大学物理课后习题答案.A1-8
《大学物理教程》郭振平主编第四章光的衍射课后习题答案
第四章 光的衍射一、基本知识点光的衍射:当光遇到小孔、狭缝或其他的很小障碍物时,传播方向将发生偏转,而绕过障碍物继续前行,并在光屏上形成明暗相间的圆环或条纹。
光波的这种现象称为光的衍射。
菲涅耳衍射:光源、观察屏(或者是两者之一)到衍射屏的距离是有限的,这类衍射又称为近场衍射。
夫琅禾费衍射:光源、观察屏到衍射屏的距离均为无限远,这类衍射也称为远场衍射。
惠更斯-菲涅耳原理:光波在空间传播到的各点,都可以看作一个子波源,发出新的子波,在传播到空间某一点时,各个子波之间可以相互叠加。
这称为惠更斯-菲涅耳原理。
菲涅耳半波带法:将宽度为a 的缝AB 沿着与狭缝平行方向分成一系列宽度相等的窄条,1AA ,12A A ,…,k A B ,对于衍射角为θ的各条光线,相邻窄条对应点发出的光线到达观察屏的光程差为半个波长,这样等宽的窄条称为半波带。
这种分析方法称为菲涅耳半波带法。
单缝夫琅禾费衍射明纹条件:sin (21)(1,2,...)2a k k λθ=±+=单缝夫琅禾费衍射暗纹条件:sin (1,2,...)a k k θλ=±=在近轴条件下,θ很小,sin θθ≈, 则第一级暗纹的衍射角为 1aλθ±=±第一级暗纹离开中心轴的距离为 11x f faλθ±±==±, 式中f 为透镜的焦距。
中央明纹的角宽度为 112aλθθθ-∆=-=中央明纹的线宽度为 002tan 2l f f faλθθ=≈∆=衍射图样的特征:① 中央明纹的宽度是各级明纹的宽度的两倍,且绝大部分光能都落在中央明纹上。
② 暗条纹是等间隔的。
③ 当入射光为白光时,除中央明区为白色条纹外,两侧为由紫到红排列的彩色的衍射光谱。
④ 当波长一定时,狭缝的宽度愈小,衍射愈显著。
光栅: 具有周期性空间结构或光学性能(透射率,反射率和折射率等)的衍射屏,统称为光栅。
光栅常数: 每两条狭缝间距离d a b =+称为光栅常数。
大学物理第8章 稳恒磁场 课后习题及答案
*作品编号:DG13485201600078972981* 创作者: 玫霸*第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。
AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB)180cos 150(cos 60cos 400︒︒-=R Iπμ)231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B 环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为 x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。
物理学课后练习1-8标准答案
物理学课后练习1-8标准答案1. 答案:根据牛顿第一定律,物体将保持其静止或匀速直线运动的状态,除非有外力作用于它。
因此,物体在没有外力作用的情况下,会保持原来的运动状态。
2. 答案:重力是地球对物体施加的吸引力。
根据牛顿第二定律,物体受到的重力大小等于其质量乘以重力加速度。
重力加速度在地球上约为9.8m/s^2。
3. 答案:动能是物体由于其运动而具有的能量。
动能的大小等于物体的质量乘以速度的平方再除以2。
公式为:KE = 1/2 * m *v^2。
4. 答案:弹性势能是指物体由于被压缩或拉伸而储存的能量。
弹性势能的大小与物体的弹性系数和物体的形变程度有关。
公式为:PE = 1/2 * k * x^2,其中k为弹性系数,x为形变程度。
5. 答案:冲量是力对物体的作用时间的乘积。
冲量等于力在作用时间上的积分,可以表示为冲量等于质量乘以速度变化量。
公式为:I = F * Δt = m * Δv。
6. 答案:功是力对物体的作用所做的功或能量变化。
当力沿物体的运动方向时,功的大小等于力与移动距离的乘积。
公式为:W = F * d * cosθ,其中F为力,d为移动距离,θ为力和物体运动方向的夹角。
7. 答案:机械波是通过介质传播的波动。
机械波的传播需要介质的存在,介质中的粒子通过振动传递能量。
典型的机械波包括声波和水波。
8. 答案:电磁波是由电场和磁场交替产生的波动现象。
电磁波可以在真空中传播,不需要介质的存在。
典型的电磁波包括无线电波、微波、可见光、紫外线、X射线和γ射线。
以上为物理学课后练习1-8的标准答案。
希望对你有帮助!。
大学物理教程课后习题答案
物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。
解:(1)由运动方程消去时间t 可得轨迹方程,将t =21)y =或 1=(2)将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小231r =+=(3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。
求(1)质点的速度;(2)速率的变化率。
解 (1)质点的速度为sin cos d rv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dv dt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。
求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。
解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解
3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
最新大学物理课后习题答案(赵近芳)下册
