材料力学(金忠谋)第六版课后习题及答案
材料力学(金忠谋)第六版答案第06章.doc
弯曲应力6-1 求图示各梁在m-m截面上A点的正应力和危险截面上最大正应力。
题6-1图解:(a)mKNMmm⋅=-5.2mKNM⋅=75.3max48844108.49064101064mdJx--⨯=⨯⨯==ππMPaA37.20108.490104105.2823=⨯⨯⨯⨯=--σ(压)MPa2.38108.4901051075.3823max=⨯⨯⨯⨯=--σ(b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。
解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。
试求梁内最大拉应力与最大压应力。
已知I z =10170cm 4,h 1=9.65cm ,h 2=15.35cm 。
材料力学(金忠谋)第六版答案-附录
材料力学(金忠谋)第六版答案-附录附录I 截面图形的几何性质I-1 求下列截面图形对z 轴的静矩与形心的位置。
解:(a ))2)2((2)2(2h t h b t h ht t h bt s z ++=⋅++=hb h t h b h b t h t h b t A s y zc +++=+++==2)2()()2)2((22(b )322332219211)}2)4()43()41()43(32(])4()43[(2{4442DD D D D D D D D D s z =--⨯-+⨯⨯-=ππDD D D D DAs y z c 1367.0])2()43[(2)44(219211223=-⨯+⨯==π(c )]22)[(22)(2h t t b t h ht t t t b s z +⋅-=⨯+⨯⨯-=tb)(2)(2t b h h t t b A s y z c -++-==I-2 试求(1)图示工字形截面对形心轴 y 及 z 的惯性矩zI 与I y 。
(2)图示 T 字形截面对形心轴的惯矩zI 与I y 。
解(a)12)2)((12)2)((123333t h t b bh t h t b bh J z ---=---=12))2(2(12))(2(1222333t t h b t t t h tb J y -+=-+=(b) cmy c 643.9)520515(2)515(552522=⨯+⨯-⨯+⨯=(b433423231615121551252010186520)643.91025(12205515)5.2643.9(12515cm J cm J y z =⨯+⨯==⨯⨯--+⨯+⨯⋅-+⨯=I-3 求图示椭圆截面对长轴的惯矩、惯性半径与对形心的极惯矩。
解:θθcos ,sin ⋅=⋅=a z b yθθd b dy cos = ⎰⎰--⋅==∴b bbbz zdyy dA y J 222322223224cos sin 2cos cos sin 2ab d abd b a b J bb z πθθθθθθθππ==⋅=⎰⎰--)(4)(42422333b a ab b a ab J J J b ab ab AJ i y z p zz +=+=+====ππππI-4 试求图示的41的圆面积(半径a )对于z ,yyy 轴的惯性积zyI 。
材料力学(金忠谋)第六版答案第03章
3-7图示轴的直径d=80mm,键的尺寸b=24mm,h=14mm,键的许用剪应力[τj]=40Mpa,许用挤压应力[σjy]=90Mpa。若通过键所传递的扭矩为3200N.m。试确定键的长度 。
解:
取
3-8销钉式安全联轴器如图所示.允许传递扭矩Mn=300N.m。销钉材料的剪切强度极限τb=360 MPa,轴的直径D=30mm。试确定销订的直径d。
解:
3-9冲床的最大冲击力为400 kN,冲头材料的许用应力[σ]=440MPa,被冲钢板的剪切强度极限 =360 MPa.求在最大冲力作用下所能冲剪的圆孔的最小直径d和的最大厚度t。
解:
3-10以楔C把钩杆AB固定联接于平板D的孔中。试求楔的尺寸:宽度δ,高度 以及钩杆的尾长 。设挤压许用应力[σjy]=320MPa,剪切许用应力[τj]=100MPa,P力可由钩杆中的抗拉许用应力[σ]=160MPa来求得。
=15.4mm
验算挤压应力
3-3图示直径为d的拉杆,其端头的直径为D,高度为h,试建立D、h与d的合理比值(从强度考虑)。
已知:[σ]=120 MPa,[τj]=90 MPa,[σjy]=240 MPa.
