数值计算方法重点复习内容
数值计算方法复习
第三章 常微分方程的差分方法 熟练掌握欧拉法及改进的欧拉法的思想及算法的 求解过程. 求解过程 熟练掌握龙格-库塔法的思想及求解过程 库塔法的思想及求解过程. 熟练掌握龙格 库塔法的思想及求解过程 第四章 方程求根的迭代法 熟练掌握迭代法收敛的判定方法. 熟练掌握迭代法收敛的判定方法. 熟练掌握牛顿法的思想及求解过程. 熟练掌握牛顿法的思想及求解过程 熟练掌握弦截法及快速弦截法的思想及其求解过程. 熟练掌握弦截法及快速弦截法的思想及其求解过程 第五章 线性方程组的迭代法 熟练掌握雅可比迭代的求解过程及收敛的判定方法. 熟练掌握雅可比迭代的求解过程及收敛的判定方法. 熟练掌握塞德尔迭代的求解过程及收敛的判定方法. 熟练掌握塞德尔迭代的求方程组的直接法 熟练掌握约当消去法的思想及其求解方法. 熟练掌握约当消去法的思想及其求解方法. 熟练掌握高斯消去法的思想及其求解方法. 熟练掌握高斯消去法的思想及其求解方法. 熟练掌握选主元消去法的思想及其求解方法. 熟练掌握选主元消去法的思想及其求解方法. 熟练掌握追赶法的思想及其求解方法. 熟练掌握追赶法的思想及其求解方法. 熟练掌握平方根法的思想及其求解方法. 熟练掌握平方根法的思想及其求解方法.
数值计算方法复习
引言: 了解算法的构成要素. 了解算法的构成要素 掌握有效数字的概念及求解方法. 掌握有效数字的概念及求解方法 第一章 插值方法 熟练掌握拉格朗日插值方法的思想及求解思路. 熟练掌握拉格朗日插值方法的思想及求解思路 熟练掌握牛顿插值方法的思想及求解思路. 熟练掌握牛顿插值方法的思想及求解思路 掌握埃特金方法的思路及对低阶多项式的构造方法. 掌握埃特金方法的思路及对低阶多项式的构造方法. 第二章 数值积分 掌握解决数值积分问题的基本思想及代数精度的概念. 掌握解决数值积分问题的基本思想及代数精度的概念 熟练掌握牛顿-柯斯特公式及其思想 柯斯特公式及其思想. 熟练掌握牛顿 柯斯特公式及其思想 熟练掌握复化求积公式的的思想及求解过程. 熟练掌握复化求积公式的的思想及求解过程 熟练掌握龙贝格加速公式. 熟练掌握龙贝格加速公式
数值计算方法复习
数值计算方法复习数值计算方法是利用数值计算机进行数值计算的方法,广泛应用于科学计算、工程计算和统计计算等领域。
本文将对数值计算方法进行全面的复习介绍,包括数值计算的基本概念、数值计算的误差分析、数值求解非线性方程的方法、插值与拟合方法、数值积分与微分方法以及常微分方程数值解法等内容。
数值计算的基本概念包括数值计算方法的定义、数值计算的基本运算规则和数值计算的基本误差理论。
数值计算方法是一种利用有限的计算机算力和存储器容量来解决数学问题的方法。
数值计算的基本运算规则包括加减乘除等基本运算规则,以及数值计算中常用的数值算法。
数值计算的基本误差理论是指在进行数值计算时,由于各种原因所导致的计算结果与精确结果之间的差距,主要包括舍入误差、截断误差和舍入误差。
数值计算的误差分析是数值计算方法中非常重要的一部分,它可以帮助我们评估数值计算的精度和可靠性。
误差分析的主要方法有绝对误差分析和相对误差分析两种。
绝对误差分析是指通过计算数值解与精确解之间的差距来评估数值计算的误差。
相对误差分析是指通过计算数值解与精确解之间的相对差距来评估数值计算的误差。
误差分析的结果可以用来指导我们选择合适的数值计算方法和优化数值计算过程,以提高计算的精度和可靠性。
数值求解非线性方程是数值计算中的重要问题之一,它在科学计算和工程计算中得到了广泛的应用。
数值求解非线性方程的方法有迭代法、二分法、割线法、牛顿法等。
其中,迭代法是一种基本的数值求解方法,它通过不断迭代更新初始近似解来逼近方程的根。
二分法是一种简单有效的数值求解方法,它通过不断将区间二分来逼近方程的根。
割线法是一种迭代法,它通过利用函数在两个初始近似解之间的割线来逼近方程的根。
牛顿法是一种基于函数导数的迭代法,它通过利用切线来逼近方程的根。
