高考数学一轮复习 第八章 立体几何 8.4 平行关系课件 文 北师大版

合集下载

高考一轮复习通用版8.4直线平面平行的判定与性质课件(55张)

高考一轮复习通用版8.4直线平面平行的判定与性质课件(55张)

【对点训练】
1.如图所示,在四棱锥PABCD中,四边形ABCD是平行四边形,M 是PC的中点,在DM上取一点G,过G和PA作平面交BD于点H.
求证:PA∥GH.
2.[2022·江苏南通市检测]《九章算术》是我国古代的数学著作,是“算经 十书”中最重要的一部,它对几何学的研究比西方要早1 000多年.在《九
线线平行”)
符号语言
因为 _l_∥__a__, _a_⊂__α__, __l⊄__α__, 所以l∥α
因为 __l∥__α__, __l⊂__β__, ______, 所以l∥b
[提醒] 应用判定定理时,要注意“内”“外”“平行”三个条件 必须都具备,缺一不可.
2.平面与平面平行的判定定理和性质定理
2.在长方体ABCDA1B1C1D1中,已知AB=AD, E为AD的中点,在线段B1C1上是否存在点F, 使得平面A1AF∥平面ECC1?若存在,请加 以证明,若不存在,请说明理由.
微专题29 函数思想破解立体几何中的问题
名师点评利用函数思想建立MN与a的函数关系式是解此题的关键, 立体几何中的最值问题,通常借助函数思想求解.
因为 _α_∥__β__, ______, ______, 所以a∥b
二、必明2个常用结论 1.平行间的三种转化关系
2.平行关系中的三个重要结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β. (2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. (3)垂直于同一平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
关键能力—考点突破
考点一 与线、面平行相关命题的判定 [基础性]
1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法 正确的是( )

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。

空间直线平面的平行课件高三数学一轮复习

空间直线平面的平行课件高三数学一轮复习

【命题说明】
考向 考法
预测
高考命题常以空间几何体为载体,考查直线、平面平行的判断 和证明.线面平行的证明是高考的热点.常以解答题的形式出现. 2025年高考这一部分知识仍会考查,以解答题第(1)问的形式出 现,难度中档.
必备知识·逐点夯实
知识梳理·归纳 1.直线与平面平行 (1)直线与平面平行的定义 直线l与平面α__没__有__公__共__点__,则称直线l与平面α平行.
角度2 平面与平面平行的性质 [例4](2023·承德模拟)如图,正方体ABCD-A1B1C1D1的棱长为3,点E在棱AA1上,点F 在棱CC1上,G在棱BB1上,且AE=FC1=B1G=1,H是棱B1C1上一点.
(1)求证:E,B,F,D1四点共面;
【证明】(1)如图,在DD1上取一点N使得DN=1, 连接CN,EN,则AE=DN=1.CF=ND1=2, 因为CF∥ND1,所以四边形CFD1N是平行四边形,所以D1F∥CN. 同理四边形DNEA是平行四边形, 所以EN∥AD,且EN=AD, 又BC∥AD,且AD=BC, 所以EN∥BC,EN=BC, 所以四边形CNEB是平行四边形, 所以CN∥BE,所以D1F∥BE, 所以E,B,F,D1四点共面;
对点训练 如图,四边形ABCD为矩形,PD=AB=2,AD=4,点E,F分别为AD,PC的中点.设平面
PDC∩平面PBE=l.证明:
(1)DF∥平面PBE;
如图,四边形ABCD为矩形,PD=AB=2,AD=4,点E,F分别为AD,PC的中点.设平面 PDC∩平面PBE=l.证明:
(2)DF∥l. 【证明】(2)由(1)知DF∥平面PBE, 又DF⊂平面PDC,平面PDC∩平面PBE=l, 所以DF∥l.
解题技法 1.判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α). (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β). (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β). 2.应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作 辅助平面确定交线.

