土压力理论及计算
朗肯土压力3个公式
朗肯土压力3个公式朗肯土压力公式是土压力理论中的一种计算公式,用于计算土体在受压状态下的水平和垂直方向上的土压力大小。
下面将介绍三个与朗肯土压力公式相关的公式。
一、朗肯土压力公式朗肯土压力公式是在假设土体为塑性流体的基础上推导出来的,其表达式为:P = KσH其中,P为土压力,K为土的压力系数,σ为土的有效应力,H为土的高度。
朗肯土压力公式是土力学中常用的一个公式,适用于均匀土层和水平地面。
二、朗肯土压力公式的推导朗肯土压力公式的推导基于土体的弹塑性特性,假设土体是塑性流体。
根据土体的应变关系,可以得到土体的应力关系。
在水平方向上,土体的应力是均匀的,即σh = σ。
在垂直方向上,土体的应力随深度变化,根据土压力平衡条件可以得到下面的公式:σv = Kσ其中,K为土的压力系数,表示土的抗压性能。
根据土体的单轴压缩试验可以确定土的压力系数K的值。
常见的土的压力系数K的取值范围为0.3-0.6。
三、朗肯土压力公式的应用朗肯土压力公式广泛应用于土木工程、地基工程和岩土工程中的土压力计算。
在设计土木结构时,需要考虑土体对结构的水平和垂直方向上的压力,以确定结构的稳定性和安全性。
在地基工程中,朗肯土压力公式可以用于计算土的侧压力,以确定地基的稳定性和抗震性能。
在岩土工程中,朗肯土压力公式可以用于计算土体对边坡、挡墙和隧道等结构的作用力,以确定结构的稳定性和安全性。
总结:朗肯土压力公式是土力学中常用的计算公式,用于计算土体在受压状态下的水平和垂直方向上的土压力大小。
通过推导和应用朗肯土压力公式,可以确定土的压力系数和计算土压力,从而为土木工程、地基工程和岩土工程的设计和施工提供依据。
第六章-土压力计算理论
墙或者U形桥台上土压力,可近似看作静止土压力。
按照水平向自重应力的计算公式确定。
若墙后填土为均匀体,则单位面积上静止 土压力为
若墙后填土中有地下水,则计算静止土压 力时,水中土的重度应取浮重度
静止土压力计算的关键是静止侧压力系数的 确定。K0可由室内的或现场的静止侧压力试 验来测定。 对于砂或正常固结的粘土,可根据有效内摩 擦角来确定
本章的任务是讨论土压力的大小和分布规律的确 定方法。
位移对土压力的影响及三种土压力
主动
被动
挡土墙不向任何方向发生位移和转动时,墙 后土体处于弹性平衡状态,作用在墙背上的土 压力称为静止土压力。 挡墙沿墙趾向离开填土方向转动或平行移动, 且位移达到一定量时,墙后土体达到主动极限 平衡状态,填土中开始出现滑动面 ,这时挡土 墙上的土压力称为主动土压力。
五、填土为成层土时的土压力计算
由于各层填土重度不同,使得填土竖向应力分布 在土层交界面上出现转折
由于各层填土粘聚力和内摩擦角不同,所以在计 算主动或被动土压力系数时,需采用计算点所在 土层的粘聚力和内摩擦角
习 题
第4节 库仑土压力理论
一、基本原理和基本假定 基本原理:库伦土压力理论是根据墙后土体处于 极限平衡状态并形成一滑动楔体时,从楔体的静 力平衡条件得出的土压力计算理论。 基本假设: ①墙后的填土是理想的散粒体(粘聚力c=0); ②墙背倾斜、粗糙、墙后填土面倾斜;
(一)基本计算公式
朗肯理论的主动土压力系数
(二)无粘性土的主动土压力计算
(三)粘性土的主动土压力计算
ea=0
有均布荷载时粘性土的主动土压力
土压力计算原理
复杂边界条件下的主动土压力的计算公式推导与墙后填土表面为平面情况下 的思路及方法一致。
其中破裂棱体的自重可统一表示为: 式中A0、B0为与破裂角θ无关的系数,按下表选用。
四、库仑土压力理论适用范围
2.3 特殊条件下的土压力计算
一、第二破裂面的土压力
按照库伦理论,挡土墙后破裂棱体有两个边界条件,一个是土体中的破裂面, 另一个是墙背。但当俯斜墙背或假象墙背平缓时,土楔就可能不沿墙背滑动,而沿 着另一个较陡的滑动面滑动。此滑动面称为第二破裂面或外破裂面。 如下图衡重式挡土墙所示,其假想墙背AC的倾角一般比较大,当墙身向外移 动使墙后土体达到平衡状态时,破裂棱体并不沿墙背滑动,而是沿着土体中的另一 破裂面CD滑动。此时土体中出现相交于墙踵C的两个破裂面,远墙的破裂面CF称 为第一破裂面,近墙的破裂面CD称为第二破裂面,用θi和αi分别表示第一破裂角和 第二破裂角。 由于土体中出 现了两个破裂面, 库伦理论的一般公 式此时已经不适用 ,而应按照破裂面 出现的位置来计算 土压力。工程实际 中常把出现第二破 裂面时计算土压力 的方法称为第二破 裂面法。
2.2 库伦理论计算土压力
一、库仑土压力计算主动土压力
1、库仑土压力基本假定
1)墙后的填土是理想散粒体,粒间仅有摩阻力而无粘结力的存在。
2)滑动破坏面为通过墙踵的平面。 3)滑动土楔为一刚塑性体,本身无变形。
2、库仑土压力分析Fra bibliotekC A
墙向前移动或转动时,墙后土体沿某一破坏 面BC破坏,土楔ABC处于主动极限平衡状态。
2
——填料的内摩擦角(°) α——墙背的倾角,仰斜时取负值,俯斜时取正值,墙背垂直时取0 δ——墙背与填料间的摩擦角(°)
h
C
土力学第七章土压力计算
土力学第七章土压力计算土力学是研究土体在外力作用下的力学性质与变形规律的学科。
而土压力是指土体受到外界施加的压力作用时所产生的抗力。
在土力学中,土压力计算是一个非常重要的内容,它涉及到土体在各种条件下的力学行为与变形。
本文将介绍土压力计算的相关知识。
土压力的计算一般分为两种情况,分别是水平荷载下的土压力和垂直荷载下的土压力。
对于水平荷载下的土压力,可以根据库仑理论进行计算。
库仑理论认为,土体受到的水平荷载越大,土体的抗力越大。
根据库仑理论,可以计算出土体单位面积上的土体水平抗力Fh,公式如下:Fh=Ka*γ*H*H/2其中,Fh为土体单位面积上的土体水平抗力,Ka为估计参数,γ为土体的体积重力,H为土面到超载面的水平距离。
对于垂直荷载下的土压力,可以根据黑力塔法进行计算。
黑力塔法认为,土体受到的垂直荷载越大,土体的抗力越大。
根据黑力塔法,可以计算出土体单位面积上的土体垂直抗力Fv,公式如下:Fv=γ*H*Kp其中,Fv为土体单位面积上的土体垂直抗力,γ为土体的体积重力,H为土面到超载面的垂直距离,Kp为垂直荷载的系数。
在实际的土压力计算中,需要考虑到土体的压缩性、土体的内摩擦角、土体的孔隙水压力等因素。
通过考虑这些因素的影响,可以更准确地计算出土体的压力。
此外,还可以根据实际工程的情况,选择适当的数值方法进行土压力计算,如有限差分法、有限元法等。
总结起来,土压力计算是土力学中的一个重要内容,它涉及到土体在各种条件下的力学行为与变形。
通过库仑理论和黑力塔法等方法,可以计算出土体单位面积上的土体水平抗力和垂直抗力。
在实际的土压力计算中,需要考虑到土体的压缩性、内摩擦角、孔隙水压力等因素,选择适当的数值方法进行计算。
希望本文对土压力计算的理解有所帮助。
土体主动被动土压力概念及计算公式
土体主动被动土压力概念及计算公式1.主动土压力概念主动土压力是指土体的水平力对基坑边墙或其他结构物产生的压力。
当土体自由状态时,土体之间不存在任何压力,而当土体被限制或受到外部荷载时,土体开始产生压力。
主动土压力的大小与土体的性质、倾斜角度以及土体上方的土层重量等因素有关。
