实数经典例题+习题(最全)

合集下载

实数练习题

实数练习题

实数练习题一. 选择题1.下列说法不正确的是( )A .1是1的平方根 B.-1是1的平方根C .±1是1的平方根 D.1的平方根是12.9的平方根是( )A .±9 B.±3 C.9 D.33.4的算术平方根是( )A .±2 B.2 C.±2 D.24.下列各数:π,2)2(-,-∣-3∣,-(-5),π-3.14,2,0,-1,其中有平方根的有( )A .3个 B.4个 C.5个 D.6个5.下列几种说法:( )①任何数的平方根都有两个②只有正数才有平方根;③因为负数没有平方根,所以平方根不可能为负;④不是正数的数都没有平方根.其中正确的有( )A .3个 B.2个 C.1个 D.0个6.下列计算正确的是( )A .2)2(-=-2 B.01.01.0= C.5=5± D.2)2(2±=±±7.一个正整数的算术平方根是a ,则比这个正整数大2的数的算术平方根是( )A .a+2 B. 22+a C. 22+a D. 2+a8.已知n -12是正整数,则整数n 的最大值为( )A .12 B.11 C.8 D.39.下列各数中,-2,0.3,,712,-π,无理数的个数是( )A .2个 B.3个 C.4个 D.5个10.下列说法正确的是( )A .无理数都是实数,实数都是无理数B .无限小数都是无理数; C.无理数是无限小数D .两个无理数的和一定是无理数二.填空题1.平方根等于本身的数是 ,算术平方根等于本身的数是 .立方根等于它本身的数是 .2.(1)一个数的平方是49,这个数是 ,它叫做49的 .(2)( )2=649,649的平方根是 ,(3)2)25(-开平方的结果是 .3.13是m 的一个平方根,则m 的另一个平方根是 ,m= . 4.35的整数部分为 ,小数部分为 .5.若x+1是36的算术平方根,那么x= .6.∣1615-∣的平方根是 ,972的算术平方根是 . 7.绝对值最小的实数是 ,a 和它的相反数的差是 .7.若无理数a 满足2<a<5,请写出两个你熟悉的无理数a 为 . 8.10在两个连续整数a 和b 之间,即a<10<b ,则a,b 的值分别是 . 的大218cm 3.”则小明的盒子的棱长为 cm.16.一个数的算术平方根是x ,那么比它大1的数的立方根是 .三.计算题1.求下列各数的平方根:(1)144 (2)4112 (3)0625.0(4)2)1.0(- (5)2)4(- (6)2)169(--(7)221213- (8)02.求下列各数的立方根:(1)-0.001 (2)833 (3)(-4)33.计算:(1)02.5553-+(精确到0.01)(2)-+337π41+(保留4个有效数字);(3))523(32--(精确到0.01)(4)322310+-(保留3个有效数字).四.问答题1.某农场有一块长30米,宽为20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?2.若球的半径为R ,则球的体积V 与R 的关系式为V=34πR 3 .已知一个足球的体积为6280cm 3,试计算足球的半径.(π取3.14,精确到0.1)3.已知一个正方体的体积是1000cm 3,现在要在它的8个角上分别截取8个大小相同的小正方体,使截后余下的体积是488cm 3,问截得的每个小正方体的棱长是多少?一.选择题11.下列说法不正确的是( )A .0是整数 B.0是有理数 C.0是无理数 D.0是实数12.,3,2,35----π/2四个数中,最大的数是( ) A .35- B.-2 C.3- D.-π/213.下列说法正确的是( )A .带根号的数是无理数B .无限小数是无理数C .分数都不是无理数D .不能在数轴上表示的数是无理数14.2)3(-的相反数是( )A .6 B.-6 C.9 D.-915.设,32a =则下列结论正确的是( )A .4.5<a<5.0 B.5.0<a<5.5 C.5.5<a<6.0 D.6.0<a<6.516.下列四个结论:①绝对值等于它本身的实数只有零;②相反数等于它本身的实数只有零;③算术平方根等于它本身的实数只有1;④倒数等于它本身的实数只有1.其中正确的有( )A .0个 B.1个 C.2个 D.3个17.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根 D.一个数有立方根,它也有平方根D .立方根的符号与被开立方数的符号相同18.下列计算不正确的是( )A .3)3(2-=- B.3)3(33-=-C .1.0001.03= D.2)2(33-=-19.下列说法正确的是( )A .一个数总大于它的立方根 B.非负数才有立方根C .任何数和它的立方根的符号相同 D.任何数都有两个立方根20.下列各式:43)6427(32=-,27)27(33-=--,2118113=,,4643±=计算正确的有( )二.填空题A .0个 B.1个 C.2个 D.3个9.因为( )3=-27,所以327-= .10.64的立方根是 .11.满足4030<<x 的整数x= .12.比较大小-3 13. =-⨯1362 . 14.计算:-3=----+⨯89)3(2832 .(保留2个有效数字)15.小红做了棱长为5cm 的一个正方体盒子,小明说:“我做的盒子的体积比你四.问答题4.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=2πg l ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g=9.8米/秒2,π取3.1,假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内该座钟大约发出了多少次滴答声?5.4-3的整数部分为a ,小数部分为b ,求a b 的值.(保留3个有效数字).。

湖南长郡中学七年级数学下册第六章【实数】经典练习题(培优专题)

湖南长郡中学七年级数学下册第六章【实数】经典练习题(培优专题)

一、选择题1.在实数:20192020,π2π,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52- ) A .4B .5C .6D .72.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②3.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; ) A .1B .2C .3D .44.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等5.1的值( ) A .在7和8之间 B .在6和7之间 C .在5和6之间D .在4和5之间6.,则571.34的平方根约为( ) A .239.03B .±75.587C .23.903D .±23.9037.在下列各数中是无理数的有( )0.111-43π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732 A .3个B .4个C .5个D .6个8.已知:m 、n 为两个连续的整数,且m n <<,以下判断正确的是( )A 4B .3m =C .5的小数部分是0.236D .9m n +=9.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±910.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个11.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题12.计算. (1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3311256273⎫--⎪⎪⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦13.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________. 14.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;4±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)15.对于实数x ,规定[x ]表示不大于x 的最大整数,如[4]=4,=1,如[﹣2.5]=﹣3,现对82进行如下操作:82−−−→第一次=9−−−→第二次=3−−−→第三次=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是__. 16.计算:(1)⎛- ⎝;(2|1--17.计算:(12)-+(218. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根. 19.求下列各式中x 的值. (1)2(1)2x +=;(2)329203x +=.20.若30a +=,则+a b 的立方根是______.21.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.三、解答题22.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.23.3=,31a b -+的平方根是4±,c 3a b c ++的平方根.24.计算:(1)225--(2)125.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间. 根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1B .2C .3D .42.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个3.在实数3-,-3.14,0,π,364中,无理数有( ) A .1个B .2个C .3个D .4个4.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b5.下列各数中比3-小的数是( ) A .2-B .1-C .12-D .06.下列各式中,正确的是( ) A .16=±4B .±16=4C .3273-=-D .2(4)4-=-7.实数a 、b 在数轴上的位置如图所示,且||||b a >,则化简233||()a a b b -++-的结果是( )A .2aB .2bC .22a b +D .08.在3223.14,0.4,0.001,23,, 5.12112111227π-+--……中,无理数的个数为 ( ) A .5B .2C .3D .49.下列各数中,属于无理数的是()A.227B.3.1415926 C.2.010010001 D.π3-10.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为()A.3 B.-3 C.±3 D.±9 11.下列计算正确的是()A.21155⎛⎫-=⎪⎝⎭B.()239-=C.42=±D.()515-=-二、填空题12.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-+的点,并比较它们的大小.13.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.14.计算:()23143282--⨯-⨯-() 15.计算:(1)223168(2)(3)-----(2)22(2)8x -=16.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值. 17.若2x =,29y =,且0xy <,则x y -等于______.18.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.19.计算2020318|4-+-=_________.20.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______. 21.若()221210a b c -+-=,则a b c ++=__________.三、解答题22.计算: (1)3243333225⎛- ⎝; (2381|136463---23.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 24.计算: (13168-.(2)()23540.255(4)8⨯--⨯⨯-.25.对于有理数a ,b ,定义一种新运算“”,规定ab a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当a b a c =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.一、选择题1.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .102.下列各组数中,互为相反数的是( )A .2-与2B .2-与12-C .()23-与23-D .38-与38- 3.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个4.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .65.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>6.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+7.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .108.85 ) A .4B .5C .6D .79.若1a >,则a ,a -,1a的大小关系正确的是( ) A .1a a a>->B .1a a a>-> C .1a a a>>- D .1a a a->>10.下列各数中是无理数的是( )A .227B .1.2012001C .2πD .8111.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N . (1)解方程:log x 4=2; (2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018 13.若()22210b a b -+++-=,求()2020a b +的值.14.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.15.()1116353cos302-⎛⎫+-+--︒ ⎪⎝⎭16.计算:(1)2323615-++--- (2)122334-+-+-17.计算:()223228432-----⨯+18.﹣8的立方根与16的平方根之和是_____. 19.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=20.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.21.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.三、解答题22.求下列各式中的x :(1)2940x -=;(2)3(1)8x -=23.计算:3011(2)(200422-+--- 24.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.25.设2+x 、y ,试求x 、y 的值与1x -的立方根.。

上海上师初级中学七年级数学下册第六单元《实数》经典习题(培优)

上海上师初级中学七年级数学下册第六单元《实数》经典习题(培优)

