高中三角函数公式大全必背知识点
高中数学-三角函数公式汇总
高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。
高中三角函数公式大全-必背知识点
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtanA tanB1- tanAtanB tanA tanB1 tanAtanB cotAcotB -1 cotB cotA cotAcotB 1cotB cotA2tanA1 tan2 ASin2A=2SinA?CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式3sin3A = 3sinA-4(sinA)3cos3A = 4(cosA) -3cosAtan3a = tana ·tan(+a)· tan( -a)3 3半角公式sin( A)=1 cos A22cos( A)= 1 cos A22tan( A)=1 cos A21 cosAA 1 cos Acot( )=21 cosAtan( A )= 1cos A = sin A2 sin A 1 cosA和差化积a b a b sina+sinb=2sin2 cos2aba bsina-sinb=2cossin22cosa+cosb = 2cosabcosab2 2 cosa-cosb = -2sinabsinab 22sin( ab)tana+tanb=积化和差sinasinb = - 1[cos(a+b)-cos(a-b)] 2cosacosb = 1[cos(a+b)+cos(a-b)] 2sinacosb = 1[sin(a+b)+sin(a-b)] 2 1cosasinb = [sin(a+b)-sin(a-b)] 2引诱公式sin(-a) = -sinacos(-a) = cosasin( -a) = cosa2 cos( -a) = sina2 sin( +a) = cosa2cos( +a) = -sina2sin( -πa) = sinacos( π-a) = -cosasin( π +a)-sina=cos( π +a) -=cosasin atgA=tanA =cosa全能公式2 tan asina=2a ) 21 (tan2 1 (tan a) 2cosa= 21 (tan a)2 2tan2A =tan(A-B) = cot(A+B) =cot(A-B) =倍角公式 tan(A+B) =2tan atan (π+α)= tan αtana=2cot (π+α)= cot α (tan a)2公式三:12随意角 α与 -α的三角函数值之间的关 其余系: a?sina+b?cosa= (a2b 2) ×sin(a+c)sin (-α)= -sin αcos (-α) = cos αb[ 此中 tanc=tan (-α)= -tan α]cot (-α)= -cot αaa?sin(a)-b?cos(a) = (a2b 2) ×公式四:利用公式二和公式三能够获得 π-α与 αcos(a-c) [此中 tan(c)= a]的三角函数值之间的关系:sin (π-α)= sin αb 1+sin(a) =(sin a +cos a)2cos (π-α)= -cos α2 2 tan (π-α)= -tan αa a(πα) = -cot α1-sin(a) = (sin -cos)2cot -22公式五:非要点三角函数 利用公式 -和公式三能够获得 2π-α与 α csc(a) = 1的三角函数值之间的关系:sin (2π-α) = -sin αsin a1cos (2π-α)= cos αsec(a) =tan (2π-α) = -tan αcosa双曲函数cot (2π-α) = -cot α sinh(a)= ea- e-a公式六:±α及 3 ±α与 α的三角函数值之间222 cosh(a)=e ae -a的关系:sin (+α)= cos α22tg h(a)= sinh( a)cos ( +α)= -sin αcosh(a)2公式一:tan ( +α)= -cot α2设 α为随意角,终边同样的角的同一 cot ( +α)= -tan α 三角函数的值相等:2sin (2k π+α)= sin α sin (-α)= cos αcos (2k π+ α) = cos α2tan (2k π+α)= tan α cos ( -α)= sin α cot (2k π+α)= cot α2 公式二:tan ( -α)= cot α设 α为随意角, π+α的三角函数值与 α2的三角函数值之间的关系:cot (-α)= tan αsin (π+α)= -sin α2cos (π+α)= -cos α3sin(+α)= -cos α3cos(+α) = sin α3tan(+α)= -cot α3cot(+α)= -tan α3sin(-α) = -cos α3cos(-α)= -sin α3tan(-α) = cot α3cot(-α) = tan α(以上 k∈ Z)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b| ≤|a|+|b|-b||a≤|a|+|b| |a| ≤ b<=>-≤ a≤ b|a-b| ≥ -|a||b| -|a| ≤ a≤ |a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√ (b2-4ac)/2a根与系数的关系 X1+X2=-b/aX1*X2=c/a 注:韦达定理鉴别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式 sin(A/2)= √((1-cosA)/2)sin(A/2)=- √ ((1-cosA)/2)cos(A/2)= √ ((1+cosA)/2)cos(A/2)=-√ ((1+cosA)/2)tan(A/2)=√-cosA)/((1+cosA))tan(A/2)=- √ ((1-cosA)/((1+cosA))ctg(A/2)=√ ((1+cosA)/((1-cosA))ctg(A/2)=- √ ((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB·sin(C/2)+1????-ctgA+ctgBsin(A+B)/sinAsinB(4)sin2A+sin2B+sin2C=4sinA sinB· ·sinC????cos(A+B)=cosAcosB-sinAsinB(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1cos(A-B)=cosAcosB+sinAsinB...........................