习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,S q E 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p ϖϖ=,场点到偶极子中心O 点的距离为r ,矢量rϖ与l ϖ的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin rp πεθ证: 如题8-5所示,将p ϖ分解为与r ϖ平行的分量θsin p 和垂直于r ϖ的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量3π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=l Qx E 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E ϖd 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴24π4d2222lrllrEP++=ελPEϖd在垂直于平面上的分量βcosddPEE=⊥∴424π4d222222lrrlrlrlE+++=⊥ελ题8-8图由于对称性,P点场强沿OP方向,大小为2)4(π44d42222lrlrlrEEP++=⨯=⊥ελ∵lq4=λ∴2)4(π42222lrlrqrEP++=ε方向沿OP8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该平面轴线上的A点处,求:通过圆平面的电通量.(xRarctan=α)解: (1)由高斯定理dεqSEs⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E ϖϖ)(21210σσε-=1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+=n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ϖ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=ϖ∴ O 点电场'd33030OO r E ερ=ϖ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ (如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εεϖϖ)11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势. 解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r rq r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q p ϖϖ=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=2220π4π4d d R R R qr r q r E U εεϖϖ (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r qq F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持UU AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 S qd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sϖϖd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εεϖϖϖϖ==内; 介质外)(2R r <场强303π4,π4rr Q E r Qr D εϖϖϖ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.rd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r rQ E εϖϖ= 3R r >时 302π4r rQ E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E εϖϖ=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度Bϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场? 答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0 但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理1-6章课后习题答案1
二、课后习题解答1-1、一飞轮直径为0.2m ,质量为5.00kg ,t 边缘饶一轻绳,现用恒力拉绳子的一端,使其有静止均匀地加速,经0.50s 转速达10转/s 。
假定飞轮可看作实心圆柱体。
求; 飞轮的角加速度及在这段时间转过的转数 拉力及拉力所做的功从拉动后t=10s 时飞轮的角速度及边缘上一点的速度和切向加速度及发向速度。
解:,/1058.1,/6.12,/126,/1026.1)3(3.4921212125232202s m r a s m r a s m r v s t J J J J A t n t t z z z ⨯======⨯====-=ωβωβωωωωτ1-2、有一根长为l 、质量为m 的匀质细杆,两端各牢固的连接一个质量为m 的小球,整个系统可绕一过O 点并垂直于杆的水平轴无摩察的转动,如图。
当系统转到水平位置时,求: 系统所受的和力矩 系统的转动惯量 系统的角加速度解: (1)设垂直纸面向里为z 轴的正方向(即力矩的正方向),合力矩为两小球及杆的重力矩之和。