插值与拟合方法是数值计算中常用的方法之一,它们可以通过给定的数据点来构造一个函数,以实现数据的近似表示和计算。
插值方法是利用已知数据点来构造一个函数,使得该函数在这些数据点上的取值与已知的数据点相等。
(完整word版)《数值计算方法》复习资料全
《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
数值计算方法复习要点
第一章引论计算方法解决问题的主要思想计算方法的精髓:以直代曲、化繁为简1、采用“构造性”方法构造性方法是指具体地把问题的计算公式构造出来。
这种方法不但证明了问题的存在性,而且有了具体的计算公式,就便于编制程序上机计算。
2、采用“离散化”方法把连续变量问题转为求离散变量问题。
例:把定积分离散成求和,把微分方程离散成差分方程。
3、采用“递推化”方法将复杂的计算过程归结为简单过程的多次重复。
由于递推算法便于编写程序,所以数值计算中常采用“递推化”方法。
4、采用“近似代替”方法计算机运算必须在有限次停止,所以数值方法常表现为一个无穷过程的截断,把一个无限过程的数学问题,转化为满足一定误差要求的有限步来近似替代。
算法的可行性分析时间复杂度、空间复杂度分析算法的复杂性(包含时间复杂性和空间复杂性)。
时间复杂度是算法耗费时间的度量。
算法的空间复杂度是指算法需占用存储空间的量度算法的可靠性分析良态算法、病态算法一个算法若运算过程中舍入误差的积累对最后计算结果影响很大,则称该算法是不稳定的或病态算法,反之称为稳定算法或良态算法。
误差的来源1、模型误差我们所建立的数学模型是对实际问题进行抽象简化而得到的。
因而总是近似的,这就产生了误差。
这种数学模型解与实际问题的解之间出现的误差,称为模型误差。
2、观测误差观测到的数据与实际数据之差。
3、截断误差数学模型的准确解与计算方法的准确解之间的误差。
4、舍入误差由于计算机字长有限,原始数据在计算机上表示会产生误差,每次计算又会产生新的误差,这种误差称为舍入误差。
绝对误差、相对误差定义2 记x*为x的近似数,称E(x)=x-x*为近似数x*的绝对误差,|E(x)|为绝对误差限。
定义3 称Er(x)=(x-x*)/x为近似数x*的相对误差。
实际运算时也将Er*(x)=(x-x*)/x*称为近似数x*的相对误差。
“四舍五入”:即尾数是4或以下则舍去,尾数是6或以上则进1,如果尾数是5,则规定:前面一位数字是偶数则舍去,奇数则进1。
(完整)数值计算方法复习
2016计算方法复习务必通过本提纲例子和书上例子掌握如下书本内容:1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss —Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报-校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。
(二) 复习要求1。
了解数值分析的研究对象与特点。
2。
了解误差来源与分类,会求有效数字; 会简单误差估计. 3.了解误差的定性分析及避免误差危害。
(三)例题例1. 设x =0.231是精确值x *=0。
229的近似值,则x 有2位有效数字。
例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x .例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法. (二) 复习要求1.了解求根问题和二分法.2。
了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。
3。
理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。
4。
掌握牛顿法及其收敛性、下山法, 了解重根情形. 5.了解弦截法. (三)例题1。