解:
3-4两根矩形截面木杆,用两块钢板连接在一起,受轴向载荷P=45kN作用。已知截面宽度b=25 cm,沿材的顺纹方向,许用拉应力[σ]=6MPa,许用挤压应力[σjy]=10 MPa,许用剪应力[τj]=1MPa,试确定接头的尺寸δ、 和h。
解:
解
3-5货轮的传动轴和艉轴系利用轴端凸缘法兰上的12只螺栓相联接,螺栓直径d=75 mm,螺栓中心圆的直径D=650 mm,已知传递的扭矩Mn=600 kN·m,螺栓和轴的材料均为35号钢,其许用应力[ ]=80Mpa,[σjy]=120MPa、试校核螺栓的剪切和挤压强度。
材料力学(金忠谋)第六版答案第14章
材料力学(金忠谋)第六版答案第14章第十三章 动载荷13-1 铸铁杆AB 长m l 8.1=,以等角速度绕垂直轴O -O 旋转如图示。
已知铸铁的比重3/74m kN =γ,许用拉应力[]MPa 40=σ,材料的弹性模量E =160 Gpa 。
试求此杆的极限转速,并计算此杆在转速m r n /100=时的绝对伸长。
解: (1) 极限转速m rn s s l g l g A A Ndl gA dr r qd r Nd x r gAdr ma r qd x r a jx dl n n 1092260137.114175.130799.010*******.92)2(][2][)2(21][)2(21)()()()()(235222222222====⨯⨯⨯⨯⨯=≤≤≤======⎰πωωγσωσωγσσωγωγω(2) 当n =1000m rcm m Eg l r EA r Nd l s n l 0252.01052.28.91016039.072.104107423)2(2)(2172.1046010002602492233220=⨯=⨯⨯⨯⨯⨯⨯⨯===∆=⨯==-⎰ωππω(2)吊索: MPa A P d d 55.2105276.14max=⨯==-σ13-3 轴上装一钢质圆盘,盘上有一圆孔。
若轴与盘以s140=ω的匀角速度旋转,论求轴内由这一圆孔引起的最大正应力。
解:23max max 22225.1212.021*********.01060041411060064003.03.047800640404.0mMN W M mN L P N Na gA ma P s m r a z d d d d n n d n =⨯⨯==⋅=⨯⋅===⨯⨯⨯⨯=⋅⋅⋅===⨯==πσπδγω13-4 飞轮轮缘的平均直径D =1.2m ,材料比重3/72m kN =γ,弹性模量GPa E 200=,轮缘与轮幅装配时的过盈量mmD2.0=∆,若不计轮相的影响,求飞轮允许的最大转速。
材料力学(金忠谋)第六版答案第02章
习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量E0.10 10 5MPa.如不计柱自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2) AC 段应力100 10 3 2.5 10 6 a 2.5 a0.2 2CB 段应力260 10 3 6.5 10 6 a 6.5a0.2 2( 3)AC 段线应变0.12.5 2.510 4N- 图105CB 段线应变0.16.5 6.510 4 105( 4)总变形 2.510 4 1.5 6.5 10 4 1.5 1.35 103 m2-2图 (a) 所示铆接件,板件的受力情况如图(b)所示.已知:P= 7 kN , t= 0.15cm, b1= 0.4cm,b2 =0.5cm, b3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(1)轴力图1 7(2) 1310 710 6194.4a0.40.15 22 7310 7 10 20.50.15 230.15 7107 100.6 266311.1a388.9 a 最大拉应力 max3388.9 a2-3 直径为1 cm 的圆杆, 在拉力 P = 10 kN 的作用下, 试求杆内最大剪应力, 以及与横截面夹角为= 30o 的斜截面上的正应力与剪应力。
解 :( 1) 最大剪应力max122 ( 2)30 界面上的应力2 10 10 710663.66a41 d 2121 cos 263.66395.49 a22sin 263.66 sin 3055.13 a22-4 图示结构中 ABC 与 CD 均为刚性梁, C 与D 均为铰接,铅垂力 P = 20kN 作用在 C 铰,若( 1)杆的直径 d 1=1cm ,( 2)杆的直径 d 2=2cm ,两杆的材料相同, E = 200Gpa ,其他尺寸如图示,试求( 1)两杆的应力;( 2) C 点的位移。
材料力学(金忠谋)第六版完整编辑版规范标准答案
解:(a):(I)截面:内力为零。
(II)截面:M = Pa(弯矩)
Q = -P(剪力)
(b):(I)截面:
(II)截面:
(c):(I)截面:
(II)截面:
1-3图示AB梁之左端固定在墙内,试求(1)支座反力,(2)1-1、2-2、3-3各横截面上的内力(1-1,2-2是无限接近集中力偶作用点.)