主动土压力的计算公式根据所用土体的性质和土体力学特性的不同而有所差异。
最常用的计算方法是库伦土压力理论,该理论假设土体的颗粒间相互作用符合库伦摩擦定律。
库伦土压力理论认为土体的主动土压力可以表示为:Ka = (1 - sinφ) / (1 + sinφ)Pa=Ka*γ*H^2其中,Ka为土体活动系数,φ为土体的内摩擦角,γ为土体的重度,H为土体的高度。
2.被动土压力概念被动土压力是指土体受到基坑边墙或其他结构物施加的压力。
当土体与结构物接触时,结构物对土体施加的力会使土体产生一种反作用力,这就是被动土压力。
被动土压力的大小取决于结构物的形状和土体的性质。
被动土压力的计算公式也有多种方法,其中一种常用的计算方法是考虑土体内的摩擦力和土体外的压力之和。
被动土压力的计算公式可以表示为:Pp=Kp*γ*H^2其中,Kp为土体的被动土压力系数,通常取1/3到1/2之间。
需要注意的是,主动土压力和被动土压力的计算方法只是近似计算,实际情况中还需要考虑土体的变形、土体中的水分和土体与结构物之间的摩擦等因素。
3.应用范围和注意事项主动土压力和被动土压力的概念和计算方法广泛应用于地基工程、基坑支护设计和土木结构等领域。
通过计算主动土压力和被动土压力,可以评估土体对结构物的稳定性和设计建议。
在应用主动土压力和被动土压力的计算方法时,需要注意以下几个方面:-确定土体的物理性质,包括土体的重度、内摩擦角等参数。
-选择合适的土压力计算方法,并根据实际情况进行修正和调整。
-考虑土体的变形和水分对土压力的影响。
-结合其他工程参数进行综合分析,确保计算结果的准确性。
地基土压力理论
地基土压力理论在公路工程中常遇到挡土结构物(或称挡土墙),其作用都是用来挡住墙后的填土并承受来自填土的压力,在设计挡土墙的断面尺寸和验算其稳定性时,必须计算出作用在墙上的土压力。
土压力的大小不仅与挡土墙的高度、填土的性质有关,而且与挡土墙的刚度和位移有关。
当挡土墙离开填土移动,墙后填土达到极限平衡状态(或破坏)时,作用在墙上的土压力称为主动土压力,它是土压力中的最小值。
当挡土墙向填土挤压,墙后填土达到极限平衡状态时,作用在墙上的土压力称为被动土压力,它是土压力中的最大值。
作用在挡土墙上的土压力可能是主动土压力与被动土压力之间的任一数值,这取决于墙的移动情况。
挡土墙完全没有侧向移动时的土压力,称为静止土压力。
本节将介绍土体作用在挡土结构物上土压力的计算。
一、朗肯土压力理论朗肯(Rankine)在19世纪提出的朗肯土压力理论,假设挡土墙背面竖直而且光滑。
在表面水平时的半无限无黏性土中,若整个土体发生侧向拉伸达到主动极限平衡状态时,侧向压力σx 小于竖向压力σz,土的自重应力为大主应力,侧向压力即主动土压力为小主应力;若整个土体发生侧向挤压达到朗肯被动极限平衡状态,侧向压力σx 大于竖向压力σz,土的自重应力为小主应力,侧向压力即被动土压力为大主应力,由极限平衡条件得出主、被动土压力。
贝尔(Bell)和里骚(Resal)分别将朗肯理论推广到黏性填土。
式中 Ka——朗肯主动土压力系数,;Kp——朗肯被动土压力系数,;γ——土的容重;φ——土的内摩擦角;c——土的凝聚力;z——墙顶以下深度;q——填土表面均布荷载。
主动土压力合力)/3处。
作用点位于墙底面以上(H-z作用点在梯形的形心处。
被动土压力合力作用点在梯形的形心处。
式中 H——墙高。
二、库伦土压力理论库伦18世纪提出了无黏性土的库伦土压力理论。
库伦理论确定挡土墙上的土压力,不是考虑单元土体的平衡,而是考虑整个滑体上力的平衡,求出主动和被动土压力。
如图4-24所示,当墙向前移动时,假定破坏面为AC,它与水平面的夹角为θ,则作用在沿动棱体ABC上的力有:①滑动棱体ABC的重量W;②破坏面AC上的反力R,R的方向与破坏面法线的夹角为φ;③墙背面AB对滑动棱体的反力P(大小等于土压力,方向与墙背面的法线夹角为φ)。
朗肯土压力理论
当墙后填土由几层不同物理力学性质的水平土层组成时,应先求出计算点的垂直应力σz,然后用该点所处土层的φ值求出土压力系数,并用土压力公式计算土压力强度和总土压力。计算时可能出现以下三种情况:
图6-9 成层填土土压力计算
此时在土层的分界面处将出现一转折点,土压力强度沿墙高的分布如图6-9a所示。
3.墙背垂直光滑(墙与垂向夹角ε=0,墙与土的摩擦角δ=0)。
考察挡土墙后土体表面下深度z处的微小单元体的应力状态变化过程:
(1)当用挡土墙代替半空间的土体,且不发生位移时,作用在微分土体上的应力为自重应力,此时,挡土墙土压力即为静止土压力,大小等于水平向自重应力σh。
(2)当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力σv保持不变,而水平向应力σh逐渐减小,直至达到土体处于极限平衡状态,此时水平向应力(σ3)即为主动土压力强度pa。观看动画演示
四、实际工程中朗肯理论的应用
(一)填土表面倾斜时土压力计算
当填土表面与水平面夹角β≠0时,如果假设土压力作用方向与填土倾斜表面平行,则也符合朗肯土压力条件(图6-7),应用朗肯理论和莫尔应力圆可导出土压力计算公式,又称为应力圆法,其无粘性土主动、被动土压力强度计算公式如下:
总主动、被动土压力计算公式为:
(四)挡土墙上设置排水孔,墙后设置排水盲沟来加强排水
第三节 朗肯土压力理论
1857年英国学者朗肯(Rankine)从研究弹性半空间体内的应力状态,根据土的极限平衡理论,得出计算土压力的方法,又称极限应力法。
一、基本原理考虑墙身的变形;
2.墙后填土延伸到无限远处,填土表面水平(β=0);
第二节朗肯土压力理论
二、几种常见发问下的主动土压力计算
主动土压力计算公式
主动土压力计算公式
土体的主动土压力是土体对墙体施加的垂直压力,其大小取决于土体
的物理性质、土体与墙体的摩擦力以及土体的压缩性能等因素。
常见的土
压力计算公式有三种:库伦横向应力理论、孔隙压力理论和相对密度法。
1.库伦横向应力理论
库伦横向应力理论是根据土体内部的剪切力来计算土压力的一种方法。
根据该理论,土压力可以表示为:
P=KγH
其中,P为土压力(kN/m²),K为土的侧向压缩系数,γ为土的干
重单位体积重量(kN/m³),H为土压高度(m)。
在实际工程中,根据土壤的性质可以根据经验值选择K值,对于一般
情况下。
2.孔隙压力理论
孔隙压力理论是根据土体内水平荷载产生的孔隙水压力来计算土压力
的方法。
根据该理论,土压力可以表示为:
P=Kσ
其中,P为土压力(kN/m²),K为孔隙系数,σ为土体的有效应力(kN/m²)。
3.相对密度法
相对密度法是根据土体的相对密度来计算土压力的方法。
根据该方法,土压力可以表示为传统活动土侧压力的一半,即:
P=0.5Kσ
其中,P为土压力(kN/m²),K为孔隙系数,σ为土体的有效应力(kN/m²)。
需要注意的是,以上土压力计算公式都是基于一定的假设和实验数据,实际工程中还需要根据具体情况进行修正。
另外,对于复杂的土体情况,
需要进行现场试验和精确计算,以得到更准确的土压力值。
土力学土压力计算
?? ? ?
2c tan??45o ?
?
?
2
?? ?
