概率论与数理统计-电子教案 7.1+7.2

合集下载

概率论与数理统计第七章-1矩估计法和极大似然估计法

概率论与数理统计第七章-1矩估计法和极大似然估计法

μ1 h1 (θ1 , θ2 , μ j h j (θ1 , θ2 , μk hk (θ1 , θ2 ,
, θk ) , θk ) , θk )
, μk ) , μk ) , μk )
数理统计
从这 k 个方程中解出
θ1 g1 ( μ1 , μ2 , θ j g j ( μ1 , μ2 , θk gk ( μ1 , μ2 ,
数理统计
定义 用样本原点矩估计相应的总体原点矩 ,
用样本原点矩的连续函数估计相应的总体原点矩的 连续函数, 这种参数点估计法称为矩估计法 . 矩估计法的具体做法如下 设总体的分布函数中含有k个未知参数 θ1 , θ2 , 那么它的前k阶矩 μ1 , μ2 ,
, θk ,
, μk , 一般
l xi P{ X xi ;1 , 2 , , k } l E ( X l ) l 1 hl (1 , 2 , , k ) x l p ( x; , , , )dx 1 2 k
2 1
b μ1 3( μ2 μ12 )
于是 a , b 的矩估计量为
总体矩
a A1 3( A2 A12 ) 3 n 2 X ( X X ) , i n i 1
3 n 2 b X ( X X ) n i 1 i
样本矩
数理统计
例2 设总体 X 的均值 μ和方差 σ 2 ( 0) 都存
数理统计
点估计问题的一般提法 设总体 X 的分布函数 F ( x; )的形式为已
知, 是待估参数 . X 1 , X 2 ,, X n 是 X 的一个样 本, x1 , x2 ,, xn 为相应的一个样本值 .

概率论与数理统计复习7章

概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

《概率论与数理统计》7

《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

概率论与数理统计电子教案:MC7_1参数的点估计

概率论与数理统计电子教案:MC7_1参数的点估计
参数估计
20.8.27
第七章 参数估计
电子科技大学
参数估计
20.8.27
数理统计问题:如何选取样本来对总体的种种统计 特征作出判断。
参数估计问题:知道随机变量(总体)的分布类型, 但确切的形式不知道,根据样本来估计总体的参数,这 类问题称为参数估计(paramentric estimation)。
指数分布的参数估计 矩估计与似然估计不等的例子 均匀分布的极大似然估计
电子科技大学
参数估计
小结
1. 矩法估计量与极大似然估计量不一定相同; 2. 用矩法估计参数比较简单,但有信息量损失; 3.极大似然估计法精度较高,但运算较复杂; 4.不是所有M.L.E都需要建立似然方程求解.
电子科技大学
பைடு நூலகம்
参数估计
注1 总体X的分布函数中可有多个不同未知参数. 注2 统计量是不含未知参数的样本函数.
电子科技大学
参数估计
20.8.27
点估计(point estimation) :如果构造一个统计量
(X1, X2, , Xn ) 来作为参数的估计量,则称为
参数的点估计。
点估计的方法:矩估计法、极大似然估计法。
20.8.27

1)n
n
xθi
,
L( x1,...,xn;θ )
i 1
0,
0 xi 1; 其它
2. 取对数: 当 0<xi<1, (i=1,2, …,n) 时
n
ln L n ln( 1) ln xi
i 1
3. 建立似然方程
d ln L n n
d
1
ln
i 1
xi
0,
电子科技大学

概率论与数理统计课后习题答案 第七章

概率论与数理统计课后习题答案 第七章

习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)