mgl M M M M lmg r g dr rg rgdm M l mlmg M lmg M F r M z z zz l l l l z zzz 4341243,4190,4/34/24/34/0=+'+'=∴======'-='=⨯=--⎰⎰杆右左杆右左杆所受重力矩:其中两小球所受重力矩:ρρρθ224/34/34/34/24/34/222483748731)41(,)43()2(ml J J J J ml r dr r dm r J l m J l m J z z zz l l l l l l z z z=+'+'=∴====='='---⎰⎰杆右左杆右左杆的转动惯量:两小球的转动惯量:转动惯量之和,小球的转动惯量和杆的系统的转动惯量等于两λλ(3)由转动定理lg J M J M z z z z 3736==⇒=ββ1-3、有一质量为m 1、 m 2(m 1>m 2)两物体分别悬挂在两个半径不同的组 合轮上,如图。
大学物理课后习题及答案
习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 t v mma f d d == 即 tvm kv d d ==-所以 t m kv v d d -=对等式两边积分 ⎰⎰-=tv v t m k v v 0d d 0得 t mkv v -=0ln因此 t m kev v -=0(2) 由牛顿第二定律 x vmv t x x v m t v m ma f d d d d d d d d ==== 即 x vmv kv d d =-所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到 0v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即 tvm ma kv F mg d d ==--整理得mtkv F mg v d d =-- 对上式两边积分⎰⎰=--t vmt kv F mg v00d d得 mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
大学物理习题集1-8答案
物理习题解答(48学时)注意:题号为红色字体的题目或者是标注过了解的计算题进行了解即可。
第一章 质点运动学一、选择题:1(D ),2(D ), 3(C ), 4(B ), 5(D ), 6(B ), 7(B ), 8(B ),9(D ), 10(C ), 11(B ), 12(C ) 二、填空题:1、 )]()5cos()5sin([50SI j t i t+-, 0, 圆;2、]sin 2cos )[(22t t Aetωβωωωββ+--, 2,1,0)21(=+n n ωπ;3、tS ∆,t v ∆-02 ;4、24020)(,R bt v b bt v +++;5、)/(4,1622s rad Rt ; 6、(1),(3),(4);7、)1(22S S +;8、)(4SI j i +-; 9、)/(20s m ;10、)/(1.02s m ;11、)(1,)(,2RC b cRct b c ±--;12、)/(20),/(3.17s m s m三、计算题1.解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=.2.解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvtdt dv 04, 22t v =22/t dt dx v ==⎰⎰=xtdt t dx 10022)(103/23SI t x +=.3.(了解)解:(1)t v x 0=, 221gt y =轨迹方程是:2022/v g x y =.(2)0v v x =, gt v y =.速度大小为: 222022t g v v v v y x +=+=.方向为:与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v 同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.4.解:由t kv dt dv 2/-=ktdt v dv -=2 积分:⎰⎰-=tdt k vdv2 C kt v +-=-2211当0=t 时,0v v = 01v C -=∴ 得:21211v kt v += 5.解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x vdx x vdv 020)62(s m x x v /)(22/13+=6.解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v大小未知,方向与竖直方向夹030牵连速度:s m v s s /35=',方向水平; 相对速度:s p v '大小未知,方向偏向车后045.ss '由速度合成定理:s s s p ps v v v ''+=由矢量关系式画出矢量图,由几何关系可得:3530sin 30cos 00=+ps ps v vs m v ps /6.25=.第二章 牛顿定律一、选择题:1(B ),2(D ), 3(E ), 4(C ), 5(B ), 6(C )。
大学物理课后习题答案(高教版 共三册)(2020年7月整理).pdf
直的平面上有一点 P,它到板的距离为 x 。求 P 点的磁感应强度的大小。
解: 取如图坐标系,在电流平板上取一条形平面,其在 P 点产生的磁场为
dB = 0dI =
0
I0 2a
dy
,
dB
的方向垂直
r
。
2r 2 x2 + y 2
由于电流平板相对 x 轴对称,所以在 P 点的总磁感应强度 B
x 轴的分量: Bx = dBx = 0 ;
B = 0 I (3 + 2 ) 4 2a b
6、如图,流出纸面的电流为 2I,流进纸面的电流为 I, 请写出每一个线圈中的环路公式。 解:根据线圈的绕向和线圈中电流和的方向是否满足右 手螺旋定则来判断。
L1
2I
L3
I L2
L4
所以由磁场中的安培环路定理有:
(A) H • dl = −2I
(B) H • dl = −I
解: 因为截流圆线圈轴线上的磁场
B=
0 IR2
3
2(R2 + x2 ) 2
而 I = 2R 2 = R
B
=
Bx
=
0 R 3
2(R2
+
x
2
)
3 2
,B
的方向与 x
轴的正方向一致。
x
o
R
ω
14、设氢原子基态的电子轨道半径为 a0,求由于电子的轨道运动(如图)在原子核处(圆心处)
产生的磁感强度的大小和方向. 解:①电子绕原子核运动的向心力是库仑力提供的.