为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A )11,1112-=-=+k k x x x x 迭代公式 (B )21211,11kk x x x x +=+=+迭代公式(C ) 3/12123)1(,1k k x x x x +=+=+迭代公式 (D )231x x =-迭代公式11221+++=+k k kk x x x x 解:在(A)中,2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->=1.076故迭代发散。
数值计算方法复习
数值计算方法复习1.数值求解数值求解是通过数值计算方法来寻找一个给定方程的数值解。
常见的数值求解方法包括二分法、牛顿法、割线法和迭代法等。
-二分法是一种用于求解单调函数方程的数值方法。
它将函数方程的解限定在一个区间内,然后通过缩小区间的方式来逼近解。
二分法的思想是通过不断将区间一分为二,并判断解是否在其中一半区间内,从而缩小解的范围。
-牛顿法是一种用于求解非线性方程的数值方法。
它利用函数方程的切线来逼近解。
牛顿法的核心思想是通过不断迭代逼近解的位置,使得迭代序列逐渐收敛到解。
-割线法是一种求解非线性方程的数值方法,类似于牛顿法。
它通过连结两个近似解点,得到一个割线,然后以割线和x轴的交点作为下一次迭代的近似解点。
-迭代法是一种通过迭代计算来逼近解的数值方法。
迭代法的核心思想是通过不断更新迭代序列的值,使得序列逐渐收敛到解。
2.插值与拟合插值与拟合是通过已知数据点来推断出未知数据点的数值计算方法。
-插值是通过已知数据点在这些点之间进行推断。
常见的插值方法包括拉格朗日插值和分段线性插值。
拉格朗日插值通过构造一个n次多项式函数来拟合已知数据点,从而推断出未知数据点的值。
分段线性插值是指将数据点之间的区间划分为若干段,然后在每段区间内使用线性插值来推断未知数据点的值。
-拟合是通过已知数据点在这些点之间进行逼近。
常见的拟合方法包括最小二乘拟合和多项式拟合。
最小二乘拟合通过使得残差的平方和最小来找到最优拟合函数。
多项式拟合是指通过构造一个n次多项式函数来拟合已知数据点,从而得到一个逼近函数。
3.数值积分数值积分是通过数值计算方法来近似计算函数的定积分。
常见的数值积分方法包括矩形法、梯形法、辛普森法和龙贝格法等。
-矩形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过函数的平均值来近似计算定积分的方法。
-梯形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过线性插值来近似计算定积分的方法。
数值计算方法复习提纲
i0
i0
2) 解之即得(1)的最小二乘解
2021/3/1
-14-
14
02:59
❖ 一般曲线拟合
利用最小二乘原理求矛盾方程组的最小二乘解(会 计算) (★)
❖ 插值条件、插值点
❖ 插值多项式
插值多项式的存在、唯一性:
❖ 故Ln(x)与Nn(x)等价
Lagrang插值多项式(★)
❖ 构造
f (
x)
n
lk (
k0
x )yk
n
(
k0
n i0
(x ( xk
xi xi
) )
yk
ik
❖ 余项
n
lk ( x ) 1
k0
❖ 线性插值、抛物插值公式及其截断误差
复习
2021/3/1
-1-
1
02:59
第一章 绪论及误差估计
误差的来源、分类(★) 误差的估计(★)
❖ 绝对误差、绝对误差限 ❖ 相对误差、相对误差限 ❖ 有效数字 ❖ 和、差、积、商的误差
数值计算(近似计算)的基本原则(★)
2021/3/1
-2-
2
02:59
第2章 非线性方程求根
非线性方程求根的基本步骤(★)
第5章 最小二乘法与曲线拟合
最小二乘原理及正规方程组的构造(计算) (★)
❖ 多项式拟合: y=a0+a1x+…+amxm (1)
1) 对应的正规方程组:CTCa=CTy
n
n
xi
CTC
i0 n
xi2
i0
....