新步步高北师大数学文大一轮复习文档:第八章 立体几何 81

新步步高北师大数学文大一轮复习文档:第八章 立体几何 81

1.简单几何体的结构特征 (1)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到. ②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到. ④球可以由半圆或圆绕直径所在直线旋转得到. (2)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形. ②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. ③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. 2.直观图画直观图常用斜二测画法,其规则是:(1)在已知图形中建立直角坐标系xOy .画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x 轴或y 轴的线段在直观图中分别画成平行于x ′轴和y ′轴的线段; (3)已知图形中平行于x 轴的线段在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.3.三视图(1)主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等,前后对应.(2)在三视图中,需要画出所有的轮廓线,其中,视线所见的轮廓线画实线,看不见的轮廓线画虚线.(3)同一物体放置的位置不同,所画的三视图可能不同.(4)清楚简单组合体是由哪几个基本几何体组成的,并注意它们的组成方式,特别是它们的交线位置. 4.常用结论(1)常见旋转体的三视图①球的三视图都是半径相等的圆.②水平放置的圆锥的主视图和左视图均为全等的等腰三角形. ③水平放置的圆台的主视图和左视图均为全等的等腰梯形. ④水平放置的圆柱的主视图和左视图均为全等的矩形. (2)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同.( × ) (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × ) (6)菱形的直观图仍是菱形.( × )1.下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行答案 D解析由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.2.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱的长度等于()A.34B.41C.5 2 D.215答案 C解析由题意知该几何体是三棱锥,底面是直角边长分别为3,4的直角三角形,高为5,其最长棱长为32+42+52=5 2.3.某空间几何体的主视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案 A解析由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其主视图为三角形,而圆柱的主视图不可能为三角形,故选A.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.48 cm3B.98 cm3C.88 cm3D.78 cm3答案 B解析由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积是6×3×6-13×12×3×5×4=98.故选B.5.正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案6 16a2解析画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D为OA的中点),∴S△O′A′B′=12×22S△OAB=24×34a2=616a2.题型一简单几何体的结构特征例1(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3(2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是球.其中正确结论的序号是________.(3)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.答案(1)A(2)③⑤(3)①④解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.图1图2(2)这条边若是直角三角形的斜边,则得不到圆锥,①错;这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面是显然成立的,③正确;如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.(3)命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.思维升华(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.答案②③④解析①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形.题型二简单几何体的三视图命题点1由空间几何体的三视图还原出几何体的形状例2若某几何体的三视图如图所示,则这个几何体的直观图可以是()答案 D解析A,B的主视图不符合要求,C的俯视图显然不符合要求,故选D.命题点2由空间几何体的直观图判断三视图例3一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案 B解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的投影距左右两边距离相等,因此选B.命题点3由空间几何体的部分视图画出剩余部分视图例4如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的左视图和俯视图,则该锥体的主视图可能是()答案 A解析由俯视图和左视图可知原几何体是四棱锥,底面是长方形,内侧的侧面垂直于底面,所以主视图为A.思维升华三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)如图是一几何体的直观图、主视图和俯视图,该几何体的左视图为()答案(1)B(2)B解析(1)由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.(2)由直观图和主视图、俯视图可知,该几何体的左视图应为面P AD,且EC投影在面P AD上,故B正确.题型三简单几何体的直观图例5(1)右图是水平放置的某个三角形的直观图,D′是△A′B′C′中B′C′边的中点且A′D′∥y′轴,A′B′,A′D′,A′C′三条线段对应原图形中的线段AB,AD,AC,那么()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC(2)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()答案(1)C(2)A解析(1)A′D′∥y′轴,根据斜二测画法规则,在原图形中应有AD⊥BC,又AD为BC边上的中线,所以△ABC为等腰三角形.AD为BC边上的高,则有AB,AC相等且最长,AD 最短.(2)由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.思维升华用斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C′D′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形答案 C解析如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2 cm.∴OC=OD2+CD2=(42)2+22=6(cm),∴OA=OC,∴四边形OABC是菱形.10.三视图识图中的易误辨析典例将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图为()易错分析(1)不能正确把握投影方向、角度致误;(2)不能正确确定点、线的投影位置;(3)不能正确应用实虚线区分可见线与非可见线.解析左视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为虚线.由于AD1与B1C不平行,投影为相交线,故应选B.答案 B温馨提醒(1)因对三视图的原理认识不到位,区分不清选项A和B,而易误选A;(2)因对三视图的画法要求不明而误选C或D.在画三视图时,分界线和可见轮廓线都用实线画,被遮住的部分的轮廓线用虚线画;(3)解答此类问题时,还易出现画三视图时对个别视图表达不准而不能画出所要求的视图,在复习时要明确三视图的含义,掌握“长对正、宽相等、高平齐”的要求.[方法与技巧]1.三视图的画法特征“长对正、宽相等,高平齐”,即主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.2.对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,然后再画其三视图.3.由三视图还原几何体时,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.[失误与防范]画三视图应注意的问题(1)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.(2)确定主视、左视、俯视的方向,观察同一物体方向不同,所画的三视图也不同.A组专项基础训练(时间:40分钟)1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线答案 D解析A错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析主视图应该是相邻两边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此主视图是①;左视图应该是相邻两边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此左视图是②;俯视图应该是相邻两边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③,故选B. 3.(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析四棱锥的直观图如图所示,PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长P A=12+12+12= 3.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2 B.4 2C.6 D.4答案 C解析如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD=(42)2+22=6,选C.5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为()答案 B解析由已知中几何体的直观图,我们可得左视图首先应该是一个正方形,故D不正确;中间的棱在左视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故A不正确.6.某几何体的主视图和左视图均为如图1所示的图形,则在图2的四个图中可以作为该几何体的俯视图的是()A.①③B.①④C.②④D.①②③④答案 A解析由主视图和左视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.7.若一个三棱锥的三视图如图所示,其中三视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为________.答案 4解析观察三视图,可得直观图如图所示.该三棱锥A-BCD的底面BCD是直角三角形,AB⊥平面BCD,CD⊥BC,侧面ABC,ABD是直角三角形;由CD⊥BC,CD⊥AB,知CD⊥平面ABC,CD⊥AC,侧面ACD也是直角三角形.8.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为________.答案 1解析 如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的主视图与左视图都是三角形,且面积都是12a 2,故面积的比值为1.9.把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A -BCD 的主视图与俯视图如图所示,则其左视图的面积为________.答案 14解析 由主视图与俯视图可得三棱锥A -BCD 的一个侧面与底面垂直,其左视图是直角三角形,且直角边长均为22,所以左视图的面积为S =12×22×22=14. 10.如图是一个几何体的主视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其左视图,并求该平面图形(左视图)的面积.解 (1)由该几何体的主视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的左视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边间的距离,即BC =3a ,AD 是正六棱锥的高,则AD =3a ,所以该平面图形(左视图)的面积为S =12×3a ×3a =32a 2. B 组 专项能力提升(时间:25分钟)11.若某一几何体的主视图与左视图均为边长是1的正方形,且其体积为12,则该几何体的俯视图可以是( )答案 C解析 若俯视图为A ,则该几何体为正方体,其体积为1,不满足条件.若俯视图为B ,则该几何体为圆柱,其体积为π(12)2×1=π4,不满足条件.若俯视图为C ,则该几何体为三棱柱,其体积为12×1×1×1=12,满足条件.若俯视图为D ,则该几何体为圆柱的14,体积为14π×1=π4,不满足条件. 12.已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为___________________________________________. 答案62a 2 解析 如图,过C ′作y ′轴的平行线C ′D ′,与x ′轴交于点D ′. 则C ′D ′=32a sin 45°=62a .又C ′D ′是原△ABC 的高CD 的直观图,所以CD =6a . 故S △ABC =12AB ·CD =62a 2.13.如图所示,点O 为正方体ABCD -A ′B ′C ′D ′的中心,点E 为平面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF 在该正方体的各个面上的投影可能是下图中的________(填出所有可能的序号).答案 ①②③解析 空间四边形D ′OEF 在平面DCC ′D ′上的投影是①,在平面BCC ′B ′上的投影是②,在平面ABCD 上的投影是③,故填①②③. 14.某几何体的三视图如图所示.(1)判断该几何体是什么几何体? (2)画出该几何体的直观图.解 (1)该几何体是一个正方体切掉两个14圆柱后得到的几何体.(2)直观图如图所示.15.如图的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图如下(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积.解 (1)如图.(2)所求多面体体积V =V 长方体-V 正三棱锥 =4×4×6-13×(12×2×2)×2=2843(cm 3).。