? ?zKp ? 2c Kp
Rankine 被动土压力系 数
Rankine 被动土压力—计算方法
Rankine 被动土压力系数
Kp
?
tan2 ??45o ?
?
?
2
?? ?
Kp只与内摩擦角? 有关。
无粘性土的被动土压力计算
pp ? ?zKp
Ep
H
土压力的影响因素
土压力的大小及其分布规律的影响因素: ? 挡土墙的位移方向; ? 挡土墙和墙后土体相对位移的大小; ? 墙后土体的性质; ? 挡土墙的刚度和高度等。
土压力的三种类型
根据 挡土墙的位移方向 和墙后土体的应力状态 , 可以将土压力分为如下三种类型: ?主动土压力 ?被动土压力 ?静止土压力
被动土压力
土压力与挡土墙位移的关系
E
Ep
挡土墙朝向土体移动
E0 Ea
挡土墙背离土体移动
静止土压力计算
土体处于侧限条件
sv
z 下的弹性平衡状态
sh
sh
sv
p0 ? K0s cz ? K0?z
静止土压力 系数
静止土压力计算
E0
H
H /3
E0
?
1 2
K0?H 2
K0?H
Rankine土压力理论
复习:莫尔—库仑强度理论
Rankine 土压力理论
基本原理
? 认为作用在挡土墙上的土压力就是墙后半无限 土体达到极限平衡状态时的应力。
? 根据土体处于极限平衡状态时的最大和最小主 应力的相互关系 来建立土压力的计算公式。
土压力理论及计算
土压力理论及计算土压力是指土体受到外界荷载作用时产生的抵抗力。
研究土压力是地工工程、岩土工程和土力学等领域的基本问题之一、了解土压力的分布以及如何准确计算土压力对于土木工程的设计和分析非常重要。
本文将介绍土压力的理论及计算方法。
土压力的理论基础是库仑理论。
库仑理论是由法国科学家库仑在18世纪中期提出的,他认为土体颗粒与颗粒之间是通过间隙水分子构成的水桥相互连接的。
当外荷载作用于土体时,颗粒与间隙水分子之间的水桥被破坏,颗粒之间开始相互移动,随着移动,水桥逐渐破坏,最终形成土体的结构稳定。
库仑理论认为土体的内摩擦角决定了土体的内摩擦力,而内摩擦力是土压力产生的主要原因。
土压力的计算方法主要有两种:活动土压力和静止土压力。
活动土压力是指当土体受到外荷载作用时,土体内部颗粒会发生相对移动,从而产生土压力。
活动土压力的计算方法根据库仑理论以及土体内部颗粒间的摩擦力来进行。
静止土压力是指当土体受到外荷载作用时,土体内部颗粒不发生相对移动,从而产生土压力。
静止土压力的计算方法根据土体的重力和内摩擦力来进行。
对于活动土压力的计算,可以使用库仑公式。
库仑公式的表达式为:Pa=Ka*γ*H,其中Pa表示活动土压力,Ka表示活动土压力系数,γ表示土体的体积重量,H表示土体的高度。
活动土压力系数Ka是根据土体的内摩擦角来确定的。
活动土压力系数的大小取决于土体的类型和粒径分布等因素。
对于静止土压力的计算,可以使用库仑公式的变形公式。
静止土压力的计算需要考虑土体的内摩擦角以及土体与结构物之间的摩擦力。
静止土压力的计算公式为:Ps = γ * H + Σ(γi * Hi * tan αi), 其中Ps表示静止土压力,γi表示土体各层的体积重量,Hi表示土体各层的高度,αi表示土体与结构物之间的摩擦角。
静止土压力的计算中需要考虑土体的水平抗力和垂直抗力。
除了库仑公式,还有其他一些方法可以用于计算土压力。
例如,面积平衡法可以通过土体的重力平衡和水平面的摩擦力来计算土压力。
主动土压力计算库仑、朗肯理论(一)
主动土压力计算库仑、朗肯理论(一)主动土压力计算库仑、朗肯理论主动土压力是指土体对于深基坑、隧道等工程结构所施加的作用力,其大小、方向和分布都对结构工程的安全性和稳定性有着很大的影响。
计算主动土压力的方法有很多种,其中比较常见的是库仑和朗肯理论。
一、库仑理论库仑理论将土体视为由一系列均匀分布的小粒子组成的均质体,认为土体间的剪移力受摩擦支持,并满足下列条件:1. 土体中的每一粒子都与其邻粒子之间相互作用,所有粒子间的力均受到相互约束及反力的作用。
2. 粒子间剪力可以通过过剩水压的变化得到调节,但不能超出土体的内摩擦角。
在库仑理论中,主动土压力的计算主要考虑了土体重力和内摩擦角的影响,其计算公式为:Ka = cos2α / (cosα + sinα)2其中,Ka为土的活动系数,α为土粒子与垂直结构面之间的夹角。
二、朗肯理论朗肯理论是一种根据数学模型来计算土体围压力的方法。
朗肯认为,当土体围挤受到水平面上的挤压力时,土体中的粒子会沿着最小阻力方向移动,同时对邻近的粒子施加弹性力。
根据弹性力的大小,可得到相应的土体围压力。
朗肯理论所计算的主动土压力是以土壤骨架的强度为基础的,不仅考虑了土体的内摩擦角,还考虑了土的屈服特性、颗粒排列特性、颗粒大小和密度等因素。
其计算公式为:Ka = sinφ / (1-sinφ)其中,Ka为土的活动系数,φ为土体内摩擦角。
总结从以上分析可看出,库仑和朗肯理论都是以土体内部的力学特性为基础进行计算的。
库仑理论重视土的摩擦支撑作用,而朗肯理论则更为全面,考虑了土的多种力学特性,因此在某些情况下,朗肯理论更为精确。
在实际工程应用中,需要根据工程的具体情况和需要进行选择。
土压力计算
土压力计算
Ec Ea Ec'
Gcos() cLcos sin() sin()
令: dE c 0
d
c
EcGcsionccs (( ))scin L cc o(s)
第六节 朗金理论及土压力
朗金破裂角及主动土压力公 式
i
1 (90 2
)
1 (
2
)
i
1 (90 )
2
1 (
2
)
Ea
1H21
2
23
(2)根据抗剪强度相等的原理 抗剪强度:
f ctan
等值抗剪强度:
f tanD
Darctan (ct) aanrctan(H ct)an
h
24
(3)根据土压力相等的概念
粘性土土压力:
E a 1 2h 2ta 2 (4 n 52 ) 2 cth a 4 n 52 () 2 c 2
按等值内摩擦角计算土压力:
的土压力;
(2)考虑了破裂面上的粘结力。为简化计算, 墙背与填土间的粘结力忽略不计(数值较小且偏于 安全)。
高膨胀性土和高塑性土均不能采用该方法计算土压 力。
h
26
裂缝深度
hc
2c
tan4(
5 ) 2
hc'
hc
h0
2c
tan4( 5 2)h0
墙后填料受局部荷载作用时, 不考虑其对裂缝深度的影响。
计算值。若验证结果证明不会出现第二破裂面时,按一般库仑公式进行计 算; ⑥ 根据计算所得破裂角计算作用于第二破裂面上的土压力及其作用点位置。
h
15
第四节 折线形墙背土压力
上墙一般按 库仑土压力公式 计算,如出现第 二破裂面,按第 二破裂面土压力 公式计算。
100米的土的压强
100米的土的压强土的压强是指土体在垂直方向上受到的压力,通常用单位面积上受到的压力来表示。
在工程领域,了解土的压强对于设计和施工具有重要意义。
本文将探讨100米土的压力分布规律、影响因素、计算方法以及在工程中的应用。
一、土的压力分布规律在一般情况下,土的压力随着深度的增加而增大。
根据土力学理论,100米土的压力分布可以分为三个阶段:1.表层压力:地表附近的土体受到地面荷载和上方土体的压力,压力分布较均匀。
2.过渡层压力:随着深度的增加,土体所受压力逐渐增大。
在过渡层,压力分布呈现出非线性特点,压力增幅逐渐减小。
3.均匀压力:当达到一定深度后,土的压力分布趋于均匀,压力值基本保持不变。
