数学人教版九年级上233课题学习图案设计同步练习3
人教版九年级数学上册23.3课题学习图案设计同步练习 附答案解析
23.3课题学习图案设计同步练习一、单项选择题(本大题共有12小题,每小题3分,共45分)1、如图,将绕点顺时针旋转得到,则点的坐标是()A.B.C.D.2、将一次函数的图像向上平移个单位,平移后,若,则的取值范围是( ).A.B.C.D.3、若抛物线绕它的顶点旋转,则抛物线的解析式是( ).A.B.C.D.4、若抛物线可以抛物线平移得到,则下列平移过程中正确的是( ).A. 先向右平移个单位,再向上平移个单位B. 先向右平移个单位,再向下平移个单位C. 先向左平移个单位,再向下平移个单位D. 先向左平移个单位,再向上平移个单位5、如图,右边的图案是通过左边的图案按顺时针方向绕着马头中间的一点旋转而成的,则旋转角的度数为( ).A.B.C.D.6、在平面直角坐标系中,将直线绕原点顺时针旋转,再向上平移个单位后得到直线,则直线对应的函数表达式为()A.B.C.D.7、将抛物线向左平移个单位,再向上平移个单位,得到抛物线的函数表达式为()A.B.C.D.8、如图是由三把相同大小的扇子展开后组成的图形,若把每把扇子的展开图看着“基本图案”那么该图形是由“基本图案”()A. 平移一次形成的B. 平移两次形成的C. 以轴心为旋转中心,旋转后形成的D. 以轴心为旋转中心,旋转、后形成的9、如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A. 种B. 种C. 种D. 种10、如图,、在方格纸的格点位置上.在网格图中再找一个格点,使它们所构成的三角形为轴对称图形;这样的格点共有的个数为()A. 个B. 个C. 个D. 个11、如图是正方形网格,其中已有个小正方形涂成了黑色,现在要从其余个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A. 个B. 个C. 个D. 个12、已知直线,则它关于原点对称的直线解析式为__________.A.B.C.D.二、填空题(本大题共有4小题,每小题5分,共25分)13、关于的方程的解是(均为常数,)则方程的解是= ,= .(从小到大依次填写)14、将一次函数的图象向左平移个单位长度,所得图象的函数关系式为.15、在直角坐标系中如图摆放,其中顶点,,的坐标分别为,,,若将绕点顺时针方向旋转,则点的对应点的坐标为( , ).16、如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.三、解答题(本大题共有2小题,每小题10分,共30分)17、在平面直角坐标系中,把抛物线向右平移个单位;再向下平移个单位,所得抛物线的解析式为,求原来抛物线的解析式.18、已知正比例函数图象(记为直线)经过点,现将它沿着轴的正方向向上平移个单位得到直线.(1) 求直线的表达式.(2) 若直线与轴、轴的交点分别为点、点,求的面积.23.3课题学习图案设计同步练习答案部分一、单项选择题(本大题共有12小题,每小题3分,共45分)1、如图,将绕点顺时针旋转得到,则点的坐标是()A.B.C.D.【答案】B【解析】解:∵将绕点顺时针旋转得到,∴点的对应点为点,点的对应点为点,作线段和的垂直平分线,它们的交点为,∴旋转中心的坐标为.故正确答案为:.2、将一次函数的图像向上平移个单位,平移后,若,则的取值范围是( ).A.B.C.D.【答案】C【解析】解:将一次函数的图象向上平移个单位,平移后解析式为:,当时,,当时,,如图:时,则的取值范围是:.故正确答案是:.3、若抛物线绕它的顶点旋转,则抛物线的解析式是( ).A.B.C.D.【答案】A【解析】解:根据抛物线绕它的顶点旋转后,变成了,顶点坐标不变,,将变成得.故正确答案是.4、若抛物线可以抛物线平移得到,则下列平移过程中正确的是( ).A. 先向右平移个单位,再向上平移个单位B. 先向右平移个单位,再向下平移个单位C. 先向左平移个单位,再向下平移个单位D. 先向左平移个单位,再向上平移个单位【答案】C【解析】解:根据平移的规律可得先向左平移个单位,再向上平移个单位得到的抛物线是,此项不符合题意;先向左平移个单位,再向下平移个单位得到的抛物线是,此项符合题意;先向右平移个单位,再向下平移个单位得到的抛物线是,此项不符合题意;先向右平移个单位,再向上平移个单位得到的抛物线是,此项不符合题意.故正确答案是.5、如图,右边的图案是通过左边的图案按顺时针方向绕着马头中间的一点旋转而成的,则旋转角的度数为( ).A.B.C.D.【答案】C【解析】解:首先要确定旋转中心,再找到一对对应点,对应点与旋转中心连线的夹角就是旋转角,旋转中心为两对对应点连线的垂直平分线的交点,选取马头与马耳朵两对对应点,则旋转角为.故正确答案为:.6、在平面直角坐标系中,将直线绕原点顺时针旋转,再向上平移个单位后得到直线,则直线对应的函数表达式为()A.B.C.D.【答案】C【解析】解:直线与轴的夹角是,将直线绕原点顺时针旋转后的直线与轴的夹角为,此时的直线方程为.再向上平移个单位得到直线的解析式为:.7、将抛物线向左平移个单位,再向上平移个单位,得到抛物线的函数表达式为()A.B.C.D.【答案】A【解析】解:,抛物线的顶点坐标为,把点向左平移个单位,再向上平移个单位所得对应点的坐标为,平移后的抛物线的函数表达式为.8、如图是由三把相同大小的扇子展开后组成的图形,若把每把扇子的展开图看着“基本图案”那么该图形是由“基本图案”()A. 平移一次形成的B. 平移两次形成的C. 以轴心为旋转中心,旋转后形成的D. 以轴心为旋转中心,旋转、后形成的【答案】D【解析】解:如图所示:旋转中心的旋转角,每个图形旋转的角度为:,把每把扇子的展开图看成“基本图案”那么该图形是由“基本图案”:以轴心为旋转中心,旋转、后形成的.9、如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A. 种B. 种C. 种D. 种【答案】C【解析】解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有种.10、如图,、在方格纸的格点位置上.在网格图中再找一个格点,使它们所构成的三角形为轴对称图形;这样的格点共有的个数为()A. 个B. 个C. 个D. 个【答案】C【解析】解:如图所示:共个.11、如图是正方形网格,其中已有个小正方形涂成了黑色,现在要从其余个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A. 个B. 个C. 个D. 个【答案】C【解析】解:如图所示,有个位置使之成为轴对称图形.12、已知直线,则它关于原点对称的直线解析式为__________.A.B.C.D.【答案】A【解析】解:关于原点对称,就是和都变成相反数:,即;(关于原点对称,横、纵坐标都变为原来的相反数)所以直线关于原点对称的解析式为.二、填空题(本大题共有4小题,每小题5分,共25分)13、关于的方程的解是(均为常数,)则方程的解是= ,= .(从小到大依次填写)【答案】-1、-4【解析】解:方程到,是图像向左平移了两个单位长度,则故答案为:,.14、将一次函数的图象向左平移个单位长度,所得图象的函数关系式为.【答案】-2x【解析】解:将一次函数的图象向左平移个单位长度,所得图象的解析式为,即.15、在直角坐标系中如图摆放,其中顶点,,的坐标分别为,,,若将绕点顺时针方向旋转,则点的对应点的坐标为( , ).【答案】1、2【解析】解:如图所示,为绕点顺时针方向旋转后的三角形,点的坐标为.16、如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.【答案】3【解析】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.三、解答题(本大题共有2小题,每小题10分,共30分)17、在平面直角坐标系中,把抛物线向右平移个单位;再向下平移个单位,所得抛物线的解析式为,求原来抛物线的解析式.【解析】解:由题意原抛物线可以看做是由抛物线向上平移个单位,再向左平移个单位得到的.原抛物线的解析式为.18、已知正比例函数图象(记为直线)经过点,现将它沿着轴的正方向向上平移个单位得到直线.(1) 求直线的表达式.【解析】解:设的解析式为,将代入可得,的表达式为,的表达式为.(2) 若直线与轴、轴的交点分别为点、点,求的面积.【解析】解:令,得;令,得,.。
(含答案)九年级数学人教版上册课时练第23章《23.3 课题学习 图案设计》
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第23章旋转23.3课题学习图案设计一、选择题1.如图所示,北京2022年冬奥会会徽是以汉字“冬”为灵感设计的.下列四个选项中,由会徽经过平移而得到的是()2.下列倡导节约的图案中,可以看作是轴对称图形的是()3.利用图形的旋转可以设计出许多美丽的图案.如图2中的图案是由图1所示的基本图案以点O为旋转中心,顺时针(或逆时针)旋转角度α,依次旋转五次而组成,则旋转角α的值不可能是()A.36°B.72°C.144°D.216°4.如图,在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④5.在设计课上,老师要求学生设计一幅既是轴对称又是中心对称的图案,下面是四位同学的设计作品,其中不符合要求的是()6.下列图案中,可以由一个“基本图形”连续旋转45°得到的是()7.如图所示的四个图形中,通过翻折变换、旋转变换和平移变换都能得到的图形是()8.如图,某同学在6×6的网格纸上将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点在格点上,若使平移前后的两个正方形能组成轴对称图形,则平移方向有()A.3个B.4个C.5个D.无数个9.经过平移或旋转不可能将甲图案变成乙图案的是()10.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()11.三角形甲可以通过哪种运动和三角形乙重合()A.平移B.旋转C.平移后再旋转D.翻折12.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画线段()A.1条B.2条C.3条D.4条13.[南京中考]如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C'还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④14.下列关于△ABC的几何变换中,配对正确的是()Ⅰ.轴对称;Ⅱ.中心对称;Ⅲ.旋转;Ⅳ.平移.A.①-Ⅰ,②-Ⅱ,③-Ⅲ,④-ⅣB.①-Ⅱ,②-Ⅰ,③-Ⅲ,④-ⅢC.①-Ⅱ,②-Ⅰ,③-Ⅲ,④-ⅣD.①-Ⅰ,②-Ⅱ,③-Ⅲ,④-Ⅲ15.如图,上边的图案是由下边五种基本图案中的两种拼接而成的,则这两种基本图案为()A.①⑤B.②④C.③⑤D.