2023年高考数学(文科)一轮复习课件——空间几何体的结构、三视图和直观图

2023年高考数学(文科)一轮复习课件——空间几何体的结构、三视图和直观图
索引
考点二 空间几何体的三视图
例1 (1)(2021·全国乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视 图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次 为__③__④__(_或__②__⑤__,__答__案__不__唯__一__)_____(写出符合要求的一组答案即可).
_平__行__且__相__等___
相交于_一__点___,但 不一定相等
延长线交于___一__点_
_平__行__四__边__形___
_三__角__形___
__梯__形__
索引
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台
图形
互相平行且相等,
母线
__垂__直__于底面
相交于__一__点__
轴截面 侧面展开图
索引
2.(易错题)在如图所示的几何体中,是棱柱的为___③__⑤___(填写所有正确的序号). 解析 由棱柱的定义可判断③⑤属于棱柱.
索引
3.如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体
是( C )
A.棱台
B.四棱柱
C.五棱柱
D.六棱柱
解析 由几何体的结构特征,剩下的几何体为五棱柱.
索引
训练1 (1)如图,网格纸的各小格都是正方形,粗实线画
出的是一个几何体的三视图,则这个几何体是( B )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 解析 由题知,该几何体的三视图为一个三角形、两个四边形,经分析可 知该几何体为三棱柱.
索引
(2)(2022·成都检测)一个几何体的三视图如图所示,
索引
解析 根据“长对正、高平齐、宽相等”及图中数据,可知图②③只能是侧 视图,图④⑤只能是俯视图,则组成某个三棱锥的三视图,所选侧视图和俯 视图的编号依次是③④或②⑤.若是③④,则三棱锥如图1所示;若是②⑤, 则三棱锥如图2所示.

高考数学一轮复习第八章立体几何8.4平行关系课件文北师大版

高考数学一轮复习第八章立体几何8.4平行关系课件文北师大版

判 定义 图 形 条 α∩β= ⌀ 件 结 α∥β 论
定 定理


a⫋ β,b⫋ β,a∩ b=P,a∥α,b∥ α α∥β
α∥β,α∩ γ=a,β∩γ=b a∥b
α∥β,a⫋ β
a∥α
-4知识梳理 双基自测 自测点评
1
2
3
3.常用结论 (1)两个平面平行的有关结论 ①垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β. ②平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. (2)在推证线面平行时,一定要强调直线不在平面内,否则会出现 错误.
关闭
(1)× (2)× (3)× (4)× (5)√
答案
-6知识梳理 双基自测 自测点评12345关闭
2.已知正方体ABCD-A1B1C1D1,下列结论中,正确的是 (填序号). 因为 AB������ C1D1, ①AD 1∥BC1; ②平面AB1D1∥平面BDC1; 所以四边形 AD 1C1B 为平行四边形 . AD DC 1∥ 1; 故③ AD BC ①正确 ; 1∥ 1,从而 ④AD ∥B 平面 BDC 易证 BD1 ∥ AB 1∥ 1. DC 1, 1D1,
关闭
由题意易知平面HNF∥平面B1BDD1知,当M点满足在线段FH上有MN∥平 面B1BDD1. M∈线段FH
解析
关闭
答案
-10知识梳理 双基自测 自测点评
1.推证线面平行时,一定要说明一条直线在平面外,一条直线在平 面内. 2.推证面面平行时,一定要说明一个平面内的两条相交直线平行 于另一个平面. 3.利用线面平行的性质定理把线面平行转化为线线平行时,必须 说明经过已知直线的平面与已知平面相交,则该直线与交线平行.
又 AB1∩B1D1=B1,BD∩DC1=D, 故平面 AB1D1∥平面 BDC1,从而 ②正确 ; 由图易知 AD1 与 DC1 异面 ,故 ③错误 ;

2021届高考数学一轮复习第八章立体几何与空间向量补上一课立体几何中的翻折轨迹及最值范围问题含解析

2021届高考数学一轮复习第八章立体几何与空间向量补上一课立体几何中的翻折轨迹及最值范围问题含解析

立体几何中的翻折、轨迹及最值(范围)问题知识拓展1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化。

解题时我们要依据这些变化的与未变化的量来分析问题和解决问题.而表面展开问题是折叠问题的逆向思维、逆向过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试。

2.在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题。

对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的体积最值问题一般是指有关距离的最值、角的最值(上节)或(面积)体积的最值的问题。

其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.题型突破题型一立体几何中的翻折问题【例1】(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC =60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②。

(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B-CG-A的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD,CG确定一个平面,从而A,C,G,D四点共面。

由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE,所以AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE。