这两式相加或相减,能够获得 2 组积化和差 :已知 sin α=m sin( α+2β),<1,|m|求证tan( α +β )=(1+m)/(1-m)tan β相加:cosAcosB=[cos(A+B)+cos(A-B)]/2解:sin α=m sin( α+2β)相减:sin(a+ -β )=msin(a+ β +β )sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(a+ β )cos-cos(a+β β )sin β =msin(a+ β )cosβ +mcos(a+β )sin βsin(A+B)=sinAcosB+sinBcosA sin(a+ β )cos-βm)=cos(a+(1 β )sin β (m+1) sin(A-B)=sinAcosB-sinBcosA tan( α +β )=(1+m)/(1-m)tan β这两式相加或相减,能够获得 2 组积化和差 :相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减: sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共 4 组积化和差,而后倒过来就是和差化积了不知道这样你能够记着伐,实在记不3.三角形中的一些结论: ???(1)tanA+tanB+tanC=tanA tanB· ·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)????(3)cosA+cosB+cosC=4sin(A/2) sin(B/2)·。
三角函数公式大全
三角函数公式大全三角函数是数学中非常重要的一个分支,广泛应用于物理学、工程学、计算机科学等多个领域。
下面为大家带来一份三角函数公式大全。
一、基本三角函数1、正弦函数(sin):在直角三角形中,一个锐角的正弦是它的对边与斜边的比值。
即 sinA = a / c (其中 A 为锐角,a 为 A 的对边,c 为斜边)。
2、余弦函数(cos):一个锐角的余弦是它的邻边与斜边的比值。
即 cosA = b / c (其中 b 为 A 的邻边)。
3、正切函数(tan):一个锐角的正切是它的对边与邻边的比值。
即 tanA = a / b 。
二、同角三角函数基本关系1、平方关系:sin²A + cos²A = 1 。
2、商数关系:tanA = sinA / cosA 。
三、诱导公式1、终边相同的角的三角函数值相等:sin(2kπ + A) = sinA ,cos(2kπ + A) = cosA ,tan(2kπ + A) = tanA (k ∈ Z)。
2、关于 x 轴对称:sin(A) = sinA ,cos(A) = cosA ,tan(A) =tanA 。
3、关于 y 轴对称:sin(π A) = sinA ,cos(π A) = cosA ,tan(π A) = tanA 。
4、关于原点对称:sin(π + A) = sinA ,cos(π + A) = cosA ,tan(π + A) = tanA 。
5、 90°相关:sin(π/2 A) = cosA ,cos(π/2 A) = sinA 。
四、两角和与差的三角函数公式1、两角和的正弦:sin(A + B) = sinAcosB + cosAsinB 。
2、两角差的正弦:sin(A B) = sinAcosB cosAsinB 。
3、两角和的余弦:cos(A + B) = cosAcosB sinAsinB 。
4、两角差的余弦:cos(A B) = cosAcosB + sinAsinB 。
(完整版)高中高考数学三角函数公式汇总(最新整理)
1
四、和角公式和差角公式
sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin tan( ) tan tan
六、万能公式(可以理解为二倍角公式的另一种形式)
sin 2
2 tan 1 tan2
, cos 2
1 1
tan2 tan2
, tan 2
2 tan 1 tan2
。
万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。
七、和差化积公式2sin来自sin2 sin
cos
…⑴
2
2
sin
sin
⑴ 2k (k Z ) 、 、 、 、 2 的三角函数值,等于
的同名函数值,前面加上一个把 看成锐角时原函数值的符号。(口诀:函数
名不变,符号看象限)
⑵
、
、
3
、
3
的三角函数值,等于 的异名函数
2
2
2
2
值,前面加上一个把 看成锐角时原函数值的符号。(口诀:函数名改变,符
号看象限)
2
y
y
sin cos
sin cos 0
sin cos
sin cos 0
x y 0
o
x
As(in2,2)cos
o
x
sin cos 0
A(2,2)
xy 0
4
十三诱导公式
公式一: 设 α 为任意角,终边相同的角的同一三角函 数的值相等 k 是整数
公式二: 设 α 为任意角,π+α 的三角函数值与 α 的三 角函数值之间的关系
高中三角函数知识点总结《精华版》
高中三角函数知识点总结《精华版》一、三角函数的定义:1. 正弦函数(sin):在单位圆上,其中一角的正弦值等于该角顶点的对边与斜边的比值。
2. 余弦函数(cos):在单位圆上,其中一角的余弦值等于该角顶点的邻边与斜边的比值。
3. 正切函数(tan):在单位圆上,其中一角的正切值等于该角顶点的对边与邻边的比值。
二、基本性质:1.三角函数的值域:正弦和余弦的值域为[-1,1],正切的值域为实数集。
2. 正弦函数和余弦函数的关系:sin²θ + cos²θ = 13.三角函数的周期性:正弦和余弦函数的周期为2π,正切函数的周期为π。
三、三角函数与四象限:1. 在第一象限,sinθ和cosθ均为正数。
2. 在第二象限,sinθ为正,cosθ为负。
3. 在第三象限,sinθ和cosθ均为负数。
4. 在第四象限,sinθ为负,cosθ为正。
四、三角函数的图像及性质:1.正弦函数的图像:从原点出发向右为起始点,振动幅度为1,曲线在零点上下交替。
2.余弦函数的图像:从峰值(1或-1)出发向右为起始点,振动幅度为1,曲线在零点上下交替。
3.正切函数的图像:振动幅度无限增加,从0开始。
五、常见角的正弦、余弦和正切值的计算:1. 0度:sin0 = 0,cos0 = 1,tan0 = 0。