②⑤16.一个由小平行四边形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小平行四边形的个数可能是()A.3B.4 C.5D.617.(中考·荆州)如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()二、填空题18.我们学过的全等变换方式有________、________、________,生活中常用这三种图形变换进行图案设计.在图形的上述变换过程中,其________和________不变,只是________发生了改变.19.设计图案时,以某一个图案为________,通过平移、________和________的组合进行图案设计.三、解答题20.按要求画图:将图1中的图形沿直线l翻折到图2的方格中;将翻折后的图形绕点P旋转180°到图3的方格中.21.如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图①中画出一个面积最小的▱PAQB;(2)在图②中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.参考答案一、选择题1.C2.B3.A4.A5.B6.B7.B8.C9.C10.A11.D12.D13.D14.B15.D16.C17.A二、填空题18.平移旋转轴对称形状大小位置19.基本图形轴对称旋转三、解答题20.解:翻折后的图形如图1,旋转后的图形如图2.21.解:如图①所示.(答案不唯一)(2)在图②中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.解:如图②所示.(答案不唯一)。
初中数学人教版九年级上册第二十三章 旋转23.3 课题学习 图案设计-章节测试习题(2)
章节测试题1.【题文】如图所示,△ABC外侧有正方形ABDE与正方形ACFG,请你设计一个方案,将△ABC旋转一个角度,使得△AEG与由△ABC旋转得到的三角形的一边重合,另一边在同一条直线上.【答案】见解答【分析】根据正方形的性质,得出数量关系,再根据旋转的性质设计方案.【解答】由正方形的性质可得:AB=AE,AC=AG,∠BAC=∠BAE=∠EAG=∠GAC,可设计方案为:(1)将△ABC绕点A逆时针方向旋转90°,这时AC与AG重合,AB旋转到AC的原位,与AE在同一直线上;(2)将△ABC绕点A顺时针方向旋转90°,这时AB与AE重合,AC旋转到AB的原位,与AG在同一直线上.2.【答题】如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O经过4次旋转而得到,则每一次旋转的角度大小为______.【答案】72°【分析】本题考查了利用旋转设计图案.【解答】3.【答题】彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是().A. B.C. D.【答案】B【分析】本题考查了旋转的概念.【解答】是轴对称图案,故不符合题意;是旋转图案,符合题意;是其它几何构架图案,故不符合题意;是平移图案,故不符合题意;选B.4.【答题】如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A. 45°,90°B. 90°,45°C. 60°,30°D. 30°,60°【答案】A【分析】本题考查了旋转的性质.【解答】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.选A.5.【答题】风力发电机可以在风力作用下发电.如图的转子叶片图案绕图案中心旋转°后能与原来的图案重合,那么的值可能是()A. 45B. 60C. 90D. 120【答案】D【分析】本题考查了旋转的概念.【解答】该图形被平分成三部分,旋转120°的整数倍,就可以与自身重合,故n 的最小值为120.选D.6.【答题】在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()A. AB. BC. CD. D【答案】B【分析】本题考查了旋转的性质.【解答】A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.选B.7.【答题】下列各图中,图形甲变成图形乙,既能用平移,又能用旋转的是()A. AB. BC. CD. D【答案】C【分析】本题考查了旋转的概念.【解答】A只能通过旋转180°得到;B只能通过平移得到;D只能通过旋转得到;C能用平移,又能用旋转得到,选C.8.【答题】如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A. AB. BC. CD. D【答案】B【分析】本题考查了图形的旋转变化,认真观察旋转得到的图案,找到旋转中心,即可判断.【解答】A、顺时针,连续旋转60度,三次即可得到.B、不能作为“基本图案”.C、旋转180度,即可得到.D、旋转60度即可.选B.9.【答题】如下四个图案,它们绕中心旋转一定的度数后都能和原来的图形相互重合,其中有一个图案与其余图案旋转的度数不同的是()A. B. C. D.【答案】B【分析】本题考查了旋转角,解题的关键是根据图形特点,正确计算出各个图形的最小旋转度数.【解答】A、360÷6=60°;B、360°÷3=120°;C、360°÷6=60°;D、360°÷6=60°.B的旋转角度与其它三个不同,选B.10.【答题】下列图形均可由“基本图案”通过变换得到:(只填序号)(1)可以平移但不能旋转的是______;(2)可以旋转但不能平移的是______;(3)既可以平移,也可以旋转的是______.【答案】①④②⑤③【分析】本题考查了利用移、旋转、轴对称变换设计图案.【解答】①可以看作由左边图案向右平移得到的;②可以看作一个菱形绕一个顶点旋转得到的;③既可以看作一个圆向右平移得到的,也可以看作两个圆组成的图案旋转得到的;④可以看作上面基本图案向下平移得到的;⑤可以看作上面图案绕中心旋转得到的.故可以平移但不能旋转的是①④;可以旋转但不能平移的是②⑤;既可以平移,也可以旋转的是③.故答案为(1)①④,(2)②⑤,(3)③11.【答题】如图,正方形ABCD可以看作由什么“基本图形”经过怎样的变化形成的?______.【答案】把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD【分析】本题考查了利用旋转设计图案.【解答】观察图形可知把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD.故答案为:把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD.12.【答题】正六边形可以看成由基本图形______经过______次旋转而成.【答案】正三角形 5【分析】本题考查了旋转的性质.【解答】根据图形可得:正六边形可以看成由基本图形正三角形经过5次旋转而成.13.【答题】如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转______次,每次旋转______度形成的.【答案】7 45【分析】本题考查了利用旋转设计图案.【解答】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.故如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.14.【答题】如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是______.【答案】45°【分析】本题考查了旋转的性质.【解答】∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°,故答案为:45°.15.【题文】如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?【答案】见解答【分析】可选择不同的基本图形,一般选择基本图形是能使图形的形成过程好说明为原则.【解答】此图形可看作基本图形经过轴对称形成的.16.【题文】如图,网格中每个小正方形的边长为1,点C(0,1),点B(-1,3).(1)利用网格画出直角坐标系(要求标出x轴,y轴和原点),则点A的坐标为______;(2)以△ABC为基本图形,利用旋转设计一个图案,说明你的创意为______.【答案】A(-4,3)见解答.【分析】(1)根据点C的坐标确定原点,则可以画出直角坐标系,把点B向左平移3个单位长度得到点A;(2)把△ABC绕点C顺时针旋转3次,即可得到一个风车的图案.【解答】(1)直角坐标系如图所示,则A的坐标为(-4,3);(2)如图,把△ABC绕点C顺时针旋转3次90°,180°,270°,即可得到一个风车的图案.17.【题文】如图,在网格中有一个四边形图案.(1)请你画出此图案绕点O按顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.【答案】(1)画图见解答;(2)34;(3)AB2+BC2=AC2【分析】(1)将此图案的各顶点绕点O顺时针方向旋转90°,180°,270°后找到它们的对应点,顺次连接得到的图案,就是所要求画的图案.(2)观察画出的图形,可发现S四边形AA1A2A3=S四边形AB1B2B3-4S△BAA3依次代入求值.(3)这个图案就是我们几何中的著名的勾股定理.【解答】(1)如图.(2)-4=(3+5)2-4××3×5=34,故四边形AA1A2A3的面积是34.(3)由图可知:(a+c)2=4×ac+b2,整理得:c2+a2=b2,即:AB2+BC2=AC2.这就是著名的勾股定理.18.【题文】如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)【答案】作图见解答.【分析】如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D 点下面两格的小正方形放在右面,就组成了矩形.【解答】如图:19.【题文】如图,从正三角形出发,利用旋转,作一个飞鸟图.请你也利用正三角形用旋转设计一个图案.【答案】图案见解答.【分析】先以等边三角形的一边为基础画一个基本图形,再绕等边三角形的两个顶点分别旋转60°后删除原等边三角形即可.【解答】如图所示:20.【题文】某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图1所示的等腰直角三角形,王聪同学设计了如图2所示的四种图案.(1)你喜欢哪种图案?并简述该图案的形成过程.(2)请你利用所学过的知识再设计一幅与上述不同的图案.【答案】(1)见解答(2)见解答【分析】(1)答案不唯一,如:我喜欢图案(4).图案形成的过程也不唯一,如:图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)答案不唯一,利用旋转或对称的相关知识完成即可.图形见解答.【解答】(1)答案不唯一,如:我喜欢图案(4).图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)如图所示.。