n
xim
n
xi
i0 n
xi2
数值计算方法重点复习内容
Newton迭代方法求非线性方程组的迭代格式。
➢第七章
最小二乘问题的定义、思想及其求法;
❖广义逆矩阵 A和 最小二乘解的关系;
Householder变换的定义、性质、求法及应用;
Givens变换的定义、性质、求法及应用;
➢第八章
幂法的迭代格式及其应用; ❖反幂法的迭代格式及其应用; QR方法的思想。
《数值计算方法》重点复习内容 ➢第一章
基本概念:误差的分类、绝对误差和相对误差、
有效字;
❖误差分析的原则:避免相近的数相减等。
➢第二章
二分法及对分次数的计算; ❖不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。
Newton迭代及其收敛性。
➢第三章
代数插值函数的定义、存在唯一性、误差估计式; ❖Lagrange插值多项式、n次Lagrange插值基函数
➢第九章
单步法的构造方法:Taylor展开法; ❖Euler公式、 Euler预报-校正公式
和经典4阶Runge-Kutta公式及其应用;
单步法的局部截断误差、收敛阶的定义;
梯形公式、Simpson公式及其余项;
复化梯形公式、复化Simpson公式及其余项; Gauss型求积公式的定义及其特点。 数值微分的三点公式计算近似导数定理。
➢第五章
常用的向量范数和矩阵范数的定义及求法;
❖列主元Gauss消去法、Doolittle分解方法;
条件数的定义及其计算。
➢第六章
了解向量序列和矩阵序列的定义、收敛性; ❖一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
的性质(习题4-4)、Newton插值多项式
《数值计算方法》复习资料
《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= π=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限εr==0.002 5x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限εr==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为εr==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
数值计算方法总结计划复习总结提纲.docx
数值计算方法复习提纲第一章数值计算中的误差分析12.了解误差 ( 绝对误差、相对误差 )3.掌握算法及其稳定性,设计算法遵循的原则。
1、误差的来源模型误差观测误差截断误差舍入误差2误差与有效数字绝对误差E(x)=x-x *绝对误差限x*x x*相对误差E r (x) ( x x* ) / x ( x x* ) / x*有效数字x*0.a1 a2 ....a n10 m若x x*110m n ,称x*有n位有效数字。
2有效数字与误差关系( 1)m 一定时,有效数字n 越多,绝对误差限越小;( 2)x*有 n 位有效数字,则相对误差限为E r (x)110 (n 1)。
2a1选择算法应遵循的原则1、选用数值稳定的算法,控制误差传播;例I n 11n xdxex eI 0 11I n1nI n1e△ x n n! △x02、简化计算步骤,减少运算次数;3、避免两个相近数相减,和接近零的数作分母;避免第二章线性方程组的数值解法1.了解 Gauss 消元法、主元消元法基本思想及算法;2.掌握矩阵的三角分解,并利用三角分解求解方程组;(Doolittle 分解; Crout分解; Cholesky分解;追赶法)3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。
本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解?a11x1a12x2...a1nxn b1a21x1a22x2...a2nxn b2...an1x1an 2x2...annxn b n两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。
一、Gauss消去法1、顺序G auss 消去法记方程组为:a11(1) x1a12(1) x2... a1(1n) x n b1(1)a21(1) x1a22(1) x2... a2(1n) x n b2(1)...a n(11) x1a n(12) x2... a nn(1) x nb n(1)消元过程:经n-1步消元,化为上三角方程组a11(1) x1b1(1)a 21(2) x1a22(2 ) x2b2( 2 )...a n(1n) x1a n(n2) x2...a nn(n ) x nb n( n )第k步若a kk(k)0( k 1)( k)a ik(k )(k )( k 1)( k )a ik(k )( k)aij aij a kk(k )akj bi b i a kk(k )b k k 1,...n 1 i, j k 1,....,n回代过程:x n b n(n)/ a nn(n)nx i (b i(i )a ij(i ) x j ) / a ii(i)(i n 1, n 2,...1)j i 12、G auss—Jordan消去法避免回代,消元时上下同时消元3、G auss 列主元消去法例:说明直接消元,出现错误0.00001x12x22x1x23由顺序G auss 消去法,得x21, x10 ;Ga uss 列主元消去法原理:每步消元前,选列主元,交换方程。
