二元一次方程组竞赛经典题集(修改)

合集下载

数学数学第八章 二元一次方程组试题及答案

数学数学第八章 二元一次方程组试题及答案

数学数学第八章 二元一次方程组试题及答案一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( )A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩3.用“代入法”将方程组7317x y x y +=⎧⎨+=⎩中的未知数y 消去后,得到的方程是( ) A .3(7)17y y -+=B .3(7)17x x +-=C .210x =D .(317)7x x +-=4.方程组2x y x y 3+=⎧+=⎨⎩的解为{x 2y ==,则被遮盖的两个数分别为( ) A .2,1B .5,1C .2,3D .2,4 5.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .256.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm 和ycm ,则依题意列方程式组正确的是( )A .504x y y x +=⎧⎨=⎩B .504x y x y +=⎧⎨=⎩C .504x y y x -=⎧⎨=⎩D .504x y x y -=⎧⎨=⎩7.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A .(4,44)B .(5,44)C . (44,4)D . (44,5) 8.已知方程组3{5x y mx y +=-=的解是方程x ﹣y=1的一个解,则m 的值是( ) A .1B .2C .3D .4 9.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =2 10.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = 二、填空题11. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 12.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案.13.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.14.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.15.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.16.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.17.若方程组2232x y k x y k+=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.18.若是满足二元一次方程的非负整数,则的值为___________.19.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.20.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.三、解答题21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.22.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值. 三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值; 乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值. (1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.23.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围.24.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由.25.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x x y -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x 为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423x y =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: .(2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?26.“一带一路”是对古丝绸之路的传承和提升,让中国和世界的联系更紧密,电气设备是“一带一路”沿线国家受青睐的商品。

二元一次方程组竞赛题集(答案 解析)

二元一次方程组竞赛题集(答案 解析)

二元一次方程组典型例题【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值.(3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解二元一次方程组能力提升讲义知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:① 当212121c c b b a a ==时,方程组有无数多解。

(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。

(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。

3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

二元一次方程组培优竞赛测试题(2)

二元一次方程组培优竞赛测试题(2)

二元一次方程组测试题姓名: 得分:一、选择题(每小题3分,共30分):1、若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4(B)-3∶4(C)-1∶4(D)-1∶122、已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A)31-=x y (B)21+=y x (C)352-=x y(D)312--=x y3、方程1132=+++--y x y x 的整数解的个数是( ). A .1个 B .2个 C .3个 D .4个4、方程组0ax by mx ny +=⎧⎨+=⎩有不等于零的解的条件是( )(A ) 0a ≠ (B )0b ≠ (C )am =bn (D )an =bm5、已知方程组 ||10||12x x y y x y ++=⎧⎨+-=⎩,则x+y 的值为()(A )185 (B )195 (C )4 (D )2156、已知:一等腰三角形的两边长x y 、满足方程组23328x y x y -=⎧⎨+=⎩,,则此等腰三角形的周长为( )A.5B.4C.3D.5或47、小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的31给我,我就有10颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组是( )A .⎩⎨⎧=+=+303202y x y xB .⎩⎨⎧=+=+103102y x y xC .⎩⎨⎧=+=+103202y x y xD .⎩⎨⎧=+=+303102y x y x8、如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=09、若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,210、若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是( )(A )0 (B )1 (C )2 (D )-1 选择题答题卡二、填空题(每小题3分,共15分)11、已知(k -2)x|k |-1-2y =1,则k ______ 时,它是二元一次方程;k =______ 时,它是一元一次方程.12、已知m 为正整数,二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x 、y 均为整数,则2m =______.13、如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是1,则六边形 的周长是_________.14、某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则他的付款方式有____ 种(指付出2元和5元钱的张数);付款方式付出的张数最少的是 ____ 张。

(完整版)二元一次方程组练习题含答案

(完整版)二元一次方程组练习题含答案

二元一次方程组专题训练1.⎩⎨⎧=-=+33651643y x y x 2. ⎩⎨⎧=+=-6251023x y x y ⎩⎨⎧=-=+19542023b a b a 1、 2、 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s 5、 ⎩⎨⎧=-=+574973p q q p 6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、10、⎩⎨⎧=-=-yx y x 23532 11、⎩⎨⎧=-=+124532n m n m12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x yx17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b xBCD x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分) 1.下列方程组中,是二元一次方程组的是( ). (A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组错误!未找到引用源。

(完整word)八年级数学上册二元一次方程组单元测试题及答案(北师大版)(可编辑修改)

(完整word)八年级数学上册二元一次方程组单元测试题及答案(北师大版)(可编辑修改)

[]
(D)
x
y
4, 1.
[]
(D)-1
[]
(完整 word)八年级数学上册二元一次方程组单元测试题及答案(北师大版)(word 版可编辑修改)
(A)
x
y
1, 2.
(B)
x
y
2, 1.
(C)
x
y
3, 1.
(D)
x
y
3, 1.
x 2 y 8, 15。若 2x y 7
则 y x 的值是
三、解下列方程组(每题 4 分,共 16 分)
16.
4 2
x x
3y 5, y2
17.
10x 37 17, 8x 3y 1
18.
4( x 3( y
2) 2)
1 5y, 3 2x
19.
4x 2x
y y
7 5
四、解答题(共 39 分)
20.(9 分)甲市到乙市航线长 1200km,一架飞机从甲市顺风航行至乙市需 2。5h,从 乙市逆风航
3
2
3x 5y 7 , y , x ;7.相减,相加; 8。32;9。—2;10。10 y x ,10x y ,①个位上的数
字+十位上的数字=8,②新数+36=原数,
x
y
y x
8, 4.
二、11.C
12。B
13.A
14。B 15.C
16。D 17。C 18。C
三、19。
x
y
0, 20.
x 1,
y
15.
x 2,
y
10.
x 3,
y
5.
x
y
4, 0.

二元一次方程组应用竞赛

二元一次方程组应用竞赛
二元一次方程组的 应用(竞赛)
某人要在规定的时间内由甲地赶往乙地,如果他以 每小时50千米的速度行驶,就会迟到24分钟;如果
他以每小时75千米的速度行驶,就可提前24 分钟到达乙地,求他以每小时多少千米的速 度行驶,可以准时到达.
某人要在规定的时间内由甲地赶往乙地,如果他以 每小时50千米的速度行驶,就会迟到24分钟;如果
已进入汛期,7年级8班的同学到水库调查了解汛情。 水库一共有10个泄洪闸,现在水库水位已超过安全线, 上游的河水仍以一个不变的速度流入水库。同学们经 过一天的观察和测量,做了如下记录:上午打开一个 泄洪闸,在2小时内水位继续上涨0.06米;下午再打开2 个泄洪闸,4小时内水位下降了0.1米。目前水位仍然超 过安全线1.2米。(1)如果打开5个泄洪闸,还需几小 时水位降到安全线?
用100元钱买100只鸡,其中小鸡 一元钱3只,母鸡3元钱一只,公鸡5
元钱一只,试问小鸡、母鸡、公鸡各 买了多少只?
一个自行车轮胎,若把它安装在前轮, 则自行车行驶5000 km后报废;若把它 安装在后轮,则自行车行驶 3000 km后 报废,行驶一定路程后可以交换前、后 轮胎.如果交换前、后轮胎,要使一辆 自行车的一对新轮胎同时报废,那么这 辆车将能行驶多少km .
(2)如果防汛指挥部要求在6小时内使水位降到安全 线,应该打开几个泄洪闸?
解:设每个新轮胎报废时的总磨损量为1,则安装在前轮
的轮胎每行驶1km磨损量为1/500,安装在后轮的轮胎每 行驶1km的磨损量为1/300. 又设一对新轮胎交换位置前走了x km,交换位置后走 了y km.分别以一个轮胎的总磨损量为等量关系列方程, 有
两式辆小轿车在一条笔直 的公路上朝同一方向匀速行驶.在某一时刻, 客车在前,小轿车在后,货车在客车与小轿车 的正中间.过了10分钟,小轿车追上了货车; 又过了5分钟,小轿车追上了客车;再过t分钟, 货车追上了客车,则t= .