值不为零。
18、如图所示,一无限长载流平板宽度为 a,线电流密
度(即沿 x 方向单位长度上的电流)为 ,求与平板共面且
大学物理第五版课后答案(上)完整版
1-1 。
分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1-2。
分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1-3 。
分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 。
分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 。
大学物理学(课后答案)第8章剖析
B( p2,V 2)
A(p1,V1)
0
V
习题 8-11 图
解 根据热力学过程系统作功的特征知 A B 过程中系统对外作的功为
1
W
(V2 V1)( p1 p2 )
2
内能的变化为
3
3
3
E vR T vR(T2 T1) ( p2V2 p1V1)
2
2
2
由热力学第一定律知吸收的热量
QW
1 E 2( p2V2 p1V1 ) ( p1V2 p2V1)
又由热力学第一定律 Q W E ,知其内能的改变为
E Q W 1.21 103 J 8-13 如图 8-13 所示,系统从状态 A 沿 ABC 变化到状态 C 的过程中,外界有 326 J 的热量传递给系统, 同时系统对外作功 126 J 。如果系统从状态 C 沿另一曲线 CA 回到状态 A,外界对系统作功为 52 J ,则此过程中系统是吸热还是放热?传递热 量是多少?
p/(10 5Pa)
A 2
1
B
C
0
2
4 V /(10–2m3)
习题 8-15 图
解 ( 1)沿 AB 作等温膨胀的过程中,由等温膨胀过程作功特征,系统作功为
WAB vRT ln VB VA
pAVA ln VB 2.77 10 3 J VA
同时因等温过程中 QT WT ,故该过程中系统吸收的热量为 QAB WAB 2.77 103 J
气体)。开始时它们的压强和温度都相同。现将 3 J 热量传给氦气,使之升高到
一定的温度。若使氢气也升高同样的温度,则应向氢气传递热量为 [ ]
(A) 6 J
(B) 3 J
(C) 5 J
(D) 10 J
2012级大学物理A1练习题(马文蔚5版,上(1-8章))
2012级大学物理A1练习题(马文蔚5版,上)一.填空题质点力学与刚体定轴转动质点运动学1. 已知质点运动方程为: j i r )314()2125(32t t t t ++-+=(SI ),当t=2s 时,加速度a = 。
2. 质点沿半径为R 的圆周运动,运动学方程为 223t +=θ (SI) ,则t时刻质点的法向加速度大小为a n = ,法向加速度大小为 ,角加速度β= 。
3. 一质点沿x 方向运动,其加速度随时间变化关系为a=3+2t (SI ),如果初速度V 0=5m/s ,则当t 为3s 时,质点的速度V= 。
4. 一质点速率v 与路程s 的关系为:v=1+s 2(SI ),则其切向加速度以路程s 表示的表达式为:a t = 。
5. 一质量为5kg 的物体在平面上运动,其运动方程为j t i r 236-=,式中j i ,分别为X 、Y 轴正方向单位矢量,则物体所受的合外力F 的大小为 N ;方向为 。
6. 已知一质点沿直线运动,其加速度a= - kv ,其中 k 为正值的常量,t = 0 时,质点速度为 v 0,则任意 t 时刻质点的速度v= 。
7. 质量为M 的车以速度v 沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度为 。