数值计算复习资料
数值计算复习资料数值计算复习资料数值计算是一门研究如何利用计算机来解决数学问题的学科。
它在科学计算、工程设计和金融分析等领域起着重要的作用。
为了更好地复习数值计算知识,我们可以从以下几个方面进行回顾和总结。
一、数值误差与舍入误差在数值计算中,我们常常会遇到数值误差的问题。
数值误差分为绝对误差和相对误差两种类型。
绝对误差是指计算结果与真实值之间的差距,而相对误差则是绝对误差与真实值之比。
舍入误差是由于计算机的有限精度表示而引起的误差,它是数值计算中不可避免的一部分。
为了减小舍入误差,我们可以采取一些常用的数值计算技巧。
例如,可以通过增加计算的位数来提高计算的精度,或者使用更精确的数值表示方法,如浮点数表示法。
此外,还可以采用数值稳定的算法,避免出现数值不稳定性导致的大误差。
二、插值与拟合插值与拟合是数值计算中常用的技术,它们可以用来估计未知函数的值或者在给定数据点之间构造一个函数。
插值是通过已知数据点之间的连线来估计未知点的值,而拟合则是通过一个函数来拟合已知数据点,使得拟合函数与数据点的差距最小。
在插值中,最常用的方法是拉格朗日插值和牛顿插值。
拉格朗日插值使用多项式来逼近已知数据点,而牛顿插值则使用差商来逼近。
在拟合中,最常用的方法是最小二乘法。
最小二乘法通过最小化拟合函数与数据点之间的误差平方和来确定拟合函数的参数。
三、数值积分与数值微分数值积分和数值微分是数值计算中的重要内容,它们可以用来近似计算函数的积分和导数。
数值积分的常用方法包括梯形法则、辛普森法则和龙贝格法则等。
这些方法通过将函数分割成若干小区间,并在每个小区间上用简单的公式来近似计算积分值。
数值微分的常用方法包括中心差分法和前向差分法等。
中心差分法通过计算函数在某一点的左右两侧的斜率来近似计算导数值,而前向差分法则通过计算函数在某一点和相邻点的斜率来近似计算导数值。
四、线性方程组的数值解法线性方程组的数值解法是数值计算中的重要内容,它可以用来求解形如Ax=b的线性方程组,其中A是一个已知的矩阵,b是一个已知的向量。
数值计算方法总复习.docx
数值计算方法总复习第一章算法与误差 第二章非线性方程求解 第三章线性代数方程求解 第四章函数插值与曲线拟合 第五章数值积分与数值微分 第六章當微分方程的数值解法 Chap. 1 (1)关于数值计算方法,What,特点教窗才算方法是应用数学的一个分支, 又称数值分析或计算方法,它是研究数字计算机求解各种数学问题的数值方法及其理论的一门科学,是程序设计 和对数值结果进行分析的依据和基础。
应用计算机解决科学计算问题包括以下几个过程:提出实际问题;建立数 学模型;选用数值计算方法;程序设计和上机计算。
可见数值计算方法是进行 科学计算全过程的一个重要环节。
计算机计算的特点:(1)运算速度快;(2)但只能完成加、减、乘、除和 一些逻辑运算。
所以,各种复朵的数学问题 T 归结为四则运算 ------------- 9 编程指令。
把对数学问题的解法归纳为有加、减、乘、除等基本运算,并对运算顺序 有完整而准确的描述的算法称为数值计算方法或简称数值算法。
研究各种算法 和和关理论的一门课程。
§1.2误差一、 误差的来源数分为两类:精确数(准确数、真值); 近似数/近似值。
1) 模型课差或描述误差2) 测量误差(观测误差)3) 截断误并(方法误并)4) 舍入误差(计算误差):数值计算关心的是截断谋差(方法谋差)和舍入谋差(计算谋差) 二、误差限和有效数字1. 误差限的定义设Z 是准确值Z 的某个近似值,如果根据具体测量或计算的情况,可以事 先估计出误差的绝对值不超过某个正数5即:关于《数值计算方法》IZ - Z| W £则称£为近似值的谋差限。
或称在允许谋差£的情况下,结果z是“准确的”・2.误差限和有效数字在表示一个近似数时,常常用到“有效数字”,有效数字和谋差限都是用来定量表示误差的大小,且它们之间有对应关系。
有效数字的定义:设数x的近似值T=0內兀2…乙xl(T ,其中灯是0到9之间的任一个数,但力工0门二1,2,3.・・,n正整数,刃整数,若lx-x* l< jxlO,n-n则称x*为x的具有n位有效数字的近似值,准确到第n位,x 1x2...xn是/ 的有效数字。
数值计算方法复习知识点
数值计算方法复习知识点数值计算方法是研究计算数值解的方法和数值计算的理论。
它是计算数学的一个分支,主要用于解决无法用解析方法求解的数学模型问题。