第八章《二元一次方程组》习题精选

第八章《二元一次方程组》习题精选

第八章《二元一次方程组》习题精选一、填空题1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是 .2.已知甲、乙两人从相距36k m 的两地同时相向而行,1.8h 相遇.如果甲比乙先走23h ,那么在乙出发后23h 与甲相遇.设甲、乙两人速度分别为x k m /h 、y k m /h ,则x = ,y = .3.甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是 .4.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件;若平均每人一天做4件,全队一天就比定额少完成20件.若设这队工人有x 人,全队每天的数额为y 件,则依题意可得方程组 .5.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了 .6.一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为 ______,水流速度为______.7.一队工人制造某种工件,若平均每人一天做5件,那么全队一天就比定额少完成30件;若平均每人一天做7件,那么全队一天就超额20件. 则这队工人有____人,全队每天制造的工件数额为___件. 8.若()235230x y x y -++-+=,则_______x y +=.9.小红有5分和2分的硬币共20枚,共6角7分,设5分硬币有x 枚,2分硬币有y 枚,则可列方程组为 . 10.小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这10元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他______元.11.已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________;当y =-2时,x =___ ____.12.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)⎪⎪⎩⎪⎪⎨⎧-==2741y x 这三组数值中,_____是方程组x -3y =9的解,______是方程2 x +y =4的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解. 13.已知⎩⎨⎧=-=54y x ,是方程41x +2 my +7=0的解,则m =_______.14.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =_ _,b = _ . 15.已知等式y =kx +b ,当x =2时,y =-2;当x =-21时,y =3,则k =____,b =____.16.若|3a +4b -c |+41(c -2 b )2=0,则a ∶b ∶c =_________.17.当m =_______时,方程x +2y =2,2x +y =7,mx -y =0有公共解.18.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________. 二、选择题19.已知下列方程组,其中正确的说法是( )A .只有(1)、(3)是二元一次方程组B .只有(1)、(4)是二元一次方程组C .只有(2)、(3)是二元一次方程组D .只有(2)不是二元一次方程组20.已知下列方程组,属于二元一次方程组的个数为( )(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x yx ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131yx y x , A .1 B .2 C .3 D .421.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( ) A .2 B .-2 C .1 D .-122.已知方程组⎩⎨⎧-=-=+1242m ny x ny mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为( )A .⎩⎨⎧-==11n m B .⎩⎨⎧==12n m C .⎩⎨⎧==23n m D .⎩⎨⎧==13n m23.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是( ) A .⎪⎩⎪⎨⎧===501z y xB .⎪⎩⎪⎨⎧===421z y xC .⎪⎩⎪⎨⎧===401z y xD .⎪⎩⎪⎨⎧===014z y x 24.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为( )A .-4B .4C .2D .125.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩26.若实数满足(x +y +2)(x +y -1)=0,则x +y 的值为( ) A .1 B .-2 C . 2或-1 D .-2或127.在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x ,组数为y ,根据题意,可列方程组( ).28.若关于x 、y 的方程组⎩⎨⎧=-=+ky x ky x 73的解满足方程2x +3y =6,那么k 的值为( )A .-23B .23C .-32D .-2329.若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是( )A .2,1B .32,35C .-2,1D .31,-3230.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组( )A .⎩⎨⎧=-=+yx y x 3847 B .⎩⎨⎧=++=x y x y 3847 C .⎩⎨⎧+=-=3847x y x y D .⎩⎨⎧+=+=3847x y x y三、解答题31.若12xy=⎧⎨=⎩是关于x,y的二元一次方程3x-y+a=0的一个解,求a的值.32.解关于x,y的方程组32165410x y kx y k+=⎧⎨-=-⎩,并求当解满足方程4x-3y=21时的k值.33.甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.34.甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?35.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?36.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?37.师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?38.有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112c m,第一个长方形的宽比第二个长方形的长的2倍还大6c m,求这两个长方形的面积.39.在汶川大地震之后,全国各地区都有不少热心人参与抗震救灾行动中去,家住成都的小李也参加了,他要在规定的时间内由成都赶往绵阳地,如果他以每小时50千米的速度行驶,就会迟到24分钟;如果他以每小时75千米的高速行驶,则可提前24分钟到达绵阳地,求他以每小时多少千米的速度行驶可准时到达.40.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?41.《参考消息》报道,巴西医生马廷恩经过10年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的580名官员和600名廉洁官员进行比较,可发现,后者的健康人数比前者的健康人数多272人,两者患病或患病致死者共444人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?42.某校2009年初一年级和高一年级招生总数为500人,计划2010年秋季初一年级招生人数增加20%,高一年级招生人数增加25%,这样2010年秋季初一年级、高一年级招生总数比2006年将增加21%,求2010年秋季初一、高一年级的招生人数各是多少?43.某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的35,问晚会上男、女生各有几人?44.随着奥运会成功召开,福娃系列商品也随之热销.一天小林在商场看到一件奥运吉祥物的纪念品,标价为每件33元,他的身边只带有2元和5元两种面值的人民币各若干张,他买了一件这种商品.若无需找零钱,则小林付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?。

江苏省2022-2023学年七年级下学期第10章《二元一次方程组》竞赛题精选(附解析)

江苏省2022-2023学年七年级下学期第10章《二元一次方程组》竞赛题精选(附解析)