一、选择题1.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407D 解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.2.1的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C 解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.3.下列选项中,属于无理数的是( )A .πB .227-CD .0A解析:A【分析】根据无理数是无限不循环小数,可得答案.解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.4.,则571.34的平方根约为()A.239.03 B.±75.587 C.23.903 D.±23.903D解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D.【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.5.在下列各数中是无理数的有()0.111-43π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732A.3个B.4个C.5个D.6个B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.6.若3a=,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C.【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.7.和数轴上的点一一对应的数是()A.自然数B.有理数C.无理数D.实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D.【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.8.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n- Bn-D24n-C23n-B22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.9.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B 解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.10.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.已知31a +的算数平方根是4,421c b +-的立方根是3,c 22a b c +-的平方根.【分析】根据算术平方根的定义得到3a+1=16可解得a 值根据3<<4可得c=3再根据立方根的定义可得可解得b 然后将abc 的值代入计算即可【详解】解:根据题意可得:∴∵∴即的平方根为【点睛】本题考查了 解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据34,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =,3134<<,3c ∴=,∵34213c b +-=,∴8b =,3==±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键.12.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab = ab ,∵2a +∴,∴a+2=0,30b-=,解得:a=-2,3b=,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.13.(1)小明解方程2x1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x,y是有理数,且x,y满足等式2x2y17++=-x-y的值.(1)x=−13;(2)(2)x-y的值为9或-1【分析】(1)将错就错把x=2代入计算求出a的值即可确定出正确的解;(2)根据题意可以求得xy的值从而可以求得x−y的值【详解】(1)把x=2代入2解析:(1)x=−13;(2)(2)x-y的值为9或-1.【分析】(1)将错就错把x=2代入计算求出a的值,即可确定出正确的解;(2)根据题意可以求得x、y的值,从而可以求得x−y的值.【详解】(1)把x=2代入2(2x−1)=3(x+a)−3中得:6=6+3a−3,解得:a=1,代入方程得:2x1x13 32-+=-,去分母得:4x−2=3x+3−18,解得:x=−13;(2)∵x、y 是有理数,且 x,y 满足等式2x2y17++=-∴22174x yy⎧+=⎨=-⎩,解得,54xy=⎧⎨=-⎩或54xy=-⎧⎨=-⎩,∴当x=5,y=−4时,x−y=5−(−4)=9,当x=−5,y=−4时,原式=−5−(−4)=−1.故x-y的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数.14.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.15.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--(1)4;(2)【分析】(1)变减号为加号同时省略括号和加号先两个分数相加再和最后一个数相加;(2)先算乘方和开方再算乘除最后算加减【详解】(1)原式;(2)原式【点睛】此题考查有理数混合运算其关键解析:(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.16.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.(1)x=3或x=-1;(2)x=-3【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可【详解】(1)直接开平方得:解得:(2)两边同时除以3得:开立方得:【点睛】本题考查了平方解析:(1)x=3或x=-1;(2)x=-3.【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可.【详解】(1)()214x -=直接开平方得:12x -=±,解得:13x =,21x =-(2)3381x =-两边同时除以3得:327x =-,开立方得:3x =-.【点睛】本题考查了平方根和立方根的性质,解题的关键是利用平方根和立方根的性质求解方程.17.若|2|0a -=,则a b +=_________.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.18.0.5325===的值是______________________.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】1.147=,1.1471011.47===⨯=故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.19.若已知()2120a b -++=,则a b c -+=_____.6【分析】分别根据绝对值平方和算术平方根的非负性求得abc 的值代入即可【详解】解:因为所以解得故故答案为:6【点睛】本题考查非负数的性质主要考查绝对值平方和算术平方根的非负性理解几个非负数(式)的和解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.20.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.三、解答题21.已知31a +的算数平方根是4,421c b +-的立方根是3,c 是13的整数部分.求22a b c +-的平方根. 解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据3<13<4,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =, 3134<<,3c ∴=,∵34213c b +-=,∴8b =,22225833a b c ∴±+-=±⨯+-=±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键. 22.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.解析:(1)2;(2)±4【分析】(1)先求出m =22-,进而化简|m +1|+|m−1|,即可;(2)根据相反数和非负数的意义,列方程求出c 、d 的值,进而求出2c−3d 的值,再求出2c−3d 的平方根.【详解】(1)由题意得:m =22-,则m +1>0,m−1<0,∴|m +1|+|m−1|=m +1+1−m =2;(2)∵2c d +与4d +互为相反数,∴2c d ++4d +=0,∴|2c +d|=0且4d +=0,解得:c =2,d =−4,∴2c−3d =16,∴2c−3d 的平方根为±4. 【点睛】本题主要考查数轴、相反数的定义,求绝对值,掌握求绝对值的法则以及绝对值与算术平方根的非负性,是解题的关键.23.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------解析:(1)1117878=-⨯;(2)514;(3)()()11111=m m m m -++;(4)0 【分析】(1)因为56=7×8,所以根据题中规律1115678=-; (2)根据题意把每个单位分数变成两个单位分数的差,再对其进行加减运算;(3)根据上面规律可以写出拆分一个单位分数的规律:()11111m m m m =-++; (4)根据(3)中的规律把每个分数单位拆分成两个分数单位的差再计算即可得到解答 .【详解】解:(1)1111567878==-⨯ (2)11111612203040++++ 11111111112334455667++++=----- 1127514==- (3)()()11111=m m m m -++ (4)()()()()()()121231312x x x x x x -+------ =()()()()()()111111323121x x x x x x --++-------=0【点睛】本题考查与实数运算相关的规律题,通过观察与归纳总结出运算规律是解题关键. 24.计算:201()( 3.14)|22π---+-.【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4﹣1+.【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质,正确化简各数是解题关键.25.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =, 23x =; (2)解:313x -=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.26.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯-=2(4)132 48()243 -⨯-+-1248()43=-⨯-+54812=-⨯20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.27.求下列各式中的x的值.(1)4x2=9;(2)(2x﹣1)3=﹣27.解析:(1)x=32±;(2)x=﹣1.【分析】(1)先变形为x2=94,然后利用平方根的定义得到x的值;(2)先利用立方根的定义得到2x﹣1=﹣3,然后解一次方程即可.【详解】解:(1)4x2=9∴x2=94,∴x=±32;(2)(2x﹣1)3=﹣27,∴2x﹣1=﹣3,∴x=﹣1.【点睛】本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a28.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.解析:(1)3 3-;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34,∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.。

(完整版)实数练习题及答案

(完整版)实数练习题及答案

实数练习题及答案一、选择题(每小题3分,共30分)1.下列各式中无意义的是()A. B. C. D.2.在下列说法中: 10的平方根是±; -2是4的一个平方根; 的平方根是④0.01的算术平方根是0.1;⑤,其中正确的有()A.1个B.2个C.3个D.4个3.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.的立方根是()A. B. C. D.5.现有四个无理数,,,,其中在实数+1 与+1 之间的有()A.1个B.2个C.3个D.4个6.实数,-2,-3的大小关系是()A. B. C. D.7.已知 =1.147, =2.472, =0.532 5,则的值是()A.24.72B.53.25C.11.47D.114.78.若,则的大小关系是()A. B. C. D.9.已知是169的平方根,且,则的值是()A.11B.±11C. ±15D.65或10.大于且小于的整数有()A.9个B.8个 C .7个 D.5个二、填空题(每小题3分,共30分)10.绝对值是,的相反数是.11.的平方根是,的平方根是,-343的立方根是,的平方根是.12.比较大小:(1);(2);(3);(4) 2.13.当时,有意义。

14.已知=0,则 =.15.最大的负整数是,最小的正整数是,绝对值最小的实数是,不超过的最大整数是.16.已知且,则的值为。

17.已知一个正数的两个平方根是和,则=,=.18.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C 三点在数轴上从左至右的顺序是.19.若无理数满足1,请写出两个符合条件的无理数.三、解答题(共40分)20.(8分)计算:(1);(2);(3);(4);21.(12分)求下列各式中的的值:(1);(2);(3);(4);22.(6分)已知实数、、在数轴上的对应点如图所示,化简:23.(7分)若、、是有理数,且满足等式,试计算的值。

盘锦市七年级数学下册第六章【实数】经典习题(含答案解析)

盘锦市七年级数学下册第六章【实数】经典习题(含答案解析)

一、选择题1.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .12.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .103.下列各组数中,互为相反数的是( ) A .2-与2B .2-与12-C .()23-与23-D .38-与38-4.64的算术平方根是( ) A .8B .±8C .22D .22±5.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×20146.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+7.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .108.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-9. 5.713457.134,则571.34的平方根约为( ) A .239.03B .±75.587C .23.903D .±23.903 10.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π11.在1.414,213,5π,2-中,无理数的个数是( ) A .1B .2C .3D .4二、填空题12.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭(2)2291|11232⎛⎫-+--⨯- ⎪⎝⎭13.求下列各式中x 的值.(1)4(x ﹣3)2=9; (2)(x +10)3+125=0. 14.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭;(2)()()232524-⨯--÷;(3)()225--. 15.求下列各式中x 的值 (1)()328x -= (2)21(3)753x -=16.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.17.(2218.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数. 20.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=21.9的平方根是_____,-27的立方根是______,()216的算术平方根是_________.三、解答题22.(1)求x 的值:2490x -=; (2)计算:()2325227+--23.求下列各式中x 的值. (1)2(1)2x +=;(2)329203x +=. 24.若()22210b a b -+++-=,求()2020a b +的值.25.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.一、选择题1.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1332.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; ) A .1B .2C .3D .43.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是44.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等 5.下列实数中,是无理数的为( )A .3.14B .13C D 6.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,A .1个B .2个C .3个D .4个7.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+8.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间9.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .110.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-6811.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个B .2个C .3个D .4个二、填空题12.求出x 的值:()23227x +=13.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).14.﹣8的立方根与16的平方根之和是_____.15.若[x ]表示实数x 的整数部分,例如:[3.5]=3,则[17]=___.16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b 时,a*b=a ,则当x=2时,()()1*-3*=x x x ______17.已知3331.51 1.147,15.1 2.472,0.1510.5325===,则31510的值是______________________.18.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +求23c d -的平方根.19.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 20.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______21.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.三、解答题22.计算:(1)﹣12327-﹣(﹣2)9(2331)+32| 23.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.24.计算: (1. (2)()23540.255(4)8⨯--⨯⨯-.25.(1)解方程组;25342x y x y -=⎧⎨+=⎩(2)解不等式组:352(2)22x x x x -≥-⎧⎪⎨>-⎪⎩①②,并写出它的所有整数解.(3)解方程:2(x 2)100-=(4)计算:20172(1)|7|(----一、选择题1.在实数:20192020,π2π,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52- ) A .4B .5C .6D .72.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .63.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2 D .8的平方根是44.下列说法正确的是( )A .2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D 55.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .46. ) A .287.2B .28.72C .13.33D .133.37.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列计算正确的是( )A 1=-B 3=-C 2=±D 12=-9.已知无理数m 5π-的整数部分相同,则m 为( )A BC 1D .π-10.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A .5的整数部分与小数部分的差是45- B .3m = C .5的小数部分是0.236 D .9m n +=11.估计511-的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题12.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------13.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.14.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立? (2332x -35x +12x -的值.15.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证. 16.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+;(4)311()()(2)424-⨯-÷-.17.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值. 18.(1)计算:|3|-.(2)求下列各式中x 的值: ③22536x =; ④3(1)64x --=.19.﹣8_____. 20.(1)求x 的值:2490x -=;(221.若一个正数的平方根是21a -和5a -,则这个正数是______.三、解答题22.计算:(12)-+(223.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣201824.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭25.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯。

(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)

(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)

一、选择题1.a,小数部分为b,则a-b的值为()A.6-B6C.8D8A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】<<,91516<<,<<34∴==,a b3,3)∴-=-=,336a b故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.2.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D.【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.3.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等C解析:C【分析】根据实数的定义和运算法则、绝对值的意义进行分析.【详解】A 、两个无理数的和可能是有理数,例如:2+(-2),故错误;B 、实数与数轴上的点一一对应,故错误;C 、垂线段最短,正确;D 、如果两个实数的绝对值相等,那么这两个实数相等或互为相反数;故选:C.【点睛】本题考查实数的定义和运算法则、绝对值的意义等,熟练掌握基础知识是关键. 4.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S B 解析:B【分析】5【详解】∵253<<,∴5Q .故选:B .【点睛】5 5.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9C解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.【详解】解:由题意可得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.6.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯, ∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.7.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D .【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵93=,382=,∴在所列的8个数中,无理数有3,3π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键. 9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.10.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C 2=± D .()515-=- B 解析:B【分析】 根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则. 二、填空题11.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.12.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值.(1);(2);(3)【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程再进一步解方程即可【详解】解:(1)∵;;;;;∴;(2)由解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 13.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=(1);(2)或【分析】(1)利用立方根的定义得到然后解一次方程即可;(2)先变形为然后利用平方根的定义得到的值【详解】(1)∵∴∴;(2)整理得:∴或∴或【点睛】本题考查了解一元一次方程平方根和立解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 14.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当a b ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.(1)6;(2)①;②不一定理由见解析【分析】(1)根据新定义可得然后按有理数的运算法则计算即可;(2)①首先根据数轴可得 然后根据新定义可得去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可;(2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=,解得:12a =, 故答案为:12. 【点睛】 本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.比较3、4 _______________.(用“<”连接)3<<4;【分析】先估算出的范围即可求出答案【详解】∵∴故答案为:【点睛】本题考查了估算无理数的大小能估算出的大小是解此题的关键解析:34;【分析】【详解】 ∵3=4= ∴34<<.故答案为:34<<.【点睛】17.下列实数0, 23,,π,0.1010010001其中无理数共有___个.2【分析】根据无理数的定义解答即可【详解】解:实数中无理数有实数π共2个故答案为:2【点睛】本题考查了无理数的定义其中初中范围内学习的无理数有:π2π等;开方开不尽的数;以解析:2【分析】根据无理数的定义解答即可.【详解】解:实数0,23,π,0.1010010001π共2个, 故答案为:2.【点睛】 本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab 的值解析:9【分析】a 、b 的值,代入求出即可.【详解】∵23,∴a =2,b =3,∴b a =32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.19.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.【分析】根据题意可以写出这列数的前几项从而可以发现数字的变化规律从而可以求得所求式子的值【详解】∵∴……∴每三个数一个循环∵∴则+--3-3-++3=-3-++3故答案为:【点晴】本题考查数字的变化 解析:1312. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, …… ∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.20.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-, ∴+a b 的立方根-1.故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.三、解答题21.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.22.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.24.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 25.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =,23x =; (2)解:313x -=±,34x =或32x =-, 43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.26.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. 解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可; (2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可; ②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 27.计算:(1238127(5)--(2)03(0)8|32|π--+(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】 (1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键. 28.求满足下列条件的x 的值:(1)3(3)27x +=-; (2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