二、影响土压力的因素1.土的性质:土壤的类型、密度、含水量等性质对土压力有重要影响。
2.荷载类型:如均布荷载、线荷载、点荷载等,不同荷载类型对土压力的分布特征产生差异。
3.深度:随着深度的增加,土压力逐渐增大,但增幅逐渐减小。
4.施工条件:如施工方法、工期、周围环境等,会影响土压力的分布。
三、土压力计算方法1.静止土压力计算:根据土的性质、深度和荷载类型,采用静止土压力公式计算。
2.主动土压力计算:考虑土体变形和位移,采用主动土压力公式计算。
3.被动土压力计算:在深基坑工程中,采用被动土压力公式计算。
四、土压力在工程中的应用1.地基设计:根据土的压力分布规律,合理设计地基基础结构,确保工程安全。
2.深基坑工程:分析土压力对基坑围护结构的影响,优化施工方案。
3.土方工程:根据土的压力分布规律,合理规划土方开挖和回填方案。
4.隧道工程:分析土压力对隧道结构的影响,确保隧道施工安全。
总之,了解100米土的压力分布规律、影响因素、计算方法及应用,对于工程建设具有重要意义。
土压力计算方法
第五章土压力计算本章主要介绍土压力的形成过程,土压力的影响因素;朗肯土压力理论、库仑土压力理论、土压力计算的规范方法及常见情况的土压力计算;简要介绍重力式挡土墙的设计计算方法;学习本章的目的:能根据实际工程中支挡结构的形式,土层分布特点,土层上的荷载分布情况,地下水情况等计算出作用在支挡结构上的土压力、水压力及总压力;第一节土压力的类型土体作用在挡土墙上的压力称为土压力;一、土压力的分类作用在挡土结构上的土压力,按挡土结构的位移方向、大小及土体所处的三种平衡状态,可分为静止土压力E o,主动土压力E a和被动土压力E p三种;1.静止土压力挡土墙静止不动时,土体由于墙的侧限作用而处于弹性平衡状态,此时墙后土体作用在墙背上的土压力称为静止土压力;2.主动土压力挡土墙在墙后土体的推力作用下,向前移动,墙后土体随之向前移动;土体内阻止移动的强度发挥作用,使作用在墙背上的土压力减小;当墙向前位移达主动极限平衡状态时,墙背上作用的土压力减至最小;此时作用在墙背上的最小土压力称为主动土压力;3.被动土压力挡土墙在较大的外力作用下,向后移动推向填土,则填土受墙的挤压,使作用在墙背上的土压力增大,当墙向后移动达到被动极限平衡状态时,墙背上作用的土压力增至最大;此时作用在墙背上的最大土压力称为被动土压力;大部分情况下作用在挡土墙上的土压力值均介于上述三种状态下的土压力值之间;二、影响土压力的因素1.挡土墙的位移挡土墙的位移或转动方向和位移量的大小,是影响土压力大小的最主要的因素,产生被动土压力的位移量大于产生主动土压力的位移量;2.挡土墙的形状挡土墙剖面形状,包括墙背为竖直或是倾斜,墙背为光滑或粗糙,不同的情况,土压力的计算公式不同,计算结果也不一样;3.填土的性质挡土墙后填土的性质,包括填土的松密程度,即重度、干湿程度等;土的强度指标内摩擦角和粘聚力的大小;以及填土的形状水平、上斜或下斜等,都将影响土压力的大小;第二节静止土压力的计算一、静止土压力的计算公式静止土压力强度沿墙高呈三角形分布例5-1已知某挡土墙高4.0m,墙背垂直光滑,墙后填土面水平,填土重力密度为γ =/m3,静止土压力系数Ko=,试计算作用在墙背的静止土压力大小及其作用点,并绘出土压力沿墙高的分布图;解:按静止土压力计算公式,墙顶处静止土压力强度为:墙底处静止土压力强度为:土压力沿墙高分布图如图所示,土压力合力E的大小可通过三角形面积求得:o的作用点离墙底的距离为:静止土压力E建筑物地下室的外墙、地下水池的侧壁、涵洞的侧壁以及不产生任何位移的挡土构筑物,其侧壁所受到的土压力可按静止土压力计算;第三节 朗肯土压力理论一、基本原理朗肯土压力理论的基本假设条件: 1挡土墙为刚体;2挡土墙背垂直、光滑,其后土体表面水平并无限延伸,其上无超载;在挡土墙后土体表面下深度为Z 处取一微单元体,微单元的水平和竖直面上的应力为:z cz 1⋅==γσσ z K 0cx 3⋅==γσσ当挡土墙前移,使墙后土体达极限平衡状态时,此时土体处于主动朗肯状态,cx σ达到最小值,此时的应力状态如图5-5b 中的莫尔应力圆Ⅱ,此时的应力称为朗肯主动土压力a σ;;当挡土墙后移,使墙后土体达极限平衡状态时,此时土体处于朗肯被动状态,cx σ达到最大值,此时的应力状态如图5-5b 中的莫尔应力圆Ⅲ,此时的应力称为朗肯被动土压力p σ;二、朗肯主动土压力计算1.无粘性土E a 作用方向水平,作用点距墙基h/3;⎪⎭⎫ ⎝⎛-︒-⎪⎭⎫ ⎝⎛-︒⋅=⎪⎭⎫ ⎝⎛-︒-⎪⎭⎫⎝⎛-︒==2452ctan 245tan 2452ctan 245tan 2213ϕϕγϕϕσσσz a a a a zK )(ztg γσϕγσ=-=或2452 )(tan K a 2452ϕ-︒=a aa K H E )(tg H E 2222124521γϕγ=-=或2. 粘性土临界深度E a 的作用方向水平,作用点距墙基h-z o /3处例题5-2 有一挡土墙高6m,墙背竖直、光滑,墙后填土表面水平,填土的物理力学指标kPa C 15=,︒=15ϕ,318m /kN =γ;求主动土压力并绘出主动土压力分布图; 解1计算主动土压力系数59.021545tan 245tan 22=⎪⎭⎫ ⎝⎛︒-︒=⎪⎭⎫ ⎝⎛-︒=ϕKa77.0=Ka2计算主动土压力m z 0=,KPa ...K C zK a a a 1237701525901821-=⨯⨯-⨯=-=γσ m z 6=,KPa ...K C zK a a a 64077015259061822=⨯⨯-⨯⨯=-=γσ 3计算临界深度z;m ..Kacz 1627701815220=⨯⨯==γ4计算总主动土压力a E()m kN E a /7816.266.4021=-⨯⨯=a E 的作用方向水平,作用点距离墙基m 28.1316.26=-;5主动土压力分布如图所示 二、朗肯被动土压力计算1.被动土压力计算公式当墙体在外荷载作用下想土体方向位移达极限平衡状态时,由极限平衡条件可得大主应力与小主应力的关系为:无粘性土 ⎪⎭⎫ ⎝⎛+=245tan 0231ϕσσ粘性土 ⎪⎭⎫ ⎝⎛+︒+⎪⎭⎫ ⎝⎛+︒=2452Ctan 245tan 231ϕϕσσ因此,朗肯被动土压力的计算公式:无粘性土 ⎪⎭⎫ ⎝⎛+︒=245ztan 2p ϕγσ或P zK γσ=p粘性土 ⎪⎭⎫ ⎝⎛+︒+⎪⎭⎫ ⎝⎛+︒=2452Ctan 245rztan 2p ϕϕσ或p p p K 2c z +=K γσaa a a K c zK )(tg c )(ztg 224522452-=-⨯--=γσϕϕγσ或 02=-=a a a k c zk γσaK c z γ20=γγγ2202221221c K cH K H )K c HK )(z H (E a a a a a +-=--=式中K p ——被动土压力系数,⎪⎭⎫ ⎝⎛+︒=245tan K 2p ϕ2.