江苏省2022-2023学年七年级下学期第10章《二元一次方程组》竞赛题精选学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(共8小题,满分40分,每小题5分)1.(5分)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元2.(5分)若关于x,y的方程组没有实数解,则()A.ab=﹣2B.ab=﹣2且a≠1C.ab≠﹣2 D.ab=﹣2且a≠2 3.(5分)有一份选择题试卷共6道小题,一道小题答对得8分,不答得0分,答错倒扣2分,某同学共得了20分,那么他答卷情况是()A.答对1题B.答对3题C.有3题没答D.答错2题4.(5分)方程x+y+z=7的正整数解有()A.10组B.12组C.15组D.16组5.(5分)方程(|x|+1)(|y|﹣3)=7的整数解有()A.3对B.4对C.5对D.6对6.(5分)已知y=x3+ax2+bx+c,当x=5时,y=50;x=6时,y=60;x=7时,y=70.则当x=4时,y的值为()A.30 B.34 C.40 D.447.(5分)已知关于x,y的二元一次方程组,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=﹣;A.①②B.②③C.②③④D.①③④8.(5分)如图,长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长和为l,则标号为①的正方形的边长为()A.l B.lC.l D.l二.填空题(共6小题,满分30分,每小题5分)9.(5分)一个两位数,个位数字与十位数字的和是9,如果把个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为.10.(5分)如图所示,矩形ABCD被分成一些正方形,已知AB=32cm,则矩形的另一边AD=cm.11.(5分)若2x﹣3y+z=0,3x﹣2y﹣6z=0且xyz≠0,则=.12.(5分)如图,甲乙两车分别自A、B两城同时相向行驶,在C地相遇继续行驶分别达到B、A两城后,立即返回,在D处再次相遇.已知AC=30千米,AD =40千米,则AB=千米,甲的速度:乙的速度=.13.(5分)若关于x,y方程组的解为,则方程组的解为.14.(5分)已知m,n均为正整数,且满足,则当m=时,n取得最小值.三.解答题(共4小题,满分30分)15.(6分)在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.16.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积(写出分步求解的简明过程)17.(8分)爸爸想送Mike一个书包和随身听作为新年礼物.在家乐福、人民商场都发现同款的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元,(1)求随身听和书包单价各是多少元.(2)新年来临赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?18.(8分)学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙5 8 10汽车运载量(吨/辆)汽车运费(元/辆)400 500 600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该学校打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?《二元一次方程组》竞赛题精选答案解析一.选择题(共8小题,满分40分,每小题5分)1.(5分)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元【分析】设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,建立三元一次方程组,两个方程相减,即可求得x+y+z的值.【解答】解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,②﹣①得x+y+z=1.05(元).故选:B.【点评】解答此题的关键是根据题意列出方程组,同时还要有整体思想.2.(5分)若关于x,y的方程组没有实数解,则()A.ab=﹣2 B.ab=﹣2且a≠1 C.ab≠﹣2 D.ab=﹣2且a≠2【分析】把①变形,用y表示出x的值,再代入②得到关于y的方程,令y的系数等于0即可求出ab的值.【解答】解:,由①得,x=﹣1﹣ay,代入②得,b(﹣1﹣ay)﹣2y+a=0,即(﹣ab﹣2)y=b﹣a,因为此方程组没有实数根,所以﹣ab﹣2=0,ab=﹣2.故选:A.【点评】本题考查的是解二元一次方程组,解答此类问题时要熟知解二元一次方程组的代入消元法和加减消元法.3.(5分)有一份选择题试卷共6道小题,一道小题答对得8分,不答得0分,答错倒扣2分,某同学共得了20分,那么他答卷情况是()A.答对1题B.答对3题C.有3题没答D.答错2题【分析】假设答对x题,答错的有y题,不答的有z题,依题意得,满足6≥x≥0,6≥y≥0,6≥z≥0且都为整数,分情况讨论即可得出答案.【解答】解:设答对x题,答错的有y题,不答的有z题,依题意得:,满足6≥x≥0,6≥y≥0,6≥z≥0且都为整数,当x=0时,z=﹣10,不合题意舍去;当x=1时,z=﹣6,不合题意舍去;当x=2时,z=﹣2,不合题意舍去;当x=3时,z=2,y=1;当x=4时,z=6,y=﹣4,不合题意舍去;当x=5时,z=10,y=﹣9,不合题意舍去;当x=6时,z=14,y=﹣14,不合题意舍去;综上所述,该同学答对的有3题,答错的有1题,不答的有2题.故选:B.【点评】本题考查了三元一次方程组的知识,解答此题的关键是列出方程组,就x的取值讨论得到方程组的解,难度较大.4.(5分)方程x+y+z=7的正整数解有()A.10组B.12组C.15组D.16组【分析】利用已知条件方程x+y+z=7的正整数解,得出x,y,z的取值范围,列出所有的可能即可.【解答】解:根据已知条件1≤x≤5,1≤y≤5,1≤z≤5,列出所有的可能即可:当x=1时,x=1,y=1,z=5x=1,y=2,z=4x=1,y=3,z=3x=1,y=4,z=2x=1,y=5,z=1当x=2时,x=2,y=1,z=4x=2,y=2,z=3x=2,y=3,z=2x=2,y=4,z=1当x=3时x=3,y=1,z=3x=3,y=2,z=2x=3,y=3,z=1当x=4时,x=4,y=1,z=2x=4,y=2,z=1当x=5时,x=5,y=1,z=1所以共有15组.故选:C.【点评】此题主要考查了三元一次方程的解法,从已知入手得出未知数的取值范围即可,难度不大.5.(5分)方程(|x|+1)(|y|﹣3)=7的整数解有()A.3对B.4对C.5对D.6对【分析】要求方程(|x|+1)(|y|﹣3)=7的整数解,知其两个因式分别等于1,7或7,1即可.【解答】解:∵要求(|x|+1)(|y|﹣3)=7的整数解,∵7=1×7,∴有两种情况:①|x|+1=1,|y|﹣3=7,解得x=0,y=±10,②|x|+1=7,|y|﹣3=1解得,x=±6,y=±4,∴方程(|x|+1)(|y|﹣3)=7的整数解有6对.故选:D.【点评】此题考查二元一次方程的解及其取整问题和绝对值的性质,是一道比较有难度的题.6.(5分)已知y=x3+ax2+bx+c,当x=5时,y=50;x=6时,y=60;x=7时,y=70.则当x=4时,y的值为()A.30 B.34 C.40 D.44【分析】将x、y的值分别代入y=x3+ax2+bx+c,转化为关于a、b、c的方程,求出a、b、c的值,再把x=4代入,求出y的值.【解答】解:把x=5,y=50;x=6,y=60;x=7,y=70代入y=x3+ax2+bx+c,得,解得;代入y=x3+ax2+bx+c得:y=x3﹣18x2+117x﹣210,把x=4代入y=x3﹣18x2+117x﹣210得:y=43﹣18×42+117×4﹣210=64﹣288+468﹣210=34,解法二:y﹣10x=x3+ax2+bx+c=0有三个根5,6,7,∴y=(x﹣5)(x﹣6)(x﹣7)+10x.∴当x=4时,y=34.故选:B.【点评】本题通过建立关于a,b,c的三元一次方程组,求得a、b、c的值后而求解.7.(5分)已知关于x,y的二元一次方程组,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=﹣;A.①②B.②③C.②③④D.①③④【分析】根据方程组的解法可以得到x+y=2+a,①令x+y=0,即可求出a的值,验证即可,②由①得x+y=0,而x+y=4+2a,求出a的值,再与a=1比较得出答案,③解方程组可求出方程组的解,再代入x+2y求值即可,④用含有x、y的代数式表示a,进而得出x、y的关系,【解答】解:关于x,y的二元一次方程组,①+②得,2x+2y=4+2a,即:x+y=2+a,(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,∴a=﹣2,故①正确,(2)②原方程组的解满足x+y=2+a,当a=1时,x+y=3,而方程x+y=4+2a的解满足x+y=6,因此②不正确,(3)方程组,解得,∴x+2y=2a+1+2﹣2a=3,因此③是正确的,(4)方程组,由方程①得,a=4﹣x﹣3y代入方程②得,x﹣y=3(4﹣x﹣3y),即;y=﹣+因此④是正确的,故选:D.