七年级数学-实数习题精选(含答案)

七年级数学-实数习题精选(含答案)

实数单元练习题1填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。

2、ππ-+-43= _____________。

3、2的平方根是__________.4、实数a,b,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。

5、若m 、n 互为相反数,则n m +-5=_________。

6、若2)2(1-+-n m =0,则m =________,n =_________。

7、若 a a -=2,则a______0.8、12-的相反数是_________。

9、 38-=________,38-=_________。

10、绝对值小于π的整数有__________________________。

选择题:(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。

A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 的取值范围是( )。

A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。

A 、0B 、21 C 、2 D 、不能确定 14、下列说法中,错误的是( ). A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。

A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3的值是( )。

A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+的值是( )。

A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。

《常考题》初中七年级数学下册第六单元《实数》习题(含答案解析)

《常考题》初中七年级数学下册第六单元《实数》习题(含答案解析)

一、选择题1.,则x+y 的值为( )A .-3B .3C .-1D .1D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵ ∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.-18的平方的立方根是( ) A .4B .14C .18D .164B 解析:B【分析】先根据题意列出代数式,然后再进行计算即可.【详解】14==.故答案为B.【点睛】本题考查了平方和立方根,弄清题意、根据题意列出代数式是解答本题的关键.4.下列说法中,正确的是()A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.无理数都是无限不循环小数D.无理数加上无理数一定还是无理数C解析:C【分析】根据实数的概念和分类即可判断.【详解】A、无理数包括正无理数和负无理数,则此项错误;B、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C、无理数都是无限不循环小数,则此项正确;D(0=,则此项错误;故选:C.【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键.5.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.6B 解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.6.如图,数轴上表示实数5的点可能是()A.点P B.点Q C.点R D.点S B解析:B【分析】5【详解】∵253<<,∴5Q.故选:B.【点睛】57.下列说法正确的是()A.22B.(﹣4)2的算术平方根是4C.近似数35万精确到个位D215B解析:B【分析】根据平方根的定义,算术平方根的定义,近似数的定义及无理数的估算方法分别计算可判定求解.【详解】解:A.2的平方根是2,故错误;B.(﹣4)2的算术平方根是4,故正确;C.近似数35万精确到万位,故错误;D.∵421<5,∴214,故错误.故选:B.【点睛】本题考查了平方根,算术平方根,近似数,无理数,掌握相关概念及性质是解题的关键.8.定义运算:132x y xy y=-※,若211a=-※,则a的值为()A.12-B.12C.2-D.2C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键. 9.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B 【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.10.511的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B 解析:B【分析】5151的取值即可得到答案.【详解】由题意得7518<<,65117∴<-<, 511∴-介于6~7之间.故选B .【点睛】 此题考查了估算无理数的大小,解题关键在于确定51的大小.二、填空题11.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------(1);(2);(3);(4)0【分析】(1)因为56=7×8所以根据题中规律;(2)根据题意把每个单位分数变成两个单位分数的差再对其进行加减运算;(3)根据上面规律可以写出拆分一个单位分数的规律:解析:(1)1117878=-⨯;(2)514;(3)()()11111=m m m m -++;(4)0 【分析】(1)因为56=7×8,所以根据题中规律1115678=-; (2)根据题意把每个单位分数变成两个单位分数的差,再对其进行加减运算; (3)根据上面规律可以写出拆分一个单位分数的规律:()11111m m m m =-++; (4)根据(3)中的规律把每个分数单位拆分成两个分数单位的差再计算即可得到解答 .【详解】解:(1)1111567878==-⨯ (2)11111612203040++++ 11111111112334455667++++=----- 1127514==- (3)()()11111=m m m m -++ (4)()()()()()()121231312x x x x x x -+------ =()()()()()()111111323121x x x x x x --++-------=0【点睛】本题考查与实数运算相关的规律题,通过观察与归纳总结出运算规律是解题关键. 12.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.13.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭(1);(2)-7+【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方再计算乘法运算进而算加减运算即可求出值【详解】(1)原式=6-3×=6-=;(2)原式=-1+-1-×=解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.14.求下列各式中x 的值.(1)4(x ﹣3)2=9;(2)(x +10)3+125=0.(1)x =或;(2)x =﹣15【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可【详解】解:(1)4(x ﹣3)2=9(x ﹣3)2=x ﹣3=x ﹣3=或x ﹣3=解得:x =或;(2)(x+10解析:(1)x =92或32;(2)x =﹣15 【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可.【详解】解:(1)4(x ﹣3)2=9,(x ﹣3)2=94,x﹣3=32±,x﹣3=32或x﹣3=32-,解得:x=92或32;(2)(x+10)3+125=0,(x+10)3=﹣125,x+10=3125-,x+10=﹣5,解得x=﹣15.【点睛】本题主要考查利用平方根解方程、利用立方根解方程,熟练掌握解方程的方法和步骤是解答的关键,注意平方根有两个.15.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-+的点,并比较它们的大小.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a根据正方形面积公式结合平方根的运算求出a值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正解析:(12,22)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,-+<-.∴比较大小:350.5【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.16.计算:(1)20193-(1)816|22|(2)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x(1)(2)【分析】(1)先根据正整数指数幂立方根平方根去绝对值化简各项再进行加减运算即可;(2)先去括号根据完全平方公式和平方差公式计算后合并同类项再计算除法即可求解【详解】(1)原式=(2)原式解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.17.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______(1)20200;(2)14;(3)130********…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可【详解】解:=-2(1)整数:20200(2)分数:14(3)无理数解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.18.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】19.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______. 或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键 解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 20.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.(1)求x 的值:2490x -=;(2 解析:(1)32x =或32x =-;(2)4 【分析】(1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x =32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.23.(12; (2)求 (x -1)2-36=0中x 的值. 解析:(1)12;(2)x 的值为7或﹣5 【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答; (2)利用平方根解方程的方法求解即可.【详解】解:(12 =4﹣12﹣3 =1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.24.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.解析:(1)a=2,b=3;(2)±4.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a 的值是多少;然后根据3a +b ﹣1的立方根为2,可得:3a +b ﹣1=8,据此求出b 的值是多少即可.(2)把(1)中求出的a 与b 的值代入2a +4b ,求出它的值,然后根据平方根的定义即可得出答案.【详解】解:(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2,∵3a +b ﹣1的立方根为2,∴3a +b ﹣1=8,解得:b=3;(2)由(1)得a=2,b=3,∴24224316a b +=⨯+⨯=.它的平方根为:±4.【点睛】本题考查了平方根,立方根,列式求出a 、b 的值是解题的关键.25.先化简,再求值:()222233a ab a ab ⎛⎫---⎪⎝⎭,其中|2|a + 解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.26.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值;(2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值.故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.27)1152-⎛⎫-+︒ ⎪⎝⎭解析:3 2【分析】根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式3342142122=-+-=-+-=.【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键.28.对于有理数,a b,我们规定*a b b ab=-(1)求(2)*1-的值.(2)若有理数x满足(2)*36x-=,求x的值.解析:(1)3;(2)1x=.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题.。

实数习题库(分类清晰)用

实数习题库(分类清晰)用

实数概念1.下列命题中,正确的是( )。

A 、无理数包括正无理数、0和负无理数B 、无理数不是实数C 、无理数是带根号的数D 、无理数是无限不循环小数2.下列命题中,正确的是( )。

A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数4.下列说法中:①无限小数是无理数;②无理数是无限小数;③无理数的平方一定是无理数;④实数与数轴上的点是一一对应的。

正确的个数是( )A 、1B 、2C 、3D 、45.在实数中-23,0,-3.14 ) A .1个 B .2个 C .3个 D .4个6.下面几个数:0.23 ,1.010010001…,,3π,,,其中,无理数的个数有( )A 、1B 、2C 、3D 、47.下面5个数:13.1416,1ππ-,其中是有理数的有( ) A 、0个 B 、1个 C 、2个 D 、3个8.代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。

A 、1个B 、2个C 、3个D 、4个平方根与立方根1.下列说法错误..的是( ) A .无理数没有平方根; B .一个正数有两个平方根;C .0的平方根是0;D .互为相反数的两个数的立方根也互为相反数. 3. 4925的平方根是 ;81的算术平方根是 . 4. 3的算术平方根是 ;8116的平方根 . 7. ()26-的算术平方根是__________. 8. 2的平方根是_________.10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 .11.下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.A.1个B.2个C.3个D.4个12.下列各式中,无意义的是( )A .41B .2)2(-C .41- D .2- 14.下列说法中,错误的是( )。

实数计算练习题(打印版)

实数计算练习题(打印版)

实数计算练习题(打印版)### 实数计算练习题(打印版)#### 一、选择题1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 1/32. 计算下列哪个表达式的结果是负数?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. (-2) × (-3) × 23. 哪个数的绝对值最大?A. -5B. 2C. -3D. 0#### 二、填空题1. 计算 5 - (-3) = _______。

2. 计算 (-1/2) ÷ (-1/3) = _______。

3. 计算√16 = _______。

4. 计算 |-7| = _______。

#### 三、计算题1. 计算以下表达式的值:- 3.5 + 2.7- 8 - 4.2- 6 × 0.5- 12 ÷ 32. 计算以下表达式的值:- (-4) × (-2) × 0.5- √9- √(4 × 4)- 2² - 3²3. 计算以下表达式的值:- (-3)²- √(2²)- √(0.04)- √(0.25)#### 四、应用题1. 一个长方形的长是宽的两倍,如果宽是4米,那么这个长方形的周长是多少米?2. 一个数的三倍加上5等于15,这个数是多少?3. 一个工厂去年的产量是今年的80%,如果今年的产量是1000吨,那么去年的产量是多少吨?#### 五、解答题1. 证明:对于任意实数a和b,(a + b)² = a² + 2ab + b²。

2. 证明:对于任意实数a和b,|a + b| ≤ |a| + |b|。

以上练习题涵盖了实数的加减乘除、平方根、绝对值等基本运算,以及一些简单的应用题和证明题,旨在帮助学生巩固和提高实数运算的能力。

2021年七年级数学下册第六单元《实数》经典习题(答案解析)(3)

2021年七年级数学下册第六单元《实数》经典习题(答案解析)(3)