被动土压力分布无粘性土的被动土压力强度沿墙高呈三角形分布,粘性土的被动土压力强度沿墙高呈梯形分布,如图所示;作用在单位墙长上的总被动土压力Ep ,同样可由土压力实际分布面积计算;Ep 的作用方向水平,作用线通过土压力强度分布图的形心;例题5-3有一挡墙高6m,墙背竖直、光滑,墙后填土表面水平,填土的重度r=m 3,内摩擦角︒=20ϕ,粘聚力c=19KPa ;求被动土压力并绘出被动土压力分布图;解1计算被动土压力系数;04.222045tan Kp 2=⎪⎭⎫ ⎝⎛︒+︒=43.1kp = 2计算被动土压力m z 0=,kPa k 34.5443.119204.205.18kp 2C p rz Pp =⨯⨯+⨯⨯=+= m z 6=,kPa k 78.28043.119204.265.18kp 2C p rz Pp =⨯⨯+⨯⨯=+= 3计算总被动土压力()m kN Ep /36.1005678.28034.5421=⨯+=Ep 的作用方向水平,作用点距墙基为z,则()m Ep 32.2634.5478.2802136634.542636.10051=⎥⎦⎤⎢⎣⎡⨯-⨯+⨯⨯=4被动土压力分布如图5-9所示;小结:朗肯土压力的适用条件及计算四、几种常见情况的土压力 1.填土表面作用均布荷载当墙后土体表面有连续均布荷载q 作用时,均布何载q 在土中产生的上覆压力沿墙体方向呈矩形分布,分布强度q,土压力的计算方法是将垂直压力项γz 换以γz+q 计算即可;无粘性土()Ka q z Pa +=γ()Kp q z Pp +=γ粘性土 ()Ka C Ka q z Pa 2-+=γ ()Kp C Kp q z Pp 2++=γ 例题5-4 已知某挡土墙高6.00m,墙背竖直、光滑、墙后填土表面水平;填土为粗砂,重度r=m 3,内摩擦角︒=32ϕ,在填土表面作用均布荷载q=;计算作用在挡土墙上的主动土压力;解1计算主动土压力系数307.022345tan Kp 2=⎪⎭⎫ ⎝⎛︒-︒=2计算主动土压力m z 0=,()()kPa ..Ka 535307018019q z Pa 1=⨯+⨯=+=γ m z 6=,()()kPa ..Ka 5240307018619q z Pa 2=⨯+⨯=+=γ 3计算总主动土压力()m /kN ......E a 1513897104183365355240216535=+=⨯-+⨯= a E 作用方向水平,作用点距墙基为z,则m z 24.23697.1042618.3315.1381=⎪⎭⎫⎝⎛⨯+⨯=4主动土压力分布如图所示2.墙后填土分层挡土墙后填土由几种性质不同的土层组成时,计算挡土墙上的土压力,需分层计算;若计算第i 层土对挡土墙产生的土压力,其上覆土层的自重应力可视为均布荷载作用在第i 层土上;以粘性土为例,其计算公式为:()aii ai i i ai K C K h h h P 22211-+++=γγγ()pi i pi i i K C K h h h Ppi 22211++++=γγγ例题5-5 挡土墙高5m,墙背直立,光滑,墙后填土水平,共分两层,各土层的物理力学指标如图5-12所示,试求主动土压力并绘出土压力分布图; 解:1计算主动土压力系数31.022345tan Ka 21=⎪⎭⎫ ⎝⎛︒-︒= 57.021645tan Ka 22=⎪⎭⎫ ⎝⎛︒-︒= 75.02=Ka2计算第一层的土压力顶面0310017110=⨯⨯==.zK P a a γ 底面kPa ..zK P a a 510310217111=⨯⨯==γ 3计算第二层的土压力顶面()2221112a a a K C K z h P -+=γγ()kPa 4.475.010257.0019217=⨯⨯-⨯⨯+⨯=底面()2221122a a a K C K z h P -+=γγ()kPa 9.3675.010257.0319217=⨯⨯-⨯⨯+⨯=4计算主动土压力a E()m /kN ........E a 572754821351034493621344251021=++=⨯-+⨯+⨯⨯=a E 作用方向水平,作用点距墙基为z,则m z 5.13375.48232.133235.105.721=⎥⎦⎤⎢⎣⎡⨯+⨯+⎪⎭⎫ ⎝⎛+⨯=5挡土墙上主动土压力分布如图所示3.填土中有地下水当墙后土体中有地下水存在时,墙体除受到土压力的作用外,还将受到水压力的作用;计算土压力时,可将地下潜水面看作是土层的分界面,按分层土计算;潜水面以下的土层分别采用“水土分算”或“水土合算”的方法计算;1水土分算法这种方法比较适合渗透性大的砂土层;计算作用在挡土墙上的土压力时,采用有效重度;计算水压力时按静水压力计算;然后两者叠加为总的侧压力;2水土合算法这种方法比较适合参透性小的粘性土层;计算作用在挡土墙上的土压力时,采用饱和重度,水压力不再单独计算叠加;例题5-6 用水土分算法计算图所示的挡土墙上的主动土压力、水压力及其合力; 解1计算主动土压力系数333023045tan K 21a .=⎪⎭⎫ ⎝⎛︒-︒=2计算地下水位以上土层的主动土压力顶面03330081110=⨯⨯==.zK P a a γ kPa ..zK P a a 0363330681111=⨯⨯==γ 3计算地下水位以下土层的主动土压力及水压力因水下土为砂土,采用水土分算法 主动土压力:顶面()()kPa ..K z z P a a 03633300968122111=⨯⨯+⨯=+=γγ 底面()()kPa ..K z h P a a 08433304968122112=⨯⨯+⨯=+=γγ 水压力:顶面00891=⨯==.z Pw w γ底面kPa ..z P w w 2394892=⨯==γ 4计算总主动土压力和总水压力()m /kN E a 27624144108436482143663621=++=⨯-⨯+⨯+⨯⨯=a E 作用方向水平,作用点距墙基为z,则m z 51.33424241443641082761=⎥⎦⎤⎢⎣⎡⨯+⨯+⎪⎭⎫ ⎝⎛+⨯=m kN P w /4.7842.3921=⨯⨯=w P 作用方向水平,作用点距墙基4/3=1.33m;5挡土墙上主动土压力及水压力如图5-14所示;第四节 库仑土压力理论一、基本原理 1.库仑研究的课题:1墙背俯斜,倾角为ε墙背俯斜为正,反之为负,2墙背粗糙,墙与土间摩按角为δ;3填土为理想散粒体,粘聚力0=c ;4填土表面倾斜,坡角为β;2.库仑理论的基本假定:1挡土墙向前或向后移动或转动;2墙后填土沿墙背AB 和填土中某一平面BC 同时向下或向上滑动,形成土楔体△ABC ;3土楔体处于极限平衡状态,不计本身压缩变形;4土楔体△ABC 对墙背的推力即为主动力压力Ea 或被动力压力Ep ; 二、无粘性土压力计算 1.主动土压力计算a a K h E 221γ=δ—墙背与填土之间的摩擦角,可用试验确定;总主动图压力a E 的作用方向与墙背法线成δ角,与水平面成εδ+角,其作用点距墙基3h;2.