【点评】考查二元一次方程组的解法和应用,正确的解出方程组的解是解决问题的关键.8.(5分)如图,长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长和为l,则标号为①的正方形的边长为()A.l B.l C.l D.l【分析】设两个大正方形边长为x,小正方形的边长为y,由图可知周长和列方程和方程组,解答即可.【解答】解:长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设两个大正方形边长为y,小正方形的边长为x,∴小长方形的边长分别为(y﹣x)、(x+y),大长方形边长为(2y﹣x)、(2y+x),∵大长方形周长=l,即:2[(2y﹣x)+(2y+x)]=l,∴8y=l,∴y=∵3个正方形和2个长方形的周长和为l,即:,∴16y+4x=,∴x=,则标号为①的正方形的边长,故选:B.【点评】此题主要考查了中心对称图形的性质和二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.二.填空题(共6小题,满分30分,每小题5分)9.(5分)一个两位数,个位数字与十位数字的和是9,如果把个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为45 .【分析】设十位数字为x,个位数字为y,根据“个位数字与十位数字的和是9、新两位数﹣原两位数=9”列方程组求解可得.【解答】解:设十位数字为x,个位数字为y,根据题意,得:,解得:,∴原来的两位数为45,故答案为:45.【点评】本题主要考查二元一次方程组的应用,理解题意抓住相等关系列出方程是解题的关键.10.(5分)如图所示,矩形ABCD被分成一些正方形,已知AB=32cm,则矩形的另一边AD=29 cm.【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于xy的方程,求方程组即可得解,然后求矩形另一边AD的长即可,仍可用xy 表示出来.【解答】解:设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y表示出来(如图),根据AB=CD=32cm,可得,解得:x=4cm,y=5cm.矩形的另一边AD=x+2y+y+2y=x+5y=29cm.故答案填:29.【点评】本题考查了二元一次方程组的应用,解题的关键是读懂图意根据矩形的性质列出方程组并求解.11.(5分)若2x﹣3y+z=0,3x﹣2y﹣6z=0且xyz≠0,则=.【分析】此题可先联立两个方程成为二元一次方程组然后求出x,y,z的比值,再把原式化简即可.【解答】解:∵2x﹣3y+z=0,3x﹣2y﹣6z=0,将前式乘以2,后式乘以3,两式相减得:x=4z,将前式乘以3,后式乘以2,两式相减得:y=3z.∴.【点评】此题考查的是学生对于二元一次方程的解法的了解,能够较好的运用比值关系求解.12.(5分)如图,甲乙两车分别自A、B两城同时相向行驶,在C地相遇继续行驶分别达到B、A两城后,立即返回,在D处再次相遇.已知AC=30千米,AD =40千米,则AB=65 千米,甲的速度:乙的速度=.【分析】设甲速度为a,乙速度为b,BD为x千米,根据到C点时甲乙用时相同可列一个方程,再根据到达D时两人用时也相同可得第二个方程,求方程组的解即可.【解答】解:设甲速度为a,乙速度为b,BD为x千米,根据题意得:,解方程得x=25,.则AB=AD+BD=65(千米).故答案两空分别填:65、.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题意,看懂图意,根据题目给出的条件找出等量关系,列出方程组再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.13.(5分)若关于x,y方程组的解为,则方程组的解为.【分析】利用整体思想可得,【解答】解:利用整体思想可得,解得.【点评】本题考查二元一次方程组的解,解题的关键是学会利用整体的思想解决问题.14.(5分)已知m,n均为正整数,且满足,则当m=72 时,n 取得最小值 5 .【分析】先移项,用m表示出n,再根据n最小可得出关于m的不等式,求出m的取值范围,再由m,n均为正整数即可得出符合条件的m、n的值.【解答】解:移项得,n=﹣﹣75=﹣75,∵m、n为正整数,∴﹣75≥0,∴m≥67.5,若n取得最小值,则与75无限接近且m为正整数,∴当m=72时,n最小=5.【点评】本题考查的是解二元一次方程,解答此类题目时要注意此类方程属不定方程,由无数组解,要根据题意找出符合条件的未知数的对应值.三.解答题(共4小题,满分30分)15.(6分)在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.【分析】(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.【解答】解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.【点评】此题难度较大,需同学们仔细阅读,弄清题意再解答.16.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积(写出分步求解的简明过程)【分析】设长方形的长和宽为未数,根据图示可得到关于xy的两个方程,可求得解,从而可得到大长方形的面积,再根据阴影部分的面积=大长方形的面积﹣6个小长方形的面积求解即可.【解答】解:设小长方形的长为x,宽为y,如图可知,x+3y=14,①x+y﹣2y=6,即x﹣y=6,②①﹣②得4y=8,y=2,代入②得x=8,因此,大矩形ABCD的宽AD=6+2y=6+2×2=10.矩形ABCD面积=14×10=140(平方厘米),阴影部分总面积=140﹣6×2×8=44(平方厘米).【点评】本题考查了二元一次方程的应用,以及学生对图表的阅读理解能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.17.(8分)爸爸想送Mike一个书包和随身听作为新年礼物.在家乐福、人民商场都发现同款的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元,(1)求随身听和书包单价各是多少元.(2)新年来临赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【分析】(1)设书包单价为x元,则随身听单价为y元,根据随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元,列方程组求解;(2)根据两商家的优惠方式分别计算是否两家都可以选择,比较钱数少的则购买更省钱.【解答】解:(1)设书包单价为x元,则随身听单价为y元,由题意得,,解得:.答:书包单价92元,随身听单价360元.(2)在人民商场购买随声听与书包各一样需花费现金:452×=361.6(元)∵361.6<400,∴可以选择在人民商场购买;在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元),∵362<400,∴可以选择在家乐福购买.∵362>361.6,∴在人民商场购买更省钱.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.18.(8分)学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙5 8 10汽车运载量(吨/辆)汽车运费(元/辆)400 500 600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该学校打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?【分析】(1)设需甲车x辆,乙车y辆列出方程组即可.(2)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,列出等式.【解答】解:(1)设需甲车x辆,乙车y辆,根据题意得,解得.答:需甲种车型为8辆,乙种车型为10辆.(2)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,化简得5a+2b=20,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,∴需运费400×2+500×5+600×7=7500(元).答:甲车2辆,乙车5辆,丙车7辆,需运费7500元.【点评】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.利用整体思想和未知数的实际意义通过筛选法可得到未知数的具体解,这种方法要掌握。