高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理

高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理

高考专题突破四 高考中的立体几何问题空间角的求法命题点1 求线线角例1 (2019·安徽知名示范高中联合质检)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________. 答案 24解析 方法一 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形,所以BM ⊥AC , 同理,A 1M ⊥AC ,因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1,因为A 1M ⊂平面A 1ACC 1,所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为原点,MA →,MB →,MA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系. 设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3),所以AC 1→=(-3,0,3),A 1B →=(0,3,-3), 所以cos 〈AC 1→,A 1B →〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24.方法二 如图,在平面ABC ,平面A 1B 1C 1中分别取点D ,D 1,连接BD ,CD ,B 1D 1,C 1D 1,使得四边形ABDC ,A 1B 1D 1C 1为平行四边形,连接DD 1,BD 1,则AB =C 1D 1,且AB ∥C 1D 1,所以AC 1∥BD 1,故∠A 1BD 1或其补角为异面直线AC 1与A 1B 所成的角.连接A 1D 1,过点A 1作A 1M ⊥AC 于点M ,连接BM ,设AA 1=2,由∠A 1AM =∠BAC =60°,得AM =1,BM =3,A 1M =3, 因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,A 1M ⊂平面A 1ACC 1,所以A 1M ⊥平面ABC ,又BM ⊂平面ABC , 所以A 1M ⊥BM ,所以A 1B =6,在菱形A 1ACC 1中,可求得AC 1=23=BD 1, 同理,在菱形A 1B 1D 1C 1中,求得A 1D 1=23,所以cos∠A 1BD 1=A 1B 2+BD 21-A 1D 212A 1B ·BD 1=6+12-1226×23=24,所以异面直线AC 1与A 1B 所成角的余弦值为24.思维升华 (1)求异面直线所成角的思路: ①选好基底或建立空间直角坐标系. ②求出两直线的方向向量v 1,v 2.③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.(2)两异面直线所成角的关注点: 两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.跟踪训练1 (2019·龙岩月考)若正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,则直线AB 1与CD 1所成的角为( ) A .30°B.45°C.60°D.90° 答案 C解析 ∵正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,∴AA 1=3, 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,则A (1,0,0),B 1(1,1,3),C (0,1,0),D 1(0,0,3), AB1→=(0,1,3),CD 1→=(0,-1,3), 设直线AB 1与CD 1所成的角为θ, 则cos θ=|AB 1→·CD 1→||AB 1→|·|CD 1→|=24·4=12,又0°<θ≤90°,∴θ=60°,∴直线AB 1与CD 1所成的角为60°.故选C. 命题点2 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,所以A 1B 21+AB 21=AA 21, 故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13, 所以AB 21+B 1C 21=AC 21, 故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D , 连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1.所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos∠C 1A 1B 1=427,sin∠C 1A 1B 1=77, 所以C 1D =3,故sin∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系.由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1——→=(1,3,-2),A 1C 1——→=(0,23,-3).由AB 1→·A 1B 1——→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1——→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎨⎧n ·AB →=0,n ·BB1→=0,得⎩⎪⎨⎪⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.思维升华 (1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 如图,已知三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.方法一 (1)证明 如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F , 又A 1E ,A 1F ⊂平面A 1EF ,A 1E ∩A 1F =A 1, 所以BC ⊥平面A 1EF .又EF ⊂平面A 1EF ,因此EF ⊥BC .(2)解 取BC 的中点G ,连接EG ,GF , 则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt△A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G2=152,所以cos∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二 (1)证明 连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系.不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎪⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0得EF ⊥BC . (2)解 设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎨⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF→·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.命题点3 求二面角例3 如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值.(1)证明 在△ACB 中,由余弦定理得cos∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC ,所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C ,所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32.在Rt△EFG 中,由勾股定理,得EG =EF 2+FG 2=72,所以cos∠EGF =FG EG =217, 所以二面角E -AB -C 的余弦值为217.方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系,则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ),则⎩⎨⎧BA →·m =0,BE →·m =0,即⎩⎪⎨⎪⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE→|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角,所以二面角E -AB -C 的余弦值为217.思维升华 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量.②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解. 跟踪训练3 (2020·湖北宜昌一中模拟)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥PD ;(2)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -D 的余弦值.解 依题意,以点A 为原点,以AB ,AD ,AP 为轴建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),PD →=(0,2,-2), 故BE →·PD →=0,所以BE →⊥PD →,所以BE ⊥PD .(2)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ), 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,λ=34,即BF →=⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎨⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0,不妨令z =-1,可得n 1=(0,3,-1)为平面FAB 的一个法向量, 取平面ABD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-110=-1010,又因为二面角F -AB -D 为锐二面角,所以二面角F-AB-D的余弦值为10 10.立体几何中的探索性问题例4 (2019·淄博模拟)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,且直线MF与由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线上(如图所示),因为AO∥BF,M为AB的中点,所以△OAM≌△FBM,所以OM=MF,AO=BF,所以点O在EA的延长线上,且AO=2,连接DF交EC于N,因为四边形CDEF为矩形,所以N是EC的中点,连接MN,因为MN为△DOF的中位线,所以MN∥OD,又因为MN⊂平面EMC,OD⊄平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,AE∩DE=E,所以EF⊥平面ADE,所以平面ABFE⊥平面ADE,取AE的中点H为坐标原点,以AH,DH所在直线分别为x轴,z轴,建立如图所示的空间直角坐标系,所以E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0), 所以ED →=(1,0,3),EC →=(1,4,3), 设M (1,t,0)(0≤t ≤4),则EM →=(2,t,0), 设平面EMC 的法向量m =(x ,y ,z ), 则⎩⎨⎧m ·EM →=0,m ·EC→=0⇒⎩⎪⎨⎪⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎪⎫t ,-2,8-t 3, 因为DE 与平面EMC 所成的角为60°, 所以82t 2+4+8-t 23=32, 所以23t 2-4t +19=32,所以t 2-4t +3=0,解得t =1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°, 取ED 的中点Q ,因为EF ⊥平面ADE ,AQ ⊂平面ADE , 所以AQ ⊥EF ,又因为AQ ⊥DE ,DE ∩EF =E ,DE ,EF ⊂平面CEF , 所以AQ ⊥平面CEF ,则QA →为平面CEF 的法向量,因为Q ⎝⎛⎭⎪⎪⎫-12,0,32,A (1,0,0), 所以QA →=⎝ ⎛⎭⎪⎪⎫32,0,-32,m =⎝⎛⎭⎪⎪⎫t ,-2,8-t 3, 设二面角M -EC -F 的大小为θ,所以|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+8-t23=|t -2|t 2-4t +19,因为当t =2时,cos θ=0,平面EMC ⊥平面CDEF , 所以当t =1时,θ为钝角,所以cos θ=-14.当t =3时,θ为锐角,所以cos θ=14.