2. 30度:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√33. 45度:sin45° = √2/2,cos45° = √2/2,tan45° = 14. 60度:sin60° = √3/2,cos60° = 1/2,tan60° = √35. 90度:sin90° = 1,cos90° = 0,tan90° = 无穷大。
六、三角函数的基本性质:1.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
高考三角函数知识点总结
高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。
1弧度等于圆周的1/2π。
2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。
4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。
二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。
- sin(x) = a / c,其中a是对边,c是斜边。
- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。
2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。
- cos(x) = b / c,其中b是邻边,c是斜边。
- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。
3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。
- tan(x) = a / b,其中a是对边,b是邻边。
- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。
4.余切函数:余切函数是正切函数的倒数。
- cot(x) = 1 / tan(x)。
5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。
- sec(x) = 1 / cos(x)。
6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。
- csc(x) = 1 / sin(x)。
三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。
高中数学- 三角函数公式总结
高中数学-三角函数公式总结一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:ry =αsin 余弦:rx =αcos 正切:xy=αtan 二、同角三角函数的基本关系式商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα三、诱导公式(奇变偶不变,符号看象限)⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)=sin α(k ∈Z )cos (2k π+α)=cos α(k ∈Z )tan (2k π+α)=tan α(k ∈Z )公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan α公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sin αcos (-α)=cos αtan (-α)=-tan α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan α公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)=-sin αcos (2π-α)=cos αtan (2π-α)=-tan α微生筑梦公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin (π/2+α)=cos αsin (π/2-α)=cos αcos (π/2+α)=-sin αcos (π/2-α)=sin αtan (π/2+α)=-cot αtan (π/2-α)=cot αsin (3π/2+α)=-cos αsin (3π/2-α)=-cos αcos (3π/2+α)=sin αcos (3π/2-α)=-sin αtan (3π/2+α)=-cot αtan (3π/2-α)=cot α四、和角公式和差角公式βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=六、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,22sin b a b +=ϕ,22cos b a a +=ϕ,ab=ϕtan 。
三角函数公式大全(方便记忆)
三角函数公式大全(方便记忆)三角函数是数学中非常重要的一类函数,常见的三角函数有正弦函数、余弦函数、正切函数等。
它们是描述角度和边长之间关系的函数,广泛应用于几何、物理、工程等领域。
下面是一些常用的三角函数公式,方便记忆和应用。
1. 正弦函数(sine function):正弦函数是一个周期性函数,周期为2π,其定义域为实数集,值域为[-1,1]。
正弦函数的公式如下:sin(x) = o/h = b/c2. 余弦函数(cosine function):余弦函数也是一个周期性函数,周期为2π,其定义域为实数集,值域为[-1,1]。
余弦函数的公式如下:cos(x) = a/h = c/b3. 正切函数(tangent function):正切函数是一个周期性函数,周期为π,其定义域为实数集(除了π/2+kπ,k为整数),值域为全体实数。
正切函数的公式如下:tan(x) = o/a = b/c4. 余切函数(cotangent function):余切函数也是一个周期性函数,周期为π,其定义域为实数集(除了kπ,k为整数),值域为全体实数。
余切函数的公式如下:cot(x) = a/o = c/b5. 正割函数(secant function):正割函数是一个周期性函数,周期为2π,其定义域为实数集(除了π/2+kπ,k为整数),值域为(-∞,-1]∪[1,+∞)。
正割函数的公式如下:sec(x) = h/a = c/b6. 余割函数(cosecant unction):余割函数也是一个周期性函数,周期为2π,其定义域为实数集(除了kπ,k为整数),值域为(-∞,-1]∪[1,+∞)。