(完整版)二元一次方程组经典练习题+答案解析100道(可编辑修改word版)

(完整版)二元一次方程组经典练习题+答案解析100道(可编辑修改word版)

⎨ ⎨ ⎨ ⎪ ⎨4x +10 y = 8 ⎨ ⎨x + 5 y = 3 ⎨x + 5 y = 3 ⎨2⎧x = 2二元一次方程组练习题 100 道(卷一)⎧ x - y = 51、 ⎪1 y = -是方程组 ⎪ 3 2 x y 6 的解 …………( )10 ⎩⎪ 3 ⎪ - = ⎪⎩ 2 3 9 2、方程组⎧ y = 1- x⎩3x + 2 y = 5的解是方程 3x -2y =13 的一个解()3、由两个二元一次方程组成方程组一定是二元一次方程组() ⎧ x + 3 + y + 5 = 7⎪ 4、方程组 ,可以转化为⎧3x + 2 y = -12 ( )⎨ x + 4 + 2 y - 3 = 2 ⎨ ⎩5x - 6 y = -27 ⎩⎪ 35 5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0 是二元一次方程,则 a 的值为±1()6、若 x +y =0,且|x |=2,则 y 的值为 2 …………( )7、方程组⎧mx + my = m - 3x有唯一的解,那么 m 的值为 m ≠-5 …………()⎩⎧1x + 1 y = 2 8、方程组⎪3 3有无数多个解…………()⎪⎩x + y = 69、x +y =5 且 x ,y 的绝对值都小于 5 的整数解共有 5 组 …………( )10、方程组 ⎧3x - y = 1 的解是方程 x +5y =3 的解,反过来方程 x +5y =3 的解也是方程组⎩⎧3x - y = 1的解 ………()⎩11、若|a +5|=5,a +b =1 则 a的值为- 2………( )b312、在方程 4x -3y =7 里,如果用 x 的代数式表示 y ,则 x = 7 + 3y ( )4二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为 6,那么符合条件的两位数的个数有( )(A )5 个 (B )6 个 (C )7 个 (D )8 个15、如果⎧x - y = a⎩3x + 2 y = 4 的解都是正数,那么 a 的取值范围是( )(A )a <2; (B ) a > - 4 ; (C ) - 2 < a < 4 ; (D ) a < - 4;3 3 33⎨x - y = 9m ⎨⎨ ⎨⎨⎨⎩ ⎨ ⎨ax + 3y = b - 1 ⎨x - y = 1 ⎨y = -2 ⎨ y = -5 16、关于 x 、y 的方程组⎧x + 2 y = 3m 的解是方程 3x +2y =34 的一组解,那么 m 的值是⎩( ) (A )2;(B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( )(A ) ⎧x + y = 1 ⎩3x + 3y = 0 (C ) ⎧x + y = 1 ⎩3x - 3y = 4(B ) ⎧x + y = 0⎩3x + 3y = -2 (D ) ⎧x + y = 1 ⎩3x + 3y = 318、与已知二元一次方程 5x -y =2 组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )⎧x + y = 4⎧x + y = 5(A ) ⎪1 1⎪⎩x + y = 9 (B ) ⎨y + z = 7(C )⎧x = 1 ⎩3x - 2 y = 620、已知方程组 ⎧x - y = 5⎩(D )⎧x - y = xy ⎩ 有无数多个解,则 a 、b 的值等于()(A )a =-3,b =-14(B )a =3,b =-7(C )a =-1,b =9(D )a =-3,b =1421、若 5x -6y =0,且 xy ≠0,则 5x - 4 y 的值等于( ) 5x - 3y(A ) 23 (B ) 32(C )1(D )-122、若 x 、y 均为非负数,则方程 6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C ) 有无数多个解 (D )不能确定 23、若|3x +y +5|+|2x -2y -2|=0,则 2x 2-3xy 的值是( ) (A )14 (B )-4 (C )-12 (D )1224、已知⎧x = 4 ⎩ 与⎧x = -2都是方程 y =kx +b 的解,则 k 与 b 的值为( )⎩ (A ) k = 1 ,b =-4 (B ) k = - 1,b =42 2 (C ) k = 1 ,b =4 (D ) k = - 1,b =-42 2三、填空:25、在方程 3x +4y =16 中,当 x =3 时,y = ,当 y =-2 时,x =若 x 、y 都是正整数,那么这个方程的解为 ; 26、方程 2x +3y =10 中,当 3x -6=0 时,y =;⎩ ⎩⎨4x + 6 y = 2 - m ⎩⎨ ⎪⎪ - ⎨4x - 4 y = 6a ⎪ ⎩⎪ ⎪ ⎩⎩⎨ ⎩ ⎨ ⎩⎩b 223 2 27、如果 0.4x -0.5y =1.2,那么用含有 y 的代数式表示的代数式是 ;28、若⎧x = 1 是方程组⎧ax + 2 y = b 的解,则⎧a =⎨ y = -1⎨4x - y = 2a -1 ⎨29、方程|a |+|b |=2 的自然数解是;30、如果 x =1,y =2 满足方程 ax + 1y = 1,那么 a = ; 431、已知方程组⎧2x + ay = 3⎩有无数多解,则 a =,m =;32、若方程 x -2y +3z =0,且当 x =1 时,y =2,则 z = ;33、若 4x +3y +5=0,则 3(8y -x )-5(x +6y -2)的值等于 ; 34、若 x +y =a ,x -y =1 同时成立,且 x 、y 都是正整数,则 a 的值为;35、从方程组⎧4x - 3y - 3z = 0⎨x - 3y + z = 0 (xyz ≠ 0) 中可以知道,x :z = ;y :z =;36、已知 a -3b =2a +b -15=1,则代数式 a 2-4ab +b 2+3 的值为 ;四、解方程组⎧ m - n= 3 37、 ⎪ 3m ⎩ 2 4 n = 13 3; 38、 ⎧5x + 2 y = 11a(a 为已知数) ;⎩⎧ x + y = 3x + 4 y ⎪ 39、 5 ; 40、⎧⎪x ( y +1) + y (1- x ) = 2 ;⎨ x + y = 1 ⎨⎪x (x +1) - y - x 2 = 0 ⎩⎪ 2⎧ 3x + 3y = 3x + 2 y= +2⎧ x + 2 + y -1 = 2⎪ 41、 ⎪ ; 42、 ; ⎨ 3(2x + 3y ) = 2(3x + 2 y ) + 25 ⎨ x + 2 + 1- y = 1 ⎩⎪ 2 3 6 ⎩⎪ 32⎧x + y - z = 13 ⎧x + y = 16 43、 ⎪y + z - x = -1 ;44、 ⎪y + z = 12 ;⎨⎪z + x - y = 3 ⎨⎪z + x = 10⎧3x + y - 4z = 1345、 ⎪5x - y + 3z = 5 ⎪x + y - z = 3 五、解答题:⎧x : y = 4 : 7 ;46、 ⎪x : z = 3 : 5; ⎪x - 2 y + 3z = 30 □x +5y =13 ① 47、甲、乙两人在解方程组 时,甲看错了①式中的 x 的系数,解得4x -□y =-2 ②; =5⎨⎨x - 2 y = 0 ⎨⎧x = 107 ⎧x = 81 ⎪ 47 ;乙看错了方程②中的 y 的系数,解得 ⎪ 76 ,若两人的计算都准确无误, ⎨ ⎪ y = 58 ⎩ 47 ⎨ ⎪ y = 17 ⎩ 19请写出这个方程组,并求出此方程组的解;48、使 x +4y =|a |成立的 x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求 a 的值; 49、代数式 ax 2+bx +c 中,当 x =1 时的值是 0,在 x =2 时的值是 3,在 x =3 时的值是 28, 试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数 a 的值。