解:
(1)
(2)
即
解得
各杆的长度为
2-37图示三杆结构中,杆(1)是铸铁的,E1=120Gpa, =80MPa;杆(2)是铜的,EA=100GPa, =60Gpa;杆(3)是钢的,EA=200GPa, =120Mpa。载荷P=160kN,设A1:A2:A3=2:2:1,试确定各杆的截面积。
解:
各杆的应力关系为
解
(1)
(2)
2-11铰接的正方形结构如图所示,各杆材料皆为铸铁,许用拉应力[ +]=400kg/cm2,许用压应力[ ]=600kg/cm2,各杆的截面积均等于25cm2。试求结构的许用载荷P。
解:
AC、CB、BD、DA杆受拉力,大小为
DC杆受压力,大小为
得
得
故
2-12图示拉杆沿斜截面m-n由两部分胶合而成,设在胶合面上许用拉应力[ ]=100MPa,许用剪应力 =50MPa,胶合面的强度控制杆件的拉力,试求:为使杆件承受最大拉力P, 角的值应为多少?若横截面面积为4cm2,并规定 ,试确定许可载荷P。
解:
只计P时,有
只计2P时,有
且有
联立,解得
(方向水平向左) (方向水平向右)
(b)
材料力学(金忠谋)第六版答案第06章
弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。
题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。
解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。
试求梁内最大拉应力与最大压应力。
已知I z =10170cm 4,h 1=,h 2=。
材料力学(金忠谋)第六版答案第02章
习 题2-1 一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量51010.0⨯=E MPa .如不计柱自重,试求:(1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4) 柱的总变形.解:(1) 轴力图(2) AC 段应力a a MP P σ5.2105.22.010100623-=⨯-=⨯-= CB 段应力 a a MP P σ5.6105.62.010260623-=⨯-=⨯-=(3) AC 段线应变 45105.2101.05.2-⨯-=⨯-==E σε N-图CB 段线应变45105.6101.05.6-⨯-=⨯-==E σε (4) 总变形 m 3441035.15.1105.65.1105.2---⨯=⨯⨯-⨯⨯-=AB ∆2-2 图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7 kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(1)轴力图(2)a MP σ4.194101024.015.0767311=⨯⨯⨯⨯⨯=-a MP σ1.311101025.015.0767322=⨯⨯⨯⨯⨯=- a MP σ9.388101026.015.07673=⨯⨯⨯⨯=- 最大拉应力a MP σσ9.3883max == 2-3 直径为1cm 的圆杆,在拉力P =10 kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为α=30o 的斜截面上的正应力与剪应力。
解:(1) 最大剪应力a d MP ππP στ66.6310101102212672241max =⨯⨯⨯⨯===- (2) ︒=30α界面上的应力()a MP ασσα49.952366.632cos 12=⨯=+= a MP αστα13.5530sin 66.632sin 2=⨯=⨯=︒2-4 图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
材料力学(金忠谋)第六版答案第12章
(3)求 和 ,由
得
11-15桁架结构尺寸受载如图示,各杆的抗拉压刚度均相同,试求:(a)A点的铅直位移,(b)节点A和E之间的相对位移。
解:
各杆编号如图示,分别计算出外载内力 、A点作用铅直向下单位力时内力 及在节点A.E处分别加一单位力时各杆内力 ,列表计算如下:
解:
AE、AF、BE、BF各杆轴力为零,画 图;在A、B各点加一等值共线反向力“1”,各杆轴力均为“1”,作 图,如图示。
根据位移互等定理,若在A、B处加一对等值反向的力P,则
11-18试证明在图示两相同的悬臂梁上,图(a)截面A的挠度和图(b)截面B的挠度相等。
证明:在(a)图A点加单位力,在(b)图B点加单位力。
在图(a)中,
在图(b)中
证毕。
11-19图示刚架的各组成部分的抗弯刚度EI相同,抗扭刚度GIp也相同。在P力作用下,试求截面A和C的水平位移。
解:
AD段,
CD段,
DB段,
在A点作用一个水平单位力,如图,各段 均为零。
在C点作用一水平单位力,各段弯矩和扭矩分别为
AD段,
的EI、GIp相等,A处有一缺口,受一对垂直于刚架平面的铅直力P作用,试求缺口两侧的相对位移δ。
解:
11-13图示结构在截面C处受垂直集中力P的作用,试用能量法计算截面C的垂直位移。设BC杆的抗弯刚度为EI,AD杆的拉压刚度为EA,BD=DC=a。
解:
外力作用下得
在单位力(C点)作用下得
11-14图示桁架的各杆拉压刚度EA均相同,在P力作用下,求节点A的位移和AB杆
的转角。
材料力学(金忠谋)第六版答案第07章
习 题7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI 为常量。