一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有( )A .0个B .1个C .2个D .3个C 解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C .【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.,则x+y 的值为( )A .-3B .3C .-1D .1D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵ ∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.3.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.A 、22-=,则2-与2不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 、3382,82-=--=-,则38-与38-不是相反数,此项不符题意;故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.4.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.5.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A点沿数轴向右滚动,A点表示的数加两个圆周.6.在下列各数中是无理数的有()-43π,3.1415926,2.010101(相邻两个0之间有1个1),0.11176.0102030405060732A.3个B.4个C.5个D.6个B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.7.和数轴上的点一一对应的数是()A.自然数B.有理数C.无理数D.实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D.【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.-的整数部分相8.已知无理数m5π同,则m为()A B C1D.π-解析:C【分析】m的整数部分与小数部分,进而可得答案.【详解】π≈,解:因为23, 3.14-的整数部分为1,2,5π所以无理数m的整数部分是12,所以121m=+=.故选:C.【点睛】m的整数部分与小数部分是解题的关键.9.若1a>,则a,a-,1a的大小关系正确的是()A.1a aa>->B.1a aa>->C.1a aa>>-D.1a aa->> C解析:C 【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.10.已知|x|=2,y2=9,且xy<0,则x+y的值为()A.1或﹣1 B.-5或5 C.11或7 D.-11或﹣7A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.二、填空题11.计算:(12(2)22(2)8x -=(1)1;(2)【分析】(1)实数的混合运算利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解【详解】解:(1)===1(2)∴【点睛】本题考查实数的混合运算及利用平方根解方 解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.12.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键 解析:10102021【分析】 利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 13.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.(1)x=5169或;(2)±3【分析】(1)根据题意这两个式子互为相反数列方程求出x 的值然后算出这个数;(2)根据绝对值和算术平方根的非负性求出c 和d 的值再算出结果【详解】(1)解:①这个数是②这解析:(1)x =5,169或21x =-,1521;(2)±3【分析】(1)根据题意,这两个式子互为相反数,列方程求出x 的值,然后算出这个数; (2)根据绝对值和算术平方根的非负性求出c 和d 的值,再算出结果.【详解】(1)解:①23180x x ++-=,315x =,5x =,这个数是()2253169⨯+=,②2318x x +=-,21x =-,这个数是()221181521--=;(2)解:由题意得:2c -d =0,2360d -=,解得:d =±6,c =±3.∵当d =-6,c =-3时,d +c =-9(舍),∴d +c 的平方根为.【点睛】本题考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的性质. 14.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 15.计算:(1)﹣12﹣(﹣2)(21)+2|(1)﹣9;(2)5【分析】(1)先计算立方根和算术平方根再进行加减运算即可;(2)先计算乘法和绝对值再相加即可【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=3 解析:(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.16.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=(1)或;(2)【分析】(1)适当变形后利用平方根的定义即可解方程;(2)适当变形后利用立方根的定义即可解方程【详解】解:(1)两边乘以2得开平方得即或∴或;(2)移项得开立方得解得【点睛】本题考查解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.17.比较大小:12-___________12<【分析】利用作差法比较两个数的大小【详解】解:∵1<3<4∴1<<2∴1-1<-1<2-1∴0<-1<1∴<故答案为:<【点睛】本题考查了实数的大小比较此题的难点是利用夹逼法推知的取值范围 解析:<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1<2-1∴0<1∴<12. 故答案为:<.【点睛】本题考查了实数的大小比较,此题的难点是利用“夹逼法” 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.比较大小:3-(用“>”,“<”或“=”填空).>【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:因为<<所以2<<3所以-3<-<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法解析:>【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】所以2<3所以,-3<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.若()22110a c --=,则a b c ++=__________.【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用等知识点熟练掌握绝对值算术平方根偶次方的 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭(2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=-143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.23.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--.解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.24.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值; (2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值. 故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键. 25.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x =∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.26)10152-⎛⎫-+︒ ⎪⎝⎭解析:32【分析】 根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=. 【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键. 27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】 利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.。