二元一次方程组 习题及答案100道

二元一次方程组 习题及答案100道

二元一次方程组习题及答案100道1.2x+9y=813x+y=342.9x+4y=358x+3y=303.7x+2y=527x+4y=624.4x+6y=549x+2y=875.2x+y=72x+5y=196.x+2y=213x+5y=567.5x+7y=525x+2y=228.5x+5y=657x+7y=2039.8x+4y=56x+4y=2110.5x+7y=415x+8y=4411.7x+5y=543x+4y=3812.x+8y=154x+y=299x+5y=46 14.9x+2y=62 4x+3y=36 15.9x+4y=46 7x+4y=42 16.9x+7y=135 4x+y=41 17.3x+8y=51 x+6y=27 18.9x+3y=99 4x+7y=95 19.9x+2y=38 3x+6y=18 20.5x+5y=45 7x+9y=69 21.8x+2y=28 7x+8y=62 22.x+6y=14 3x+3y=27 23.7x+4y=67 2x+8y=26 24.5x+4y=52 7x+6y=74 25.7x+y=926.6x+6y=486x+3y=4227.8x+2y=167x+y=1128.4x+9y=778x+6y=9429.6x+8y=687x+6y=6630.2x+2y=227x+2y=471) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=853 34x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12(14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=82 59x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=761947x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=8420x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46(64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=1052484x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91(89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-45067x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。

二元一次方程组单元测试题及答案(2套)

二元一次方程组单元测试题及答案(2套)

二元一次方程组解法练习题一.解答题(共16小题)1.解下列方程组(1) (2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(4)(5)(6).(7)(8) ⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9) (10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和. (1)求k ,b 的值.(2)当x=2时,y 的值.(3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:计算题.专题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.点评:4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.二元一次方程组单元测试题及答案(一)一、选择题(每题3分,共24分)1、表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( ) A 、⎩⎨⎧=-=;3,1y x B 、⎩⎨⎧-==;1,3y x C 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.3,1y x 3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x ( ) A 、12 B 、121-C 、12-D 、.121 4、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A 、;3,2-B 、;2,3-C 、;3,2-D 、.2,3-5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。

(完整版)二元一次方程组的同解错解参数等问题(可编辑修改word版)

(完整版)二元一次方程组的同解错解参数等问题(可编辑修改word版)

⎩⎨ ⎨ ⎩ ⎩ ⎩二元一次方程组的同解、错解、参数等问题一. 解下列方程组:二.含参数的二元一次方程组的解法二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。

1. 、同解两个二元一次方程组有相同的解,求参数值。

例:已知方程 ⎧5x + y = 3 (1) 与 ⎧x - 2 y = 5 (3) 有相同的解, ⎨ax + 5 y = 4 (2) 则 a 、b的值为。

⎩5x + by = 1 (4)2、错解 由方程组的错解问题,求参数的值。

⎧ax + by = 2 例:解方程组 ⎩cx - 7 y = 8 ⎧x = 3 时,本应解出⎨ y = -2 ⎧x = -2 由于看错了系数 c,从而得到解⎨ y = 2试求 a+b+c 的值。

方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的值。

3、参数问题 根据方程组解的性质,求参数的值。

例:1、m 取什么整数时,方程组的解是正整数?⎧2x - my = 6 ① ⎨x - 3y = 0 ②⎨ ⎨ 方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。

4、根据所给的不定方程组,求比值。

⎧2x + 3y - 4z = 0 2、求适合方程组 ⎩3x + 4 y + 5z = 0 x+y + z 的 的值。

x - y + z练习:2. 已知关于 x 、y 的方程组⎧mx + 2 y = 10 有整数解,即 x 、y 都是整数, m 是正整数,求m 的值 ⎩3x - 2 y = 0⎨4x + y = 7 ⎩ ⎩ ⎩⎨x - y = 9k ( ) 3、已知关于 x 、y 的方程组⎧2x - ay = 6 有整数解,即 x 、y 都是整数, a 是正整数, ⎩求a 的值.4. 已知方程组 ⎧ a x + 5 y = 15⎨ 4x - by = -2 ① ⎧x = -3 ② 由于甲看错了方程①中的a 得到方程组的解为⎨ y = -1 ; ⎧x = 5 乙看错了方程②中的b 得到方程组的解为⎨ y = 4 ,若按正确的a 、b 计算,求原方程组的解.5..关于 x 、y 的二元一次方程组⎧x + y = 5k 的解也是二元一次方程2x + 3y = 6 的解,则k 的值? ⎩5x 2 + 2 y 2 - z 2 6. 若4x - 3y - 6z = 0, x + 2 y - 7z = 0 xyz ≠ 0 , 求代数式 2x 2 - 3y 2 -10z 2的值.7、先阅读,再做题:1. 一元一次方程ax = b 的解由a 、b 的值决定:⑴若a ≠ 0 ,则方程ax = b 有唯一解 x = b ; a⑵若a = b = 0 ,方程变形为0 ⋅ x = 0 ,则方程ax = b 有无数多个解;⎨ ⎨⎪ y = (3k -1) x + 2⎩ ⑶若a = 0, b ≠ 0 ,方程变为0 ⋅ x = b ,则方程无解.2. 关于 x 、y 的方程组⎧a 1 x + b 1 y = c 1 a x + b y = c 的解的讨论可以按以下规律进行: ⎩ 2 2 2⑴若 a 1 a2 ≠ b 1 ,则方程组有唯一解;b 2⑵若 a 1 a2 ⑶若 a 1 a2 = b 1 b 2 ≠ b 1 b 2 = c 1,则方程组有无数多个解;c 2= c 1 ,则方程组无解.c 2请解答:已知关于 x 、y 的方程组⎧⎪ y = kx + b⎩ ⑴有唯一解; ⑵有无数多个解; ⑶无解? 分别求出 k,b 为何值时, 方程组的解为:⎧5x + y = 7① 例 2. 选择一组 a,c 值使方程组⎨ax + 2 y = c 1.有无数多解, 2.无解, 3.有唯一的解。

二元一次方程组竞赛经典题集(修改)

二元一次方程组竞赛经典题集(修改)