7-1(a ) 0M()M x = ''0EJ M y ∴='0EJ M y x C =+ 201EJ M 2y x Cx D =++ 边界条件: 0x =时 0y = ;'0y = 代入上面方程可求得:C=D=0201M 2EJ y x ∴='01=M EJ y x θ= 01=M EJ B l θ 201=M 2EJ B y l(b )222()1M()222q l x qx x ql qlx -==-+- 2''21EJ 22qx y ql qlx ∴=-+-3'2211EJ 226qx y ql x qlx C =-+-+422311EJ 4624qx y ql x qlx Cx D =-+-++边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=04223111()EJ 4624qx y ql x qlx ∴=-+-'2231111=(-)EJ 226y ql x qlx qx θ=+- 3-1=6EJ B ql θ 4-1=8EJ B y ql(c )()()()()()0303''04'050()1()()286EJ 6EJ 24EJ 120l xq x q lq l x M x q x l x l x l q y l x l q y l x Cl q y l x Cx Dl-=-⎛⎫=--=-- ⎪⎝⎭∴=-=--+=-++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:4024q l C l -= 50120q l D l =()455000232230120EJ 24EJ 120EJ(10105)120EJq q l q l y l x x l l l q x l l lx x l ∴=---+-=-+- 3024EJ B q l θ=- 4030EJB q l y =-(d)'''223()EJ 1EJ 211EJ 26M x Pa Pxy Pa Pxy Pax Px C y Pax Px Cx D=-=-=-+=-++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=023'232321112611253262B C C B y Pax Px EJy Pax Px EJ Pa Pa Pay y a a EJ EJ EJPa EJθθθ⎛⎫∴=- ⎪⎝⎭⎛⎫==-⎪⎝⎭=+=+==(e)()()()21222''1'211231113()02()2223EJ 231EJ ()2231EJ ()46a M x q qax x a q M x a x a x a a y q qaxa y qa x x C a y qa x x C x D =-+≤≤=--≤≤=-+=-++=--+++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=0()()()22118492024EJ 12EJ qax qax y a x a x x a ∴=--=--≤≤''2223'222242232221EJ ((2)4)21EJ (42)2312EJ (2)2312y q a ax x x y q a x ax C x y q a x ax C x D =--+=--++=---+++边界条件:x a = 时 12y y = ;12θθ=代入上面方程可求得:2296a C = 4224qa D =-()()43223421612838464162384q y x ax a x a a a x a EJ-=-+-+≤≤43412476B B qa y EJqa EJθ=-=-(f)()()221222''212'231122341115()20225()2225251EJ 22251EJ 26511EJ 4324qa qx M x qax x a qa qa a M x qax x a x a a y q ax x a y q x ax x C a y q x ax x C x D =-+-≤≤⎛⎫=-+--≤≤ ⎪⎝⎭⎛⎫=--+ ⎪⎝⎭⎛⎫=--++ ⎪⎝⎭⎛⎫=--+++ ⎪⎝⎭边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C 1=D 1=0''22'2222223222EJ (2)1EJ (2)21EJ ()6y q a ax y q a x ax C y q a x ax C x D =--=--+=---++ 边界条件:x a = 时 12y y = ; ''''12y y =3296a C =- 4224a D =-437124136B B qa y EJqa EJθ=-=-7-2 用积分法求图示各梁的挠曲线方程,端截面转角θA 和θB ,跨度中点的挠度和最大挠度,梁的抗弯刚度EI 为常量。
材料力学(金忠谋)第六版答案第07章
244习题7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI 为常量。
7-1(a ) 0M()M x =''0EJ M y ∴='0EJ M y x C =+201EJ M 2y x Cx D =++ 边界条件: 0x =时 0y = ;'0y = 代入上面方程可求得:C=D=0201M 2EJ y x ∴='01=M EJ y x θ= 01=M EJ B l θ201=M 2EJ B y l(b )222()1M()222q l x qx x ql qlx -==-+- 2''21EJ 22qx y ql qlx ∴=-+-3'2211EJ 226qx y ql x qlx C =-+-+422311EJ 4624qx y ql x qlx Cx D =-+-++边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=04223111()EJ 4624qx y ql x qlx ∴=-+-245'2231111=(-)EJ 226y ql x qlx qx θ=+- 3-1=6EJ B ql θ4-1=8EJ B y ql(c )()()()()()0303''04'050()1()()286EJ 6EJ 24EJ 120l xq x q lq l x M x q x l x l x l q y l x l q y l x Cl q y l x Cx Dl-=-⎛⎫=--=-- ⎪⎝⎭∴=-=--+=-++边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:4024q l C l -=50120q l D l= ()455000232230120EJ 24EJ 120EJ(10105)120EJq q l q l y l x x l l l q x l l lx x l ∴=---+-=-+-3024EJ B q l θ=-4030EJB q l y =-(d)'''223()EJ 1EJ 211EJ 26M x Pa Pxy Pa Pxy Pax Px C y Pax Px Cx D=-=-=-+=-++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=024623'232321112611253262B C C B y Pax Px EJy Pax Px EJ Pa Pa Pay y a a EJ EJ EJPa EJθθθ⎛⎫∴=- ⎪⎝⎭⎛⎫==-⎪⎝⎭=+=+==(e)()()()21222''1'211231113()02()2223EJ 231EJ ()2231EJ ()46a M x q qax x a q M x a x a x a a y q qaxa y qa x x C a y qa x x C x D =-+≤≤=--≤≤=-+=-++=--+++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=0()()()22118492024EJ 12EJ qax qax y a x a x x a ∴=--=--≤≤''2223'222242232221EJ ((2)4)21EJ (42)2312EJ (2)2312y q a ax x x y q a x ax C x y q a x ax C x D =--+=--++=---+++ 边界条件:x a = 时 12y y = ;12θθ=代入上面方程可求得:2296a C =4224qa D =- ()()43223421612838464162384q y x ax a x a a a x a EJ-=-+-+≤≤24743412476B B qa y EJqa EJθ=-=-(f)()()221222''212'231122341115()20225()2225251EJ 22251EJ 26511EJ 4324qa qx M x qax x a qa qa a M x qax x a x a a y q ax x a y q x ax x C a y q x ax x C x D =-+-≤≤⎛⎫=-+--≤≤ ⎪⎝⎭⎛⎫=--+ ⎪⎝⎭⎛⎫=--++ ⎪⎝⎭⎛⎫=--+++ ⎪⎝⎭边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C 1=D 1=0''22'2222223222EJ (2)1EJ (2)21EJ ()6y q a ax y q a x ax C y q a x ax C x D =--=--+=---++ 边界条件:x a = 时 12y y = ; ''''12y y =3296a C =-4224a D =-437124136B B qa y EJqa EJθ=-=-7-2用积分法求图示各梁的挠曲线方程,端截面转角θA 和θB ,跨度中点的挠度和最大挠度,梁的抗弯刚度EI 为常量。
材料力学(金忠谋)第六版答案第08章
288习 题8-1 构件受力如图所示。
(1)确定危险点的位置;(2)用单元体表示危险点的应力状态。
解:(a ) 在任意横截面上,任意一点σσ24Pdσπ=(b ) 在BC 段的外表面处24Pdσπ=3316Mdτπ=τσ(c)A 截面的最上面一点στσ332Pldσπ=316Mdτπ=8-2 图示悬臂粱受载荷P =20kN 作用,试绘单元体A 、B 、C 的应力图,并确定主应力的大小及方位。
289解:σσ2620100060520106A M MPa W σ--⨯===-⨯⨯BσB σBτ2386282200005103052010620000557.5102250 2.25520105106B B B M y MPaJKPa MPa στ-----⨯⨯===-⨯⨯⨯⨯⨯⨯===⨯⨯⨯⨯Cτ4020000 1.51.5320510C C Q MPa A στ-=⨯===⨯⨯3σ1σστA <>点1306090σσα=== 1σ3σστB <>点130.16830.16885.7σσα==-=στ1σ3σC<>点133345σσα==-=-8—3 主应力单元体各面上的应力如图所示,试用解析法或图解法计算指定斜截面上的正应力ασ和剪应力ατ,并找出最大剪应力值及方位(应力单位:MPa)。
解:(a)()()1212205205cos2cos6013.752222MPa ασσσσσα+---+-=+=+=290291()12205sin 2sin 6010.82522MPa ασστα---=== ()max 20512.52MPa τ--==45α= (与120σ=方向夹角)(b)()()()121220102010cos 2cos 135 5.6062222MPa ασσσσσα+---+-=+=+-=-()()122010sin 2sin 13510.60622MPa ασστα---==-=-()max 2010152MPa τ--== 45α= (与1σ方向夹角)或135(与水平方向交角)(c )()121240104010cos 2cos 12017.52222MPaασσσσσα+-+-=+=+-= ()124010sin 2sin 12013.022MPa ασστα--==-=- max 4010152MPa τ-== 45α= (与140σ=方向夹角)(d) ()121220202020cos 2cos 45202222MPa ασσσσσα+-+-=+=+= 0ατ=max 0τ=8—4 单元体各面的应力如图示(应力单位为MPa ),试用解析法和图解法计算主应力的大小及所在截面的方位,并在单元体内注明。
材料力学(金忠谋)第六版答案第07章
习 题7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI 为常量。
7-1(a ) 0M()M x = ''0EJ M y ∴='0EJ M y x C =+ 201EJ M 2y x Cx D =++ 边界条件: 0x =时 0y = ;'0y = 代入上面方程可求得:C=D=0201M 2EJ y x ∴='01=M EJ y x θ= 01=M EJ B l θ 201=M 2EJ B y l(b )222()1M()222q l x qx x ql qlx -==-+- 。