无粘性土被动土压力()()2221⎥⎦⎤⎢⎣⎡-⋅+-⋅+++⋅-=)(Con )(Con )(Sin )(Sin cos cos cos K a βεεδβϕϕδεδεεϕP P k h E 221γ=K p —库仑被动土压力系数,其值为: ()()2221⎥⎦⎤⎢⎣⎡-⋅-+⋅+--⋅+=)(Con )(Con )(Sin )(Sin cos cos cos K p βεδεβϕδϕδεεεϕ总被动土压力Ep 的作用方向与墙背法线顺时针成δ角,作用点距墙基3h 处; 例题5-6 挡土墙高6m,墙背俯斜︒=10ε,填土面直角︒=20β,填土重度3/18m kN =γ,︒=30ϕ,0=C ,填土与墙背的摩擦角︒=10δ,按库仑土压力理论计算主动土压力; 解 由︒=10ε,︒=20β,︒=10δ,︒=30ϕ查表5-1,K a =;主动土压力强度为:Z=0m,Pa=18×0×=0Z=6m,Pa=18×6×=总主动土压力为:m /kN ..E a 021********1=⨯⨯= a E 作用方向与墙背法线成︒10夹角,a E 的作用点距墙基33m .134=处;第五节 规范法计算土压力对于墙后为粘性土的土压力计算可选用建筑地基基础设计规范GB50007—2002所推荐的公式; a C a K h E 221γψ= 式中E a ——总主动力土压力;C ψ——主动力土压力系数,土坡高度小于5m 时宜取;高度为5-8时宜取;高度大于8m时宜取;γ—— 填土的重度h ——挡土结构的高度K a ——主动土压力系数()()()()()()[]{βϕδϕδαβαδϕβααβα-++-+--++=sin sin sin sin K sin sin sin K q a 22 ()()()[βϕβαδϕβαϕαη-+---++sin sin K cos cos sin q 22 ()()]}21ϕαηδϕδαϕαηcos sin sin sin K )(cos sin q ++-+ ()βαβα+⋅+=sin cos sin rh q K q 21 hc γη2= q —地表均布荷载以单位水平投影上的荷载强度计其他符号如图5-19所示;建筑地基基础设计规范GB5007—2002推荐的公式具有普遍性,但计算K a 较繁;对于高度小于或等于5m 的挡土墙,排水条件良好或按规定设计了排水措施;填土符合表5-3的质量要求时,其主动土压力系数可按图5-20查得;例题5-7某挡土墙高度5m,墙背倾斜︒=20ε,墙后填土为粉质粘土,3/17m kN d =γ,%10=ω,︒=30ϕ,︒=15δ,︒=10β,kPa C 5=;挡土墙的排水措施齐全;按规范方法计算作用在该挡土墙上的主动土压力;解:由3/17m kN d =γ,%10=ω土的重度()()3/7.18%101171m kN d =+=+=ωγγm h 5=,3/17m kN d =γ,排水条件良好,Ka 可查图5-20d,Ka=,1.1=C ψm /kN ....K h E a C a 7133520571821112122=⨯⨯⨯⨯==γψ a E 作用方向与墙背法线成15°角,其作用点距墙基m 76.135=处;第六节挡土墙设计一、挡土墙形式的选择1.挡土墙选型原则⑴挡土墙的用途,高度与重要性;⑵建筑场地的地形与地质条件;⑶尽量就地取材,因地制宜;⑷安全而经济;2.常用的挡土墙型式⑴重力式挡土墙重力式挡土墙其特点是体积大,靠墙自重保持稳定性;墙背可做成俯斜,直立和仰斜三种,一般由块石或素混凝土材料砌筑,适用于高度小于6m,地层稳定开挖土石方时不会危及相邻建筑物安全的地段;其结构简单,施工方便,能就地取材,在建筑工程中应用最广;⑵悬臂式挡土墙悬臂式挡土墙其特点是体积小,利用墙后基础上方的土重保持稳定性;一般由钢筋混凝土砌筑,拉应力由钢筋承受,墙高一般小于或等于8m;其优点是能充分利用钢筋混凝土的受力特点,工程量小;⑶扶壁式挡土墙扶壁式挡土墙其特点是为增强悬臂式挡土墙的抗弯性能,沿长度方向每隔~h 做一扶壁;由钢筋混凝土砌筑,扶壁间填土可增强挡土墙的抗滑和抗倾覆能力,一般用于重大的大型工程;⑷锚定板及锚杆式挡土墙锚定板及锚杆式挡土墙如图5-24所示,一般由预制的钢筋混凝土立柱,墙面,钢拉杆和埋置在填土中的锚定板在现场拼装而成,依靠填土与结构相互作用力维持稳定,与重式挡土墙相比,其结构轻,高度大,工程量少,造价低,施工方便,特别适用于地基承载力不大的地区;⑸加筋式挡土墙加筋式挡土墙由墙面板,加筋材料及填土共同组成如图5-25所示,依靠拉筋与填土之间的摩擦力来平衡作用在墙背上的土压力以保持稳定;拉筋一般采用渡锌扁钢或土工合成材料,墙面板用预制混凝土板;墙后填土需要较高的摩擦力,此类挡土墙目前应用较广;二、重力式挡土墙设计1.重力式挡土墙截面尺寸设计挡土墙的截面尺寸一般按试算法确定,即先根据挡土墙所处的工程地质条件、填土性质、荷载情况以及墙身材料、施工条件等,凭经验初步拟定截面尺寸;然后进行验算;如不满足要求,修改截面尺寸,或采取其他措施;挡土墙截面尺寸一般包括:1挡土墙高度h挡土墙高度一般由任务要求确定,即考虑墙后被支挡的填土呈水平时墙顶的高度;有时,对长度很大的挡土墙,也可使墙顶低于填土顶面,而用斜坡连接,以节省工程量;2挡土墙的顶宽和底宽挡土墙墙顶宽度,一般块石挡土墙不应小于400mm,混凝土挡土墙不应小于200mm;底宽由整体稳定性确定;一般为~倍的墙高;2.重力式挡土墙的计算重力式挡土墙的计算内容包括稳定性验算,墙身强度验算和地基承载力验算;1抗滑移稳定性验算图5-26 挡土墙稳定性验算在压力作用下,挡土墙有可能基础底面发生滑移;抗滑力与滑动力之比称为抗滑移安全系数Ks,Ks 按下式计算()t at an n s G E uE G K -+=≥ 5-210αcos G G n = 0αsin G G t =()δαα--=0sin E E a at ()δαα--=0cos E E a anG 为挡土墙每延米自重;0α为挡土墙基底的倾角;α为挡土墙墙背的倾角; δ为土对挡土墙的摩擦角;u为土对挡土墙基底的摩擦系数;若验算结果不满足要求,可选用以下措施来解决:①修改挡土墙的尺寸,增加自重以增大抗滑力;②在挡土墙基底铺砂或碎石垫层,提高摩擦系数,增大抗滑力;③增大墙背倾角或做卸荷平台,以减小土对墙背的土压力,减小滑动力; ④加大墙底面逆坡,增加抗滑力;⑤在软土地基上,抗滑稳定安全系数较小,采取其他方法无效或不经济时,可在挡土墙踵后加钢筋混凝土拖板,利用拖板上的填土重量增大抗滑力; 2抗倾覆稳定性验算如图5—26所示为一基底倾斜的挡土墙,在主动土压力作用下可能绕墙趾向外倾覆,抗倾覆力距与倾覆力矩之比称为倾覆安全系数t K ,t K 按下式计算;fax f az 0t z E x E Gx K +=≥ ()δα-=sin E E a ax ()δα-=cos E E a azαzcot b x f -= 0f btan z z α-=式中z 为土压力作用点离墙基的高度;0x 为挡土墙重心离墙趾的水平距离;b为基底的水平投影宽度挡土墙抗滑验算能满足要求,抗倾覆验算一般也能满足要求;若验算结果不能满足要求,可伸长墙前趾,增加抗倾覆力臂,以增大挡土墙的抗倾覆稳定性;3整体滑动稳定性验算,可采用圆弧滑动方法,详见第6章;4地基承载力验算挡土墙地基承载力验算,应同时满足下列公式()min max 21σσ+≤a f max σ≤a f 2.1 另外,基底合力的偏心距不应大于倍基础的宽度;5墙身材料强度验算,与一般砌体构件相同;二、重力式挡土墙设计3.