二元一次方程组竞赛题集【点拨】含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.对于x 、y 的方程组中,ai> bi 、Ci 、生、b2> C2均为已知数,且有一个不等于零,则①■' '/时,原方程组有惟一解;②②— p 1——时,原方程组有无穷多组解;③小〃x'J 时,原方程组无解.2 (1)有惟一一组解;(2)无解;(3)有无穷多组解?2、已知矢于乂,y 的方程组“、'⑺当a, b 满足什么条件时,方程组有唯一解,无解,有无数解? xy b3、已知方程组3X 47'2有无穷多个解,试求a 、b 的值。

9x ay b4、已知矢于x 、y 的二元一次方程(a — i ) x+( a+ 2) y -2 a+5= 0,当a 每取一个值时,都可得到一个方程'而这些方程有一与bi 、82与b2都至少6【例1】k 、b 为何值时,方程组y kx b (3k1)x个公共解,求这个公共解;并证明对于任何a 值‘它都能使方程成立。

5、若方程组aix by C ”” 口 xi4的解是7ax5by 9c 的解。

‘求方程组 7a 2x 5b 2y 9c 2若a 、c 、d 是整数,b 是正整数,且满足A . — iB . — 5 C. 0 D.4x 3y 6 有整数解,求m 的值6x my266z求2x:c c 的值7z 0x 2 5y 2 7z 26、 已知m 是整数,方程组4x 3y 7、口如 v\/-7 主 n n亠2y a+b=c, b+c=d , c+d=a 5 那么 a+b+c+d 的最大值是(拓展提咼:2玄4-3尸斤r1、已知方程组丨弘-4尸斤十M的解x, y满足方程5x-y二3,求k的值.\mx\-y~A-r①2、解方程组3、某种商品价格为每件3 3元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品.若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?4、某屮学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同•安全检查屮,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生•(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?6、用如图1屮的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒0张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?二元一次方程组竞赛题集(答案+解析)2卡+ 3 ;二斤「【例1】已知方程组的解x, y满足方程5x・y=3,求k的值.3x-4y=k+ll【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法(1)由已知方程组消去k,得x与y的矢系式,再与5x・y=3联立组成方程组求出x, y的值,最后将x, y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3 建立矢于k的方程,便可求出k的值.(3)将方程组中的两个方程相加,得5x-y=2k+11 ,又知5x-y=3,所以整体代入即可求出k的值.2即十了尸上F①L②5 x -7^=3.③打一込’得2片十3汽(一爷一)屯解得k=-4.解法一:②得x-7y=l[.®③电注「得34尸-52,解得尸-需■-把尸一等代入③「得弘十令-二蓟解得戈备艳法二:① X 3—(2)X2,得17y=k-22 ,把尸台孚代人①•得2用祖骨注,杷〃斗学-和尸苓-代人③,得〃号铲—上萨£解得匕二解法三:①+②,得5x-y=2k+U.又由5x-y二3,得2k+ll二3,解得k二-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,这但是不容易想到,有思考巧妙解法的时间,可能道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.现在仓库里有10 0【例2】某种商品价格为每件3 3元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品.若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?【思考与分析】本题我们可以运用方程思想将此问题转化为方程来求解.我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式.然后找出已知量和未知量设元,列方程组求解最后,比较各个解对应的x+y的值,即可知道哪种付款方式付岀的张数最少解:设付出2兀钱的张数为x,付出5兀钱的张数为y,则x, y 的取值均为自然数•依题意可得方程: 因为5y 个位上的数只可能是0或5,所以2x 个位上数应为3或8付出4张2元钱和5张5元钱;付出9张2元钱和3张5元钱;付出14张2元钱和1张5元钱.其中第一种付款方式付出的张数最少|皿“严4①【例3】解方程组丨岔柘尸&②【思考与分析】本例是一个含字母系数的方程组•解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零 解:由①,得y 二4 — mx, 把③代入②,得2x+5 (4 — mx)二8,解得 (2 — 5m) x 二-i2,当 2— 5m 二 0,故当m A —时,原方程组的解为【小结】含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.对于X 、y 的方程组中,加、bi 、Ci 、82、b2、C2均为已知数,且 与bi 、82与b?都至少有一个不等于零,则① 一产汁时,原方程组有惟一解;2x+5y=33. 又因为2 x 是偶数,所以2 x 个位上的数是&从而此方程的解为:浴二9,日4.y=5PFLs=9 ,得 x+y=12;由尸3答:付款方式有3种,分别 •得x +y=15.所以第一种付款方式付出的张数最少是:2当不详0,,明f 程无解 琲籐第无畸旷2 〃将第入③,得"3-8八1②时,原方程组有无穷多组解;通口2③引1 〃〃时,原方程组无解•G 02 G2分钟内可以通过560名道侧门大小也相同•安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生•(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查屮发现,紧急情况时因学生拥挤,岀门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由2( *+27)=560A根据题意,【思考与解】(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.所以平均每分钟一道正门可以通过学生120人,一道侧门可以通过学生80人.(2)这栋楼最多有学生4X 8X 45二1440 (人).拥挤时5分钟4道门能通过5X 2 X( 120+80)X( 1-20%) =1600 (人)因为16001440,所以建造的4道门符合安全规定.答:平均每分钟一道正门和一道侧门各可以通过120名学生、80名学生;建造的这4道门符合安全规定【例5】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【思考与分析】要想知道张强第一次、第二次分别购买香蕉多少千克,我们可以从香蕉的价格和张强买的香蕉的千克数以及付的钱数来入手•通过观察图表我们可知香蕉的价格分三段,分别是6元、5元、4元.相对应的香蕉的千克数也分为三段,我们可以假设张强两次买的香蕉的千克数分别在某段范围内,利用分类讨论的方法求得张强第一次、第二次分别购买香蕉的千克数.综合①②③可知,张强第一次购买香蕉 14千克,第二次购买香蕉36千克. 答:张强第一次、第二次分别购买香蕉14千克、36千克.【反思】我们在做这道题的时候,一定要考虑周全,不能说想出了一种情况就认为万事大吉了,要进行分类讨论,考虑所有的 可能性,看有几种情况符合题意【例6】用如图1屮的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒 0 0 0张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?□ □ 00E 1因2【思考与分析】我们已经知道已知量有正方形纸板的总数1000,长方形纸板的总数20 0 0,未知量是竖式纸盒的个数和横式纸盒的个数•而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知 道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系: 每个竖式纸盒要用的正方形纸板数— X 竖式纸盒个数 +每个横式纸盒要用的正方形纸板数 X 横式纸盒个数二二正方形纸板的总数每个竖式纸盒要用的长方形纸板数 X 竖式纸盒个数 +每个横式纸盒要用的长方形纸板数 X 横式纸盒个数二二长方形纸板的总数通过观察图形,可知每个竖式纸盒分别要用1张正方形纸板和4张长方形纸板,每个横式纸盒分别要用2张正方形纸板和3张长 方形纸板.解:由题中的等量关系我们可以得到下面图表所示的关系解:设张强第一次购买香蕉 x 千克,①当 0<xw 20, yw40时,由题意,第二次购买香蕉 y 千克•由题意,得0<x<25.%-14「解得□ ct +5y=2ti4.②当 0<xw 20, y 〉40时,由题意,(与0〈xw 20, y< 40相矛盾,不合题意,舍去)③当20<x<25时, 25<y<30 •此时张强用去的款项为 尸15x+5y 二5 (x+y )二5X 50二25(X264 (不合题意,舍去) 现在仓库里有1X+2r=1000,(D5 y=2000,解得y=400. 牡£尸2000.②设竖式纸盒做x个,横式纸盒做y个.根据题意,得a=200,所以方程组的解为17_4OO因为200和oo均为自然数,所以这个解符合题意把y二400 代入①,得x+800二1000,解得x二200.答:竖式纸盒做2 0 0个,横式纸盒做4 0 0个,恰好将库存的纸板用完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组竞赛题集【点拨】 含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况. 对于x 、y 的方程组中,a 1、b 1、c 1、a 2、b 2、c 2均为已知数,且a 1与b 1、a 2与b 2都至少有一个不等于零,则 ①时,原方程组有惟一解;②时,原方程组有无穷多组解; ③时,原方程组无解.【例1】 k 、b 为何值时,方程组⎩⎨⎧+-=+=2)13(x k y b kx y (1)有惟一一组解;(2)无解;(3)有无穷多组解?2、已知关于x ,y 的方程组⎩⎨⎧=+=+-by x y x a 5)1(当a ,b 满足什么条件时,方程组有唯一解,无解,有无数解? 3、已知方程组⎩⎨⎧=+=-b ay x y x 91243有无穷多个解,试求a 、b 的值。