余割函数的公式如下:csc(x) = h/o = b/a7.三角函数的和差公式:sin(a±b) = sin(a)cos(b) ± cos(a)sin(b)cos(a±b) = cos(a)cos(b) ∓ sin(a)sin(b)tan(a±b) = (tan(a) ± tan(b))/(1 ∓ tan(a)tan(b))8.三角函数的倍角公式:sin(2a) = 2sin(a)cos(a)cos(2a) = cos^2(a) - sin^2(a) = 2cos^2(a) - 1 = 1 - 2sin^2(a) tan(2a) = 2tan(a)/(1 - tan^2(a))9.三角函数的半角公式:sin(a/2) = ±√[(1 - cos(a))/2]cos(a/2) = ±√[(1 + cos(a))/2]tan(a/2) = ±√[(1 - cos(a))/(1 + cos(a))]10.倍角和半角公式的推广:sin(θ) = 2sin(θ/2)cos(θ/2)cos(θ) = cos^2(θ/2) - sin^2(θ/2)tan(θ) = (2tan(θ/2))/(1 - tan^2(θ/2))这只是一些常见的三角函数公式,还有很多其他的公式和性质,需要根据具体的问题和应用进行进一步的学习和探索。
高一三角函数知识点归纳总结公式
高一三角函数知识点归纳总结公式三角函数是高中数学中的一个重要内容,它在数学和物理等学科中有着广泛的应用。
下面我将对高一阶段学习的三角函数的知识点进行归纳总结,并给出相应的公式。
1. 正弦函数(sin)正弦函数是三角函数中最基本的函数之一,它表示一个角的正弦值与其对边和斜边的比值。
其公式为:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是三角函数中另一个基本的函数,它表示一个角的余弦值与其邻边和斜边的比值。
其公式为:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是三角函数中较为复杂的函数,它表示一个角的正切值与其对边和邻边的比值。
其公式为:tanθ = 对边 / 邻边4. 余切函数(cot)余切函数是正切函数的倒数,表示一个角的余切值与其邻边和对边的比值。
其公式为:cotθ = 邻边 / 对边5. 正割函数(sec)正割函数是余弦函数的倒数,表示一个角的正割值与其斜边和邻边的比值。
其公式为:secθ = 斜边 / 邻边6. 余割函数(csc)余割函数是正弦函数的倒数,表示一个角的余割值与其斜边和对边的比值。
其公式为:cscθ = 斜边 / 对边除了以上的基本三角函数,还有一些与三角函数相关的公式:7. 和差角公式sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)8. 二倍角公式sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ) / (1 - tan^2θ)9. 半角公式sin(θ/2) = ± √((1 - cosθ) / 2)cos(θ/2) = ± √((1 + cosθ) / 2)tan(θ/2) = ± √((1 - cosθ) / (1 + cosθ))10. 诱导公式sin(A ± π/2) = ± cosAcos(A ± π/2) = ∓ sinAtan(A ± π/2) = -cotA这些公式是高一阶段学习三角函数时需要掌握和应用的重要工具,通过熟练掌握这些公式,可以帮助我们解决各种与三角函数相关的问题。
(完整版)高中三角函数知识点总结(人教版)
高中三角函数总结1.任意角的三角函数定义:设 为任意一个角,点 P( x, y) 是该角终边上的任意一点 (异于原点) , P(x, y) 到原点的距离为 rx 2 y 2 ,则:siny(正负看 y),cosx(正负看 x), tany(正负看 x y)rrx2.特别角三角函数值:0° 30° 45°60°90° sin0 12 3 122 2cos1 32 1 02 22tan13 13没心义33.同角三角函数公式:tansin , sin 2cos 21cossec1,csc 11cos,cottansin4.三角函数引诱公式:(1) sin( 2k ) sin , cos( 2k ) cos , tan( 2k ) tan ; (kZ )(2) sin( ) sin , cos( )cos , tan() tan ;(3) sin()sin , cos( )cos , tan()tan ;(函数名称不变,符号看象限)(4) sin() cos ,cos( )sin, tan() cot ;222(5) sin() cos , cos()sin , tan() cot ;222(正余互换,符号看象限)注意: tan 的值,总为 sin/cos ,便于记忆;5.三角函数两角引诱公式:(1)和差公式sin( ) sin coscos sin cos( ) cos cos sin sintantantan( )1 tan tan(2)倍角公式令上面的可得: sin( 2 ) 2 sin coscos(2 ) cos2 sin 22 tan 2 cos2 1 tan(2 )1 2sin 21 tan2 6.正弦定理:△ABC 中三边分别为a,b, c ,外接圆半径为R ,则有:a b cR sin A sin B27.余弦定理:sin C△ABC 中三边分别为a,b, c ,则有: cosC a2 b2 c22ab8.面积公式:1ab sinC(两边与夹角正弦值 ) △ABC 中三边分别为a,b, c ,面积为S,则有:S2三角函数图象:9.函数名图像单调区间y=sinx递加区间:[ 2k ,2k ]2 2递减区间:[ 2k ,2k 3], k Z2 2y=cosx递加区间:[ 2k,2k ]递减区间:[ 2k ,2k], k Zy=tanx递加区间:(k, k), k Z2 2定义域非R,为:{ x | x k}210.关于y Asin( x ) B 的性质:(1)最大值为| A | B ,最小值为| A | B ( sin( x )1时 ,得最大最小)(2)周期2 1 | |x ,初相是T ,频率 f ,相位是| | T 2(3)图像的对称轴是直线:(4)图像的对称中心为:x k (k Z ) ,可化简为x=的形式;2y A sin( x ) B B 时获取的所有交点(x,B )(5)单调区间求取:一利用引诱公式将变为正,如变为cos 等,此处假设0 ,二求出 y Asin x 的单调区间,令x分别位于单调区间地域,反解x 范围;11.图像变换:y Asin( x) B :y sin x沿x轴左移个单位y sin(x )横坐标x变为原来的1 倍xy sin( ) sin( x )1纵坐标 y变为原来的 A倍y ) y Asin( x )sin( xA沿y轴下移 B个单位y B Asin( x ) y Asin( x ) B 要点点:上 +下 -( y),左 +右 -( x),倍数相除(变为原来的n 倍,则对应的坐标都除以n)。