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.跟踪训练4 (2019·天津市南开区南开中学月考)如图1,在边长为2的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥BE ,如图2. (1)求证:A 1E ⊥平面BCDE ;(2)求二面角E -A 1D -B 的余弦值;(3)在线段BD 上是否存在点P ,使平面A 1EP ⊥平面A 1BD ?若存在,求BPBD的值;若不存在,说明理由. (1)证明 因为A 1D ⊥BE ,DE ⊥BE ,A 1D ∩DE =D ,A 1D ,DE ⊂平面A 1DE ,所以BE ⊥平面A 1DE ,因为A 1E ⊂平面A 1DE , 所以A 1E ⊥BE ,又因为A 1E ⊥DE ,BE ∩DE =E ,BE ,DE ⊂平面BCDE , 所以A 1E ⊥平面BCDE .(2)解 以E 为原点,分别以EB ,ED ,EA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则B (1,0,0),D (0,3,0),A 1(0,0,1), 所以BA 1→=(-1,0,1),BD →=(-1,3,0), 设平面A 1BD 的法向量n =(x ,y ,z ), 由⎩⎨⎧n ·BA 1→=-x +z =0,n ·BD→=-x +3y =0得⎩⎪⎨⎪⎧x =z ,x =3y ,令y =1,得n =(3,1,3), 因为BE ⊥平面A 1DE ,所以平面A 1DE 的法向量EB→=(1,0,0),cos 〈n ,EB →〉=n ·EB→|n |·|EB →|=37=217,因为所求二面角为锐角,所以二面角E -A 1D -B 的余弦值为217. (3)解 假设在线段BD 上存在一点P ,使得平面A 1EP ⊥平面A 1BD , 设P (x ,y ,z ),BP →=λBD→(0≤λ≤1),则(x -1,y ,z )=λ(-1,3,0),所以P (1-λ,3λ,0), 所以EA 1→=(0,0,1),EP →=(1-λ,3λ,0),设平面A 1EP 的法向量m =(x 1,y 1,z 1), 由⎩⎨⎧m ·EA1→=z 1=0,m ·EP→=1-λx 1+3λy 1=0,得⎩⎪⎨⎪⎧z 1=0,1-λx 1=-3λy 1,令x 1=3λ,得m =(3λ,λ-1,0), 因为平面A 1EP ⊥平面A 1BD ,所以m ·n =3λ+λ-1=0,解得λ=14∈[0,1],所以在线段BD 上存在点P ,使得平面A 1EP ⊥平面A 1BD ,且BP BD =14.例 (12分)(2019·全国Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值. (1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .[1分]又因为N 为A 1D 的中点,所以ND =12A 1D .[2分]由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,[3分] 所以MN ∥ED .[4分]又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,[5分] 所以MN ∥平面C 1DE .[6分](2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,[7分]则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).[8分]设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎨⎧ m ·A 1M →=0,m ·A 1A →=0,所以⎩⎪⎨⎪⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).[9分]设n =(p ,q ,r )为平面A 1MN 的一个法向量,则⎩⎨⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎪⎨⎪⎧-3q =0,-p -2r =0,可取n =(2,0,-1).[10分]于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,[11分]所以二面角A -MA 1-N 的正弦值为105.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.(2019·大连模拟)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A 1O ⊥平面ABC ;(2)求直线AB 与平面A 1BC 1所成角的正弦值. (1)证明 ∵AA 1=A 1C ,且O 为AC 的中点, ∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3),∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1——→=(0,2,0), 设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎪⎨⎪⎧2y =0,3x -3z =0,∴平面A 1BC 1的一个法向量为n =(1,0,1), 设直线AB 与平面A 1BC 1所成的角为α, 则sin α=|cos 〈AB →,n 〉|,又∵cos〈AB →,n 〉=AB →·n|AB →||n |=322=64,∴AB 与平面A 1BC 1所成角的正弦值为64.2.如图1,在△ABC 中,BC =3,AC =6,∠C =90°,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2. (1)求证:BC ⊥平面A 1DC ;(2)若CD =2,求BE 与平面A 1BC 所成角的正弦值. (1)证明 ∵DE ⊥A 1D ,DE ∥BC ,∴BC ⊥A 1D , 又∵BC ⊥CD ,A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD , ∴BC ⊥平面A 1DC ,(2)解 以D 为原点,分别以DE →,DA 1→,CD →为x ,y ,z 轴的正方向,建立空间直角坐标系,在直角梯形CDEB 中,过E 作EF ⊥BC ,EF =2,BF =1,BC =3, ∴B (3,0,-2),E (2,0,0),C (0,0,-2),A 1(0,4,0), BE →=(-1,0,2),CA1→=(0,4,2),BA 1→=(-3,4,2),设平面A 1BC 的法向量为m =(x ,y ,z ), ⎩⎨⎧CA 1→·m =0,BA1→·m =0,⎩⎪⎨⎪⎧4y +2z =0,-3x +4y +2z =0,⎩⎪⎨⎪⎧z =-2y ,x =0,令y =1,∴m =(0,1,-2), 设BE 与平面A 1BC 所成角为θ,∴sin θ=|cos 〈BE →,m 〉|=|BE →·m ||BE →||m |=45·5=45.3.(2020·成都诊断)如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置得到四面体P -ABC ,如图2所示.已知PB =4 2. (1)求证:平面PAC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值.(1)证明 取AC 的中点O ,连接PO ,BO 得到△PBO . ∵四边形ABCD 是菱形,∴PA =PC ,PO ⊥AC . ∵DC =5,AC =6,∴OC =3,PO =OB =4, ∵PB =42,∴PO 2+OB 2=PB 2, ∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC . ∵PO ⊂平面PAC ,∴平面PAC ⊥平面ABC . (2)解 ∵AB =BC ,∴BO ⊥AC . 易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0). 设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎪⎫0,-2,43.∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎪⎫-4,-2,43.设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量.由⎩⎨⎧n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0,解得⎩⎪⎨⎪⎧x 1=34y 1,y 1=415z 1,取z 1=15,则n 1=(3,4,15).取平面ABC 的一个法向量n 2=(0,0,1).∵cos〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1532+42+152=31010, 由图可知二面角Q -BC -A 为锐角, ∴二面角Q -BC -A 的余弦值为31010.4.如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E 为PD 上的点,且PB ∥平面EAC ,试确定E 点的位置; (2)在(1)的条件下,在线段PA 上是否存在点F ,使平面AEC 和平面BDF 所成的锐二面角的余弦值为114,若存在,求线段PF 的长度,若不存在,请说明理由.解 (1)设BD 交AC 于点O ,连接OE , ∵PB ∥平面AEC ,平面AEC ∩平面BDP =OE , ∴PB ∥OE .又O 为BD 的中点,∴E 为PD 的中点.(2)连接OP ,由题意知PO ⊥平面ABCD ,且AC ⊥BD ,∴以O 为坐标原点,OC →,OD →,OP →所在直线分别为x ,y ,z 轴建立直角坐标系,如图所示.OP =PD 2-OD 2=6,∴O (0,0,0),A (-2,0,0),B (0,-2,0),C (2,0,0),D (0,2,0),P (0,0,6),则E ⎝⎛⎭⎪⎪⎫0,22,62,OC →=(2,0,0),OE →=⎝⎛⎭⎪⎪⎫0,22,62,OD →=(0,2,0).设平面AEC 的法向量为m =(x 1,y 1,z 1), 则⎩⎨⎧m ·OC→=0,m ·OE→=0,即⎩⎪⎨⎪⎧2x 1=0,22y 1+62z 1=0,令z 1=1,得平面AEC 的一个法向量m =(0,-3,1),假设在线段PA 上存在点F ,满足题设条件,不妨设PF →=λPA →(0≤λ≤1).则F (-2λ,0,6-6λ),OF →=(-2λ,0,6-6λ). 设平面BDF 的法向量n =(x 2,y 2,z 2), ∴⎩⎨⎧n ·OD →=0,n ·OF→=0,即⎩⎪⎨⎪⎧2y 2=0,-2λx 2+1-λr(6z 2=0.)令z 2=1得平面BDF的一个法向量n =⎝⎛⎭⎪⎪⎫31-λλ,0,1.由平面AEC 与平面BDF 所成锐二面角的余弦值为114,则cos 〈m ,n 〉=m ·n|m ||n |=12·1+3⎝ ⎛⎭⎪⎫1λ-12=114,解得λ=15(负值舍去).∴|PF →|=15|PA →|=225. 故在线段PA 上存在点F ,当PF =225时,使得平面AEC 和平面BDF所成的锐二面角的余弦值为114.5.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.(1)证明 如图,连接AC ,交BD 于点O ,连接EO , ∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC , 易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,EC ,AC ⊂平面AEC , ∴BD ⊥平面AEC ,又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt△ADC 中,由AD =3,CD =1, 可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32,易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°, 即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O , ∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°, 即∠DAB =60°, ∴△ABD 为正三角形, ∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC , ∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫32,0,0,B ⎝ ⎛⎭⎪⎪⎫0,32,0,E ⎝⎛⎭⎪⎪⎫0,0,32, M ⎝⎛⎭⎪⎪⎫34,0,34,D ⎝ ⎛⎭⎪⎪⎫0,-32,0,N ⎝ ⎛⎭⎪⎪⎫34,34,0, ∴AB →=⎝ ⎛⎭⎪⎪⎫-32,32,0,AE →=⎝ ⎛⎭⎪⎪⎫-32,0,32, DM →=⎝ ⎛⎭⎪⎪⎫34,32,34,MN →=⎝⎛⎭⎪⎪⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎨⎧AB →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝ ⎛⎭⎪⎪⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427.故直线DP 与平面ABE 所成角的正弦值的最大值为427.。