2''21EJ 22qx y ql qlx ∴=-+-3'2211EJ 226qx y ql x qlx C =-+-+422311EJ 4624qx y ql x qlx Cx D =-+-++边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=04223111()EJ 4624qx y ql x qlx ∴=-+-'2231111=(-)EJ 226y ql x qlx qx θ=+- 3-1=6EJ B ql θ 4-1=8EJ B y ql(c )()()()()()0303''04'050()1()()286EJ 6EJ 24EJ 120l xq x q lq l x M x q x l x l x l q y l x l q y l x Cl q y l x Cx Dl-=-⎛⎫=--=-- ⎪⎝⎭∴=-=--+=-++】边界条件:0x = 时0y = ;'0y =代入上面方程可求得:4024q l C l -= 50120q l D l=()455000232230120EJ 24EJ 120EJ(10105)120EJq q l q l y l x x l l l q x l l lx x l ∴=---+-=-+- 3024EJ B q l θ=- 4030EJB q l y =-(d)'''223()EJ 1EJ 211EJ 26M x Pa Pxy Pa Pxy Pax Px C y Pax Px Cx D=-=-=-+=-++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=023'232321112611253262B C C B y Pax Px EJy Pax Px EJ Pa Pa Pay y a a EJ EJ EJPa EJθθθ⎛⎫∴=- ⎪⎝⎭⎛⎫==-⎪⎝⎭=+=+==(e)"()()()21222''1'211231113()02()2223EJ 231EJ ()2231EJ ()46a M x q qax x a q M x a x a x a a y q qaxa y qa x x C a y qa x x C x D =-+≤≤=--≤≤=-+=-++=--+++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=0()()()22118492024EJ 12EJ qax qax y a x a x x a ∴=--=--≤≤''2223'222242232221EJ ((2)4)21EJ (42)2312EJ (2)2312y q a ax x x y q a x ax C x y q a x ax C x D =--+=--++=---+++边界条件:x a = 时 12y y = ;12θθ=代入上面方程可求得:2296a C = 4224qa D =-()()43223421612838464162384q y x ax a x a a a x a EJ-=-+-+≤≤43412476B B qa y EJqa EJθ=-=-(f)!()()221222''212'231122341115()20225()2225251EJ 22251EJ 26511EJ 4324qa qx M x qax x a qa qa a M x qax x a x a a y q ax x a y q x ax x C a y q x ax x C x D =-+-≤≤⎛⎫=-+--≤≤ ⎪⎝⎭⎛⎫=--+ ⎪⎝⎭⎛⎫=--++ ⎪⎝⎭⎛⎫=--+++ ⎪⎝⎭边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C 1=D 1=0''22'2222223222EJ (2)1EJ (2)21EJ ()6y q a ax y q a x ax C y q a x ax C x D =--=--+=---++ 边界条件:x a = 时 12y y = ; ''''12y y =3296a C =- 4224a D =-437124136B B qa y EJqa EJθ=-=-7-2 用积分法求图示各梁的挠曲线方程,端截面转角θA 和θB ,跨度中点的挠度和最大挠度,梁的抗弯刚度EI 为常量。
材料力学(金忠谋)第六版答案第10章
材料力学(金忠谋)第六版答案第10章第十章组合变形的强度计算10-1图示为梁的各种截面形状,设横向力P 的作用线如图示虚线位置,试问哪些为平面弯曲?哪些为斜弯曲?并指出截面上危险点的位置。
(a)(b) (c) (d)斜弯曲平面弯曲平面弯曲斜弯曲弯心()()弯心弯心()()斜弯曲 弯扭组合平面弯曲 斜弯曲 “×”为危险点位置。
10-2矩形截面木制简支梁AB ,在跨度中点C 承受一与垂直方向成ϕ=15°的集中力P =10 kN 作用如图示,已知木材的弹性模量MPa100.14⨯=E 。
试确定①截面上中性轴的位置;②危险截面上的最大正应力;③C 点的总挠度的大小和方向。
解:66.915cos 10cos =⨯== ϕP P y KN 59.215sin 10sin =⨯== ϕP P z KN4310122015=⨯=z J4cm3310cm Wz=10-3 矩形截面木材悬臂梁受力如图示,P 1=800 N ,P 2=1600 N 。
材料许用应力[σ]=10MPa ,弹性模量E =10GPa ,设梁截面的宽度b 与高度h 之比为1:2。
①试选择梁的截面尺寸;②求自由端总挠度的大小和方向。
解:(I )6.112m ax=⨯=P Mz KN6.120max=⨯=P M y KN322326)2(6bb b bh W z ===33231626bb bh W y ===hbP 220cm15cm[]633133323m ax m ax m ax1010106.1106.1⨯=≤⨯+⨯=+=σσb b W M W M Y y z zb = 9 cm , h = 18 cm (II)cm m EJ P EJ P EJ P f zz y 97.11097.11213132223232231=⨯⎪⎪⎭⎫⎝⎛⨯⨯+⨯+⎪⎪⎭⎫ ⎝⎛⨯=-1.81,305.095.1tan ===ααy z f f10-4简支梁的受力及横截面尺寸如图示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
(1) ∆l1
=
1 3
Ρxl1
Ε 1Α1
∆l1 = ∆l2 x = 0.6m
∆l 2
=
1 3
Ρ (3 − x)l2
Ε 2Α2
(2) Ρ ≤ 3Ε1Α1 = 3× 200 × 2 ×10−1 = 200ΚΝ
xl1
0.6× 2
2-11 铰接的正方形结构如图所示,各杆材料皆为铸铁,许用拉应力[σ +]=400kg/cm2, 许用压应力[σ − ]=600kg/cm2,各杆的截面积均等于25cm2。试求结构的许用载荷P。
习题
2-1 一木柱受力如图示,柱的横截面为边长20cm的正方形,材料服从虎克定律,其
弹性模量 E = 0.10 ×105 MPa.如不计柱自重,试求:
(1) (2) (3) (4)
作轴力图; 各段柱横截面上的应力; 各段柱的纵向线应变; 柱的总变形.