部编版人教初中数学九年级上册《23.3课题学习 图案设计 同步练习题(含答案)》最新精品优秀
前言:
该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步练习题)
基础导练
1.下列现象中,不属于旋转变换的是( )
A. 钟摆的运动
B. 行驶中汽车的车轮
C. 方向盘的转动
D. 电梯的升降运动
2.将下列图形绕着一个点旋转1200后,不能与原来的图形重合的是( )
3.把一个长方形作相似变换,各条边放大到原来的3倍,则放大后的新长方形的周长是原长方形的倍,新长方形的面积是原长方形面积的倍。
能力提升
4.如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连结DE,那么量出DE的长,就是A、B的距离,为什么?线段DE可以看作哪条线段平移或旋转得到.
A B C D
1。
人教版初中数学九年级上册《23.3 课题学习 图案设计》同步练习卷(含答案解析
人教新版九年级上学期《23.3 课题学习图案设计》同步练习卷一.选择题(共30小题)1.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有几个()A.2B.3C.4D.52.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种3.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个4.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.蝴蝶效应C.颜色鲜艳D.数形结合5.下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.6.下列卡通动物简笔画图案中,属于轴对称图形的是()A.B.C.D.7.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6B.5C.4D.38.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④9.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)10.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.411.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.12.下列图形中可由其中的部分图形经过平移得到的是()A.B.C.D.13.如图所示的各组图形中,表示平移关系的是()A.B.C.D.14.在下列四个图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.15.皮影戏是中国民间古老的传统艺术,如图就是皮影戏中孙悟空的一个形象,在下面的四个图形中,能由图经过平移得到的图形是()A.B.C.D.16.如图所示的图案分别是大众、三菱、奔驰、奥迪汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.17.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.18.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.19.如图所示,四幅汽车标志设计中,能通过平移得到的是()A.奥迪B.本田C.大众D.铃木20.观察下面图案,在ABCD四幅图案中,能通过图案平移得到的是()A.B.C.D.21.如图,在8×8的正方形网格中,△ABC的三个顶点和点O、E、F、M、N均在格点上,EF与MN交于点O,将△ABC分别进行下列三种变换:①先以点A为旋转中心逆时针旋转90°,再向右平移4格,最后向上平移4格;②先以点O为对称中心画中心对称图形,再以点A的对应点为旋转中心逆时针旋转90°;③先以直线EF为对称轴画轴对称图形,再以点A的对应点为旋转中心逆时针旋转90°,最后向右平移4格.其中,能将△ABC变换成△PQR的是()A.①②B.①③C.②③D.①②③22.第一次:将点A绕原点O逆时针旋转90°得到A1;第二次:作点A1关于x轴的对称点A2;第三次:将点A2绕点O逆时针旋转90°得到A3;第四次:作点A3关于x轴的对称点A4…,按照这样的规律,点A35的坐标是()A.(﹣3,2)B.(﹣2,3)C.(﹣2.﹣3)D.(3.﹣2)23.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.24.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.25.下列图案中,可以看作是中心对称图形的是()A.B.C.D.26.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念27.在下面的四个设计图案中,可以看作是中心对称图形的是()A.B.C.D.28.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.B.C.D.29.用放大镜将图形放大,应该属于()A.平移变换B.相似变换C.对称变换D.旋转变换30.已知正方形的一条对角线长为2,把正方形经过某种图形变换后的面积为4,则图形变换是()A.相似变换B.旋转变换C.轴对称变换D.平移变换二.填空题(共20小题)31.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.32.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.33.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有种.34.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.35.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD 对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.36.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有种.37.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有个.38.在下列图案中可以用平移得到的是(填代号).39.如下四幅图案中,第幅图案可以由左边的图案通过平移而得.40.在下列四幅图中,哪几幅图是可以经过平移变换得来的.41.现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船的平移后图形.42.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么正确的平移方法是.43.如图,把边长为3的正方形,按下图①~④的方式进行变换后拼成图⑤,则图⑤的面积等于.44.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形变换为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,至少需要移动格.45.定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x 轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是,点△A n﹣1A2018的坐标是.46.在如图所示的网格中,每个小正方形的边长都为1,点A,B,C均为格点,P,E分别为BC,AB的中点.(Ⅰ)E到P的距离等于;(Ⅱ)将△ABC绕点C旋转,点A,B,E的对应点分别为A′,B′,E′,当PE′取得最大值时,请借助无刻度尺,在如图所示的网格中画出旋转后的△A′B′C,并简要说明你是怎么画出来的:47.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是度.48.以图(1)(以O为圆心,半径为1的半圆作为“基本图形”,分别经历如下变换不能得到图(2)的有①只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;③先绕着点O旋转180°,再向右平移1个单位;④绕着OB的中点旋转180°即可.49.一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是有.50.如图,在平面直角坐标系xOy中,△O'A'B'可以看作是△OAB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OAB得到△O'A'B'的过程:.三.解答题(共10小题)51.方格纸中每个小方格都的边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.(1)在图1中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图2中画一个格点正方形,使其面积等于10;(3)直接写出图3中△FGH的面积是.52.有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)53.如图,是由四个全等且两直角边长分别为2和1的直角三角形组成的图案,请你仅用无刻度的直尺完成以下作图(保留作图痕迹,不写做法):(1)在图①中画一个面积为8的正方形;(2)在图②中画出(1)中所画正方形除对角线外的一条对称轴.54.如图,是一块正方形的瓷砖,请用四块这样的瓷砖拼出一个轴对称图形.在图1、图2、图3中画出,要求三种画法各不相同.55.如图,经过平移,小船上的A点到了点B.(1)请画出平移后的小船.(2)该小船向平移了格,向平移了格.56.按要求画图:(1)如图(1)所示,网格内每个小正方形的边长都为1个单位长度,试画出小船向右平移4 个单位长度,向上平移4个单位长度后的图形.(2)如图(2)过点P分别画直线m、n的垂线.57.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.58.如图是由边长为1的小正方形构成的格点图形,A、B、C在格点上,将三角形ABC向右平移3个单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形ABC;(2)求线段AB在变换到A1B1过程中扫过的区域面积(重叠部分不重复计算).59.