2023新高考数学一轮复习创新课件 第8章 第1讲 基本立体图形及其直观图

2023新高考数学一轮复习创新课件 第8章 第1讲 基本立体图形及其直观图
A.最 B.美 C.逆 D.行
答案
解析 由题图可知,“致”的对面是“美”,“敬”的对面是 “逆”,“最”的对面是“行”.若图中“致”在正方体的后面,则 “美”在前面.故选B.
解析
角度 空间几何体的截面问题
例 4 (1)某同学在参加《通用技术》实践课时,制作了
一个工艺品,如图所示,该工艺品可以看成是一个球被一个
A.四棱柱
B.四棱台
C.三棱柱
D.三棱锥
解析 根据题图,因为有水的部分始终有两个平面平行,而其余各面
都易证是平行四边形,因此形成的几何体是四棱柱或三棱柱.故选AC.
解析 答案
考向二 平面图形与其直观图的关系
例 2 (1)如图,矩形 O′A′B′C′是水平放置的一个平面图形的直观 图,其中 O′A′=6,O′C′=2,则原图形 OABC 的面积为( )
解析
(2)某同学为表达对“新冠疫情”抗疫一线医护人员的感激之情,亲手 为他们制作了一份礼物,用正方体纸盒包装,并在正方体六个面上分别写 了“致敬最美逆行”六个字.该正方体纸盒水平放置的六个面分别用“前 面、后面、上面、下面、左面、右面”表示.如图是该正方体的展开图, 若图中“致”在正方体的后面,那么在正方体前面的字是( )
解析 答案
4.以下利用斜二测画法得到的结论中,正确的是( ) A.相等的角在直观图中仍相等 B.相等的线段在直观图中仍相等 C.平行四边形的直观图是平行四边形 D.菱形的直观图是菱形 解析 根据斜二测画法的规则可知,平行于坐标轴的直线平行性不 变,平行于x轴的线段长度不变,平行于y轴的线段长度减半,故A,B,D 错误;对于C,根据平行性不变原则,平行四边形的直观图仍然是平行四 边形,C正确.故选C.
A.24 2 C.48 2