解:
(1) 轴力图
(2) AC 段应力
σ
=
−100 ×103 0.2 2
= −2.5×106 Ρa = −2.5ΜΡa
CB 段应力
σ
=
− 260 ×103 0.2 2
= −6.5×106 Ρa = −6.5ΜΡa
(3) AC 段线应变
ε = σ = −2.5 = −2.5×10−4 Ε 0.1×105 CB 段线应变
ε
=σ Ε
=
−6.5 0.1×10 5
解:
AC、CB、BD、DA 杆受拉力,大小为 Τ1 =
Ρ 2
DC 杆受压力,大小为 Τ2 = Ρ
[σ
+
]≥
Τ1 Α
得 Ρ1 ≤ 2 × 400 × 25 = 14142kg
[σ
−
]
≥
Τ2 Α
得 Ρ2 ≤ 600 × 25 = 15000kg
故 Ρ ≤ 14142kg 2-12 图示拉杆沿斜截面m-n由两部分胶合而成,设在胶合面上许用拉应力[ σ ]=
= −20396Ν
σ BC
=
Ν BC Α1
= 8000 × 4 ×10−2 π
= 101.9ΜΡ
σ CD
= σ CE
=
Ν CD Α2
=
−
20396 × 22π
4
× 10 −2
= −64.9ΜΡ
(2) 被压试件的缩短量
∆l = Νl = 8000 / 0.2 × 2 ×10−7 = 0.01cm
ΕΑ
100MPa,许用剪应力[τ ]=50MPa,胶合面的强度控制杆件的拉力,试求:为使杆件承受
最大拉力P,α 角的值应为多少?若横截面面积为4cm2,并规定α ≤ 600 ,试确定许可载
荷P。 解:
(1) tgα = τα = 50 = 0.5 σ α 100
α = 26.5° 时杆件承受最大拉力。
(2)
σ 2
(1+ cos 2α ) = 63.66× 3
2
= 95.49ΜΡa
τα
= σ × sin 2α 2
= 63.66 × sin 30°
= 55.13ΜΡa
2-4 图示结构中ABC与CD均为刚性梁,C与D均为铰接,铅垂力P=20kN作用在C铰,
若(1)杆的直径d1=1cm,(2)杆的直径d2=2cm,两杆的材料相同,E=200Gpa,其他
= −6.5×10−4
N-图
(4) 总变形 ∆ΑΒ = −2.5×10−4 ×1.5 − 6.5×10−4 ×1.5 = 1.35×10−3 m
2-2 图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P=7 kN,t=0.15cm, b1=0.4cm,b2=0.5cm,b3=0.6cml。试绘板件的轴力图,并计算板内的最大拉应力。 解:
尺寸如图示,试求(1)两杆的应力;(2)C点的位移。
解 (1) 1 杆的应力
σ (1)
=
Ρ
1 4
πd12
4 π
× 20 ×12
×10
7
×10 −6
=
254.6ΜΡa
2 杆的应力
σ (2)
=
2Ρ
1 4
πd
2
2
2× 20 π ×22
×10 7
×10 −6
= 127.3ΜΡa
(2) C 点的位移
∆ l1
=
(1)轴力图
(2) σ 1
=
1 3
×
7
×10 7
0.15× 0.4× 2
×10 −6
= 194.4ΜΡa
σ
2
=
2 3
×
7
0.15× 0.5× 2
×10 7
×10 −6
=
311.1ΜΡa
σ3
=
7
×10 7
0.15× 0.6× 2
×10 −6
=
388.9ΜΡa
最大拉应力 σ max = σ 3 = 388.9ΜΡa
2-3 直径为1cm的圆杆,在拉力P=10 kN的作用下,试求杆内最大剪应力,以及与
横截面夹角为α =30o的斜截面上的正应力与剪应力。
解:
(1)
最大剪应力τ max
=σ 2
=
1 2
Ρ
1 4
πd
2
=