的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知

概率论与数理统计 7.1 数理统计中的基本概念

概率论与数理统计 7.1 数理统计中的基本概念
这就是矩估计法的理论根据.
独立同分布
样本 X1, X2, …, Xn 可以看成是独立同分布( i.i.d ) 的数r.v理.,统计 其共同分布即为总体分布。
设总体X具有分布函数F(x), X1, X2, …, Xn为取自该总体 的容量为n的样本,则样本联合分布函数为
n
F (x , ..., x ) F (x )
1
n
i
i 1
请注意 : 设X1, X2 , Xn是来自总体X的一个样本, x1, x2 ,
xn是一个样本的观察值,则g( x1, x2 , xn )也是统 计量g(X1, X2 , Xn )的观察值.
几个常见统计量
样本平均值
X
1 n
n i 1
Xi
样本方差
S 2
1 n1
n i 1
(Xi
X )2
它反映了总体 方差的信息
数理统计
总体的三层含义:
• 研究对象的全体; • 数据; • 分布 —随机变量X。
统计中,总体这个概念 的要旨是:总体 就是一个概率分布.
数理统计
例5.1.1 考察某厂的产品质量,以0记合格品,以1记 不合格品,则
总体 = {该厂生产的全部合格品与不合格品} = {由0或1组成的一堆数}
若以 p 表示这堆数中1的比例(不合格品率),则该 总体可由一个二点分布表示:
简单随机样本
数理统计
• 要使得推断可靠,对样本就有要求,使样本能很好地 代表总体。通常有如下两个要求:
• 随机性: 总体中每一个个体都有同等机会被选入样 本 -- Xi 与总体X 有相同的分布。
独立性: 样本中每一样本的取值不影响其它样本的取值 -- X1, X2, …, Xn 相互独立。

概率论和数理统计(第三学期)第7章数理统计的基本概念

概率论和数理统计(第三学期)第7章数理统计的基本概念

n i1
i
1 n
n
Ei
i1
D
D 1 n
n i 1
i
1 n2
n
Di
i 1
2
n
2
S~ 1 n
n i 1
i
2
1 n
n i 1
i2 2i
2
1 n
n
i2
i 1
2
n
i
i 1
n
2
1 n
n
i2
i 1
2
2
2
1 n
n
i2
i 1
2
E S~2
E
1 n
n
i2
i 1
23
.209
2
2 0.95
20

10
.851
当自由度n 45时,可用下面近似公式去求2 n:
x2 n
1 2
u
2
2n 1
例3

2 0.05
60 .

2 0.05
60
1 2
u0.05
2
2 60 1
1 1.645
2
119 78.798
2
3、t分布的上侧分位点
对于给定的α(0<α<1),使
2
e
xi 2 2
2
(2
) e 2
n 2
1
2 2
n i1
xi 2
在数理统计中,总体的分布往往是未知的,需 要通过样本找到一个分布来近似代替总体分布。
§7.3 分布的估计
频率分布 例 某炼钢厂生产的钢由于各种因素的影响,各炉
钢的含硅量可以看作是一个随机变量,现记录了 120炉钢的含硅量百分数,求出这个样本的频数分 布与频率分布。

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。

东华大学《概率论与数理统计》课件 第七章 假设检验

东华大学《概率论与数理统计》课件 第七章 假设检验

1. 2为已知, 关于的检验(U 检验 )
在上节中讨论过正态总体 N ( , 2 ) 当 2为已知时, 关于 = 0的检验问题 :
假设检验 H0 : = 0 , H1 : 0 ;
我们引入统计量U
=
− 0 0
,则U服从N(0,1)
n
对于给定的检验水平 (0 1)
由标准正态分布分位数定义知,
~
N (0,1),
由标准正态分布分位点的定义得 k = u1− / 2 ,
当 x − 0 / n
u1− / 2时, 拒绝H0 ,
x − 0 / n
u1− / 2时,
接受H0.
假设检验过程如下:
在实例中若取定 = 0.05, 则 k = u1− / 2 = u0.975 = 1.96, 又已知 n = 9, = 0.015, 由样本算得 x = 0.511, 即有 x − 0 = 2.2 1.96,
临界点为 − u1− / 2及u1− / 2.
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原
理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错
误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
设 1,2, ,n 为来自总体 的样本,
因为 2 未知, 不能利用 − 0 来确定拒绝域. / n
因为 Sn*2 是 2 的无偏估计, 故用 Sn* 来取代 ,
即采用 T = − 0 来作为检验统计量.
Sn* / n
当H0为真时,
− 0 ~ t(n −1),
Sn* / n
由t分布分位数的定义知

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案一、教学目标1. 了解概率论与数理统计的基本概念,理解随机现象的统计规律性。