2018届高考数学第1轮复习第八章立体几何8.4平行关系课件文北师大版

2018届高考数学第1轮复习第八章立体几何8.4平行关系课件文北师大版

同理BG∥平面ACH.
又BE∩BG=B,所以平面BEG∥平面ACH.
考点1
考点2
考点3
-23-
解题心得判定面面平行的常用方法: (1)利用面面平行的判定定理; (2)面面平行的传递性(α∥β,β∥γ⇒α∥γ); (3)利用线面垂直的性质(l⊥α,l⊥β ⇒α∥β).
考点1
考点2
考点3
-24-
对点训练3如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB 为等边三角形,AC⊥BC,且AC=BC= √2 ,O,M分别为AB,VA的中点.
关闭
(1)× (2)× (3)× (4)× (5)√
答案
-6-
知识梳理 双基自测 自测点评
12345
2.已知正方体ABCD-A1B1C1D1,下列结论中,正确的是
关闭
(填序号).
因为①AADB���1∥���CB1CD11;,
所以②四平边面形ABA1DD11∥C平1B面为B平D行C1四; 边形.
故 ③ADA1D∥1∥BCD1C,从1; 而①正确;
易证④ABDD1∥∥B平1D面1,BADBC1∥1. DC1,
又 AB1∩B1D1=B1,BD∩DC1=D,
故平面 AB1D1∥平面 BDC1,从而②正确;
由图易知 AD1 与 DC1 异面,故③错误;
因 AD1∥BC1,AD1⊈平面 BDC1,BC1⫋ 平面 BDC1,故 AD1∥平面 BDC1,
关闭
(1)AD.3 (2)BC.2 C.1 D.0
解析 答案
考点1
考点2
考点3
-14-
考点 2 直线与平面平行的判定与性质
例2(2016全国丙卷,文19)如图,四棱锥P-ABCD中,PA⊥底面 ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一 点,AM=2MD,N为PC的中点.

2023年《师说》高考数学一轮复习 课件第8章 立体几何与空间向量

2023年《师说》高考数学一轮复习 课件第8章 立体几何与空间向量
S表面积=S侧+S底
台体(棱台
和圆台)
S表面积=S侧+S上+S下

2
4πR
S=________
体积
S底·h
V=________
【微点拨】
(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与
平面几何知识来解决.
(2)求几何体的体积时,要注意利用分割、补形与等积法.
(3)柱体、锥体、台体体积之间的关系:
按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积
的关系:S直观图=
2
S原图形.
4
[巩固训练2]
如图是一个水平放置的直观图、它是一个底角为45;腰和上底均为1,
2+ 2
下底为 2+1的等腰梯形,那么原平面图形的面积为________.
解析:∵平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,
“对棱相等”模型是指三棱锥的相对的两条棱相等,应用数学建模
素养,构建长方体,将该三棱锥放入该长方体中,使三棱锥的顶点与
长方体的顶点重合,将该三棱锥的外接球转化为该长方体的外接球,
从而求出该外接球的半径,如图.
2

3
[典例2] 在平行四边形ABCD中,AB=2 2,BC=3,且cos A=
沿BD将△BDC折起,使点C到达点E处,且满足AE=AD,则三棱锥E
a
3.设正方体的棱长为a,则它的内切球半径r= ,外接球半径R=
2
3
a.
2
4.设长方体的长、宽、高分别为a,b,c,则它的外接球半径R=
a2 +b2 +c2
.
2
5.设正四面体的棱长为a,则它的高为
接球半径R=

高三数学一轮复习课件立体几何

高三数学一轮复习课件立体几何

D
公理2 如果两个平面有一个公共点,那么它们还有其他公共
点,且所有这些公共点的集合是一条过这个公共点的直线.
P l且P l
作用 1、用来判定两平面是否相交; 2、画两个相交平面的交线; 即: A , A 直线AB为交线. B , B 3、证明多点共线. 练习2: 已知ΔABC在平面α外, AB、AC、BC的延长线分别与 平面α交于点M、N、P三
C1 D1 E B F C A A1 D B1
例2 :
已知正方体的棱长为a , M 为 AB 的中点, N为 BB1的中点,求 A1M 与 C1 N 所成角的余弦值。 解:如图,取A1B1的中点E, 连BE, 有BE∥ A1M 取CC1的中点G,连BG. 有BG∥ C1N

棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
有两个面互相平行, 其余各面都是四边形, 并且每相邻两个四边形 的公共边都互相平行。
侧棱
E’ F’ A’
D’ B’
C’
底 面
E
D
F
A
侧面
C
B
顶点
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
有一个面是多 边形,其余各面都 是有一个公共顶点 侧棱 的三角形。
a′
θ
O
平 移
若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b
90] 异面直线所成角θ 的取值范围: (0,
4.求异面直线所成的角:
求两条异面直线所成角的步骤:
1.选点,引平行线找到所求的角; 2.把该角放入三角形; 3.根据边角关系计算,求角. 例1.正方体ABCD-A1B1C1D1 中,E,F分别是BB1,CC1的中 点,求AE,BF所成的角