重力式挡土墙的构造在设计重力式挡土墙时,为了保证其安全合理、经济,除进行验算外,还需采取必要的构造措施;1基础埋深重力式挡土墙的基础埋深应根据地基承载力,冻结深度,岩石风化程度等因素决定,在土质地基中,基础埋深不宜小于0.5m;在软质岩石地基中,不宜小于0.3m.;在特强冻胀、强冻胀地区应考虑冻胀影响;2墙背的倾斜形式当采用相同的计算指标和计算方法时,挡土墙背以仰斜时主动土压力最小,直立居中,俯斜最大;墙背倾斜形式应根据使用要求;地形和施工条件等因素综合考虑确定;应优先采用仰斜墙;3墙面坡度选择当墙前地面陡时,墙面可取1׃׃仰斜坡度,亦采用直立载面;当墙前地形较为平坦时,对中,高挡土墙,墙面坡度可较缓,但不宜缓于1׃;4基底坡度为增加挡土墙身的抗滑稳定性,基底可做成逆坡,但逆坡坡度不宜过大,以免墙身与基底下的三角形土体一起滑动;一般土质地基不宜大于1׃10,岩石地基不宜大于1׃5;5墙趾台阶当墙高较大时,为了提高挡土墙抗倾覆能力,可加设墙趾台阶,墙趾台阶的高宽比可取h׃a=2׃1,a不得小于20cm;如图5-27所示6设置伸缩缝重力式挡土墙应每间隔10~20m设置一道伸缩缝;当地基有变化时,宜加设沉降缝;在挡土结构的拐角处,应采取加强构造措施;7墙后排水措施挡土墙因排水不良,雨水渗入墙后填土,使得填土的抗剪强度降低,对产生挡土墙的稳定不利的影响;当墙后积水时,还会产生静水压力和渗流压力,使作用于挡土墙上的总压力增加,对挡土墙的稳定性更不利;因此,在挡土墙设计时,必须采取排水措施;①载水沟:凡挡土墙后有较大面积的山坡,则应在填土顶面,离挡土墙适当的距离设置载水沟,把坡上径流载断排除;载水沟的剖面尺寸要根据暴雨集水面积计算确定,并应用混凝土衬砌;载水沟出口应远离挡土墙,如图5—28a所示;②泄水孔:已渗入墙后填土中的水,则应将其迅速排出;通常在挡土墙设置排水孔,排水孔应沿横竖两个方向设置,其间距一般取2~3m,排水孔外斜坡度宜为5%,孔眼尺寸不宜小于100mm;泄水孔应高于墙前水位,以免倒灌;在泄水孔入口处,应用易渗的粗粒材料做滤水层,必要时作排水暗沟,并在泄水孔入口下方铺设粘土夯实层,防止积水渗入地基不利墙体的稳定;墙前也要设置排水沟,在墙顶坡后地面宜铺设防水层,如图5—28c 所示;8填土质量要求挡土墙后填土应尽量选择透水性较强的填料,如砂、碎石、砾石等;因这类土的抗剪强度较稳定,易于排水;当采用粘性作填料时,应掺入适当的碎石;在季节性冻土地区,应选择炉碴、碎石、粗砂等非冻结填料;不应采用淤泥,耕植土,膨胀土等作为填料;例题5-8 已知某块石挡土墙高6m,墙背倾斜︒=10ε,填土表面倾斜︒=10β,土与墙的摩擦角︒=20δ,墙后填土为中砂,内摩擦角︒=30ϕ,重度3/5.18m kN =γ;地基承载力设计值kPa f a 160=;设计挡土墙尺寸砂浆块石的重度取22km/m 3;解1初定挡土墙断面尺寸设计挡土墙顶宽1.0m 底宽4.5m 如图5-29所示,墙的自重为 ()m kN G /36322265.40.1=⨯⨯+= 因00=α,m kN Gn /363=,m kN Gt /0=2土压力计算由︒=30ϕ、︒=20δ、︒=10ε、︒=10β,应用库仑土压力理论,查表5-1 得Ka=,由公式5-16得,m kN Ka rh Ea /9.145438.065.18212122=⨯⨯⨯== Ea 的方向与水平方向成︒30角,作用点距离墙基2m 处;()()m kN Ea Eax /4.1261020cos 9.145cos =︒+︒⨯=+=εδ()()m kN Ea Eaz /731020sin 9.145sin =︒+︒⨯=+=εδ因00=α,Ean=Eaz=73kN/mEat=Eax=m3抗滑稳定性验算墙底对地基中砂的摩擦系数u,查表5-4得μ=; ()()38.14.12673363=+=-+=Gt Eat Ean Gn Ks μ> 抗滑安全系数满足要求;4抗倾覆验算计算作用在挡土墙上的各力对墙趾O 点的力臂自重G 的力臂m x 10.20=Ean 的力臂 m x f 15.4=Eax 的力臂 m z f 2=21.424.12615.47310.2363Eax Eaz G x K f f 0t =⨯⨯+⨯=⋅⋅+=z χ> 抗倾覆验算满足要求;5地基承载力验算作用在基础底面上总的竖向力N=Gn+Eaz=363+73=436kN/m合力作用点与墙前趾O 点的距离m x 86.143624.12615.47310.2363=⨯-⨯+⨯= 偏心距39.086.125.4=-=e m 基底边缘kPa P 5.463.1475.439.0615.4436max min =⎪⎭⎫ ⎝⎛⨯±= ()()kPa P P 9.965.463.1472121min max =+=+<kPa f a 160= kPa P 3.147max =<kPa f a 1961602.12.1=⨯=地基承载力满足要求;因此该块石挡土墙的断面尺寸可定为:顶宽1.0m,底面4.5m,高6.0m;本章小结挡土墙设计的关键问题在于确定作用墙背上的土压力的性质,大小,方向和作用点;根据挡土墙的位移方向和位移量,我们把土压力分为静止土压力,主动压力和被动土压力,工程实际中用的比较多的是静止土压力和主动土压力,在学习过程中应正确理解土压力产生的条件,并能根据实际情况准确地判断土压力的性质;本章的重点是主动土压力的计算;我们学习了朗肯土压力理论,库仑土压力理论及地基基础设计规范GB5007-2002推荐的主动土压力计算方法;应掌握各计算方法的基本假定,计算原理,计算公式及适用条件,能根据工程实际,较迅速地选择合适的计算方法计算出土压力的大小,方向和作用点;对于挡土墙的设计,要求掌握重力式挡土墙的设计内容,设计要求并能较熟练地进行挡土墙的验算;。
土压力—常见情况下土压力的计算(土力学课件)
1.填土面有连续均布荷载
h' h cos cos cos( )
墙顶土压力 墙底土压力
ea γhKa ea γ(h H )Ka
作用位置在梯形面积形心处, 法线上侧与墙背法线成 δ角
2.成层填土
第一层土顶面处 ea γhKa
第一层底面处 ea γ(h H )Ka
Ea
1 2
4 24
1 2
2 (24
30.7)
10(3 kN/m)
朗肯土压力理论的应用-作业2
作用在墙背上的水压力呈三角形分布,合力为该 分布图的面积
Ew
1 2
20
2
2(0 kN/m)
作用在墙上的总侧压力为土压力与水压力之和
E Ea Ew 103 20 12(3 kN/m)
24
临界深度
z0
2c Ka
q
210 19 0.528
15 19
0.6(6 m)
在墙底处土压力强度
a
(
H
q) tan2
45
2
2c
tan
45
2
=56.(3 kPa)
朗肯土压力理论的应用-作业4
主动土压力为土压力分布图面积,即
Ea
1 2
(7
0.66) 56.3
17(8 kN/m)
合力作用点距墙底距离为
解
在墙顶处 σa=0
在墙顶下4m处
a
z tan2
45
2
18 4
tan
45
30 2
24
在墙顶下6m处
a
(
h1
' h2 ) tan2
土压力计算方法范文
土压力计算方法范文土压力是指土体对其中一受力体的压力。
在土力学中,计算土压力是非常重要的,可以应用于土体力学、支护结构的设计等方面。
土压力的计算方法主要有以下几种:Coulomb土压力理论、Rankine土压力理论、扩展库仑土压力理论、排孔土压力理论等。
1. Coulomb土压力理论:Coulomb土压力理论是最早提出的土压力理论之一、该理论假设土体受力状态为塑性,土体内摩擦角为常数,无内聚力。
根据该理论,计算土压力的公式为:土压力 = (Ka - Kp) * γ * H * cos²α其中,Ka为土体内摩擦角的正切值,α为受力体与水平面的夹角,γ为土体的单位重量,H为土体的高度。
Coulomb土压力理论可以用于计算土体对静止的受力体的压力。
2. Rankine土压力理论:Rankine土压力理论是一种经验的土压力理论,也称为裂隙法。
该理论假设土体具有内聚力,根据土体的强度参数计算土压力。