(完整版)第六章实数练习题.docx

(完整版)第六章实数练习题.docx

第六章实数练习题1一.选择题(共23 小题)1.下列运算正确的是()A.﹣=13B.=﹣6C.﹣=﹣ 5D. =±32.若=1.414,=14.14,则 a 的值为()A.20B.2000C. 200 D.200003.已知一个数的两个平方根分别是 a+3 与 2a﹣15,这个数的值为()A.4B.± 7 C.﹣ 7 D.494.若 2m﹣4 与 3m﹣1 是同一个正数的平方根,则m 为()A.﹣ 3 B.1 C.﹣ 1 D.﹣ 3 或 15.的平方根是()A.± 2B.± 1.414 C.D.﹣ 26.若 a,b 为实数,且 | a+1|+=0,则( ab)2014的值是()A.0B.1 C.﹣ 1 D.± 17.在下列说法中:① 10 的平方根是±;②﹣2是4的一个平方根;③的平方根是;④ 0.01的算术平方根是0.1;⑤=±a2,其中正确的有()A.1 个 B.2 个 C.3 个 D.4 个8.一个正数的正的平方根是m,那么比这个正数大 1 的数的平方根是()A.m2+1 B.±C.D.±9.下列说法正确的是()A.± 4 的平方根是 16B.1 的平方根是 1C.的平方根是± 3D.2 是(﹣ 2)2的算术平方根10.下列各式中,正确的个数是()①;②;③﹣32的平方根是﹣3;④的算术平方根是﹣ 5;⑤是的平方根.A.1 个 B.2 个 C.3 个 D.4 个11.的算术平方根是()A.2B.± 2 C.D.12.下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0 个 B.1 个 C.2 个 D.3 个13.若 a 是(﹣ 3)2的平方根,则等于()A.﹣ 3 B.C.或﹣D. 3 或﹣ 314.下列命题中,① 9 的平方根是3;②的平方根是± 2;③﹣0.003没有立方根;④﹣ 3 是 27 的负的立方根;⑤一个数的平方根等于它的算术平方根,则这个数是 0,其中正确的个数有()A.1B.2C.3D.415.下列各组数中表示相同的一组是()A.﹣ 2 与B.﹣ 2 与C.﹣ 2 与D.﹣ 2 与16.下列说法:(1)1 的平方根是1;( 2)﹣ 1 的平方根是﹣ 1;(3)0 的平方根是 0;( 4) 1 是 1 的平方根;(5)只有正数才有立方根.其中正确的有()A.1 个 B.2 个 C.3 个 D.4 个17.下列说法,其中错误的个数有()①的平方根是± 9;②是 3 的平方根;③﹣ 8 的立方根为﹣ 2;④=± 2A.1 个 B.2 个 C.3 个 D.4 个18.要使,则 a 的取值范围是()A.a≥4B.a≤4C.a=4 D.任意数19.下列命题正确的个数有:,(3)无限小数都是无理数,( 4)有限小数都是有理数,(5)实数分为正实数和负实数两类.()A.1 个 B.2 个 C.3 个 D.4 个20.已知正方形的面积是 17,则它的边长在()A.5 与 6 之间 B.4 与 5 之间 C. 3 与 4 之间 D.2 与 3 之间21.已知: | a| =3,=5,且 | a+b| =a+b,则 a﹣ b 的值为()A.2 或 8B.2 或﹣ 8 C.﹣ 2 或 8 D.﹣ 2 或﹣ 822.在,1.414,,,π,中,无理数的个数有()A.2 个 B.3 个 C.4 个 D.5 个23.若 0< x<1,则 x,x2,,中,最小的数是()A.x B.C.D.x2二.解答题(共7 小题)24.求下列各式中的x.(1) 4x2﹣ 16=0(2) 27(x﹣3)3 =﹣64.25.已知 5x﹣1 的算术平方根是3,4x+2y+1 的立方根是 1,求 4x﹣2y 的平方根.26.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<()2<32,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:( 1)的整数部分是,小数部分是( 2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.27.化简:.28.计算:.29.计算:(1)(2)30.计算:第六章实数练习题1参考答案与试题解析一.选择题(共23 小题)1.(2016?赵县模拟)下列运算正确的是()A.﹣=13 B.=﹣6C.﹣=﹣ 5 D.=±3【分析】根据算术平方根,即可解答.【解答】解: A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选: C.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.2.(2015 秋?仁寿县校级期末)若=1.414,=14.14,则 a 的值为()A.20 B.2000C. 200 D.20000【分析】根据算术平方根的性质,根据 1.414×10=14.14,可推出 2× 100=a,即可推出 a=200.【解答】解:∵=1.414,1.414×10=14.14,∴2× 100=a,∴a=200.故选 C.【点评】本题主要考查算术平方根的性质,关键在于熟练掌握算术平方根的性质,认真的计算.3.( 2015 秋?会宁县期中)已知一个数的两个平方根分别是a+3 与 2a﹣ 15,这个数的值为()A.4B.± 7 C.﹣ 7 D.49【分析】根据平方根的性质建立等量关系,求出 a 的值,再求出这个数的值.【解答】解:由题意得:a+3+(2a﹣ 15)=0,解得: a=4.∴( a+3)2=72=49.故选 D【点评】本题是一道关于平方根的计算题,考查了平方根的性质及其对性质的运用.4.(2015 秋?天水期末)若 2m﹣4 与 3m﹣1 是同一个正数的平方根,则 m 为()A.﹣ 3 B.1C.﹣ 1 D.﹣ 3 或 1【分析】由于一个正数的平方根有两个,且互为相反数,可得到2m﹣4 与 3m﹣1 互为相反数, 2m﹣4 与 3m﹣ 1 也可以是同一个数.【解答】解:∵ 2m﹣4 与 3m﹣1 是同一个正数的平方根,∴2m﹣ 4+3m﹣1=0,或 2m﹣4=3m﹣1,解得: m=1 或﹣3.故选 D.【点评】本题主要考查了平方根的概念,解题时注意要求是一个正数的平方根.5.(2014?自贡校级自主招生)的平方根是()A.± 2 B.± 1.414 C.D.﹣ 2【分析】先把化为2的形式,再根据平方根的定义进行解答即可.【解答】解:∵=2,2 的平方根是±,∴的平方根是±.故选 C.【点评】本题考查的是平方根的定义,即如果一个数的平方等于 a,这个数就叫做 a 的平方根,也叫做 a 的二次方根.6.(2014?绵阳校级自主招生)若a, b 为实数,且 | a+1|+=0,则( ab)2014的值是()A.0B.1C.﹣ 1 D.± 1【分析】根据非负数的性质列式求出 a、 b 的值,然后代入代数式进行计算即可得解.【解答】解:由题意得, a+1=0,b﹣1=0,解得 a=﹣1,b=1,所以,(ab)2014=(﹣ 1× 1)2014=1.故选 B.【点评】本题考查了非负数的性质:几个非负数的和为 0 时,这几个非负数都为0.7.(2014 春?中山校级期末)在下列说法中:① 10 的平方根是±;②﹣ 2 是 4 的一个平方根;③的平方根是;④ 0.01的算术平方根是 0.1;⑤=±a2,其中正确的有()A.1 个 B.2 个 C.3 个 D.4 个【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错.【解答】解:①10 的平方根是± ,正确;②﹣2 是 4 的一个平方根,正确;③ 的平方根是± ,③错误;④0.01 的算术平方根是 0.1,正确;⑤=a2,⑤错误;正确的是①②④;故选 C.【点评】本题考查了平方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.第 7页(共 19页)8.( 2014 春?定陶县期中)一个正数的正的平方根是m,那么比这个正数大 1 的数的平方根是()A.m2+1B.±C.D.±【分析】这个正数可用m 表示出来,比这个正数大 1 的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大 1 的数为 m2+1,故比这个正数大 1 的数的平方根为:±,故选 D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大 1 的数.9.(2013 春?浏阳市校级期中)下列说法正确的是()A.± 4 的平方根是 16 B.1 的平方根是 1C.的平方根是± 3D.2 是(﹣ 2)2的算术平方根【分析】根据平方根的定义对各选项分析判断后利用排除法.【解答】解: A、说反了,应为16 的平方根是± 4,故本选项错误;B、1 的平方根是± 1,故本选项错误;C、∵=3,∴的平方根是±,故本选项错误;D、∵(﹣ 2)2=4,4 的算术平方根为2,∴ 2 是(﹣ 2)2的算术平方根,正确.故选 D.【点评】本题考查了平方根的定义,正数的平方根有两个,它们互为相反数,负数没有平方根, 0 的平方根是 0,C 选项容易出错,需要小心.10.( 2012 秋?北京校级期中)下列各式中,正确的个数是()①;②;③﹣32的平方根是﹣3;④的算术平方根是﹣ 5;⑤是的平方根.A.1 个 B.2 个 C.3 个 D.4 个【分析】①由于 0.32,故≠ ;=0.090.3②左边是算术平方根,右边是平方根,不正确;③负数没有平方根;④素数平方根是非负数;⑤根据逆运算可知正确.【解答】解:①由于 0.32,故≠ ,此选项错误;=0.090.3②= ,故此选项错误;③﹣ 32=﹣9,负数没有平方根,故此选项错误;④=5,故 5 的算术平方根是,故此选项错误;⑤()2=,故此选项正确.故选 A.【点评】本题考查了算术平方根、平方根,解题的关键是注意算术平方根、平方根的区别和联系.11.( 2016?毕节市)的算术平方根是()A.2B.± 2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2, 2 的算术平方根是.故选: C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.12.( 2016 春?饶平县期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0 个 B.1 个 C.2 个 D.3 个【分析】根据负数没有平方根,一个正数有两个平方根, 0 只有一个平方根是0,一个正数的算术平方根只有一个,即可判断①、②;根据一个负数有一个负的立方根,即可判断③.【解答】解:∵负数没有平方根,一个正数有两个平方根,0 只有一个平方根是0,∴①错误;∵一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个,∴②错误;∵一个负数有一个负的立方根,∴③错误;即正确的个数是0 个,故选 A.【点评】本题考查了对平方根、立方根、算术平方根的理解和运用,题目比较典型,但是一道比较容易出错的题目.13.( 2016 秋?萧山区期中)若 a 是(﹣ 3)2的平方根,则等于()A.﹣ 3 B.C.或﹣D. 3 或﹣ 3【分析】根据平方根的定义求出 a 的值,再利用立方根的定义进行解答.【解答】解:∵(﹣ 3)2=(± 3)2=9,∴ a=±3,∴=,或=,故选 C.【点评】本题考查了平方根,立方根的定义,需要注意一个正数有两个平方根,它们互为相反数; 0 的平方根是 0;负数没有平方根.14.( 2014 秋?诸城市校级期末)下列命题中,① 9 的平方根是 3;②的平方根是± 2;③﹣ 0.003 没有立方根;④﹣ 3 是 27 的负的立方根;⑤一个数的平方根等于它的算术平方根,则这个数是0,其中正确的个数有()A.1B.2C.3D.4【分析】 9 的平方根是± 3,4 的平方根是± 2,﹣0.003 有立方根,是一个负的立方根, 0 的平方根和算术平方根都是0,根据以上内容判断即可.【解答】解:∵ 9 的平方根是± 3,∴①错误;∵=4,∴的平方根是± 2,∴②正确;∵﹣ 0.003 有立方根,是一个负的立方根,∴③错误;∵ 27 的立方根只有一个,是=3,∴④错误;∵0 的平方根是 0,0 的算术平方根也是 0,∴0 的平方根等于 0 的算术平方根,∴⑤正确;即正确的个数有 2 个,故选 B.【点评】本题考查了立方根和平方根、算术平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.15.( 2013 春?滕州市校级期中)下列各组数中表示相同的一组是()A.﹣ 2 与B.﹣ 2 与C.﹣ 2 与D.﹣ 2 与【分析】 A、根据算术平方根的性质化简即可判定;B、根据立方根的性质化简即可判定;C、根据倒数定义即可判定;D、根据算术平方根的定义求解即可.【解答】解: A、=2,故选项错误B、∵﹣ 2 的立方等于﹣ 8,∴﹣ 8 的立方根等于﹣ 2,∴﹣ 2 与相同,故选项正确;C、﹣ 2 与不同,故选项错误D、=2,故选项错误.故选 B.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.( 2009 秋?澄海区校级期中)下列说法:(1)1 的平方根是 1;( 2)﹣ 1 的平方根是﹣ 1;(3)0 的平方根是 0;(4)1 是 1 的平方根;(5)只有正数才有立方根.其中正确的有()A.1 个 B.2 个 C.3 个 D.4 个【分析】(1)根据平方根的定义即可判定;(2)根据平方根的定义即可判定;(3)根据平方根的定义即可判定;(4)根据平方根的定义即可判定;(5)利用立方根的定义分析即可判定.【解答】解:(1)1 的平方根是± 1,故说法错误;(2)﹣ 1 的平方根是﹣ 1,负数没有平方根,故说法错误;(3) 0 的平方根是 0,故说法正确;(4) 1 是 1 的平方根,故说法正确;(5)只有正数才有立方根,不对,负数也有立方根,故说法错误.故选 B.【点评】此题主要考查了平方根的定义,注意:一个非负数的平方根有两个,一正一负.正值为算术平方根.17.( 2009?萧山区模拟)下列说法,其中错误的个数有()①的平方根是± 9;②是3的平方根;③﹣8的立方根为﹣2;④=±2A.1 个 B.2 个 C.3 个 D.4 个【分析】①根据平方根的定义即可判定;②根据平方根的定义即可判定;③根据立方根的定义即可判定;④根据平方根的定义即可判定.【解答】解:①=9,故选项错误;②是 3 的平方根,故选项正确;③﹣ 8 的立方根为﹣ 2,故选项正确;④=2,故选项错误.故选 B.【点评】本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字的特殊性质.如果一个数x 的立方等于a,即x 的三次方等于a(x3=a),那么这个数 x 就叫做 a 的立方根,也叫做三次方根.读作“三次根号 a”其中, a 叫做被开方数, 3 叫做根指数.( a 不等于 0)如果 x2=a(a≥0),则 x 是 a 的平方根.若a > 0,则它有两个平方根,我们把正的平方根叫 a 的算术平方根.若 a=0,则它有一个平方根,即 0 的平方根是 0,0 的算术平方根也是 0:负数没有平方根.18.要使,则a的取值范围是()A.a≥4B.a≤4C.a=4 D.任意数【分析】由立方根的定义可知,此时根式的值应为4﹣ a,再由题意可得a﹣ 4=4﹣ a,由此即可求出 a 的值.【解答】解:∵=4﹣ a,即a﹣4=4﹣a,解得a=4.故选C.【点评】此题主要考查开立方.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.19.(2016 秋 ?泰州期末)下列命题正确的个数有:,(3)无限小数都是无理数,(4)有限小数都是有理数,(5)实数分为正实数和负实数两类.()A.1 个 B.2 个 C.3 个 D.4 个【分析】(1),( 2)根据平方和立方的性质即可判断;(3)根据无限不循环小数是无理数即可判定;(4)根据原来的定义即可判定;第13页(共 19页)( 5)根据实数分为正实数,负实数和0 即可判定.【解答】解:(1)根据立方根的性质可知:=a,故说法正确;( 2)根据平方根的性质:可知=| a| ,故说法错误;(3)无限不循环小数是无理数,故说法错误;(4)有限小数都是有理数,故说法正确;(5) 0 既不是正数,也不是负数,此题漏掉了 0,故说法错误.故选: B.【点评】此题主要考查了实数的相关概念及其分类方法,以及开平方和开立方的性质,比较简单.20.( 2016 春?鄂托克旗期末)已知正方形的面积是17,则它的边长在()A.5 与 6 之间B.4 与 5 之间C. 3 与 4 之间D.2 与 3 之间【分析】由正方形的面积等于边长的平方,故根据已知的面积开方即可求出正方形的边长为,由 16≤ 17≤25 可得的取值范围.【解答】解:设正方形的边长为a,由正方形的面积为17 得: a2=17,又∵ a>0,∴ a=,∵16≤17≤25,∴ 4≤5.故选 B.【点评】本题主要考查了正方形的性质,以及平方根的定义和估算无理数的大小,根据题意得出正方形的边长是解答此题的关键.21.( 2016 春?罗平县期末)已知: | a| =3,=5,且 | a+b| =a+b,则 a﹣b 的值为()A.2 或 8B.2 或﹣ 8 C.﹣ 2 或 8 D.﹣ 2 或﹣ 8【分析】利用绝对值的代数意义,以及二次根式性质求出 a 与 b 的值,即可求出a﹣b 的值.【解答】解:根据题意得: a=3 或﹣ 3,b=5 或﹣ 5,∵| a+b| =a+b,∴a=3,b=5;a=﹣3, b=5,则 a﹣b=﹣ 2 或﹣8.故选 D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.( 2016 春?始兴县校级期中)在,1.414,,,π,中,无理数的个数有()A.2 个 B.3 个 C.4 个 D.5 个【分析】无理数包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数,根据以上内容判断即可.【解答】解:无理数有﹣,,π,共 3 个,故选B.【点评】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数.23.(2016 春 ?宁国市期中)若 0< x<1,则 x,x2,,中,最小的数是()A.x B.C.D.x2【分析】由于正数大于 0, 0 大于负数,正数大于负数,然后根据题意,可取特殊值来判定选择项.【解答】解:∵ 0<x<1,∴设 x= ,∴x2= ,=,=2,根据上图,可知x2最小.故选 D.【点评】此题主要考查了实数的大小比较,解答此题的关键是熟知数轴的特点,利用数轴上右边的数总比左边的数大解决问题.二.解答题(共7 小题)24.( 2016 春?滑县期中)求下列各式中的x.(1) 4x2﹣ 16=0(2) 27(x﹣3)3 =﹣64.【分析】(1)根据移项,可得平方的形式,根据开平方,可得答案;( 2)根据等式的性质,可得立方的形式,根据开立方,可得答案.【解答】解( 1)4x2=16,x2=4x=± 2;( 2)(x﹣3)3=﹣,x﹣3=﹣x=.【点评】本题考查了立方根,先化成乘方的形式,再开方,求出答案.25.( 2016 秋?太仓市期中)已知5x﹣1 的算术平方根是3,4x+2y+1 的立方根是1,求 4x﹣2y 的平方根.【分析】根据算术平方根、立方根的定义求出x、y 的值,求出 4x﹣2y 的值,再根据平方根定义求出即可.【解答】解:∵ 5x﹣1 的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1 的立方根是 1,∴ 4x+2y+1=1,∴ y=﹣4,4x﹣ 2y=4× 2﹣ 2×(﹣ 4)=16,∴ 4x﹣2y 的平方根是± 4.【点评】本题考查了平方根、立方根、算术平方根的应用,解此题的关键是求出x、y 的值,主要考查学生的理解能力和计算能力.26.( 2016 秋?巴中期中)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1 来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是 1,将这个数减去其整数部分,差就是小数部分.又例如:∵ 22<()2<32,即 2<<3,∴ 的整数部分为2,小数部分为(﹣2).请解答:( 1)的整数部分是3,小数部分是﹣3( 2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.【分析】(1)利用已知得出的取值范围,进而得出答案;( 2)首先得出,的取值范围,进而得出答案.【解答】解:(1)∵<<,∴3<<4,∴的整数部分是 3,小数部分是:﹣3;故答案为: 3,﹣3;( 2)∵<<,∴的小数部分为: a=﹣2,∵<<,∴的整数部分为 b=6,∴ a+b﹣=﹣2+6﹣=4.【点评】此题主要考查了估计无理数,得出无理数的取值范围是解题关键.27.(2014 春?嘉峪关校级期末)化简:.【分析】原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:原式 =﹣+﹣1﹣3+=2﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.( 2012 秋?铜陵县期中)计算:.【分析】根据 x3,则,2(≥ )则x=,进行解答.=ax=x =b b0【解答】解:=9﹣3+=.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数; 0 的平方根是 0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数, 0 的立方根式 0.29.( 2012 秋?吴江市校级期中)计算:(1)(2)【分析】本题涉及二次根式和三次根式化简.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1),=2+2﹣4,=0;( 2),=0.7﹣﹣,=0.7﹣(﹣)﹣3,=0.7+0.5﹣3,=﹣1.8.【点评】本题主要考查了实数的综合运算能力,是常见的计算题型,解决此类题目的关键是熟练掌握二次根式和三次根式等考点的运算.30.( 2012 秋?丹阳市校级期中)计算:【分析】在解此题的时候先算根号里面的,再把绝对值去掉,最后把解得的结果加起来即可.【解答】解:原式 =4+(﹣ 2)﹣ 2+,=2﹣2+,=.【点评】本题主要考查了实数的运算,在计算的时候要注意运算符号和运算顺序,解决此类题目的关键是熟练掌握根号和绝对值等考点的运算.。