高中数学一轮复习 第八章 立体几何

高中数学一轮复习 第八章 立体几何

第八章 立体几何考点1 空间几何体的结构及其三视图与直观图1.(2016·全国Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+185C.90D.812.(2016·全国Ⅱ,6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π3.(2016·北京,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12 D.14.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26πD.1+26π5.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A.大于5 B.等于5 C.至多等于4 D.至多等于36.(2015·北京,5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5B.4+ 5C.2+2 5D.57.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8 cm 3 B.12 cm 3 C.323cm 3 D.403 cm 38.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A.1B.2C.4D.89.(2014·福建,2)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体 D.三棱柱10.(2014·江西,5)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )11.(2014·湖北,5)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②12.(2014·新课标全国Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.413.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.考点2 空间几何体的表面积和体积1.(2016·全国Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4π B.9π2 C.6π D.32π32.(2016·全国Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π3.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+44.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+ 3C.1+2 2D.2 25.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π6.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π7.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+πC.13+2πD.23+2π8.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.159.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169π C.4(2-1)3π D.12(2-1)3π10.(2014·重庆,7)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.7211.(2014·浙江,3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm 2B.129 cm 2C.132 cm 2D.138 cm 212.(2014·大纲全国,8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4 B.16π C.9π D.27π413.(2014·安徽,7)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.1814.(2014·陕西,5)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3 B.4π C.2π D.4π315.(2014·湖北,8)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.35511316.(2014·新课标全国Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.1317.(2016·四川,13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.18.(2016·浙江,14)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.19.(2015·江苏,9)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.20.(2014·江苏,8)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.考点3 点、线、面的位置关系1. (2016·全国Ⅰ,11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22 C.33 D.132.(2015·安徽,5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面3.(2014·辽宁,4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α4.(2015·浙江,13)如图,三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.考点4 线面平行的判定与性质1.(2016·山东,17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.2.(2016·全国Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.3.(2015·江苏,16)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.4.(2014·江苏,16)如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.5.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角DAEC为60°,AP=1,AD=3,求三棱锥EACD的体积.6.(2014·湖北,19)如图,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.考点5 线面垂直的判定与性质1.(2016·浙江,2)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n2.(2015·浙江,8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′CDB的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α3.(2014·广东,7)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定4.(2016·全国Ⅱ,14)α,β是两个平面,m,n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m⊂α,那么m∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________(填写所有正确命题的编号).5.(2016·全国Ⅰ,18)如图,在以A,B,C,D,E,F为顶点的五面体中,平面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥EFDC;(2)求二面角E-BC-A的余弦值.6.(2016·江苏,16)如图,在直三棱柱ABC-A 1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.7.(2015·新课标全国Ⅱ,19)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E =D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.8.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.9.(2014·新课标全国Ⅰ,19)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角AA1B1C1的余弦值.10.(2014·广东,18)如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角DAFE的余弦值.11.(2014·辽宁,19)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角EBFC的正弦值.12.(2014·江西,19)如图,四棱锥P-ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.13.(2014·湖南,19)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.考点6 空间向量与立体几何1.(2014·广东,5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A.(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)2.(2014·四川,8)如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ) A.⎣⎡⎦⎤33,1 B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,223 D.⎣⎡⎦⎤223,13.(2014·新课标全国Ⅱ,11)直三棱柱ABCA 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.224.(2014·江西,10)如图,在长方体ABCD-A 1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )5.(2015·四川,14)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.6.(2016·全国Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上, AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.7.(2015·陕西,18)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.8.(2015·天津,17)如图,在四棱柱ABCD-A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点. (1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.9.(2015·安徽,19)如图所示,在多面体A1B1D1-DCBA,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角E-A1D-B1的余弦值.10.(2015·重庆,19)如图,三棱锥P ABC中,PC⊥平面ABC,PC=3,∠ACB=π2.D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角APDC的余弦值.11.(2015·北京,17)如图,在四棱锥AEFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1) 求证:AO⊥BE;(2) 求二面角F AEB的余弦值;(3)若BE⊥平面AOC,求a的值.12.(2015·四川,18)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角AEGM 的余弦值.13.(2015·江苏,22)如图,在四棱锥P ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.14.(2015·山东,17)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE, ∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.15.(2014·陕西,17)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角θ的正弦值.16.(2014·天津,17)如图,在四棱锥P ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC 的中点.(1)证明:BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F ABP的余弦值.17.(2014·四川,18)三棱锥A-BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值;。

高考数学总复习 第八章 8.3平行关系课件 理 北师大版

高考数学总复习 第八章 8.3平行关系课件 理 北师大版
连接 CO,EO.
思维(sīwéi) 升华
由于 CB=CD,所以 CO⊥BD. 又 EC⊥BD,EC∩CO=C, CO,EC 平面 EOC,
(2)若∠BCD=120°,M 为线段 所以 BD⊥平面 EOC,
AE 的中点,求证:DM∥平面 因此 BD⊥EO.
BEC.
又 O 为 BD 的中点,
所以 BE=DE.
a∥b
第二页,共60页。
基础知识·自主(zìzhǔ)学习
要点梳理
2.面面平行的判定与性质
判定
定义
定理
知识回顾 理清教材
性质
图形
条件 α∩β=∅ 结论 α∥β
a β,b β, a∩b = P , a∥α,b∥α
α∥β
α∥β ,α∩γ=
a,β∩γ=b
α∥β,a β
a∥b
a∥α
第三页,共60页。
基础知识·自主(zìzhǔ)学习
EC⊥BD.
α,b α,a∥b⇒a∥α);(3)利用面
(1)求证:BE=DE;
面 平 行 的 性 质 定 理 (α∥β , a α ⇒
(2)若∠BCD=120°,M 为线段 a∥β) ; (4) 利 用 面 面 平 行 的 性 质
AE 的中点,求证:DM∥平面 (α∥β,a β,a∥α⇒a∥β).
BEC.
夯基释疑
夯实基础 突破疑难
题号
1 2 3 4 5
答案
(1)× (2) √ (3) × (5) √ (6) ×
B
C ② 2
解析
第四页,共60页。
题型分类·深度剖析
题型一
直线与平面平行的判定与性质
【例 1】 (2012·山东) 如图,几何体 E-

2016届 数学一轮 北师大版 课件 第八章 立体几何 第3讲 平行关系

2016届 数学一轮 北师大版 课件 第八章 立体几何 第3讲 平行关系

因此BD⊥EO. 又O为BD的中点, 所以BE=DE.
深度思考
证明线面平行的方法常用线面平行的判定定 理,但有些问题可先证面面平行,本题就可 用这两种方法,不妨你试一试.
第8页
返回目录 结束放映 第八页,编辑于星期五:十八点 二十六分。
考点突破 考点二 直线与平面平行的判定与性质
【例2】如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,
P
A′N⊂平面A′B′C′,
所以A′N⊥平面NBC.
又 A′N=12B′C′=1,

VA′-MNC=
VN-A′MC=12VN-A′BC=12VA′-NBC=
1. 6
法二 VA′-MNC=VA′-NBC-VM-NBC=12VA′-NBC=16.
第14页
返回目录 结束放映 第十四页,编辑于星期五:十八点 二十六分。
又CB=CD,∠BCD=120°,
因ቤተ መጻሕፍቲ ባይዱ∠CBD=30°.所以DN∥BC.
又DN⊄平面BEC,BC⊂平面BEC,
所以DN∥平面BEC.
又MN∩DN=N,所以平面DMN∥平面BEC.
又DM⊂平面DMN,
所以DM∥平面BEC.
第9页
返回目录 结束放映 第九页,编辑于星期五:十八点 二十六分。
考点突破 考点二 直线与平面平行的判定与性质
(2)解 ∵A1O⊥平面ABCD, ∴A1O是三棱柱ABD-A1B1D1的高.
又∵AO=12AC=1,AA1= 2 ∴A1O= AA21-OA2=1.
又∵S△ABD=12× 2× 2=1, ∴VABD-A1B1D1=S△ABD×A1O=1.
第16页
返回目录 结束放映 第十六页,编辑于星期五:十八点 二十六分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档