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)写出点A的对应点A1的坐标,A2的坐标.(3)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P2的坐标.60.阅读材料:课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图①、图②、图③所示.小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图③)逆时针旋转90°后得到的划分方法与我的划分方法(图①)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图④的划分方法是否正确?(2)判断图⑤的划分方法与图②小易的划分方法是否相同,并说明你的理由.(3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图⑥中画出来.人教新版九年级上学期《23.3 课题学习图案设计》同步练习卷参考答案与试题解析一.选择题(共30小题)1.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有几个()A.2B.3C.4D.5【分析】根据轴对称图形的特点进行判断即可.【解答】解:∵在方格纸中,使与图中阴影部分构成轴对称图形的有②④⑤,故选:B.【点评】本题考查的是利用轴对称设计图案,轴对称图形是要寻找对称轴,沿对称轴对折后与两部分完全重合.2.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.【解答】解:在1,2,3处分别涂黑都可得一个轴对称图形.故选:C.【点评】考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.3.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个【分析】对称轴的位置不同,结果不同,根据轴对称的性质进行作图即可.【解答】解:如图所示,满足题意的涂色方式有3种,故选:C.【点评】本题主要考查了利用轴对称设计图案以及等边三角形的性质,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.4.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.蝴蝶效应C.颜色鲜艳D.数形结合【分析】直接利用图形的形状以及对称性分析得出答案.【解答】解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的轴对称性.故选:A.【点评】此题主要考查了利用轴对称设计图案,正确利用图形的对称性分析是解题关键.5.下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.6.下列卡通动物简笔画图案中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6B.5C.4D.3【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,6处,选择的位置共有6处.故选:A.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【分析】根据轴对称的定义,结合所给图形进行判断即可.【解答】解:①不是轴对称图形;②是轴对称图形;③是轴对称图形;④是轴对称图形;故是轴对称图形的是②③④.故选:D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:要使8枚棋子组成的图案是轴对称图形,则黑子可以摆放在横坐标为3的格点上,故摆放错误的是A,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形定义.10.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.4【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.11.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.【分析】把一个图形整体沿某一直线方向移动,得到的新图形与原图形的形状和大小完全相同.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.【点评】本题主要考查了平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.12.下列图形中可由其中的部分图形经过平移得到的是()A.B.C.D.【分析】根据平移的性质,平移不改变图形的形状和大小对各选项分析判断即可得解.【解答】解:A、可由其中的部分图形经过平移得到,故本选项正确;B、不可由其中的部分图形经过平移得到,故本选项错误;C、不可由其中的部分图形经过平移得到,故本选项错误;D、不可由其中的部分图形经过平移得到,故本选项错误.故选:A.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.13.如图所示的各组图形中,表示平移关系的是()A.B.C.D.【分析】根据平移、旋转、对称的定义即可判断【解答】解:A、表示对称关系.B、表示旋转关系.C、表示旋转关系.D、表示平移关系.故选:D.【点评】本题考查平移、旋转、对称的定义,解题的关键是掌握基本概念,属于中考基础题.14.在下列四个图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.15.皮影戏是中国民间古老的传统艺术,如图就是皮影戏中孙悟空的一个形象,在下面的四个图形中,能由图经过平移得到的图形是()A.B.C.D.【分析】根据平移的意义“平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移”.【解答】解:根据“平移”的定义可知,由题图经过平移得到的图形是.故选:D.【点评】本题考查了生活中平移的现象,解决本题的关键是熟记平移的定义.16.如图所示的图案分别是大众、三菱、奔驰、奥迪汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据图形,利用平移的性质判断即可.【解答】解:如图所示的图案分别是大众、三菱、奔驰、奥迪汽车的车标,其中可以看作由“基本图案”经过平移得到的是,故选:D.【点评】此题考查了利用平移设计图案,熟练掌握平移的性质是解本题的关键.17.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.18.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、C、D.19.如图所示,四幅汽车标志设计中,能通过平移得到的是()A.奥迪B.本田C.大众D.铃木【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知图案A通过平移后可以得到.故选:A.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.20.观察下面图案,在ABCD四幅图案中,能通过图案平移得到的是()A.B.C.D.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、图案属于旋转所得到,故此选项错误;B、图案属于旋转所得到,故此选项错误;C、图案形状与大小没有改变,符合平移性质,故此选项正确;D、图案属于旋转所得到,故此选项错误.故选:C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.21.如图,在8×8的正方形网格中,△ABC的三个顶点和点O、E、F、M、N均在格点上,EF与MN交于点O,将△ABC分别进行下列三种变换:①先以点A为旋转中心逆时针旋转90°,再向右平移4格,最后向上平移4格;②先以点O为对称中心画中心对称图形,再以点A的对应点为旋转中心逆时针旋转90°;③先以直线EF为对称轴画轴对称图形,再以点A的对应点为旋转中心逆时针旋转90°,最后向右平移4格.其中,能将△ABC变换成△PQR的是()A.①②B.①③C.②③D.①②③【分析】利用旋转的性质、平移的性质和轴对称变换通过作图对①②③进行判断.【解答】解:先以点A为旋转中心逆时针旋转90°,再向右平移4格,最后向上平移4格不能得到△PQR;先以点O为对称中心画中心对称图形,再以点A的对应点为旋转中心逆时针旋转90°可得到△PQR;先以直线EF为对称轴画轴对称图形,再以点A的对应点为旋转中心逆时针旋转90°,最后向右平移4格可得到△PQR.故选:C.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.第一次:将点A绕原点O逆时针旋转90°得到A1;第二次:作点A1关于x轴的对称点A2;第三次:将点A2绕点O逆时针旋转90°得到A3;第四次:作点A3关于x轴的对称点A4…,按照这样的规律,点A35的坐标是()A.(﹣3,2)B.(﹣2,3)C.(﹣2.﹣3)D.(3.﹣2)。
人教版九年级上册数学课题学习—图案设计
23.3课题学习—图案设计一、仔仔细细,记录自信1.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度正确的为()A.30B.60C.120D.1802.将一张正方形纸片沿如图1所示的虚线剪开后,能拼成下列四个图形,其中是中心对称图形的是()3.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是()二、拓广探索,游刃有余4.用4块如所示的瓷砖拼成一个正方形,使所得正方形(包括色彩因素)分别是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形.画出符合要求的图形各两个.5.请你为班级设计一个具有中心对称特征的漂亮的班徽,并对你的设计方案加以解释.6.观察下列图案,你能利用图2来分析图3和图4是如何形成的吗?参考答案一、1. D 2.D 3.B二、4.答案不惟一,例如:5.略.6.解:图3是将图2进行连续的平移得到的;图4是将图2进行连续的平移、旋转再平移得到的.答题方法:试卷检查五法重视答案,要对结果负责不少同学都说,明明题目都会做,然而考试时却不是这里出错就是那里出错,总是拿不了高分。
其实,导致这一问题的根本原因就是对答案不够重视。
接下来,我们就为同学们介绍五种常用的试卷检查方法。
第一,逐步检查法。
从审题开始一步一步地检查,从中发现问题进行纠正。
这种方法往往不能发现在解题思路上的根本性错误,但可以检查出计高效学习方法。