8. 在xy 平面内有一运动质点,其运动方程为:j t i t r 5sin 105cos 10+= (SI),则t 时刻其切向加速度的大小a τ =________.9. 一质点作半径为 0.1 m 的圆周运动,其运动方程为:2214πt +=θ (SI) ,则其加速度大小为a = . 质点动力学10. 某质点在力 F =(4+5x )i (SI) 作用下沿x 轴作直线运动 ,在从x =0移动到x =10m 的过程中,力F所做的功为__________ 。
11. 两弹簧质量忽略不计,原长都是10cm ,第一个弹簧上端固定,下挂一个质量为m 的物体后,长为11cm ,而第二个弹簧上端固定,下挂一个质量为m 的物体后,长为13cm 。
大学物理教材课后习题参考答案
1.7 一质点的运动学方程为22(1,)x t y t ==-,x 和y 均以为m 单位,t 以s 为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v 和加速度a 。
解:(1)由运动学方程消去时间t 可得质点的轨迹方程,将t =21)y = 或1=(2)对运动学方程微分求速度及加速度,即 2x dx v t dt == 2(1)y dyv t dt==- 22(1)v ti t j =+- 22y x x y dv dva a dtdt==== 22a i j =+当t=2s 时,速度和加速度分别是42v i j =+ /m s 22a i j =+ 2/m s1.8 已知一质点的运动学方程为22(2)r ti t j =+- ,其中, r ,t 分别以 m 和s 为单位,试求:(1) 从t=1s 到t=2s 质点的位移;(2) t=2s 时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy 平面内画出质点运动轨迹,并在轨迹图上标出t=2s 时,质点的位矢r,速度v 和加速度a 。
解: 依题意有 x = 2t (1) y = 22t - (2)(1) 将t=1s,t=2s 代入,有(1)r = 2i j + , (2)42r i j =-故质点的位移为 (2)(1)23r r r i j ∆=-=-(2) 通过对运动学方程求导可得22dx dy v i j i t j dt dt =+=- 22222d x d y a i j j dt dt=+=-当t=2s 时,速度,加速度为 24v i j =- /m s 2a j =- 2/m s(3) 由(1)(2)两式消去时间t 可得质点的轨迹方程 22/4y x =- (4)图略。
1.11 一质点沿半径R=1m 的圆周运动。
t=0时,质点位于A 点,如图。
然后沿顺时针方向运动,运动学方程2s t t ππ=+,其中s 的单位为m ,t 的单位为s ,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。
大学物理课后习题8第八章答案
4 0me
(5)一正方形线圈,由细导线做成,边长为 a ,共有 N 匝,可以绕
通过其相对两边中点的一个竖直 轴自由转动.现在线圈中通有电流 I ,并
把线圈放在均匀 的水平外磁场 B 中,线圈对其转轴的转动惯量为 J .求线
圈磁矩与磁场 B 的夹角为 时,线圈受到的转动力矩为
[答案:(1) 6.67 106 T , 7.20 1021 A.m2 ]
(4)氢原子中,电子绕原子核沿半径为 r 的圆周运动,它等效于一 个圆形电流.如果外加一个磁感强度为 B 的磁场,其磁感线与轨道平面平 行,那么这个圆电流所受的磁力矩的大小 M =____________________.(设 电子质量为 me,电子电荷的绝对值为 e)
(3) b r c
B2r
0 I
r2 c2
b2 b2
பைடு நூலகம்
0I
B
0 I (c2 2r(c 2
r2) b2 )
(4) r c B2r 0
B0
题 8.11 图
无题图(应删掉)
题 8.12 图
8.12 在磁感应强度为 B 的均匀磁场中,垂直于磁场方向的平面内有
一段载流弯曲导线,电流为
I
解:在曲线上取 dl ,则
Pm // B
M 0.