2. 掌握概率论的基本计算方法,包括组合、排列、概率公式等。

3. 熟悉数理统计的基本方法,包括描述性统计、推断性统计、假设检验等。

4. 能够运用概率论与数理统计的方法解决实际问题。

二、教学内容1. 概率论的基本概念:随机试验、样本空间、事件、概率等。

2. 概率计算方法:组合、排列、概率公式、条件概率、独立性等。

3. 数理统计的基本概念:总体、样本、描述性统计、推断性统计等。

4. 假设检验:卡方检验、t检验、F检验等。

5. 实际问题应用:概率论与数理统计在实际问题中的举例分析。

三、教学方法1. 讲授法:讲解概率论与数理统计的基本概念、原理和方法。

2. 案例分析法:通过具体案例,让学生了解概率论与数理统计在实际问题中的应用。

3. 互动教学法:引导学生参与课堂讨论,提问、解答问题,提高学生的思考能力。

4. 实践操作法:引导学生利用统计软件进行数据分析和处理,提高学生的实际操作能力。

四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括投影仪、计算机等。

2. 教材和辅导资料:选用合适的教材和辅导资料,为学生提供丰富的学习资源。

3. 统计软件:安装统计分析软件,如Excel、SPSS等,方便学生进行实践操作。

五、教学评价1. 平时成绩:考察学生的出勤、课堂表现、作业完成情况等。

2. 期中考试:设置期中考试,检验学生对概率论与数理统计知识的掌握程度。

3. 课程设计:布置课程设计项目,让学生运用概率论与数理统计的方法解决实际问题。

4. 期末考试:全面考察学生对概率论与数理统计知识的掌握程度。

六、教学资源1. 教材:选用权威、适合教学的的概率论与数理统计教材。

2. 辅导资料:提供习题集、案例分析集等辅导资料,帮助学生巩固知识。

3. 在线资源:推荐优秀的在线课程、教学视频、学术文章等,方便学生自主学习。

4. 软件工具:介绍和使用统计软件工具,如R、Python等,提高学生数据分析能力。

概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程

概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程
注:由于 θ ( x1 ,L, xn ) 是实数域上的一个点,现用它来
估计 θ ,故称这种估计为点估计.
5 6
,σ 2未知,
… 随机抽查100个婴儿 得100个体重数据 10,7,6,6.5,5,5.2, …
而全部信息就由这100个数组成. 据此,我们应如何估计 和 σ 呢?
我们知道,服从正态分布N ( , σ 2 )的r.v. X , E ( X ) = , 由大数定律, 样本体重的平均值 1 → ∑ X i P n i =1 自然想到把样本体重的平均值作为总体平均 体重的一个估计. X= 用样本体重的均值 X估计 , 类似地,用样本体重的方差 S 2估计 σ 2 . 1 n 1 n 2 X = ∑ Xi, S = ∑ ( X i X )2 n 1 i =1 n i =1
(一)矩估计法
基本思想:用样本矩估计总体矩
(二)最大似然估计法
基本思想:
15
16
最大似然估计法 (最大似然法)
它首先是由德国数学家 高斯在1821年提出的 , 然而,这个方法常归功于 英国统计学家费希尔(Fisher) . 费希尔在1922年重新发现了 这一方法,并首先研究了这 种 方法的一些性质 . Fisher
1. 矩估计法 2. 最大似然法 3. 最小二乘法 4. 贝叶斯方法 ……
(一) 矩估计法(简称"矩法")
它是基于一种简单的"替换"思想 建立起来的一种估计方法 . 英国统计学家 K. 皮尔逊 最早提出的 . 基本思想: 用样本矩估计总体矩 . 理论依据: 大数定律
Ak = 1 n k P ∑ X i → k = E ( X k ) n i =1
4
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.

[经济学]概率论与数理统计教案

[经济学]概率论与数理统计教案

一、教案基本信息[经济学]概率论与数理统计教案课时安排:共计20 课时教学目标:使学生掌握概率论与数理统计的基本概念、原理和方法,培养学生运用统计学知识分析和解决实际问题的能力。

二、教学内容第一章:概率论基本概念1.1 随机现象与概率1.2 随机变量及其分布1.3 概率分布函数与累积分布函数1.4 离散型随机变量的期望与方差第二章:数理统计基本概念2.1 统计学的基本概念2.2 样本与总体2.3 描述性统计分析2.4 概率分布函数与累积分布函数的应用第三章:参数估计3.1 参数估计的概念3.2 点估计与区间估计3.3 最大似然估计3.4 贝叶斯估计第四章:假设检验4.1 假设检验的基本概念4.2 检验的误差与功效4.3 常用的假设检验方法4.4 假设检验的计算机实现第五章:多变量统计分析5.1 多变量数据概述5.2 协方差与相关系数5.3 多元线性回归分析5.4 因子分析与主成分分析三、教学方法与手段采用讲授、案例分析、上机操作相结合的教学方法,以帮助学生掌握基本概念、原理和方法,并培养实际应用能力。