第二,结果代入法。
将结果代入公式,看看是否能反向求解出原题所给的已知量,或者是从已求得的结论向已知的条件推导,这就是最典型的“逆向确认”的方式。
第三,试题重做法。
如果时间允许,可将某些试题重做一遍,如两次解答获得同一答案,这样的题解一般就不会有错。
(人教版数学)初中9年级上册-同步练习-23.3 课题学习 图案设计-九年级数学人教版(上)(解析版
第二十三章旋转23.3课题学习图案设计一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有A.1种B.2种C.3种D.4种【答案】C2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是A.B.C.D.【答案】C【解析】A选项不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选C.3.一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是A.B.C.D.【答案】B4.下列基本图形中,经过平移、旋转或翻折后,不能得到下图的是A.B.C.D.【答案】C【解析】A、把平移得到,然后把旋转可得到;B、把旋转可得到;C、把经过平移、旋转或翻折后,都不能得到;D、把翻折后可得到右图.故选C.5.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有A.1 个B.2个C.3个D.4个【答案】C二、填空题:请将答案填在题中横线上.6.如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:__________.【答案】平移,轴对称【解析】△ABC向上平移4个单位,再沿y轴对折,得出△DEF,故答案为:平移,轴对称.7.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程__________.【答案】先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折8.一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是有__________.【答案】②③④【解析】平移后:对应线段平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化.旋转后:对应线段不平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化.故答案为:②③④.9.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有__________种.【答案】3【解析】如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.(2)如图所示,△ACD为所求作;(3)如图所示:△ECD为所求作.11.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是__________对称图形;(3)求所画图形的周长(结果保留π).(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=490π4180⨯⋅⋅=8π.12.如图是两张10×10的方格纸,方格纸中的每个小正方形的边长均为1.请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形.(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形.【解析】(1)如图1所示:(2)如图2所示:.。
人教版数学九年级上册 23.3 课题学习 图案设计 随堂练习
23.3 课题学习图案设计一、选择题(共12小题;共60分)1. 下列交通标志中既是中心对称图形,又是轴对称图形的是A. B.C. D.2. 下列各图中,能由“基本图案”通过旋转变预得到的图形是A. B.C. D.3. 如图,方格纸上的两条对称轴,相交于中心点,对分别作下列变换:①先以点为中心按顺时针方向旋转,再向右平移格、向上平移格;②先以点为中心作中心对称图形,再以点的对应点为中心按逆时针方向旋转;③先以直线为轴作轴对称图形,再向上平移格,再以点的对应点为中心按顺时针方向旋转.其中,能将变换成的是A. ①②B. ①③C. ②③D. ①②③4. 如图,紫金花图案旋转一定角度后与自身重合,则旋转的角度可能是A. B. C. D.5. 将如图所示图案顺时针旋转,能够得到的图形是A. B.C. D.6. 如图,在正方形网格中,格点绕某点顺时针旋转度,得到格点,点与点,点与点,点与点是对应点,则的值为A. B. C. D.7. 既是轴对称图形,又是中心对称图形的是A. B.C. D.8. 如图,在的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是A. 点B. 点C. 点D. 点9. 把图中的五角星图案,绕着它的中心旋转,旋转角至少为时,旋转后的五角星能与自身重合.A. B. C. D.10. 下列图形中,既是中心对称图形又是轴对称图形的是A. 等边三角形B. 直角三角形C. 平行四边形D. 圆11. 下列个图形中是旋转对称图形的有A. 个B. 个C. 个D. 个12. 如图所示,是边长为的正方形的中心,将一块半径足够长.圆心为直角的扇形纸板的圆心放在点处,并将纸板的圆心绕点旋转,则正方形被纸板覆盖部分的面积为A. B. C. D.二、填空题(共5小题;共25分)13. 旋转对称图形(填“一定是”、“一定不是”或“不一定是”)中心对称图形,中心对称图形(填“一定是”、“一定不是”或“不一定是”)旋转对称图形.14. 在方格纸中,选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是.15. 如图,将放在每个小正方形的边长为的网格中,点,点,点均落在格点上.()边的长等于.()以点为旋转中心,把顺时针旋转,得到,使点的对应点恰好落在边上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明画图方法(不要求证明).16. 一条线段(填“是”或“不是”)旋转对称图形,因为它绕旋转度后能与原线段重合.17. 如图所示,,分别是正方形网格上的两个轴对称图形(阴影部分),其面积分别为,(网格中最小的正方形面积为个平方单位),请观察图形并解答下列问题.(1)填空:的值是;(2)请在的网格上画出一面积为个平方单位的中心对称图形.三、解答题(共5小题;共65分)18. 如图,在下列幅图中,分别画出点绕着点顺时针旋转后得到的点,点绕着点逆时针旋转后得到的点.19. 如图,在方格网中已知格点和点.画,使其与关于点成中心对称.20. 画出一个旋转角为的旋转对称图形.21. 如图,画出以点为旋转中心,将逆时针旋转的图形.22. 如图是由个相同的小正方形组成,请再补上一个同样的小正方形,使得由个小正方形组成的图形成为一个中心对称图形.(要求画出所有的情况)答案第一部分1. D2. A3. D4. C5. B6. C 【解析】如图,连接,,作,的垂直平分线交于点,,的垂直平分线交于点,点是旋转中心,由图形可得:旋转角故选:C.7. C8. B9. D10. D11. C12. B第二部分13. 不一定是,一定是14. ②15. (1),(2)如图,取格点,,,,作直线、直线,与的延长线交于点,与交于点,连接,则即为所求.16. 是,中点,17. ,如图:第三部分18.19. 画与关于点成中心对称的图形如下:20. 略.21. 如图.22. 略.。
人教版九年级数学上册23.2 ---23.3练习带答案
23.2 中心对称一.选择题1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.2.下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.3.在线段、角、等腰三角形、平行四边形、矩形、菱形这几个图形中是中心对称图形的个数是()A.2个B.3个C.4个D.5个4.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A.B.C.D.6.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.9.如图,四个图标分别是剑桥大学、北京大学、浙江大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.10.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A.(﹣2,1)B.(1,﹣2)C.(2,﹣1)D.(﹣1,2)11.在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)12.若点(3,a﹣2)与点(b+2,﹣1)关于原点对称,则点(b,a)位于()A.第一象限B.第二象限C.第三象限D.第四象限13.将三角形三个顶点的横坐标都加3,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移三个单位B.关于原点对称C.将原图向右平移三个单位D.关于y轴对称14.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8 15.A(﹣3,2)关于原点的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣2,3)16.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′17.已知点P关于x轴的对称点P1的坐标是(﹣5,6),则P点关于原点的对称点P2的坐标是()A.(﹣5,﹣6)B.(﹣5,6)C.(5,﹣6)D.(5,6)二.填空题18.若M(3,y)与N(x,y﹣1)关于原点对称,则xy的值为.19.已知点A(5,1)与点B关于原点对称,则B点的坐标是.20.若点(a+1,3)与点(﹣2,b﹣2)关于x轴对称,则点P(﹣a,b)关于原点的对称点坐标是.21.已知点P1(a,3)与P2(5,﹣3)关于原点对称,则a=.22.如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形.若点A的坐标为(1,3),则点M和点N的坐标分别为M,N.23.如图,O是▱ABCD的对称中心,点E在边BC上,AD=7,BE=3,将△ABE绕点O 旋转180°,设点E的对应点为E',则=.三.解答题24.当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?参考答案一.选择题1.解:根据中心对称图形的概念可得:D选项不是中心对称图形.