高中数学三角函数知识点总结
高考三角函数1.特别角的三角函数值:2.角度制与弧度制的互化:,2360π= ,1800π=3.弧长及扇形面积公式 弧长公式:r l.α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。
r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p 〔x,y 〕, r=22y x +(1)正弦sin α=ry 余弦cos α=r x 正切tan α=xy(2)各象限的符号:sin α cos α tan α 5.同角三角函数的根本关系:〔1〕平方关系:sin 2α+ cos 2α=1。
〔2〕商数关系:ααcos sin =tan αxy+O— —+xyO — ++ — +yO— + + —〔z k k ∈+≠,2ππα〕6.诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=-⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
高考数学三角函数必背公式大全
高考数学三角函数必背公式大全高考数学三角函数必背公式1、设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα6、和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB三角函数的性质三角函数性质是:如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。
(完整版)高中三角函数知识点总结
(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
高中数学三角函数应知应会必记公式汇总
高中数学三角函数应知应会必记公式汇总设是一个任意角,它的终边与单位圆交于点(,),那么正弦sinα=y,余弦cosα=x,正切tanα=(x≠0).设α是一个任意角,它的终边上任意一点P(x,y),记r=,那么正弦sinα=,余弦cosα=,正切tanα= (x≠0).3同角三角函数的基本关系式(必记)(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tanα(α≠+kπ,k∈Z).记)5和角、差角公式(必记)6二倍角公式(必记)二倍角公式有以下常用变形结论:(规律:升幂缩角,降幂扩角)(会推导)1、升幂公式:2、降幂公式:3、正余弦的和差与积结构互化4、正切的和差与积结构互化5、倍半关系弦切互化7半角公式(熟悉其中一组即可)(会推导)8万能公式(可以理解为二倍角公式的另一种形式)(会推导)万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。
万能公式推导思路:9和差化积公式(会推导)了解和差化积公式的推导,有助于我们理解并掌握好公式:10积化和差公式(会推导)我们可以把积化和差公式看成是和差化积公式的逆应用。
11辅助角公式(必记)12正弦定理(必记)13余弦定理(必记)14三角形的面积公式(必记)说明:三角问题解题思路的三个转化方向:1、转化角:分析角的和差倍半关系、异角化同角、非特殊角化特殊角。
2、转化函数名:异名化同名、弦切互化、正余弦互化。
3、转化结构:凑公式结构、和差与积结构的互化、升幂或降幂、因式分解、配完全平方、分式的合并与拆分,整式与分式的互化,出根号,分母有理化、通分、消项、去分母等代数式恒等变形方法与三角公式的分解合并的灵活结合。
三角函数高中知识点(汇集5篇)
三角函数高中知识点(汇集5篇)三角函数高中知识点(1)一、锐角三角函数公式sin=的对边/斜边cos=的邻边/斜边tan=的对边/的邻边cot=的邻边/的对边二、倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))三、三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a=tanatan(/3+a)tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B四、降幂公式sin2()=(1-cos(2))/2=versin(2)/2cos2()=(1+cos(2))/2=covers(2)/2tan2()=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina_2sin[(60+a)/2]cos[(60-a)/2]_2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa_2cos[(a+30)/2]cos[(a-30)/2]_{-2sin[(a+30)/2]sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)五、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)sin2(a/2)=(1-cos(a))/2cos2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))六、三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)七、两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)八、和差化积sin+sin=2sin[(+)/2]cos[(-)/2]sin-sin=2cos[(+)/2]sin[(-)/2]cos+cos=2cos[(+)/2]cos[(-)/2]cos-cos=-2sin[(+)/2]sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)九、积化和差sinsin=[cos(-)-cos(+)]/2coscos=[cos(+)+cos(-)]/2sincos=[sin(+)+sin(-)]/2cossin=[sin(+)-sin(-)]/2十、诱导公式sin(-)=-sincos