根据该理论,计算土压力的公式为:土压力 = (K0 - Ke) * γ * H + 2 * Ke * γ * H * tanα其中,K0为土体侧压力系数,Ke为土体内聚力系数,γ为土体的单位重量,H为土体的高度,α为受力体与水平面的夹角。
Rankine土压力理论可以用于计算土体对正在运动中的受力体的压力。
3. 扩展库仑土压力理论:扩展库仑土压力理论是对Coulomb土压力理论的改进,考虑了土体的内聚力。
该理论主要是通过考虑土体的摩擦力和内聚力来计算土压力。
计算土压力的公式为:土压力= Ke * γ * H * cos²α其中,Ke为土体内聚力系数,γ为土体的单位重量,H为土体的高度,α为受力体与水平面的夹角。
扩展库仑土压力理论可以用于计算土体对静止和正在运动中的受力体的压力。
4.排孔土压力理论:排孔土压力理论是适用于开挖土方工程的土压力计算理论。
该理论假设开挖土方工程的土体受力状态为塑性,通过考虑排水孔的效应来计算土压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
¾1.粘性土被动土压力强度不存在负侧压力区 ¾2.合力大小为分布图形的面积,即梯形分布图形面积 ¾3.合力作用点在梯形形心
四、例题分析 【例1】有一挡土墙,高6米,墙背直立、光滑,墙后
填土面水平。填土为粘性土,其重度、内摩擦角、粘 聚力如下图所示 ,求主动土压力及其作用点,并绘出 主动土压力分布图
主
动
二、主动土压力
土 挡土墙在土压力作用下,产
h
z
γz(σ1)
压 生离开土体的位移,竖向应
力保持不变,水平应力逐渐
力 减小,位移增大到△a,墙后
土体处于朗肯主动状态时,
pa(σ3) 墙后土体出现一组滑裂面,
45o+ϕ/2
它与大主应力面夹角45o+ ϕ/2,水平应力降低到最低极
极限平衡条件
限值 朗肯主动土
论 (
2 )
当c>0, 粘性土
2c√Kp
p p = γzK p + 2c K p 粘性土被动土压力强度包括两部分
91. 土的自重引起的土压力γzKp 92. 粘聚力c引起的侧压力2c√Kp
说明:侧压力是一种正压力,在计算 Ep 中应考虑
h
hp
土压力合力
γhKp +2c√Kp
E p = (1 / 2 )γh 2 K p + 2ch K p
静止土压力强度
po = K oγz
z
γz
h h/3
静止土压力系数 测定方法:
1.通过侧限条 件下的试验测定
Eo
=
1 2
γh 2 K o
K0γz
静止土压力 系数
2.采用经验公
式K0 = 1-sinφ’
计算
K0γh
3.按相关表格 静止土压力分布 三角形分布
提供的经验值确 土压力作用点 定
作用点距墙底h/3
状
态
伸展
45o-ϕ/2
pa K0γz
压缩
45o+ϕ/2
γz
pp σ
主动极限 水平方向均匀伸展 土体处于水平方向均匀压缩 被动极限
平衡状态
弹性平衡
平衡状态
状态
主动朗 肯状态
处于主动朗肯状态,σ1方向竖直,剪切 破坏面与竖直面夹角为45o-ϕ/2
被动朗 肯状态
处于被动朗肯状态,σ3方向竖直,剪切 破坏面与竖直面夹角为45o+ϕ/2
γ=17kN/m3
c=8kPa
ϕ=20o
h=6m
【解答】
2c√Ka
解
主动土压力系数
Ka
=
tan 2 ⎜⎛ 45 o ⎝
−
ϕ
2
⎟⎞=0.49 ⎠
答
墙底处土压力强度
论
(
讨论:
朗肯被动土 压力强度
p p = γzK p + 2c K p
1 )
当c=0,无粘性土
p p = γzK p
h
h/3
Ep = (1/ 2)γh2K p
γhKp
¾1.无粘性土被动土压力强度与z成正比,沿墙高呈三角形分布
¾2.合力大小为分布图形的面积,即三角形面积 ¾3.合力作用点在三角形形心,即作用在离墙底h/3处
pp(σ1) 大,位移增大到△p,
墙后土体处于朗肯被动
45o-ϕ/2
状态时,墙后土体出现
一组滑裂面,它与小主
极限平衡条件
σ1
=
σ
3
tan2
⎜⎛ ⎝
45o+ϕ
2
⎟⎞+2c ⎠
tan⎜⎛ ⎝
45o+ϕ
2
⎟⎞ ⎠
应力面夹角45o-ϕ/2, 水平应力增大到最大极 限值
朗肯被动土压力强度
朗肯被动土压 力系数
p p = γ zK p + 2 c K p
σ3
=
σ1
tan2⎜⎛ 45o ⎝
−
ϕ
2
⎟⎞ ⎠
−
2c tan⎜⎛ 45o ⎝
−
ϕ
2
⎟⎞ ⎠
压力强度
pa = γzK a − 2c K a
朗肯主动土压
力系数
讨
论
讨论
(
朗肯主动土
1
压力强度
pa = γzK a − 2c K a
)
当c=0,无粘性土
pa = γzK a
h
h/3
Ea = (1/ 2)γh2Ka
第六章 土压力计算
主要内容
概述 静止土压力计算 朗肯土压力理论 库仑土压力理论 特殊情况下的土压力 土压力的讨论
第一节 概述
一、工程背景
填土面
EE
E
E
码头
隧道侧墙
桥台
土压力通常是指挡土墙后的填土因自重或外荷载作用 对墙背产生的侧压力
二、土压力类型
土压力
静止土压力 主动土压力 被动土压力
说明:负侧压力是一种拉力,由于土与结
Ea
构之间抗拉强度很低,受拉极易开裂,在 计算中不考虑
γhKa-2c√Ka
负侧压力深度为临界深度z0
pa = γz0K a − 2c K a = 0 z 0 = 2c /(γ K a )
E a = ( h − z 0 )(γhK a − 2 c K a ) / 2
第三节 朗肯土压力理论
一、基本假定:
一、基本假定
¾1.挡土墙背垂直、光滑
¾2.填土表面水平 ¾3.墙体为刚性体
f=0
z
45 o-ϕ / 2
pp=Kpγz
增加
σx=K0γz
减小
σ =γz pa=Kaγz
主动 伸展
被动 压缩
大主应力方向
45o +ϕ / 2
小主应力方向
三
τf
种
τf =c+σ tanϕ
¾1.粘性土主动土压力强度存在负 侧压力区(计算中不考虑)
¾2.合力大小为分布图形的面积 (不计负侧压力部分)
¾3.合力作用点在三角形形心,即 作用在离墙底(h-z )/3处
被
三、被动土压力
动
土 挡土墙在外力作用下,
h
z
γz(σ3)
压 挤压墙背后土体,产生
位移,竖向应力保持不
力 变,水平应力逐渐增
Ea 滑裂面
Ep 滑裂面
压
力
4.三种土压力之间的关系
之
E
间
的
关
Ep
系
Eo
Ea
o
-△ △a △p
+△ห้องสมุดไป่ตู้
对同一挡土墙,在填土 的物理力学性质相同的
¾ 1. Ea <Eo <<Ep
条件下有以下规律: ¾ 2. △p >>△a
第二节 静止土压力计算
作用在挡土结构背面的静止土压力可视为天然土层自重应
力的水平分量
1.静止土压力
挡土墙在压力作用下不
发生任何变形和位移,
墙后填土处于弹性平衡
Eo
状态时,作用在挡土墙
背的土压力
2.主动土压力
在土压力作用下,挡土墙 离开土体向前位移至一定 数值,墙后土体达到主动 极限平衡状态时,作用在 墙背的土压力
3.被动土压力
在外力作用下,挡土墙 推挤土体向后位移至一 定数值,墙后土体达到 被动极限平衡状态时, 作用在墙上的土压力
γhKa
¾1.无粘性土主动土压力强度与z成正比,沿墙高呈三角形分布
¾2.合力大小为分布图形的面积,即三角形面积 ¾3.合力作用点在三角形形心,即作用在离墙底h/3处
论 (
2 )
h
z0 (h-z0)/3
当c>0, 粘性土
2c√Ka
pa = γzK a − 2c K a
粘性土主动土压力强度包括两部分
91. 土的自重引起的土压力γzKa 92. 粘聚力c引起的负侧压力2c√Ka