本文将综述数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。
一、插值与逼近1.插值:插值是利用已知数据点构造一个函数,使得该函数在给定的数据点上与已知函数完全相等。
常见的插值方法有拉格朗日插值和牛顿插值。
2. 逼近:逼近是从已知数据点构造一个函数,使得该函数在给定的数据点附近与已知函数近似相等。
逼近常用的方法有最小二乘逼近和Chebyshev逼近。
二、数值微分与数值积分1.数值微分:数值微分是通过计算差分商来近似计算函数的导数。
常见的数值微分方法有前向差分、后向差分和中心差分。
2.数值积分:数值积分是通过近似计算定积分的值。
常见的数值积分方法有中矩形法、梯形法和辛普森法。
三、线性方程组的直接解法与迭代解法1.直接解法:直接解法是通过一系列数学运算直接计算线性方程组的解。
常见的直接解法有高斯消元法和LU分解法。
2. 迭代解法:迭代解法是通过迭代计算逼近线性方程组的解的方法。
常见的迭代解法有Jacobi迭代法和Gauss-Seidel迭代法。
四、常微分方程的数值解法1.常微分方程:常微分方程是描述动力系统的数学模型,常用来描述物理系统、生物系统等。
常微分方程的数值解法主要包括初始值问题的一阶常微分方程和常微分方程组的数值解法。
2.常微分方程的数值解法:常微分方程的数值解法有欧拉方法、改进的欧拉方法、龙格-库塔方法等。
这些方法都是将微分方程转化为递推方程,通过迭代计算逼近微分方程的解。
总结:数值计算方法是求解数学模型的重要工具,在科学计算、工程设计和经济管理等领域有广泛的应用。
本文回顾了数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。
数值计算方法复习要点
数值计算方法复习要点1.近似方法的概念和意义:近似方法是指通过一系列逼近计算步骤来得到问题的数值解。
在实际问题中,很多问题无法通过解析方法来求解,数值计算方法提供了一种有效的途径。
近似方法的正确性和稳定性对于数值计算方法的可靠性至关重要。
2.插值方法:插值方法是指通过已知数据点构造一个函数来逼近未知数据点的数值方法。
常见的插值方法有拉格朗日插值和牛顿插值。
在复习插值方法时,需要掌握插值多项式的构造方法和插值误差估计的技巧。
3.数值微分与数值积分:数值微分与数值积分是数值计算方法中的核心内容。
数值微分用于求取函数的导数近似值,常见的数值微分方法有差分法和微分方程法。
数值积分则是用于求取函数的积分近似值,常见的数值积分方法有梯形法则、辛普森法则和高斯积分法则。
4.非线性方程求解:非线性方程求解是数值计算方法中的重要问题之一、常见的非线性方程求解方法有二分法、牛顿法、割线法和试位法等。
在复习非线性方程求解时,要理解这些方法的基本原理和收敛性条件,并学会分析其收敛速度和稳定性。
5.线性方程组求解:线性方程组求解是数值计算方法中的另一个重要问题。
常见的线性方程组求解方法有高斯消元法、LU分解法和迭代法等。
在复习线性方程组求解时,需要理解这些方法的基本原理和收敛性条件,并学会分析其计算复杂度和稳定性。
6.数值解常微分方程:数值解常微分方程是数值计算方法的一个重要应用领域。
常见的数值解常微分方程的方法有欧拉法、改进欧拉法、龙格-库塔法等。
在复习数值解常微分方程时,需要掌握这些方法的基本原理和实现技巧,并学会分析其精度和稳定性。
8.线性插值和非线性插值:线性插值是插值方法的一种简单形式,即通过已知的两个数据点之间的线性关系来逼近未知数据点的值。
非线性插值则是通过已知的多个数据点之间的非线性关系来逼近未知数据点的值。
理解线性插值和非线性插值的原理和应用场景对于选择合适的插值方法具有重要意义。
以上是数值计算方法复习的一些重点要点,通过理解和掌握这些要点,可以为进一步深入学习和应用数值计算方法奠定基础。
数值计算方法复习提纲
数值计算方法复习提纲第一章 数值计算中的误差分析 1.了解误差及其主要来源,误差估计;2.了解误差(绝对误差、相对误差)和有效数字的概念及其关系;3.掌握算法及其稳定性,设计算法遵循的原则。
1、 误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字绝对误差 E (x )=x-x *绝对误差限ε εε+≤≤-**x x x相对误差 ***/)(/)()(x x x x x x x E r -≈-=有效数字m n a a a x 10.....021*⨯±=若n m x x -⨯≤-1021*,称*x 有n 位有效数字。
有效数字与误差关系(1) m 一定时,有效数字n 越多,绝对误差限越小; (2)*x 有n 位有效数字,则相对误差限为)1(11021)(--⨯≤n r a x E 。