故选:D.2.解:A、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,不是轴对称图形,此选项错误;故选:B.3.解:由题可得,中心对称图形的有:线段、平行四边形、矩形、菱形共4个.故选:C.4.解:A、是中心对称图形,但不是轴对称图形.故本选项符合题意;B、是轴对称图形,不是中心对称图形.故本选项不合题意;C、是轴对称图形,不是中心对称图形.故本选项不合题意;D、是轴对称图形,不是中心对称图形.故本选项不合题意.故选:A.5.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.6.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.7.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.8.解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.9.解:A、看起来像轴对称图形但不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意;故选:B.10.解:∵点M(1,﹣2)与点N关于原点对称,点N的坐标为(﹣1,2),故选:D.11.解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.12.解:∵点(3,a﹣2)与点(b+2,﹣1)关于原点对称,∴b+2=﹣3,a﹣2=1,解得:b=﹣5,a=3,故点(b,a)坐标为:(﹣5,3),则点(b,a)位于第二象限.故选:B.13.解:在平面直角坐标系中,将三角形的三个顶点的横坐标加3,纵坐标保持不变,即把原三角形向右平移3个单位.故选:C.14.解:∵点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,y﹣5=﹣3,解得:x=﹣1,y=2,故选:A.15.解:∵A(﹣3,2)关于原点的对称点是B,∴B(3,﹣2),∵B关于x轴的对称点是C,∴C(3,2),故选:A.16.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.17.解:∵点P关于x轴的对称点P1的坐标是(﹣5,6),∴P(﹣5,﹣6),则P点关于原点的对称点P2的坐标是:(5,6).故选:D.二.填空题18.解:∵M(3,y)与N(x,y﹣1)关于原点对称,∴x=﹣3,y﹣1=﹣y,解得:x=﹣3,y=,∴xy=﹣,故答案为:﹣.19.解:A(5,1)与点B关于原点对称,则B点的坐标是(﹣5,﹣1),故答案为:(﹣5,﹣1).20.解:∵点(a+1,3)与点(﹣2,b﹣2)关于x轴对称,∴a+1=﹣2,b﹣2=﹣3,∴a=﹣3,b=﹣1,∵关于原点对称的点,横坐标与纵坐标都互为相反数,∴点P(3,﹣1)关于原点的对称点坐标是(﹣3,1).21.解:∵点P1(a,3)与P2(5,﹣3)关于原点对称,∴a=﹣5,故答案为:﹣5.22.解:∵点M与点A关于原点对称,∴M(﹣1,﹣3),∵点N与点A关于x轴对称,∴N(1,﹣3).故答案为:(﹣1,﹣3),(1,﹣3).23.解:作△CDE′与△ABE关于点O对称,连接EE′,∵△CDE′与△ABE关于点O对称,∴BE=DE′=3,∵AD=7,∴AE′=4,设▱ABCD的高为h,则△AEE′的高也等于h,则==,故答案为:.三.解答题24.解:(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m+2=(3m﹣1),解得:m=;②0.5m+2=﹣(3m﹣1),解得:m=﹣.23.3课题学习图案设计一、选择题1.把一张正方形纸片如图①,图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是( )2.如图所示的各图中可看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是()A. B.C. D.3.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.4.如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5 B.6 C.4 D.75.如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是( )6.下列四幅图案在设计中用到平移变换方式的是()A. B.C. D.7.如图,由图中所示的图案通过平移后得到的图案是()A.B.C.D.8. 观察如图所摆放的五朵梅花,变换中间的一朵梅花,得到四角的梅花,下列说法错误的是( )A.左上角梅花,只需沿对角线平移即可B.右上角梅花,沿对角线平移后,顺时针旋转90°C.右下角梅花,沿对角线平移后,以下底边为对称轴对称得到的D.左下角梅花,沿对角线平移后,顺时针旋转90°9.已知正方形的一条对角线长为2,把正方形经过某种图形变换后的面积为4,则图形变换是()A.相似变换B.旋转变换C.轴对称变换D.平移变换10.如图,△ABC与△A′B′C′关于点O成中心对称,下列结论不成立的是()A.OC=OC′ B.OA= OA′C.BC=B′C′D.∠ABC=∠A′C′B′二、填空题11.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和________ 等。
人教版数学九年级上册23.3《课题学习图案设计》同步测试
图案设计1.由图23-3-1中三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是(B) 图23-3-1A B C D2.下列各图中,图形甲变成图形乙,既能用平移,又能用旋转的是(C)【解析】A用轴对称,B用平移,D用旋转再平移,故选C3.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是(C)4.如图23-3-2,在方格纸中,△ABC经过变换得到△DEF,正确的变换是(B)图23-3-2A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°【解析】△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.5.如图23-3-3是小亮设计地板砖的图案过程:图23-3-3方法一:由图(1)到图(2)采用的是__轴对称__方法,由图(2)到图(3)也是采用__轴对称__方法设计的.方法二:由图(1)到图(2)采用的是__旋转__方法,旋转中心是正方形的__中心__,由图(2)到图(3)也采用的是__旋转__方法,顺时针旋转__90__度.6.认真观察图23-3-4所示的4个图中阴影部分构成的图案,回答下列问题:图23-3-4图23-3-5(1)请写出这四个图案都具有的两个共同特征:特征1:__都是轴对称图形__;特征2:__都是中心对称图形__;(2)请在图23-3-5中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.解:(2)答案不唯一,如图所示.7.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有(C)图23-3-6A.4种B.5种C.6种D.7种【解析】得到的不同图案有共6种.8.用四块如图23-3-7(1)所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图23-3-7(2)、图23-3-7(3)、图23-3-7(4)中各画出一种拼法(要求三种画法各不相同,且其中至少有一种既是轴对称图形,又是中心对称图形).图23-3-7解:答案不唯一,如图所示:图23-3-89.如图23-3-8,是一个4×4的正方形格,每个小正方形的边长为1请你在格中以左上角的三角形为基本图形,通过平移、轴对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4解:答案不唯一,以下各图供参考:10.如图23-3-9(1),有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′(1)如图23-3-9(2),将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是__平行四边__形;(2)如图23-3-9(3),将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D,A,B在同一直线上,则旋转角为__90__度;连接CC′,四边形CDBC′是__直角梯__形;(3)如图23-3-9(4),将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB,CD相交于E,连接BD,四边形ADB C是什么特殊四边形?请说明你的理由.图23-3-9【解析】(1)利用平行四边形的判定:对角线互相平分的四边形是平行四边形得出即可;(2)利用旋转变换的性质以及直角梯形的判定得出即可;(3)利用等腰梯形的判定方法得出BD∥AC,AD=CB即可得出答案.解:(3)四边形ADBC是等腰梯形.理由:过点B作BM⊥AC,过点D作DN⊥AC,垂足分别为M,N,则BM∥ND∵有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′,∴△ACD≌△C′A′B,∴BM=ND,∴四边形NDBM是矩形.∴BD∥AC∵AD=BC,∴四边形ADBC是等腰梯形.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
部编版人教初中数学九年级上册《23.3课题学习 图案设计 测试题(含答案)》最新精品优秀
前言:
该测试题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的测试题助力考生查漏补缺,在原有基础上更进一步。
(最新精品测试题)
23.3 课题学习图案设计
1.如图2335是由三把相同大小的扇子展开后组成的图形,若把每把扇子的展开图看成“基本图案”,那么图2335是由“基本图案”()
图233 5
A.平移一次形成的
B.平移两次形成的
C.以轴心为旋转中心,旋转120°后形成的
D.以轴心为旋转中心,旋转120°,240°后形成的
2.利用对称变换可设计出美丽图案,如图2336所示,在方格纸中有一个每一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成下列问题:
(1)图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕点O按顺时针方向旋转90°;
(2)完成上述图案设计后,求这个图案的面积.