(-)=costan(—a)=-tansin(/2-)=coscos(/2-)=sinsin(/2+)=coscos(/2+)=-sinsin(-)=sincos(-)=-cossin(+)=-sincos(+)=-costanA=sinA/cosAtan(/2+)=-cottan(/2-)=cottan(-)=-tantan(+)=tan诱导公式记背诀窍:奇变偶不变,符号看象限十一、万能公式sin=2tan(/2)/[1+tan(/2)]cos=[1-tan(/2)]/1+tan(/2)]tan=2tan(/2)/[1-tan(/2)]十二、其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)^2=(csc)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)++sin[+2_(n-1)/n]=0cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)++cos[+2_(n-1)/n]=0以及sin2()+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数高中知识点(2)口诀记忆法高中数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。
高中数学三角函数知识点
高中数学三角函数知识点高中数学第四章-三角函数知识点汇总1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+?=,360|αββ②终边在x 轴上的角的集合:{}Z k k ∈?=,180|ββ③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在xy-=轴上的角的集合:{}Z k k ∈-?=,45180| ββ⑦若角α与角β的终边对于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边对于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.017451=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ.1°=180π≈0.01745(rad )3、弧长公式:r l ?=||α. 扇形面积公式:211||22s lr r α==扇形4、三角函数:设α是一具任意角,在α的终旁边任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 ry =αsin ;rx =αcos ; xy =αtan ; yx =αcot ; xr =αsec ;. yr =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:SIN \C O S 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域 (3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin =αααc o t s i n c o s =1cot tan =?αα 1sin csc =α?α1c o s s e c =α?α 1c o s s i n 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶别变,符号看象限,α当成锐角看!”(Z k ∈)三角函数的公式:(一)基本关系公式组二公式组三xx k x x k x x k x x k c o t )2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n (=+=+=+=+ππππxx x x x x xx c o t )c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=--=- 公式组四公式组五公式组六xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx c o t )2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n(-=--=-=--=-ππππ xx x x x x xx c o t )c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=--=-=-ππππ (二)角与角之间的互换公式组一公式组二βαβαβαsin sin cos cos )cos(-=+ αααc o s s i n22s i n = βαβαβαsin sin cos cos )cos(+=- ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2t a n 1t a n 22t a n -=βαβαβαsin cos cos sin )sin(-=-2c o s 12s i nαα-±= βαβαβαtan tan 1tan tan )tan(-+=+2c o s 12c o sαα+±=βαβαβαtan tan 1tan tan )tan(+-=-公式组三公式组四公式组五2tan12tan2sin 2ααα+=2tan12tan1cos 2ααα+-=公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2 cossin2sin sin βαβαβα-+=+αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπsin )21cos(=-ααπcos )21sin(=-α απcot )21tan(=-2tan12tan2tan 2ααα-=42675cos 15sin -==, ,3275cot 15tan -==,.3215cot 75tan +==42615cos 75sin +==x y sin -=x y sin =xy cos-=x ycos=)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增). ②x y sin =与xycos =的周期是π.③)sin(?ω+=x y 或)cos(?ω+=x y(0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=?=T T,如图,翻折无效).④)sin(?