四、教学评价评价方式包括平时成绩、课后作业、课堂讨论和期末考试。

其中,期末考试占总评的60%,平时成绩和课后作业占总评的40%。

五、教学资源教材:《概率论与数理统计》(第五版),作者:陈希孺辅助教材:《概率论与数理统计学习指导》教学软件:统计分析软件(如SPSS、R、Python 等)六、教学内容第六章:随机样本与抽样分布6.1 随机样本的定义与性质6.2 抽样分布的概念与性质6.3 常用抽样分布的推导与特点6.4 抽样误差与中心极限定理第七章:方差分析7.1 方差分析的基本概念7.2 单因素方差分析7.3 多因素方差分析7.4 方差分析的应用案例第八章:非参数统计8.1 非参数统计的基本概念8.2 非参数检验方法8.3 非参数统计的应用案例8.4 非参数方法与参数方法的比较第九章:时间序列分析9.1 时间序列的基本概念9.2 平稳时间序列的性质与分析9.3 的时间序列模型9.4 应用时间序列分析预测未来趋势第十章:统计软件应用10.1 SPSS 统计软件的基本操作10.2 R 语言与Python 统计分析10.3 实际案例分析与软件操作练习10.4 软件应用中的常见问题与解决方法七、教学方法与手段采用讲授、案例分析、上机操作相结合的教学方法,以帮助学生掌握非参数统计、时间序列分析等高级统计方法,并培养实际应用能力。

概率论及数理统计课程教学进度及教案表

概率论及数理统计课程教学进度及教案表

概率论及数理统计课程教学进度及教案表第一章:概率论基础1.1 概率的基本概念概率的定义样本空间与事件概率的计算公式1.2 条件概率与独立性条件概率的定义与计算独立事件的概率计算贝叶斯定理1.3 随机变量及其分布随机变量的概念离散型随机变量的概率分布连续型随机变量的概率密度函数第二章:离散型随机变量的进一步研究2.1 离散型随机变量的期望与方差期望的定义与计算方差的定义与计算协方差与相关系数2.2 离散型随机变量的标准化与中心极限定理随机变量的标准化中心极限定理的表述及应用2.3 离散型随机变量的排序与离散度量随机变量排序的概率计算离散度量的概念与计算第三章:连续型随机变量及其分布3.1 连续型随机变量的概率密度函数概率密度函数的定义与性质常见连续型随机变量的分布函数3.2 连续型随机变量的期望与方差期望的计算方法方差的计算方法3.3 连续型随机变量的标准化与中心极限定理连续型随机变量的标准化方法中心极限定理的表述及应用第四章:数理统计的基本概念4.1 统计量与样本统计量的定义与性质样本的概念与组织方式4.2 描述性统计分析频数与频率分布表图表法与数值法描述数据4.3 概率分布函数与概率质量函数概率分布函数的定义与性质概率质量函数的概念与应用第五章:参数估计与假设检验5.1 参数估计的基本概念参数估计的定义与方法点估计与区间估计5.2 假设检验的基本概念假设检验的定义与步骤常用假设检验方法5.3 置信区间的计算与评价置信区间的定义与计算方法置信区间的评价与修正第六章:假设检验方法深入6.1 假设检验的类型与错误单样本检验与两样本检验第一类错误与第二类错误功效(Power)概念6.2 似然比检验与正态分布似然比检验的原理正态分布下的假设检验卡方检验的原理与应用6.3 非参数检验方法非参数检验的定义与特点秩和检验与符号检验成组设计差分的秩和检验第七章:回归分析与相关分析7.1 线性回归模型线性回归模型的基本形式最小二乘法估计参数回归模型的评价与诊断7.2 多元线性回归分析多元线性回归模型的定义回归参数的估计方法多元线性回归的假设条件7.3 相关分析与Spearman 秩相关系数相关分析的概念与方法皮尔逊相关系数的计算Spearman 秩相关系数的计算与应用第八章:方差分析与实验设计8.1 方差分析的基本概念方差分析的定义与目的单因素方差分析(ANOVA)多因素方差分析8.2 实验设计的原则与方法实验设计的类型与原则完全随机设计实验随机区组设计实验8.3 协方差分析协方差分析的概念与应用重复测量的方差分析混合效应模型分析第九章:时间序列分析与预测9.1 时间序列的基本概念时间序列的定义与分类时间序列的平稳性检验自相关函数与偏自相关函数9.2 单变量时间序列分析自回归模型(AR)移动平均模型(MA)自回归移动平均模型(ARMA)9.3 多变量时间序列分析多变量时间序列的定义向量自回归模型(VAR)协整与误差修正模型第十章:统计软件与应用10.1 统计软件的使用方法常见统计软件介绍数据导入与数据管理结果输出与解释10.2 概率论及数理统计在实际应用中的案例分析概率论及数理统计在经济学中的应用在生物学与医学中的应用案例在工程学与质量控制中的应用案例10.3 统计学伦理与数据可视化统计学伦理的重要性数据可视化的原则与方法结果报告与交流技巧重点和难点解析一、概率的基本概念:理解概率的定义、样本空间与事件的关系,以及概率的计算公式。