4、已知关于x、y的二元一次方程(a -1)x +(a +2)y -2a +5=0,当a 每取一个值时,都可得到一个方程,而这些方程有一个公共解,求这个公共解;并证明对于任何a 值,它都能使方程成立。

5、若方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧=-=1514y x ,求方程组⎩⎨⎧=+=+222111957957c y b x a c y b x a 的解。

6、 已知m 是整数,方程组⎩⎨⎧=+=-266634my x y x 有整数解,求m 的值 7、已知xyz ≠0,且⎩⎨⎧=-+=--0720634z y x z y x ,求22222275632z y x z y x ++-+的值8、若a 、c 、d 是整数,b 是正整数,且满足a+b=c ,b+c=d ,c+d=a ,那么a+b+c+d 的最大值是( )A .-1B .-5C .0D . 1拓展提高:1、已知方程组的解x,y满足方程5x-y=3,求k的值.2、解方程组3、某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.5、某水果批发市场香蕉的价格如右表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?6、用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒. 现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?二元一次方程组竞赛题集(答案+解析)【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值.(3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.【例2】某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?【思考与分析】本题我们可以运用方程思想将此问题转化为方程来求解. 我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式. 然后找出已知量和未知量设元,列方程组求解.最后,比较各个解对应的x+y的值,即可知道哪种付款方式付出的张数最少.解:设付出2元钱的张数为x,付出5元钱的张数为y,则x,y的取值均为自然数. 依题意可得方程:2x+5y=33.因为5y个位上的数只可能是0或5,所以2x个位上数应为3或8.又因为2x是偶数,所以2x个位上的数是8,从而此方程的解为:由得x+y=12;由得x+y=15. 所以第一种付款方式付出的张数最少.答:付款方式有3种,分别是:付出4张2元钱和5张5元钱;付出9张2元钱和3张5元钱;付出14张2元钱和1张5元钱. 其中第一种付款方式付出的张数最少.【例3】解方程组【思考与分析】本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零.解:由①,得 y=4-mx,③把③代入②,得 2x+5(4-mx)=8,解得(2-5m)x=-12,当2-5m=0,即m=时,方程无解,则原方程组无解.当2-5m≠0,即m≠时,方程解为将代入③,得故当m≠时,原方程组的解为【小结】含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.对于x、y的方程组中,a1、b1、c1、a2、b2、c2均为已知数,且a1与b1、a2与b2都至少有一个不等于零,则①时,原方程组有惟一解;②时,原方程组有无穷多组解;③时,原方程组无解.【例4】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.【思考与解】(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.根据题意,得所以平均每分钟一道正门可以通过学生120人,一道侧门可以通过学生80人.(2)这栋楼最多有学生4×8×45=1440(人).拥挤时5分钟4道门能通过5×2×(120+80)×(1-20%)=1600(人).因为 1600>1440,所以建造的4道门符合安全规定.答:平均每分钟一道正门和一道侧门各可以通过120名学生、80名学生;建造的这4道门符合安全规定.【例5】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【思考与分析】要想知道张强第一次、第二次分别购买香蕉多少千克,我们可以从香蕉的价格和张强买的香蕉的千克数以及付的钱数来入手.通过观察图表我们可知香蕉的价格分三段,分别是6元、5元、4元.相对应的香蕉的千克数也分为三段,我们可以假设张强两次买的香蕉的千克数分别在某段范围内,利用分类讨论的方法求得张强第一次、第二次分别购买香蕉的千克数.解:设张强第一次购买香蕉x千克,第二次购买香蕉y千克.由题意,得0<x<25.①当0<x≤20,y≤40时,由题意,得②当0<x≤20,y>40时,由题意,得(与0<x≤20,y≤40相矛盾,不合题意,舍去).③当20<x<25时,25<y<30.此时张强用去的款项为5x+5y=5(x+y)=5×50=250<264(不合题意,舍去).综合①②③可知,张强第一次购买香蕉14千克,第二次购买香蕉36千克.答:张强第一次、第二次分别购买香蕉14千克、36千克.【反思】我们在做这道题的时候,一定要考虑周全,不能说想出了一种情况就认为万事大吉了,要进行分类讨论,考虑所有的可能性,看有几种情况符合题意.【例6】用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒. 现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?【思考与分析】我们已经知道已知量有正方形纸板的总数1000,长方形纸板的总数2000,未知量是竖式纸盒的个数和横式纸盒的个数. 而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系:每个竖式纸盒要用的正方形纸板数×竖式纸盒个数 + 每个横式纸盒要用的正方形纸板数×横式纸盒个数 = 正方形纸板的总数每个竖式纸盒要用的长方形纸板数×竖式纸盒个数 + 每个横式纸盒要用的长方形纸板数×横式纸盒个数 = 长方形纸板的总数通过观察图形,可知每个竖式纸盒分别要用1张正方形纸板和4张长方形纸板,每个横式纸盒分别要用2张正方形纸板和3张长方形纸板.解:由题中的等量关系我们可以得到下面图表所示的关系.设竖式纸盒做x个,横式纸盒做y个. 根据题意,得①×4-②,得5y=2000,解得 y=400.把y=400代入①,得 x+800=1000,解得 x=200.所以方程组的解为因为200和00均为自然数,所以这个解符合题意.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.。

相关文档
最新文档