选择算法应遵循的原则1、 选用数值稳定的算法,控制误差传播; 例 ⎰=101dx e x eI xn n eI nI I n n11101-=-=- △!n x n=△x 02、 简化计算步骤,减少运算次数;3、 避免两个相近数相减,和接近零的数作分母; 避免第二章 线性方程组的数值解法1.了解Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解;Crout 分解;Cholesky 分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与Gauss-Seidel 迭代法;4.掌握向量与矩阵的范数及其性质,迭代法的收敛性及其判定 。
本章主要解决线性方程组求解问题,假设n 行n 列线性方程组有唯一解,如何得到其解?⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112222212111212111)两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。
数值计算方法复习要点
数值计算方法复习要点数值计算方法是计算机科学中常用的一类方法,主要用于在计算机上对数值进行精确的计算和近似的计算。
数值计算方法的核心是数值计算技术,它包括离散化方法、插值方法、数值微积分和数值代数等。
本文将复习数值计算方法的要点,总结为以下几个方面。
一、离散化方法离散化是指将连续问题转化为离散问题的方法,在数值计算中广泛应用。
其基本思想是将连续问题的数学模型用离散点来逼近。
常用的离散化方法有有限差分法和有限元法。
1.有限差分法:将微分方程转化为差分方程,通过计算差分方程的数值解来近似原微分方程的解。
-常见的差分格式有向前差分、向后差分和中心差分。
-一阶导数的差分近似公式有一阶向前差分公式和一阶中心差分公式。
-二阶导数的差分近似公式有二阶中心差分公式。
2.有限元法:将连续问题的域划分为有限个子域,构建一个适当的函数空间,在每个子域上选择一个适当的试函数进行逼近。
-有限元法的基本步骤包括离散化、建立有限元方程、计算有限元解和后处理。
二、插值方法插值方法是一种用已知数据构造出逼近其中一种连续函数的近似函数的方法,它可以用于求解函数值,也可以用于构造近似函数。
1.拉格朗日插值多项式:给定n+1个互不相同的节点,可以构造出一个n次多项式,该多项式在这n+1个节点上取得实际值。
2.牛顿插值多项式:给定n+1个节点和与这些节点对应的函数值,可以通过差商构造一个n次多项式。
3.线性插值:在相邻的两个节点之间,用线性函数来逼近目标函数。
三、数值微积分数值微积分主要包括数值求导和数值积分两个方面。
1.数值求导:通过差分方法,计算函数在其中一点的导数近似值。
-前向差分法和后向差分法是一阶求导的差分方法。
-中心差分法是一阶求导的更精确的方法。
2.数值积分:通过数值方法计算函数的定积分或不定积分的近似值。
-区间分割方法是一种常见的数值积分方法,如梯形法则、辛普森法则和复化求积公式等。
-变换方法是另一种常见的数值积分方法,如换元积分法和对称性积分法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单步法的局部截断误差、收敛阶的定义;
Lagrange插值多项式、n次Lagrange插值基函数
的性质(习题4-4 )、Newton插值多项 式 差商的定义、性质以及与导数之间的关系;
会用结果
三次样条插值的定义和构造思想;
最佳平方逼近的定义及求法; 最佳一致逼近的定义、Chebyshev定理。
第四章
插值型求积公式的构造思想、一般形式、稳定性、
《数值计算方法》重点复习内容
第一章
基本概念:误差的分类、绝对误差和相对误差、
有效数字;
误差分析的原则:避免相近的数相减等。
第二章
二分法及对分次数的计算; 不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。(学会判定:)
Newton迭代及其收敛性(
收函数的定义、存在唯一性、误差估计式;
常用的向量范数和矩阵范数的定义及求法; 列主元Gauss消去法、Doolittle分解方法; 条件数的定义及其计算。
第六章
了解向量序列和矩阵序列的定义、收敛性; 一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
及其收敛性判定;
Newton迭代方法求非线性方程组的迭代格式。
截断误差、求积系数的基本性质;
代数精度的定义、插值型求积公式的代数精度、 Newton-Cotes求积公式的代数精度、稳定性; 梯形公式、Simpson公式及其余项; 复化梯形公式、复化Simpson公式及其余项;
Gauss型求积公式的定义及其特点。
数值微分的三点公式计算近似导数。
第五章
第七章
最小二乘问题的定义、思想及其求法;
广义逆矩阵 A 和最小二乘解的关系; Householder变换的定义、性质、求法及应用; Givens变换的定义、性质、求法及应用;
第八章
幂法的迭代格式及其应用; 反幂法的迭代格式及其应用; QR方法的思想。
第九章
单步法的构造方法:Taylor展开法; Euler公式、 Euler预报-校正公式