《概率论与数理统计》课件第七章 参数估计

《概率论与数理统计》课件第七章 参数估计
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10

11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.

D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2

3

1

6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案统计量和抽样分布

一、统计量和抽样分布的概念介绍1.1 统计量的定义讲解统计量的概念,即根据样本数据所定义的量,用来描述样本的某些特征。

例如,样本均值、样本方差等。

1.2 抽样分布的定义解释抽样分布是指在一定的抽样方法下,统计量的概率分布。

例如,正态分布、t分布等。

二、统计量的估计方法2.1 点估计介绍点估计的概念,即用一个具体的数值来估计总体参数。

例如,用样本均值来估计总体均值。

2.2 区间估计讲解区间估计的方法,即根据样本数据,给出总体参数估计的一个区间,该区间以一定的概率包含总体参数。

例如,置信区间。

三、抽样分布的性质及应用3.1 抽样分布的性质讲解抽样分布的一些基本性质,如独立性、对称性、无偏性等。

3.2 抽样分布的应用介绍抽样分布在实际问题中的应用,如利用抽样分布来判断总体均值的假设检验问题。

四、假设检验的基本概念和方法4.1 假设检验的定义解释假设检验是一种统计推断方法,通过观察样本数据,对总体参数的某个假设进行判断。

4.2 假设检验的方法讲解常见的假设检验方法,如单样本t检验、双样本t检验、卡方检验等。

4.3 假设检验的判断准则介绍假设检验的判断准则,如P值、显著性水平等,并解释其含义和作用。

六、正态分布及其应用6.1 正态分布的定义与性质详细介绍正态分布的概念、概率密度函数、累积分布函数以及其性质,如对称性、钟形曲线等。

6.2 标准正态分布解释标准正态分布的概念,即均值为0,标准差为1的正态分布。

讲解标准正态分布表的使用方法。

6.3 正态分布的应用介绍正态分布在实际问题中的应用,如利用正态分布来分析和估计总体均值、方差等参数。

七、t 分布及其应用7.1 t 分布的定义与性质讲解t 分布的概念、概率密度函数、累积分布函数以及其性质。

解释t 分布与正态分布的关系。

7.2 t 分布的自由度介绍t 分布的自由度概念,即样本量。

讲解自由度对t 分布形状的影响。

7.3 t 分布的应用介绍t 分布在实际问题中的应用,如利用t 分布进行小样本推断、假设检验等。

概率论与数理统计 第7.2

概率论与数理统计 第7.2

例5 从一批零件中,抽取9个零件,测得其直 径(mm)为: 19.7 20.1 19.8 19.9 20.2 20.0 19.9 20.2 20.3
设零件直径服从正态分布 N ( , 2 ),且已知 0.21
求这批零件直径的均值 的置信水平为0.95的 置信区间。 X 解: 因为 已知, ~N(0, 1) 取 U n 对给定的置信水平 1 0.95 , 得到 0.05
2 2

(n)为 的点
2

2
的上
分位点。
2 0.05, n 21, (21) 32.7

.
2 0.01, n 21, (21) 38.9
2

分位点:

2

2
2 1 / 2
2 /2
2 2 35 . 5 , 0.05, n 21, / 2 10.3 1 2 2 2 41 . 4 , 8.03 0.01, n 21, / 2 1 2
例7 从一批零件中,抽取9个零件,测得其直 径(mm)为: 19.7 20.1 19.8 19.9 20.2 20.0 19.9 20.2 20.3
设零件直径服从正态分布 N ( , 2 ),且未知
2 求这批零件直径的方差 的置信水平为0.95的 置信区间。
解:因 未知,取
2
查表得: t 2 2.31
X P{| | t 2 } 1 S n 从中解得
使
S S P{ X t 2 X t 2 } 1 n n
又 x 20.01, n 9, s 0.203 , 代入上式,得到

[经济学]概率论与数理统计教案

[经济学]概率论与数理统计教案

概率论与数理统计教案一、引言1.1 课程背景概率论与数理统计是经济学、金融学等领域的基石,对于培养学生严谨的科学态度、提高数据分析能力具有重要意义。

本课程旨在帮助学生掌握概率论与数理统计的基本概念、原理和方法,为后续课程打下坚实基础。

1.2 教学目标(1)理解概率论与数理统计的基本概念;(2)掌握随机变量、概率分布、期望、方差等基本原理;(3)学会运用数理统计方法分析实际问题;(4)培养学生的数据分析能力和科学思维。

二、概率论基本概念2.1 随机试验与样本空间(1)随机试验的定义及特点;(2)样本空间的定义及表示方法;(3)样本点、事件及其关系。

2.2 概率公理体系(1)概率的定义;(2)概率公理;(3)条件概率与独立事件的概率。

三、随机变量及其分布3.1 随机变量的定义及其分类(1)随机变量的定义;(2)离散型随机变量与连续型随机变量;(3)随机变量的数学期望。

3.2 离散型随机变量的概率分布(1)概率质量函数;(2)期望、方差的计算;(3)常见离散型随机变量的分布列。

3.3 连续型随机变量的概率分布(1)概率密度函数;(2)期望、方差的计算;(3)常见连续型随机变量的分布函数。

四、数理统计基本概念与方法4.1 统计量与抽样分布(1)统计量的定义;(2)抽样分布的概念及性质;(3)常用抽样分布。

4.2 估计理论(1)点估计与区间估计;(2)参数估计的性质;(3)置信区间的构造方法。

4.3 假设检验(1)假设检验的基本概念;(2)检验统计量与拒绝域;(3)常用假设检验方法。

五、线性回归分析5.1 线性回归模型及其参数估计(1)线性回归模型的定义;(2)最小二乘法;(3)参数估计的性质。

5.2 线性回归模型的检验与预测(1)模型的检验;(2)模型的预测;(3)回归分析的应用实例。

本教案根据学生的认知规律和课程要求进行编写,每个章节都包含了基本概念、原理和方法的讲解,以及相关的应用实例。

教师在授课过程中可根据实际情况调整教学内容和进度,以提高学生的学习效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样本方差
s2 (1- 5) 2 2 (3 - 5)2 6 (5 - 5)2 8 (7 - 5)2 8 (9 - 5) 2 1 25 -1
=4.33
(1)查 t 分布表知 =0.05时,临界t值 / 2 (n 1)
2.063 9,因此,
抽样平均误差 (x) Sn1 4.33 0.416
一、点估计
(二)矩估计法的评价
优点: 一、 计算简便直观,一般不考虑抽样误差和可靠程
度 二、适用于对估计准确与可靠程度要求不高的情况
局限性: 一、它要求总体矩存在 二、不能充分利用估计时已掌握的有关总体分布的
信息
(三)应用例题
[例7-1] 某厂对所生产的电子元件抽取5%进行抽样调查, 计算出样本的平均耐用时间为4 340小时,样本合格率 为98%。根据矩估计法原理,估计该厂所生产的电子 元件的平均耐用时间和合格率。
Z x ~ N (0,1) / n
根据区间估计的定义,在给定的显著性水平 下,总体均值 在
1- 的置信度下的置信区间为:

x Z /2 n
,x Z / 2

n
),即x x
x
x
其中, (x)
误差 n
即抽样平均误差 ,Z / 2
其中,Sn1 (x) 即为抽样平均误差
n
t / 2
S n1 n

x
即为抽样允许误差
上式也可表示为: x x
x
x
例题应用
[例7-4] 从某市高中生中按不重复抽样方法随机抽取25 名调查每周收看电视的时间,分组资料见下表:
每周看电视时间(小时) 2 以下 2—4 4—6 6—8 8—10 合计
已知: X ~,N( ),0.452=30.2,x =25, n
1- =0.95
解题过程
(1)抽样平均误差
(x) 0.45 0.09
n 25
查标准正态分布表可知在 =0.05时,Z / 2 =1.96,所以,
抽(样2允)许总误体差均值的x 置 Z信 /区2 间n 为 1:.96 0.09 0.1764
学生人数(人) 2 6 8 8 1 25
要求:(1)计算抽样平均误差和抽样允ห้องสมุดไป่ตู้误差
(2)估计该市全体高中生每周平均看电视时间的置 信区间(给定的显著性水平为0.05)
解题过程(一)
已知: n =25, =0.05
样本均值
x 1 2 3 6 5 8 7 8 9 1 5(小时) 25

x Z /2

n
,x Z / 2

n
)(=x , x )
x
x
=(

30.38)30.2 0.1764 30.2 0.1764
)= (30.02,
即我们可以以95%的概率保证该厂零件平均长度在
30.02厘米到30.38厘米之间
2.总体方差未知时总体均值的区间估计
一、点估计
(一)概念
2.矩估计
矩估计法是用样本的矩去估计总体的矩,从而获得总 体有关参数的估计量的方法。矩是指以期望值为基础 定义的数字特征,如数学期望、方差、协方差等
由于区间估计所表示的是一个可能的范围,而不是一 个绝对可靠的范围。就是说,推断全及指标在这个范 围内只有一定的把握程度。用数学的语言讲,就是有 一定的概率。
即:抽样估计要求的把握度越高,则抽样允许误差越 大,精确度越低;反之则相反
**思考:在抽样调查中,如何同时提高抽样估计的精 确度和把握度?
区间估计的应用
(一)总体均值的区间估计
1.总体方差已知时
当 X ~ N( ,2 )时,来自该总体的简单随机样本x1 , x2 , , xn
的样本均值服从数学期望为 、方差 2 为的正态分布,将样本均值统计 量 x 标准化,得到 Z 统计量
(二)抽样估计的置信度与精确度 **
2.抽样估计的精确度:用置信区间的大小即抽样极
限/允许误差来表示
3.抽样估计的置信度与精确度的矛盾关系
在样本容量和其他条件一定的情况下,
若希望抽样估计有较高的可靠度,则必须扩大置信区 间,即必须降低估计的精确度
若希望抽样估计有较高的精确度,即置信区间范围缩 小,则必须降低估计的把握度
解:点估计法是用样本指标直接作为总体指标的代表 值,所以,全部电子元件的平均耐用时间即为4 340小 时;总体合格率为98%
7.2 区间估计
(一)区间估计的概念
根据样本统计量以一定的可靠程度去估计总体参数 值所在的范围或区间,是抽样估计的主要方法
(二)抽样估计的置信度与精确度
1.置信度:表示区间估计的可靠程度或把握程度,
也即所估计的区间包含总体参数真实值的可能性大小,
一般以1- 表示。其中 表示显著性水平,即某一小
概率事件发生的临界水平 置信度通常采用三个标准:
(1)显著性水平=0.05,即1- =0.95
(2)显著性水平=0.01,即1- =0.99 (3)显著性水平=0.001,即1- =0.999
第七章 参数估计
7.1 点估计 7.2 区间估计
一、点估计
(一)概念
1.点估计
设总体随机变量的分布函数已知,但它的一个或多 个参数未知,若从总体中抽取一组样本观察值,以该 组数据来估计总体参数,就称为参数的点估计
例如,在全部产品中,抽取100件进行仔细检 查,得到平均重量x=1002克,合格率p=98%, 我们直接推断全部产品的平均重量X=1002克, 合格率P=98%。

n
x
即抽样允许
1.总体方差已知时总体均值的区间估计
例题应用
[例7-3] 某厂生产的零件长度服从正态分布,从该 厂生产的零件中随机抽取25件,测得它们的平均长 度为30.2厘米。已知总体标准差 =0.45厘米 要求:(1)计算抽样平均误差和抽样允许误差
(2)估计零件平均长度的可能范围( =0.05)
**总体方差 2 未知,可以以样本方差S 2 代替,但新的统
计量不服从标准正态分布,而是服从自由度为n -1 t
的 分布
**给定置信度1- ,可查t 分布表确定临界值t / 2 (n 1)
从而总体均值的置信区间为:
(x t / 2
S n1 n
, x t / 2
S n1 n

相关文档
最新文档