8.14 一铜片厚为 d=1.0mm,放在 B=1.5T 的均匀磁场中,磁场方向与 铜片表面垂直。一直铜片内每立方厘米中有 8.4 1022 个自由电子,每个电 子的电荷为 e 1.6 1019C ,当铜片中垂直于磁场方向通有 I=200A 的电流 时,求铜片两侧的霍尔电势差。
题8.7 图 解:如题 8.7 图所示, BA 方向垂直纸面向里
大学物理学课后习题答案
习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理上册课后练习答案解析
初速度大小为dt1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。
现测得其加速度 a = A-B V ,式中A 、1-1 已知质点的运动方程为:x 10t30t 2 ,y 15t 20t 2。
式中x 、y 的单位为m , t 的单位为s 。
试求: (1)初速度的大小和方向;(2)加速度的大小和方向。
分析由运动方程的分量式可分别求出速度、 加速度 分析本题亦属于运动学第二类问题,与上题不同之 处在于加速度是速度 V 的函数,因此 需将式d V = a (V )d t 分离变量为-d ^ dt 后再两边积分.a(v)的分量 再由运动合成算出速度和加速度的大小和方向. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.vdv dv v 0A Bv(3)船在行驶距离 x 时的速率为v=v 0e kx 。
一 dv[证明](1)分离变数得 — kdt ,v第一章质点的运动B 为正恒量,求石子下落的速度和运动方程。
解(1)速度的分量式为Vv y当 t = 0 时,V o x = -10 m sdx10 60tdt dy15 40t dt-1, V o y = 15 m-1(1)由题dvadt 用分离变量法把式 A Bv(1)改写为dvA Bv将式(2)两边积分并考虑初始条件,有(1)dt ⑵V 0 V 0x V 0y 18.0m得石子速度 V -(1 e Bt)B 设V o 与x 轴的夹角为a 则tanV 0y V ox由此可知当,t is 时,v A为一常量,通常称为极限速度Ba= 123 °1(2)加速度的分量式为a x dV x dt 60a ydV y dt40或收尾速度.(2)再由v—y —(1 e 氏)并考虑初始条件有dt BytABtdy -(1 e )dt 0 0 BA A得石子运动方程y t 2 (e Bt 1)B B 2则加速度的大小为 a .. a x 2a y 272.1 ms 2a y2 设a 与x 轴的夹角为B,则tan B -a x3B= -33 °1 '(或326 °9 )1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于 阻力得到一个与速度反向、 大小与船速平方成正比例的加 速度,即a = - kv 2, k 为常数。
大学物理课后习题答案详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置 : 22(48)r ti t j =+-由d /d v r t =则速度: 28v i tj =+由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+=当t=2s 时,有 48,216,8r i j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解: kv dtdv -= ⎰⎰-=t v v kdt dv v 001 t k e v v -=03、一质点沿x 轴运动,其加速度为a ? 4t (SI),已知t ? 0时,质点位于x ??10 m 处,初速度v ??? 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=v v 00d 4d tt t v2=t 2 v d =x /d t 2=t 2 t t x tx x d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3d r ,d v ,解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)201()(h -)2r t v t i gt j =+ (2)联立式(1)、式(2)得 202v 2gx h y -= (3d -gt r v i j = 而落地所用时间 gh 2t = 所以 0d -2gh r v i j = d v g j =- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+= 5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习 题11-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -= 2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)j i rv 2t 2dt d +==i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==2221n t a a a t =-=+1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3) 解之 2d t g a=+1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的t d d r ,t d d v ,t vd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 202v 2gx h y -=(3)j i rgt -v td d 0= 而 落地所用时间 gh 2t =所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+= 21122222002[()](2)g gh g t dv dt v gt v gh ==++1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r r 2 ˆ when t = 0s. The magnitude of the angular momentum about the origin of L = (20kg ⋅ m /s) k
0 0 0 0
2. A particle of mass 13.7g is moving with a constant velocity of magnitude 380m/s. The particle, moving in a straight line, passes with the distance 12cm to the origin. The magnitude of the angular momentum of the particle about the origin is 62.472 kg·m2/s . Solution: By the definition of the angular momentum, the angular momentum of the particle about the origin is
v v v L = r × mv = rmv sin θ = dmv = 12 × 10−3 × 13.7 × 10−3 × 380 = 6.25 × 10−2 kg ⋅ m 2 /s