ω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk ); )c o s (?ω+=x y 的对称轴方程是π k x=(Z k ∈),对称中心(0,21ππ+k );)t a n (?ω+=x y 的对称中心(0,2πk ).x x y x y 2cos )2cos(2cos -=--=→?=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥xycos =与??++=ππk x y 22sin 是同一函数,而)(?ω+=x y 是偶函数,则 2sin 2cos 2sin sin βαβαβα-+=-2cos2cos2cos cos βαβαβα-+=+2sin2sin2cos cos βαβαβα-+-=-ααπcos )21sin(=+ααπcot )21tan(-=+)cos()21sin()(x k x x y ωππω?ω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域对于原点对称是)(x f 具有奇偶性的必要别充分条件.(奇偶性的两个条件:一是定义域对于原点对称(奇偶都要),二是满脚奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31t an(π+=x y 是非奇非偶.(定义域别对于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ?0的定义域,则无此性质)⑨x ysin=别是周期函数;x y sin =为周期函数(π=T );xy cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩ab ba b a y=+++=+=??αβαcos )sin(sin cos 22 有y b a ≥+22.11、三角函数图象的作法:1)几何法:2)描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线). 3)利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||Tπω=,频率1||2fTωπ==,相位;x ω?+初相?(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持别变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持别变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行挪移|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行挪移|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特殊注意:当周期变换和相位变换的先后顺序别并且,原图象延x 轴量伸缩量的区不。
高中三角函数公式大全整理版
高中三角函数公式大全整理版以下是一份整理的高中三角函数公式大全:1. 基本关系式:- 余弦定理:c² = a² + b² - 2abcosC- 正弦定理:sinA/a = sinB/b = sinC/c- 正余弦关系式:sin²A + cos²A = 1- 余切关系式:tanA = sinA/cosA2. 角和差公式:- 正弦角和差公式:sin(A±B) = sinAcosB ± cosAsinB- 余弦角和差公式:cos(A±B) = cosAcosB - sinAsinB- 正切角和差公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB) - 余切角和差公式:cot(A±B) = (cotA cotB ∓ 1) / (cotB ± cotA)3. 二倍角公式:- 正弦二倍角:sin2A = 2sinAcosA- 余弦二倍角:cos2A = cos²A - sin²A- 正切二倍角:tan2A = (2tanA) / (1 - tan²A)- 余切二倍角:cot2A = (cot²A - 1) / 2cotA4. 半角公式:- 正弦半角:sin(A/2) = ±√[(1 - cosA) / 2]- 余弦半角:cos(A/2) = ±√[(1 + cosA) / 2]- 正切半角:tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]- 余切半角:cot(A/2) = ±√[(1 + cosA) / (1 - cosA)]5. 和差化积公式:- 正弦和差化积:sinA + sinB = 2sin[(A+B)/2]cos[(A-B)/2]- 余弦和差化积:cosA + cosB = 2cos[(A+B)/2]cos[(A-B)/2]- 正切和差化积:tanA + tanB = sin(A+B) / [cosAcosB - sinAsinB]- 余切和差化积:cotA - cotB = [cotAcotB - 1] / [cotB - cotA]6. 和差化差公式:- 正弦和差化差:sinA - sinB = 2cos[(A+B)/2]sin[(A-B)/2]- 余弦和差化差:cosA - cosB = -2sin[(A+B)/2]sin[(A-B)/2]- 正切和差化差:tanA - tanB = [sin(A-B)] / [cosAcosB + sinAsinB]- 余切和差化差:cotA + cotB = [cotAcotB + 1] / [cotB + cotA]这只是一小部分高中三角函数公式的整理,还有许多其他公式和恒等式,具体可参考数学教材或参考资料。
(完整版)高中数学三角函数公式大全全解
三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
高中所有三角函数公式整理
高中所有三角函数公式整理一、基本关系公式。
1. 平方关系。
- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(secα=(1)/(cosα))- 1+cot^2α=csc^2α(cscα=(1)/(sinα))2. 商数关系。
- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。
1. 终边相同的角的三角函数值关系(k∈ Z)- sin(α + 2kπ)=sinα- cos(α+2kπ)=cosα- tan(α + 2kπ)=tanα2. 关于x轴对称的角的三角函数值关系。
- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y轴对称的角的三角函数值关系。
- sin(π-α)=sinα- cos(π - α)=-cosα- tan(π-α)=-tanα4. 关于原点对称的角的三角函数值关系。
- sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα5. 关于直线y = x对称的角的三角函数值关系。
- sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα- sin((π)/(2)+α)=cosα- cos((π)/(2)+α)=-sinα- tan((π)/(2)+α)=-cotα三、两角和与差的三角函数公式。
1. 两角和公式。
- sin(α+β)=sinαcosβ+cosαsinβ- c os(α+β)=cosαcosβ-sinαsinβ- tan(α+β)=(tanα+tanβ)/(1 - tanαtanβ)2. 两角差公式。
- sin(α-β)=sinαcosβ-cosαsinβ- cos(α-β)=cosαcosβ+sinαsinβ- tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)四、二倍角公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA2-Sin2A=2SinA •CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A)=2cos 1A -cos(2A)=2cos 1A +tan(2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosa cos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sinacos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aacos sin 万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa - 其他a •sina+b •cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a •sin(a)-b •cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba]1+sin(a) =(sin 2a +cos 2a)21-sin(a) = (sin 2a -cos 2a)2非重点三角函数csc(a) =a sin 1 sec(a) =a cos 1双曲函数 sinh(a)=2e-e -aa cosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinαtan (2π+α)= -cotαcot (2π+α)= -tanαsin (2π-α)= cosαcos (2π-α)= sinαtan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosα cos (23π+α)= s inα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα(以上k∈Z)物理公式A •sin(ωt+θ)+B •sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/aX1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB )tan(A-B)=(tanA-tanB)/(1+tanAtanB )ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA ) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA )倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2si n2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B) /2cosA+cosB=2cos((A+B)/2)sin((A-B) /2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n( n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/ 41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1 )=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B 是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan (a-b)/2]}圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2pxx2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2 sin(A+B)=sinAcosB+sinBcosA sin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(1)t anA+tanB+tanC=tanA·tanB·ta nC(2)sinA+tsinB+sinC=4cos(A/2)cos( B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin (B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB ·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBc osC-1...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)ta nβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=ms in(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sin β(m+1)tan(α+β)=(1+m)/(1-m)tanβ。