图233 6
1。
人教版九年级数学上册23.3 课题学习 图案设计 同步练习.docx
初中数学试卷桑水出品23.3 课题学习图案设计同步练习一、选择题(共5小题)1.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A .B .C .D .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)3.视力表的一部分如图,其中开口向上的两个“E”之间的变换是()A.平移B.旋转C.对称 D.位似4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种5.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种二、填空题(共4小题)6.以如图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图(2)的有______(只填序号,多填或错填得0分,少填个酌情给分).①只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;③先绕着点O旋转180°,再向右平移一个单位;④绕着OB的中点旋转180°即可.7.如图,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.8.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是______.9.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有______种.三、解答题(共6小题)10.阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).11.在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.名称四等分圆的面积方案方案一方案二方案三选用的工具带刻度的三角板画出示意图作⊙O两条互相垂直的直径AB、CD,将⊙O的面积简述设计方案分成相等的四份.指出对称性既是轴对称图形又是中心对称图形12.利用对称变换可设计出美丽图案,如图,在方格纸中每一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成下列问题:(1)图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕0点按顺时针旋转90°;(2)完成上述图案设计后,可知这个图案的面积等于______.13.如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.14.在格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案;(2)作出“小旗子”绕O点按逆时针方向旋转90°后的图案.15.如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.。
人教版九年级数学上册《23-3 课题学习 图案设计》作业同步练习题及参考答案
23.3 课题学习图案设计1.在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是( )2.下图是由10 把相同的折扇组成的“蝶恋花”(图①)和梅花图案(图②)(图中的折扇无重叠),则梅花图案中的五角星的5 个锐角均为( )A.36°B.42°C.45°D.48°3.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是( )A.正三角形B.正方形C.正六边形D.正十边形4.如图所示的图案,至少绕它的中心旋转( )才能与自身重合.A.45°B.90°C.135°D.180°5.写出一个既有轴对称性质又有中心对称性质的图形名称: .6.如图是两个垃圾回收桶上的图案,分别表示可回收垃圾与不可回收垃圾.请你先找出组成图案的“基本图案”,再分析它们的形成过程.7.如图,在下列4×3 的网格上,分别设计出符合要求的图案,作图要求:由个数相同的白色方块与黑色方块组成一幅图案,即黑、白方块的个数要相同.(1)是轴对称图形,又是中心对称图形; (2)是轴对称图形,但不是中心对称图形; (3)是中心对称图形,但不是轴对称图形.((1)题图)((2)题图)((3)题图)8.剪纸是中国的民间艺术.剪纸的方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):下图中的四个图案,不能用上述方法剪出的是( )9.一块竹条编织物,先将其按如图所示绕直线MN 翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是( )10.如图,ABCD 是一张矩形纸片,点O 为矩形对角线的交点,直线MN 经过点O 交AD 于点M,交BC 于点N.操作:先沿直线MN 剪开,并将直角梯形MNCD 绕点O 旋转后(填入一个你认为正确答案的序号:①90°;②180°;③270°;④360°),恰与直角梯形NMAB 完全重合;再将重合后的直角梯形MNCD 以直线MN 为轴翻转180°后所得的图形是下图中的.(填写正确图形的代号)★11. 右图所示的是某中学的一块正方形的花坛,现要在里面修两条笔直的小路,使得小路把花坛分成形状相同且面积相等的四部分,在里面种植上不同品种的鲜花.若道路的宽度忽略不计,请你设计3 种不同的方案,画图并简略叙述步骤.12.如图,利用左边所给的基本图形可以设计许多富有生活情趣的图案,如图所示.请你再设计一个图案,并说明它的含义.★13.为了创建绿色校园,学校决定在一块正方形的空地种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的圆弧构成的图案既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出3 种不同的设计图案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.参考答案夯基达标1.C2.D3.C A.正三角形的最小旋转角为120°,本选项错误.B.正方形的最小旋转角为90°,本选项错误.C.正六边形的最小旋转角为60°,本选项正确.D.正十边形的最小旋转角为36°,本选项错误.故选C.4.A5.线段、圆、正方形、矩形、菱形、正2n 边形(n 为正整数)等(写出其中一个即可)6.解两个图案都是由相同的“基本图案”——一个“弯曲的箭头”组成的.“可回收垃圾”标志是把一个“弯曲的箭头”向内放置后旋转两次得到的,其中旋转角是120°;“不可回收垃圾”标志是把一个“弯曲的箭头”向外放置后旋转两次得到的,其中旋转角也是120°.7.解如图,给出三组答案.培优促能8.C 通过剪纸方法的图示可以看出剪出的图案应该既是轴对称图形,又是中心对称图形.在四个图案中,选项C 是中心对称图形,但不是轴对称图形.9.B 10.②(4)11.分析本题是方案设计问题,其实质就是利用正方形既是轴对称图形又是中心对称图形这一性质来解决问题.只要两条互相垂直的直线交点落在正方形对角线的交点上,即落在正方形的对称中心上就可以满足要求.解12.解答案不唯一,如下图供参考.创新应用13.解参考答案如下:。
三年中考真题九年级数学上册23.3课题学习图案设计同步练习 新人教版
23.3 课题学习图案设计一.选择题1.(xx•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个2.(xx•绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B.C. D.3.(xx•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.164.(xx•来宾)下列3个图形中,能通过旋转得到右侧图形的有()A.①② B.①③C.②③ D.①②③二.填空题5.(xx•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为(度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).6.(xx•衢州)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是,点A xx的坐标是.三.解答题7.(xx•枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.8.(xx•吉林)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).9.(xx•眉山)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.10.(xx•温州)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱PAQB.(2)画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ以某一格点为旋转中心旋转得到.11.(xx•黑龙江)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.12.(xx•宁波)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.13.(xx•巴中)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,则点M1的坐标为;(3)画出△ABC关于点O的中心对称图形△A2B2C2.14.(xx•仙桃)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.15.(xx•广安)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点视为相连)(2)将选中的小正方形方格用黑色签字笔涂成阴影图形.(若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)16.(xx•昆明)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.17.(xx•攀枝花)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.18.(xx•丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.参考答案一.选择题1.C.2.B.3.B.4.D.二.填空题5.解:(1)由网格图可知AC=BC=AB=∵AC2+BC2=AB2∴由勾股定理逆定理,△ABC为直角三角形.∴∠ACB=90°故答案为:90°(Ⅱ)作图过程如下:取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求证明:连CF∵AC,CF为正方形网格对角线∴A、C、F共线∴AF=5=AB由图形可知:GC=,CF=2,∵AC=,BC=∴△ACB∽△GCF∴∠GFC=∠B∵AF=5=AB∴当BC边绕点C逆时针选择∠CAB时,点B与点F重合,点C在射线FG上.由作图可知T为AB中点∴∠TCA=∠TAC∴∠F+∠P′CF=∠B+∠TCA=∠B+∠TAC=90°∴CP′⊥GF此时,CP′最短故答案为:如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求6.(﹣,﹣),(﹣,).三.解答题(共12小题)7.解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作8.解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×=8π.9.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,10.解:(1)如图①所示:(2)如图②所示:11.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).12.解:如图所示.13.解:(1)如图所示:△A1B1C1,即为所求;(2)∵点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,∴点M1的坐标为:(a,b﹣5);故答案为:(a,b﹣5);(3)如图所示:△A2B2C2,即为所求.14.解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;15.解:如图..16.解:(1)如图1所示:(2)如图2所示:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示:点P坐标为(2,0).17.解:(1)如图,△A1B1C1为所作,(2)四边形AB1A1B的面积=×6×4=12.18.解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).。
人教版九年级数学上册同步练习:23.3课题学习—图案设计【精品】
23.3课题学习—图案设计
一、仔仔细细,记录自信
1.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得的,旋转的角度正确的为()
A.30B.60C.120D.180
2.将一张正方形纸片沿如图1所示的虚线剪开后,能拼成下列四个图形,其中是中心对称图形的是()
3.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是()
二、拓广探索,游刃有余
4.用4块如所示的瓷砖拼成一个正方形,使所得正方形(包括色彩因素)分别是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形.画出符合要求的图形各两个.