2 π
×10 ×12
×10
7
×10 −6
= 63.66ΜΡa
(2) α = 30° 界面上的应力
σα
=
13 ×150 = 67.6ΚΝ 8
σ C1D1
= 187.5 ×10 = 93.75ΜΡa 20
σ A1C1
= σ B1C1
=
67.6 ×10 = 67.60ΜΡa 10
各杆的伸长为
∆C1D1
=
93.75× 5 200
= 2.344mm
2-18 试求下列各简单结构中节点A的位移,设各杆的抗拉压刚度均为EA。
解:
(a) AC 杆受力为零,BA 杆伸长为
∆l AB
=
Ρl ΕΑ cosα
A 点沿 BA 方向移动
∆A
=
∆l AB sin α
= 2Ρl ΕΑ sin 2α
(b) AB 杆受拉力为 P,BC 杆受拉力为 P,BD 杆受压力为 2 P
10 × 4
2-16 设水平刚性杆AB不变形,拉杆CD的直径d=2cm,许用应力[σ ]=160MPa,材料
的弹性模量E=200GPa,在B端作用载荷P=12kN.试校核CD杆的强度并计算B点的位移.
解:
Ν CD
=
12 × 2.5 3/2
=
34.64ΚΝ
σ CD
=
Ν CD Α
=
4 × 34.64 ×101 4π
若螺栓材料的许用应力[σ ]=40 MPa,求螺栓的内径d.
解
Ρ = π pD 2 4
Ρ ≤ 6 × π [σ ]d 2
4
∴d ≥
pD 2
6[σ ]
=
3502 = 22.59mm 6 × 40
2-14 试确定轧钢机承压装置安全螺栓的直径d,当P=6000kN时,螺径即行断裂,其
材料的强度极限σ b =600 Mpa。各接触面间的摩擦力可不计。 解: 螺栓所受的拉力为 R = Ρ
σ (1) Ε
l1
=
254.6 200 ×103
×2
=
2.546 ×10−3 m
=
0.2546cm
∆l 2
=
σ (2) Ε
l2
=
127.3 200 ×103
×2
= 1.273×10−3 m
=
0.1273cm
∆c = 2∆2 + ∆1 = 0.509cm
2-5 某铣床工作台进给油缸如图示,缸内工作油压 p = 2MPa ,油缸内径D=7.5cm,
2) PL EA
垂直位移 ∆ A2 = ∆ B1 + ∆ AB = 2(1 +
2) PL EA
2-19 水平刚性梁ABCD在B、D两点用钢丝绳悬挂,尺寸及悬挂方式如图示,E、F两
处均为无摩阻力的小滑轮。若已知钢丝绳的横截面面积A=1.0cm2,弹性模量E=200GPa,
铅垂载荷P=20kN作用于C点,试求C点的铅垂向位移。
解 钢丝绳的拉力为 T,则 5T + 9T = 8P
T = 11.429ΚΝ 钢丝绳的伸长
∆l = Tl = 11.429 ×8 ×101 = 4.57mm EA 200×1
∆B
+
9 5
∆B
=
∆l
∆B
=
5 14
∆l
C 点铅垂直位移为
∆C
=
8 5
∆B
= 2.61mm
2-20 图示空间简单桁架,三杆均由钢制成,杆A1C1与杆B1C1的截面积 A=10cm2,
解: Ρ ≤ πd 2 [σ ] = π ×1102 × 50 ×10 = 369.5ΚΝ
4
4
2-10 吊架结构的尺寸及受力情况如图示。水平梁AB为变形可忽略的粗刚梁,CA是钢
杆,长 l1 =2 m,横截面面积A1=2 cm2,弹性模量E1=200Gpa;DB是钢杆,长 l2 =1m,
横截面面积A2=8cm2,弹性模量E2=100Gpa,试求: (1)使刚性梁AB仍保持水平时,载荷P离DB杆的距离x; (2)如使水平梁的竖向位移不超过0.2cm,则最大的P力应为多少?
∆ AB
=
PL EA
∆ BC
=
PL EA
由几何关系,得 B 点位移
∆ BD =