3. The rotor of an electric motor has a rotational inertia Im=2.47×10-3kg⋅m2 about its central axis. The motor is mounted parallel to the axis of a space probe having a rotational inertia Ip=12.6kg⋅m2 about its axis. The number of revolutions of the motor required to turn the probe through 25.0° about its axis is 354rev . Solution: Assume the two axes are coaxial, the angular momentum is conserved, we have
not be constant. (D) Neither the angular momentum nor the angular velocity necessarily has a constant direction. Solution: Using conservation of angular momentum and the definition of the angular momentum ,
ˆ+4ˆ 1. A particle moves with position given by r = 3ti j , where
momentum of this particle about the origin is (A) increasing in time. origin is (B) constant in time. is measured in seconds. For each of the following, consider only t > 0. The magnitude of the angular
v
p ˆ v ˆ−2ˆ r = vti j = ti −2ˆ j m
So the angular momentum of this particle is
r v v p ˆ ˆ = (20kg ⋅ m 2 /s)k ˆ ˆ = 2 pk L = r × P = ( ti −2ˆ j ) × Pi m
ˆ , in meter. A constant force F = 0i ˆ (in ˆ + 3ˆ ˆ+0ˆ 4. A particle is located at r = 0i j + 0k j + 4k
Newton’s) begins to act on the particle. As the particle accelerates under the action of this force,the torque as measured about the origin is (A) increases. (B) decreases. (C) is zero. (D) is a nonzero constant. Solution: The torque as measured about the origin is ( D )
v v v v v L = r × P = r × mv ,
v0 ˆ j
angular momentum of the system of particles is
v ˆ+2ˆ ˆ) + (1i ˆ+2ˆ ˆ) + (1.2i ˆ−2ˆ Ltotal = (−4i j ) × 3m(−v0 i j ) × 2 m (v 0 i j ) × 2m(v 0 ˆ j) ˆ − 4mv k ˆ + 2.4mv k ˆ = 4.4mv k ˆ(kg ⋅ m 2 /s) = 6mv k
Thus the magnitude of the angular momentum of this particle L = 20kg ⋅ m /s = constant .
2
3. A solid object is rotating freely without experiencing any external torques. In this case ( A ) (A) Both the angular momentum and angular velocity have constant direction. (B) The direction of angular momentum is constant but the direction of the angular velocity might not be constant. (C) The direction of angular velocity is constant but the direction of the angular momentum might
y(m)
ˆ − v0 i
3m
2.00 2m 1.20 1.00 O -2.00 Fig.1 2m
ˆ v0i
x(m)
ˆ is ( 4.4mv0 kg ⋅ m /s) k
2
-4.00 the total
Solution: According to the definition of the angular momentum
Thus the magnitude of the angular momentum of this particle L = 12m kg ⋅ m /s = constant .
2
ˆ . The particle has an angular 2. A particle moves with constant momentum p = (10kg ⋅ m/s)i
ˆ 2 − v0 i
y 1 r1
ˆ v0i
d x
r2
O θ2
θ1
ˆ . A constant force of ˆ + (−0.36m) ˆ j + (0.85m)k 5. A particle is located at r = (0.54m)i
magnitude 2.6 N acts on the particle. When the force acts in the positive x direction, the components
Solution: Assume the mass of the particle is m, so the angular momentum of this particle about the
v r v v v dr v v ˆ ˆ+4ˆ ˆ) = −12mk L = r × P = r × mv = r × m j ) × m(3i = (3ti dt
Solution: The angular momentum of this particle about the origin is L = r × P , so the position
r
v
v
j. vector of the particle when t = 0s is r = −2 ˆ
Assume the mass of the particle is m, the position vector of the particle at any time t is
4. Two particles each of mass m and speed v, travel in opposite directions along parallel lines separated by a distance d. The total angular momentum of the system about any origin is mvd . Solution: Select a point O as an origin and set up coordinate system as shown in figure. The total angular momentum of the system about the origin is