5.请你为班级设计一个具有中心对称特征的漂亮的班徽,并对你的设计方案加以解释.
6.观察下列图案,你能利用图2分析图3和图4是如何形成的吗?
参考答案
一、1.D 2.D 3.B
二、4.答案不惟一,例如:
5.略.
6.解:图3是将图2进行连续的平移得到的;图4是将图2进行连续的平移、旋转再平移得到的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 3.3课题学习图案设计
基础训练
1. 已知:图A、图B分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为A S、B S(网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.
(1)填空:AB SS∶的值是__________;
(2)请在图C的网格上画出一个面积为8个平方单位的中心对称图
形.
2.如图中的图案是由一个怎样的基本图形
经过旋转、轴对称和平移得到的呢?
请你用基本图形
经过旋转、平移和轴对称
设计一个美丽的图案。
能力提升
1. 在右图的方框中做出以O为旋转中心旋转后的图形.
2.利用你所学过的图形变换的知识设计一个图案
,
单元回头看3码
一、填空题:(每空2分共24分)
1.钟表的分针匀速旋转一周需要60分,它的旋转中心是___________,经过20分,分针
旋转___________度
2. 如图,按逆时针方向的ABCcm。
AC,ABBACABC???????590
转动一个角度后成为ACD?,则图中点_____是旋转中心,
旋转角等于____度,点B与点____是对应点,点C与点____是对应点, ∠
ACD=_____________, AD=_________.
3. 线段、两相交直线、角、等腰三角形、等边三角形、平行四边形、
矩形、菱形、正方形、圆等图形中是中心对称图形的有________________
__;既是轴对称图形,又是中心对称的图形有_
.
4. 如果将△ABC绕点O逆时针旋转80°得到△DEF,那么△DEF 可以得到△ABC.
5. 若点O是平行四边形ABCD对角线AC的中点,EF⊥AC于O,交AD、BC分别于E、F,那
么线段DE关于O的对称线段为________________, 二、选择题(每小题3分共18
分)
6. 下列现象属于旋转的是()
A.摩托车在急刹车时向前滑动 B.空中飞舞的雪花
C.拧开自来水龙头的过程 D.飞机起飞后冲向空中的过程
7. △ABC绕点O旋转50°后得到△DEF。
已知∠A=70°,则∠AOD的度数是()A.50° B.70° C.130° D.110°
8. 下列图案既是轴对称图形,又是中心对称图形的是()
A B C D
9. 如图所示的图案,至少绕它的中心旋转()度能与自身重合
A.45° B.90° C.135° D.180°
10. 下列图形中,不是中心对称图形的是().
A.菱形 B.矩形 C.五角星 D.线段
11. 下列语句中,不正确的是( ).
A.图形平移是由移动的方向和距离所决定; B.图形旋转是由旋转中心和旋转角度所决定; C.中心对称图形是指一个图形绕其中的某一点旋转1800后能与其自身重合的图形;
D.旋转后能重合的图形也是中心对称图形.
三、解答题:(共58分)
12.(本题9分)如图,BDEABC??是等边绕着B点按逆时针方向旋转30o得到的,按图
回答:
(1)A、B、C的对应点是什么?
(2)线段AB、AC、BC的对应线段是什么? (3)∠A、∠C和∠ABC的对应角是什么?
13.(本题9分)如图,正方形ABCD中,E在BC上,F在AB上且∠FDE=45o,DEC?按顺时针方向转动一个角度后成DGA?。
(1)图中哪一个点是旋转中心? (2)旋转了多少度? (3)求∠GDF的度数。
14.(本题8分)如图所示的图形,绕哪一点旋转多少度方能与自身重合?
EDCB
A GFEDCBA432
1.
⑴⑵
15.(本题6分)如图,共有7个全等的三角形,你能分析说明第1个三角形经过什么变化可以依次得到其余6个三角形吗?
四、画图题(本题16分,每小题8分)
16.任画一个直角?ABC,其中∠B=90o,取ABC?外一点P为旋转中心,按逆时针方向旋转60o,作出旋转后的三角形。
17. 按要求设计一个图形:所画图形中同时要有正方形和圆,并且这个图形既是轴对称
图形又是中心对称图形.
PCB
A.
五、探究题(本题10分)
18.如图,ABC?的∠BAC=120o,以BC为边向形外作等边BCD?,把ABD?绕着D点按
顺时针方向旋转60o后到ECD?的位置。
若2,3??ACAB,求∠BAD的度数和AD的长.
23.3课题学习图案设计
基础训练 1.(1)9∶11;(2)略.2.略。
能力提升1.图略.2.略
单元回头看一、是钟表的中心,120.2.A;90,C,D,∠B,AC.3. 线段、两相交直线、
平行四边形;线段、两相交直线.4.顺时针旋转800. 5.BF. 二、6. C 7. A 8. B 9.A 11.C 三、12. (1)D、B、E (2)DB、DE、BE (3)∠D、∠E、∠DBE 13.(1)A (2)90
度(3)450 14.提示:可标上字母再表示。
15.1→2向右平移一个单位,再逆时针旋
转900.2→3:向右平移一个单位,再向上平移一个单位旋转180°. 3→4:向下平移一
个单位. 4→5:向下平移一个单位,再逆时针旋转90°. 5→6:向下平移一个单位,再逆时针旋转900. 6→7:向左平移一个单位,再向上平移一个单位,逆时针旋转900.16.略.17.略.18. 600,5
EDCBA.。