八年级《实数》练习题(有解答)

八年级《实数》练习题(有解答)

八年级《实数》练习题(有解答)一、选择题(共23小题) 1.31-的值是( )A .1B .-1C .3D .-3解:31-表示是-1的立方根,因为3(1)-=-1=-1. 【答案】B2. 9的平方根是( )A .81B .±3C .3D .﹣3解:9的平方根是:±=±3.【答案】B3. 下列实数中,无理数是( )A .0B .-2CD .17解:这里只有3是无限不循环小数,其他都是有理数,故选C . 【答案】C4. 实数a ,b ,c ,d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d 解:根据数轴上右边的点表示的数总比左边表示的数大,可知最大的数是d. 【答案】D5.下列命题是真命题的是( )A .如果一个数的相反数等于这个数的本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数的本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数的本身,那么这个数一定是0解:易知A 选项正确,因为倒数等于其本身的数是±1,平方数等于其本身的数有0和1,算术平方根等于其本身的数有0和1. 【答案】A6.若实数m ,n 满足等式,且m ,n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( ) A .12B .10C .8D .6解:根据得m=2,n=4,再根据等腰三角形三边关系定理得:三角形三边长分别为4,4,2. 【答案】B7与37最接近的整数是( )A .5B .6C .7D .8 6. 【答案】B8.一个正数的两个平方根分别是2a ﹣1与﹣a +2,则a 的值为( ) A .﹣1B .1C .2D .﹣2解:由题意可知:2a ﹣1﹣a +2=0, 解得:a =﹣1 【答案】A9.下列说法正确的是( )A .﹣5是25的平方根B .25的平方根是﹣5C .﹣5是(﹣5)2的算术平方根D .±5是(﹣5)2的算术平方根 解:A 、﹣5是25的平方根,说法正确; B 、25的平方根是﹣5,说法错误;C 、﹣5是(﹣5)2的算术平方根,说法错误;D 、±5是(﹣5)2的算术平方根,说法错误; 【答案】A 10.在实数0,﹣,,|﹣2|中,最小的是( ) A .B .﹣C .0D .|﹣2|解:|﹣2|=2, ∵四个数中只有﹣,﹣为负数,042=-+-n m 042=-+-n m∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.【答案】B11.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.【答案】D12.已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.7解:==1.147×10=11.47.【答案】C13.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4B.3C.2D.1解:=,故①错误.=4,故⑤错误.其他②③④⑥是正确的.【答案】A14.如图,已知数轴上的点A 、B 、C 、D 分别表示数﹣2、﹣1、1、2,则表示1﹣的点P应落在线段( )A .AB 上 B .OB 上C .OC 上D .CD 上解:∵2<<3, ∴﹣2<1﹣<﹣1,∴表示1﹣的点P 应落在线段AB 上.【答案】A15.下列各组数中互为相反数的是( ) A .|﹣|与B .﹣2与C .2与(﹣)2D .﹣2与解:A 、都是,故A 错误;B 、都是﹣2,故B 错误;C 、都是2,故C 错误;D 、只有符号不同的两个数互为相反数,故D 正确; 【答案】D 16. 从-5,310-,6-,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为( )A .72B . 73C . 74D . 75 解:七个数中的负整数只有-5和-1两个数,所以其概率为72.【答案】A17.计算|1-2|=( ) A .1-2 B .2-1 C .1+2 D .-1-2解:∵1<2,∴1-2<0,∴|1-2|=-(1-2)=2-1. 【答案】B18.四个数0,112中,无理数的是( ).B. 1C.12D. 0解:根据无理数定义“无限不循环小数叫做无理数”进行选择,2带根号且开不尽方,所以2是无理数.【答案】A19.下列实数中的无理数是()ABCD.=1.1=﹣2,是无理数.【答案】C20. 的值()A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间解:∵34,∴4<5【答案】C21)A.5和6之间B.6和7之间C.7和8之间D.8和9之间解:∵82<65<92,∴89.【答案】D22.94的值等于( )A.32 B.-32 C.±32 D.8116解:94=94=32【答案】A23.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()227227A.B.C.D.解:点C是AB的中点,设A表示的数是c,则﹣3=3﹣c,解得:c=6﹣.【答案】C二、填空题(共10小题)1.在数轴上,﹣2对应的点为A,点B与点A的距离为,则点B表示的数为.解:设B点表示的数是x,∵﹣2对应的点为A,点B与点A的距离为,∴|x+2|=,解得x=﹣2或x=﹣﹣2.【答案】﹣2或﹣﹣2.2.定义新运算“☆”:a☆b=,则2☆(3☆5)=.解:∵3☆5===4;∴2☆(3☆5)=2☆4==3.【答案】33.若﹣是m的一个平方根,则m+13的平方根是.解:根据题意得:m=(﹣)2=3,则m+13=16的平方根为±4.【答案】±44.小成编写了一个程序:输入x→x2→立方根→倒数→算术平方根→,则x为.解:根据题意得:=,则=,x2=64,x=±8,【答案】±85. 对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是_____. 解:∵1*(-1)=2,∴,即a-b=2∴原式==−(a-b )=-1故答案为:-1【答案】﹣16. 已知一个正数的平方根是和,则这个数是__________. 解:根据题意可知:3x-2+5x+6=0,解得x=-,所以3x-2=-,5x+6=, ∴(±)2=【答案】7. |1|= .解:由于1-02<,所以|1|=-(1)-1.-18. -8的立方方根是 .解:(-2)3=-8,所以-8的立方根是-2. 【答案】-2 9. 有意义的x 的取值范围是 . 解:∵有意义,∴x-3>0,∴x >3,∴x 的取值范围是x >3. 【答案】x >310. 如图8,数轴上点A 表示的数为a ,化简:a +244a a -+= .解:由完全平方公式“(a -b )2=a 2-2ab +b 2”和二次根式性质“a ”可得a +=a a +2a -,根据数轴上点A 的位置可得出0<a <2,所以a -2<0,由“负数的绝对值等于它的相反数”可得原式=a +2-a =2. 【答案】2A 2a三、解答题(共11小题)1.计算:(1)(﹣2)×﹣6.解:原式==3﹣6﹣3=﹣6.(2);解:原式=4- +1=5-(3)解:原式.【答案】2. 化简:(1)(m+2)2 +4(2-m)解:(m+2)2 +4(2-m)=m2+4m+4+8-4=m2+12(2)(1﹣)÷.解:原式==x+1.3.解方程(1)(x﹣1)3=27 (2)2x2﹣50=0.解:(1)∵(x﹣1)3=27,∴x﹣1=3∴x=4;(2)∵2x2﹣50=0,∴x2=25,∴x=±5.4.已知a是的整数部分,b是的小数部分,求(﹣a)3+(2+b)2的值.解:∵4<8<9,∴2<<3,∴的整数部分和小数部分分别为a=2,b=﹣2.∴(﹣a)3+(2+b)2=(﹣2)3+()2=0.5.若x、y都是实数,且y=++8,求x+3y的立方根.解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.6.已知某正数的两个平方根分别是a﹣3和2a+15,b的立方根是﹣2.求﹣2a﹣b的算术平方根.解:∵某正数的两个平方根分别是a﹣3和2a+15,b的立方根是﹣2.∴a﹣3+2a+15=0,b=﹣8,解得a=﹣4.∴﹣2a﹣b=16,16的算术平方根是4.7.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得:(x+2)2﹣25=0,(x+2)2=25,x+2=±5,x+2=5或x+2=﹣5,解得:x1=3,x2=﹣7.8.先填写表,通过观察后再回答问题:(1)表格中x=,y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=8.973,若=897.3,用含m的代数式表示b,则b=;(3)试比较与a的大小.解:(1)x=0.1,y=10;(2)①根据题意得:≈31.6;②根据题意得:b=10000m;(3)当a=0或1时,=a;当0<a<1时,>a;当a>1时,<a,【答案】(1)0.1;10;(2)①31.6;②10000m9.我们在学习“实数”时,画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交x轴于点A”,请根据图形回答下列问题:(1)线段OA的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式,体现了的数学思想方法.(将下列符合的选项序号填在横线上)A、数形结合;B、代入;C、换元;D、归纳.解:(1)∵OB2=12+12=2,∴OB=,∴OA=OB=;(2)数轴上的点和实数﹣一对应关系;(3)A10.先观察下列等式,再回答下列问题:①;②;③.(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).解:(1),验证:=;(2)(n为正整数).11. 对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【分析】(1)根据“极数”的概念写出即可,设任意一个极数为(其中1≤x ≤9,0≤y≤9,且x、y为整数),整理可得=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1)根据1≤x≤9,0≤y≤9,以及D(m)为完全平方数且为3的倍数,可确定D(m)可取36、81、225,然后逐一进行讨论求解即可。

实数 练习题(带答案

实数 练习题(带答案


故选 .
【标注】【知识点】无理数的估算
21. 已知整数 满足
,则 的值为

【答案】
【解析】 ∵ ∴ 又∵ ∴.
, .
【标注】【知识点】无理数的估算
7
22. 若
,且 , 为两个连续的正整数,则 的值是

【答案】
Байду номын сангаас
【解析】 ∵ ∴ ∴
, ,,

【标注】【知识点】无理数的估算
23. 已知 的算术平方根是 , 的立方根是 , 是 的整数部分,求
13. 写出一个大于 的无理数:

【答案】 答案不唯一,如:
【解析】
,并且 是无理数.
故答案为: ,但是不唯一.
【标注】【知识点】无理数大小的比较
14. 比较大小:

【答案】 ;
【解析】 ∴

, . , . .
【标注】【知识点】二次根式比较大小
15. 如图,在数轴上标注了四段范围,则表示 的点落在( ).
A.
B.
C.
D.
【答案】 B
【解析】 由图可知,点 所表示的数在 和 之间.



,故排除 ;



故排除 ;
又由图可知点 所表示的数在 和 之间,






故排除 ,选择 .
11
故选 . 【标注】【知识点】实数与数轴
12
【标注】【知识点】无理数的估算
17. 比较大小:

【答案】
【解析】


∵被开方数越大,数越大,

宁夏石嘴山市七年级数学下册第六单元《实数》经典练习题(含解析)

宁夏石嘴山市七年级数学下册第六单元《实数》经典练习题(含解析)

一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤2.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 3.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个 4.16的算术平方根是( )A .2B .4C .2±D .-4 5.下列说法中,正确的是 ( ) A .64的平方根是8B .16的平方根是4和-4C .()23-没有平方根D .4的平方根是2和-26.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1 7.81的算术平方根是( )A .3B .﹣3C .±3D .6 8.下列说法正确的是( ) A .2的平方根是2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D .无理数21的整数部分是59.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 10.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间 11.81的平方根是( )A .9B .-9C .9和9-D .8112.若 5.7134≈2.3903,57.134≈7.5587,则571.34的平方根约为( ) A .239.03B .±75.587C .23.903D .±23.903 13.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π 14.在3223.14,,0.4,0.001,23,, 5.12112111227π-+--……中,无理数的个数为 ( )A .5B .2C .3D .4 15.已知下列结论:①在数轴上不能表示无理数2;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③ B .②③ C .③④ D .②④二、填空题16.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.17.计算(1)22234x +=;(2)38130125x += (3)21|12|(2)16---; (4)(x +2)2=25. 18)101163532-⎛⎫-+︒ ⎪⎝⎭ 19.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;20.211a -=,31a b +-的平方根是±2,C 70的整数部分,求-+b a c 的平方根.21.已知52a +的立方根是3,31a b +-的算术平方根是4,c 11的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.22.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.23.计算:(1()2325273-. (2)()2411893⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦. 24.比较大小:3--2.(填“>”“=”或“<”)25.-64的立方根是____,9的平方根是_____,16的算术平方根是__________.26.已知1a -的平方根是2±,则a 的值为_______.三、解答题27.若()220b -+=,求()2020a b +的值.28.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.29.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯30.设2x 、y ,试求x 、y 的值与1x -的立方根.。

株洲市四中七年级数学下册第六章【实数】经典习题(提高培优)

株洲市四中七年级数学下册第六章【实数】经典习题(提高培优)

一、选择题1.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为()A.﹣40 B.﹣32 C.18 D.102.a,小数部分为b,则a-b的值为()A.6-B6C.8D83.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是()A.-130 B.-131 C.-132 D.-1334.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.85.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等6.在0.010010001,3.14,π,1.51,27中无理数的个数是().A.5个B.4个C.3 D.2个7.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015! 2014!正确的是()A.2015 B.2014 C.20152014D.2015×20148.如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是()A .1π-B .21π-C .2πD .21π+9.85-的整数部分是( ) A .4B .5C .6D .710.在1.414,3-,213,5π,23-中,无理数的个数是( ) A .1B .2C .3D .411.已知下列结论:①在数轴上不能表示无理数2;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③B .②③C .③④D .②④二、填空题12.计算:(1)32125(2)(10)4----⨯- (2)2325(24)27-⨯--÷ 13.先化简,再求值:()222233a ab a ab ⎛⎫---⎪⎝⎭,其中|2|a +与3b -互为相反数. 14.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324) (1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.15.计算. (1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3)311256273⎛⎫+-+- ⎪ ⎪⎝⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦16.已知a 是10的整数部分,b 是10的小数部分,求代数式()1b 10a --的平方根.17.求下列各式中x 的值 (1)21(1)64x +-=; (2)3(1)125x -=.18.已知52a +的立方根是3,31a b +-的算术平方根是4,c 是11的整数部分. (1)求a ,b ,c 的值; (2)求3a b c -+的平方根.19.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.20.已知(253|530x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.21.比较大小:326-3-(用“>”,“<”或“=”填空).三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-23.已知290x ,310y +=,求x y +的值.24.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值.25.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14.(1)请根据以上式子填空:①189⨯= ,②1(1)n n ⨯+= (n 是正整数)(2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯一、选择题1.在实数3-,-3.14,0,π,364中,无理数有( ) A .1个B .2个C .3个D .4个2.81的平方根是( ) A .9B .-9C .9和9-D .813.下列计算正确的是( ) A .11-=-B .2(3)3-=-C .42=±D .31182-=-4.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n5.下列实数中,属于无理数的是( ) A .3.14B .227C .4D .π6.估计50的立方根在哪两个整数之间( ) A .2与3B .3与4C .4与5D .5与67.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .48.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n -9.在1.414,3213,5π,23中,无理数的个数是( ) A .1B .2C .3D .410.下列等式成立的是( )A .±1B =±2C 6D 311.下列各组数中都是无理数的为( )A .0.07,23,π; B .0.7•,π;C ,π;D .0.1010101……101,π二、填空题12.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a + 13.计算:(1(2)0(0)|2|π-- (3)解方程:4x 2﹣9=0.14.(22-15.把下列各数填在相应的集合里: 4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …} 负有理数集合{ …} 非负整数集合{ …} 无理数集合{ …}.16. ________0.5.(填“>”“<”或“=”) 17.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.18.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.计算:(1)﹣12﹣(﹣2)(21)+2|20.设a ,b 是两个连续的整数,若a b <<,是,则a b =____.21.比较大小:三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.24.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.25.设26+x 、y ,试求x 、y 的值与1x -的立方根.一、选择题1.-18的平方的立方根是()A.4 B.14C.18D.1642.如图,数轴上表示实数5的点可能是()A.点P B.点Q C.点R D.点S 3.下列实数中,是无理数的为()A.3.14 B.13C5D94.在0.010010001,3.14,π10,1.51,27中无理数的个数是().A.5个B.4个C.3 D.2个5.下列说法正确的是()A.22B.(﹣4)2的算术平方根是4C.近似数35万精确到个位D2156. 5.713457.134,则571.34的平方根约为()A.239.03 B.±75.587 C.23.903 D.±23.903 764)A.8B.8-C.22D.22±8.下列各数中是无理数的是()A.227B.1.2012001 C.2πD819.一个正方体的体积为16,那么它的棱长在()之间A.1和2 B.2和3 C.3和4 D.4和5 10.下列计算正确的是()A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C 2=±D .()515-=-11.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个B .2个C .3个D .4个二、填空题12.求下列各式中x 的值: (1)()214x -=; (2)3381x =-. 13.计算. (1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭ (4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦14.已知a 、b |3|0b +=,则(a +b )2021的值为________. 15.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

云南省会泽茚旺高中七年级数学下册第六章【实数】经典练习题(含解析)

云南省会泽茚旺高中七年级数学下册第六章【实数】经典练习题(含解析)

一、选择题1.在实数:20192020,π2π,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52- ) A .4 B .5 C .6 D .72.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .63.下列说法正确的是( )A .2-是4-的平方根B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是4 4.下列说法正确的是( )A .2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D 55.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .46. )A .287.2B .28.72C .13.33D .133.37.下列各式中,正确的是( )A B .C 3=- D 4=- 8.下列计算正确的是( )A 1=-B 3=-C 2=±D 12=-9.已知无理数m 5π-的整数部分相同,则m 为( )A B C 1 D .π-10.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A .5的整数部分与小数部分的差是45- B .3m = C .5的小数部分是0.236D .9m n += 11.估计511-的值在( ) A .5~6之间 B .6~7之间 C .7~8之间 D .8~9之间 二、填空题12.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------ 13.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.14.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立?(2332x -35x +12x -的值.15.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.16.计算:(1)(23)(41)----;(2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+; (4)311()()(2)424-⨯-÷-.17.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.18.(1)计算:|3|-.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.19.﹣8_____.20.(1)求x 的值:2490x -=;(221.若一个正数的平方根是21a -和5a -,则这个正数是______.三、解答题22.计算:(12)-+(223.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣201824.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭25.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .72.下列各式计算正确的是( )A .31-=-1B .38= ±2C .4= ±2D .±9=33.下列各数中比3-小的数是( )A .2-B .1-C .12-D .04.下列说法中,正确的是 ( )A .64的平方根是8B .16的平方根是4和-4C .()23-没有平方根D .4的平方根是2和-25.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4076.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A 31B .13C .23D 327.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .98.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 9.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .410.81的平方根是( )A .9B .-9C .9和9-D .81 11.下列说法中,错误的是() A .实数与数轴上的点一一对应 B .1π+是无理数C .32是分数D .2是无限不循环小数 二、填空题12.若()22210b a b -+++-=,求()2020a b +的值. 13.计算:(1)3168--.(2)()23540.255(4)8⨯--⨯⨯-.14.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.15.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值. 16.比较大小:221(填“>”、“=”或“<”).17.规定一种新的定义:a ★b -a 2,若a =3,b =49,则(a ★b )★b =_________. 18.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______19.计算20201|-+=_________.20.已知1×1=1;11×11=121;111×111=12321;1111×1111=1234321,则111111×111111=_____. 21.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.三、解答题22.计算:(1)﹣12﹣(﹣2)(21)+2|23.1 24.计算:(1.(2)()23540.255(4)8⨯--⨯⨯-.25.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .72.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 3.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A 31B .13C .23D 324.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a bb ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .① B .② C .①②D .①②③ 5.下列实数中,属于无理数的是( )A .3.14B .227C 4D .π6.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与67.设,A B 均为实数,且33,3A m B m =-=-,A B 的大小关系是( ) A .A B > B .A B =C .A B <D .A B ≥ 8.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - 9.在3223.14,0.4,0.001,23,, 5.12112111227π-+--……中,无理数的个数为 ( ) A .5 B .2 C .3 D .410.已知下列结论:①2;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③ B .②③ C .③④ D .②④ 11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|121232⎛⎫-+--⨯- ⎪⎝⎭ 13.解方程:(1)24(1)90--=x(2)31(1)7x +-=-14.(1)计算: 231698(2)- 3121125|63|6--.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.15.比较大小:221(填“>”、“=”或“<”).16.已知(253|530x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.17.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b->>⎧⎪-==⎨⎪-<<⎩则则则2与2的大小;224-=,1619<<,则45<<,2240-=>,22>.请根据上述方法解答以下问题:(1_______3;(2)比较23-的大小,并说明理由.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

《易错题》初中七年级数学下册第六单元《实数》经典练习题(培优练)

《易错题》初中七年级数学下册第六单元《实数》经典练习题(培优练)

