原苏联的亚洲部分、小亚细亚和阿拉伯半岛; 二区包括北美洲和南美洲含夏威夷;三区包括 澳大利亚和亚洲(俄罗斯的亚洲部分除外)。
国际电信联盟(ITU)规定了各个频段的用途。 各个国家根据国际电信公约和国际无线电规则 设立国家级的频谱管理机构,为本国分配和管 理电磁频谱。在我国则由全国无线电管理委员 会负责频谱的分配、协调和管理。
15
图中: CR——人体和大地之间的电容。 RR——人体的电阻。
16
LR——人体的电感。 CS——人手臂与大地之间的电容。
Co1——人手臂与金属体之间的电容。 RS——人手臂放电路径的电阻。 LS——人手臂放电路径的电感。 Co2——人手、手指与金属体之间的电容。 CJ——金属体与大地之间的电容。 RJ——金属体的接地电阻。 LJ——金属体的接地电感。
8
频谱分配
9
电磁骚扰的耦合途径(按耦合机理)
10
3.1.1 静电
静电的形成 如下图所示,绕原子A的原子核旋转的电子, 在外力的作用下,离开原来的原子A而侵入 其他的原子B。A原子因缺少电子数而呈带 正电现象,称为阳离子,B原子因增加电子 数而呈带负电现象,称为阴离子。当外力 持续作用时,阳离子和阴离子的分布会变 得越来越不均匀,对外将表现为带电现象。
静电放电过程的不同不仅表现在电流波形在时间 特性上差异很大,而且幅度也会在1A~200A范围 内变化。
19
正是由于不同条件下静电放电的特性差异很大,
所以电子设备对静电放电的响应很难预测。所幸
的是,我们可以用统计的方法来处理这个问题。
一定要记住的一个事实是,静电放电时产生的能
量很大,频率很高(有时高达5GHz)。
20
静电的危害
静电场的强度取决于充电物体上的电荷数量和与 它的电荷量不同的物体之间的距离。人体上的最 高电压应该是20kV左右。 如果一个元件的两个针脚或更多针脚之间的电压 超过元件介质的击穿强度,就会对元件造成损坏, 这是MOS器件出现故障最主要的原因。 另一种故障是由于节点的温度超过半导体硅的熔 点(1415℃)时所引起的。静电放电脉冲的能量可 以产生局部发热,使半导体局部熔断损坏。
电磁环境与传播 途径
第3章 电磁环境及电磁污染途径
3.1 自然电磁环境
根据电磁波产生的机理不同,一般将电磁干扰划 分为自然电磁干扰和人为电磁干扰两种。
非人为因素产生的电磁波,构成了电磁环境的一 部分,把这部分电磁波所形成的电磁环境称为自 然电磁环境。
在自然电磁环境中,静电、雷电和自然辐射是3种 最重要的电磁干扰。
相关文档
最新文档