一、选择题1.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4;)A.1 B.2 C.3 D.4A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A.【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.2.下列实数220.0100100017;; (相邻两个1之依次多一个0);2,其中无理数有( )A.2个B.3个C.4个D.5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B.【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407D 解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.4.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】5.和数轴上的点一一对应的数是( )A .自然数B .有理数C .无理数D .实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D .【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.6.在223.14,, 5.12112111227π+--……中,无理数的个数为 ( ) A .5B .2C .3D .4D 解析:D【分析】根据无理数的概念逐一判断即可,其中无限不循环小数是无理数.【详解】3.14是有理数,2π是无理数,===是无理数,0.1=-是有理数,2+227-是有理数, 5.121121112-……是无理数;故选D .【点睛】本题考查了无理数的概念,熟记无限不循环小数为无理数是本题的关键.7.下列有关叙述错误的是( )AB 是2的平方根C .12<<D .2是分数D 解析:D【分析】根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB 是2的平方根,此项叙述正确;C 、12<<,此项叙述正确;D 、2是无理数,不是分数,此项叙述错误; 故选:D .【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键.8.在 -1.414π, 3.212212221…,227,3.14这些数中,无理数的个数为( )A .2B .3C .4D .5C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】164=,223.1428577=小数点后的142857是无限循环的,则在这些数中,无理数有2,,23,3.212212221π+⋯,共4个,故选:C.【点睛】本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.9.下列计算正确的是()A.21155⎛⎫-=⎪⎝⎭B.()239-=C.42=±D.()515-=- B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;C.42=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.10.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+p=0,则m,n,p,q四个有理数中,绝对值最大的一个是()A.p B.q C.m D.n B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n 和p 互为相反数,∴原点在线段PN 的中点处,∴绝对值最大的一个是Q 点对应的q .故选B .【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.二、填空题11.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-数轴见解析<<0<<【分析】根据用数轴表示数的方法在数轴上先表示出各数再由数轴上右边的数总比左边的数大把这些数用<连接即可【详解】解:在数轴上表示各数如图:∴<<0<<【点睛】本题主要考查了实数的大解析:数轴见解析,13-< 1.5-<0<38<4-.【分析】根据用数轴表示数的方法,在数轴上先表示出各数,再由“数轴上右边的数总比左边的数大”把这些数用“<”连接即可.【详解】解:在数轴上表示各数如图:∴13 1.5-<0384-.【点睛】本题主要考查了实数的大小比较的方法,掌握利用数轴比较实数的大小是解题的关键. 12.计算:3011(2)(20043)22-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(20043)22-+-- 11822=-+-8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.13.计算:(1)20193(1)816|22|-+-+-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x (1)(2)【分析】(1)先根据正整数指数幂立方根平方根去绝对值化简各项再进行加减运算即可;(2)先去括号根据完全平方公式和平方差公式计算后合并同类项再计算除法即可求解【详解】(1)原式=(2)原式解析:(1)12--(2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 12422-+-+-12=--(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.14.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:22+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案.【详解】解:根据题意,(1)1BC =-=, ∴1AB BC ==, ∵1AB a =--, ∴11a --=, ∴2a =-∴22a =-=;故答案为:2+【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.15.用“<”连接2的平方根和2的立方根_________.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析:【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为,2 ∴,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义. 16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=.故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.计算:(1)()2325273-+-. (2)()2411893⎡⎤⎛⎫--⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(1)11;(2)-10【分析】(1)首先计算乘方开方然后从左向右依次计算求出算式的值是多少即可(2)首先计算乘方开方和括号里面的运算然后计算括号外面的乘法求出算式的值是多少即可【详解】解:(1)(解析:(1)11;(2)-10【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方、开方和括号里面的运算,然后计算括号外面的乘法,求出算式的值是多少即可.【详解】解:(1)()2325273-+- 539=-+11=.(2)()2411893⎡⎤⎛⎫--⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()211839⎛⎫=-⨯- ⎪⎝⎭()5189=⨯- 10=﹣.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.实数a 在数轴上的位置如图所示,则()()233210a a -+-化简后为___________. 8【分析】先根据数轴的定义可得从而可得再计算算术平方根和立方根即可得【详解】由数轴的定义得:则所以故答案为:8【点睛】本题考查了数轴算术平方根和立方根熟练掌握算术平方根和立方根是解题关键【分析】先根据数轴的定义可得48a <<,从而可得20,100a a -<->,再计算算术平方根和立方根即可得.【详解】由数轴的定义得:48a <<,则20,100a a -<->,2108a a =-+-=, 故答案为:8. 【点睛】本题考查了数轴、算术平方根和立方根,熟练掌握算术平方根和立方根是解题关键.19.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-, ∴+a b 的立方根-1.故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.20_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.求下列各式中的x :(1)2940x -=;(2)3(1)8x -=解析:1)23x =±;(2)3 【分析】 (1)先将原方程移项、系数化为1后,再利用平方根的定义求解即可;(2)先利用立方根的定义求得12x -=,解此方程即可.【详解】解:(1)2940x -=294x =249x = 23x =±; (2)3(1)8x -=12x -=3x =.【点睛】此题考查了利用平方根、立方根解方程,解答此题的关键是掌握平方根与立方根的定义并能准确理解题意.23.计算:201()( 3.14)20|25|.2π---+-- 解析:5+5.【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4﹣1+255-+2=5+5.【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质,正确化简各数是解题关键.24.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.25.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--.解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.26.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.27.已知a 的整数部分,b (1b a -的平方根. 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。

上海中学七年级数学下册第六章【实数】经典练习题

上海中学七年级数学下册第六章【实数】经典练习题

一、选择题1.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A .0个B .1个C .2个D .3个2.下列说法正确的是( )A .2-是4-的平方根B .2是()22-的算术平方根C .()22-的平方根是2D .8的平方根是4 3.81的平方根是( )A .9B .-9C .9和9-D .81 4.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个5.和数轴上的点一一对应的数是( )A .自然数B .有理数C .无理数D .实数6.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-687.设,A B 均为实数,且33,3A m B m =-=-,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ 8.在3223.14,0.4,0.001,23,, 5.12112111227π-+--……中,无理数的个数为 ( ) A .5 B .2 C .3 D .49.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 8110.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C .42=±D .()515-=- 11.在0,3π,5,227,9-,6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ).A .1个B .2个C .3个D .4个二、填空题12.求出x 的值:()23227x +=13.计算:(1)223168(2)(3)-----(2)22(2)8x -= 14.(1)计算:①231698(2)-+-;②3121125|63|6+-+--.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.15.81的算术平方根是________,25-的相反数是________.16.已知57+的整数部分为a ,57-的小数部分为b ,则2ab b +=_________. 17.如图,数轴上表示1和2的对应点分别为A B 、,点B 是AC 的中点,O 为原点.则线段长度:AB =__________,AC =__________,OC =____________18.2(1)10a b -+=,则20132014a b +=___________.19.正方形面积为21.2cm ,则边长为_______cm .20.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.21的平方根是 _______ ;38a 的立方根是 __________.三、解答题22.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .23.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.24.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.25.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D .2.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A .0个B .1个C .2个D .3个 3.-18的平方的立方根是( ) A .4 B .14 C .18 D .1644.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; )A .1B .2C .3D .45.下列实数220.010*******;; (相邻两个1之依次多一个0)2,其中无理数有( )A .2个B .3个C .4个D .5个6.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是17.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .108.下列说法中,错误的是()A .实数与数轴上的点一一对应B .1π+是无理数C D 9.和数轴上的点一一对应的数是( )A .自然数B .有理数C .无理数D .实数10.下列有关叙述错误的是( )A .2是正数B .2是2的平方根C .122<<D .22是分数 11.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5二、填空题12.求满足条件的x 值:(1)()23112x -=(2)235x -= 13.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22- 14.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值. 15.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、2等,而常用“……”或者“≈”212的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,2的整数部分是1,将这个数减去其整数部分,差就是小数部分.459<<,即253<<,5252也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(113______,小数部分是_______;(2)107+107a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.16.已知10x ,小数部分是y ,求x ﹣y 的相反数_____.17.规定一种新的定义:a ★b -a 2,若a =3,b =49,则(a ★b )★b =_________.18.()220y -=,则xy =_________.19.(1)求x 的值:2490x -=;(220.比较大小:_______-2.(填“>”“=”或“<”)21.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.三、解答题22.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷23.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 24.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.25.若()220b -+=,求()2020a b +的值.一、选择题1.下列各式计算正确的是( )A .31-=-1B .38= ±2C .4= ±2D .±9=32.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个3.下列命题是真命题的是( )A .两个无理数的和仍是无理数B .有理数与数轴上的点一一对应C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等4.81的算术平方根是( )A .3B .﹣3C .±3D .65.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( )A .2015B .2014C .20152014D .2015×2014 6.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 137.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个8.和数轴上的点一一对应的数是( )A .自然数B .有理数C .无理数D .实数9.已知无理数m5π-的整数部分相同,则m 为( )ABC1 D.π-10.在1.414,213,5π,2-中,无理数的个数是( ) A .1B .2C .3D .4 11.在0,3π,227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ).A .1个B .2个C .3个D .4个二、填空题12.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.13.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立?(21-的值.14)10152-⎛⎫-+︒ ⎪⎝⎭ 15.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.16.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.17.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 18.已知()253|53|0x y -++--=. (1)求x ,y 的值;(2)求xy 的算术平方根.19.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +求23c d -的平方根.20.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______. 21.已知1a -的平方根是2±,则a 的值为_______.三、解答题22.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=923.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.24.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 25.设26+x 、y ,试求x 、y 的值与1x -的立方根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典例题
类型一.有关概念的识别
1.下面几个数:
,…,
,3π,,
,其中,无理数的个数有()
A、1
B、2
C、3
D、4
解析:本题主要考察对无理数概念的理解和应用,其中,…,3π,
是无理数
故选C
举一反三:
【变式1】下列说法中正确的是()
A、的平方根是±3
B、1的立方根是±1
C、
=±1 D、
是5的平方根的相反数
【答案】本题主要考察平方根、算术平方根、立方根的概念,
∵=9,9的平方根是±3,∴A正确.
∵1的立方根是1,=1,
是5的平方根,∴B、C、D都不正确.
【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()
A、1
B、
C、
D、
【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为
,由圆的定义知|AO|=,∴A表示数为
,故选C.
【变式3】
【答案】∵π= …,∴9<3π<10
因此3π-9>0,3π-10<0

类型二.计算类型题
2.设,则下列结论正确的是()
A. B.
C. D.
解析:(估算)因为,所以选B
举一反三:
【变式1】1)的算术平方根是__________;平方根是)-27立方根是__________. 3)
___________,
___________,___________.
【答案】1);
.2)-3. 3),

【变式2】求下列各式中的
(1)(2)
(3)
【答案】(1)(2)x=4或x=-2(3)x=-4
类型三.数形结合
3. 点A在数轴上表示的数为
,点B在数轴上表示的数为
,则A,B两点的距离为______
解析:在数轴上找到A、B两点,
举一反三:
【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().
A.- 1 B.1-
C.2-
D.-2
【答案】选C
[变式2]已知实数、
、在数轴上的位置如图所示:
化简
【答案】:
类型四.实数绝对值的应用
4.化简下列各式:
(1) ||
(2) |π|
(3) |-|
(4) |x-|x-3|| (x≤3)
(5) |x2+6x+10|
分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

解:(1) ∵=…<
∴||=
(2) ∵π=…<
∴|π|=π
(3) ∵<
, ∴|-|=
-
(4) ∵x≤3, ∴x-3≤0,
∴|x-|x-3||=|x-(3-x)|
=|2x-3| =
说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对
这个绝对值的基本概念要有清楚的认识,并能灵活运用。

(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|
∵(x+3)2≥0, ∴(x+3)2+1>0
∴|x2+6x+10|= x2+6x+10
举一反三:
【变式1】化简:
【答案】
=+
-=类型五.实数非负性的应用
5.已知:
=0,求实数a, b的值。

分析:已知等式左边分母不能为0,只能有
>0,则要求a+7>0,分子
+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。

解:由题意得
由(2)得a2=49 ∴a=±7
由(3)得a>-7,∴a=-7不合题意舍去。

∴只取a=7
把a=7代入(1)得b=3a=21
∴a=7, b=21为所求。

举一反三:
【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。

解:∵(x-6)2++|y+2z|=0
且(x-6)2≥0, ≥0, |y+2z|≥0,
几个非负数的和等于零,则必有每个加数都为0。

∴解这个方程组得
∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65
【变式2】已知那么a+b-c的值为___________
【答案】初中阶段的三个非负数:,
a=2,b=-5,c=-1; a+b-c=-2
类型六.实数应用题
6.有一个边长为11cm的正方形和一个长为13cm,宽
为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。

解:设新正方形边长为xcm,
根据题意得x2=112+13×8
∴x2=225
∴x=±15
∵边长为正,∴x=-15不合题意舍去,
∴只取x=15(cm)
答:新的正方形边长应取15cm。

举一反三:
【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。

(4个长方形拼图时不重叠)
(1)计算中间的小正方形的面积,聪明的你能发现什么
(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积
多24cm2,求中间小正方形的边长.
解析:(1)如图,中间小正方形的边长是:
,所以面积为=
大正方形的面积=,
一个长方形的面积=。

所以,
答:中间的小正方形的面积,
发现的规律是:(或

(2) 大正方形的边长:
,小正方形的边长:
,即

又大正方形的面积比小正方形的面积多24 cm2
所以有,
化简得:
将代入,得:
cm 答:中间小正方形的边长cm。

类型七.易错题
7.判断下列说法是否正确
(1)的算术平方根是-3;(2)
的平方根是±15.
(3)当x=0或2时,(4)
是分数
解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故
(2)表示225的算术平方根,即
=15.实际上,本题是求15的平方根,
故的平方根是
.
(3)注意到,当x=0时,
=,显然此
式无意义,
发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,
x=0.
(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.
类型八.引申提高
8.(1)已知
的整数部分为a,小数部分为b,求a2-b2的值.
(2)把下列无限循环小数化成分数:①②

(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.
解:由得
的整数部分a=5,
的小数部分


(2)解:(1) 设x=①
则②
②-①得
9x=6
∴.
(2) 设①
则②
②-①,得
99x=23
∴.
(3) 设①
则②
②-①,得
999x=107,
∴.学习成果测评:。

相关文档
最新文档